JP2019155806A - Fiber-reinforced resin composite lumber and method for suppressing lumber warp - Google Patents
Fiber-reinforced resin composite lumber and method for suppressing lumber warp Download PDFInfo
- Publication number
- JP2019155806A JP2019155806A JP2018048004A JP2018048004A JP2019155806A JP 2019155806 A JP2019155806 A JP 2019155806A JP 2018048004 A JP2018048004 A JP 2018048004A JP 2018048004 A JP2018048004 A JP 2018048004A JP 2019155806 A JP2019155806 A JP 2019155806A
- Authority
- JP
- Japan
- Prior art keywords
- wood
- reinforced resin
- resin composite
- fiber
- lumber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本発明は、反りの抑制された繊維強化複合木材および木材の反りを抑制する方法に関する。特に、未乾燥の木材を用いながら、乾燥時に発生する反りが抑制された繊維強化複合木材および木材の反りを抑制する方法に関する。 The present invention relates to a fiber-reinforced composite wood with suppressed warpage and a method for suppressing warpage of the wood. In particular, the present invention relates to a fiber-reinforced composite wood in which warpage generated during drying is suppressed while using undried wood, and a method for suppressing warpage of the wood.
木材は、軽量で加工性がよいという材料的な特徴と、癒し効果やリラックス効果といった意匠的な特徴を合わせ持ち、従来から住宅用の建築物に多く使用されてきた。 Wood has both the material characteristics of light weight and good workability, and the design characteristics such as healing and relaxation effects, and has been widely used in residential buildings.
しかし、国産木材は製材コストが外国産木材より高いため利用が十分に進んでいない。国産木材の製材コストが高い要因として、製材時の原木断面での製材のとりかたの制約がある。一般に、原木の直径と製材に適した太さとに差異があるため、1本の原木から1本の製材を採取すると廃棄部分が多くなり、製材時の歩留まりが悪くなる。この対策として原木を極力太くし、1本の原木から複数本の製材を採取する方法がとられる。この方法では、製材の採取効率を上げ、製材コストを抑えることができるものの、得られる製材には小口面に芯部分を含まないものが多く生じる。この小口面に芯部分を含まない製材は、乾燥時に反りが発生しやすく、そのままでは建築物の材料に適さない。 However, domestic timber is not sufficiently utilized due to higher lumbering costs than foreign timber. The reason for the high lumbering cost of domestic timber is the restriction of lumbering on the raw wood cross section during lumbering. Generally, since there is a difference between the diameter of the raw wood and the thickness suitable for lumbering, if one lumber is collected from one raw wood, the discarded portion increases and the yield during lumbering deteriorates. As a countermeasure, a method is adopted in which the raw wood is made as thick as possible, and a plurality of lumbers are collected from one raw wood. Although this method can increase the efficiency of collecting lumber and reduce the lumber cost, many of the obtained lumber do not include a core portion on the facet. The lumber that does not include a core portion on the facet tends to warp when dried, and is not suitable as it is as a building material.
反りへの対策として切削加工ラインで適用する反りの修正方法が提案されている(特許文献1)。しかし、この方法は木材の反りの発生そのものを抑止するものではなく、発生した反りを修正するものであり、反りの程度や方向によっては対応できないことがある。木材の反りの発生そのものを抑制する方法として、木材の導管を穿孔し部分的に切断する方法が提案されている(特許文献2)。しかし、穿孔し切断する位置は対象の木材によって変わるため、工業的に適用することは困難である。 As a countermeasure against warping, a warping correction method applied in a cutting line has been proposed (Patent Document 1). However, this method does not suppress the warping of the wood itself, but corrects the warping that has occurred, and may not be able to cope with depending on the degree and direction of warping. As a method of suppressing the occurrence of warping of wood itself, a method of perforating and partially cutting a wood conduit has been proposed (Patent Document 2). However, since the drilling and cutting positions vary depending on the target wood, it is difficult to apply industrially.
このような背景から、対象の木材の個性に左右されることのない、工業的に画一的に適用できる、木材の反りを抑制する方法が求められ、反りの抑制された木材が求められていた。 From such a background, there is a need for a method for suppressing warping of wood that can be applied industrially and uniformly without being influenced by the individuality of the target wood, and wood for which warpage is suppressed is required. It was.
本発明の課題は、小口面が芯部分を含まない木材製材を用いながらも乾燥時の反りが抑制された複合木材を提供することにある。本発明の課題はまた、乾燥時における、小口面が芯部分を含まない木材製材の反りを抑制する方法を提供することにある。 The subject of this invention is providing the composite wood by which the curvature at the time of drying was suppressed, while using the lumber lumber whose facet does not contain a core part. Another object of the present invention is to provide a method for suppressing warping of a lumber lumber whose facet does not include a core part during drying.
本発明は、含水率が20%以上の木材と繊維強化樹脂複合材とを接着剤を介して一体化された繊維強化樹脂複合木材である。
本発明はまた、小口面に芯部分を含まない四角断面の単一木材である含水率20%以上の木材の長手方向の一つの面と、その面と対向する他の面に、繊維強化樹脂複合材を接着剤を介して一体化することを特徴とする、木材製材の反りを抑制する方法である。
The present invention is a fiber reinforced resin composite wood in which wood having a moisture content of 20% or more and a fiber reinforced resin composite material are integrated with each other through an adhesive.
The present invention also provides a fiber reinforced resin on one surface in the longitudinal direction of a wood having a moisture content of 20% or more, which is a single wood having a square cross section that does not include a core portion on the facet, and on the other surface facing the surface. It is a method for suppressing warping of a lumber lumber characterized by integrating a composite material through an adhesive.
本発明によれば、小口面が芯部分を含まない木材製材を用いながらも乾燥時の反りが抑制された複合木材を提供することができる。また、本発明によれば、乾燥時における、小口面が芯部分を含まない木材製材の反りを抑制する方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the composite timber by which the curvature at the time of drying was suppressed can be provided, using the lumber lumber whose facet does not contain a core part. Further, according to the present invention, it is possible to provide a method for suppressing warping of wood lumber in which the facet surface does not include a core part during drying.
以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
[繊維強化樹脂複合木材]
本発明の繊維強化樹脂複合木材は、四角断面の未乾燥の木材と繊維強化樹脂複合材とを、接着剤を介して一体化したものから構成される。
[Fiber-reinforced resin composite wood]
The fiber-reinforced resin composite wood according to the present invention is composed of undried wood having a square cross section and a fiber-reinforced resin composite material integrated with an adhesive.
木材の乾燥時の反り抑制を効果的に発現させるためには、繊維強化樹脂複合材を未乾燥の木材の側面の向かい合う二面に配置して接着させることが好ましい。すなわち、本発明においては、小口面に芯部分を含まない四角断面の単一木材である含水率20%以上の木材の長手方向の一つの面と、その面と対向する他の面に、繊維強化樹脂複合材を接着剤を介して一体化することが好ましい。向かい合う二面の他の面、すなわちこれらの面と直交する面にも繊維強化樹脂複合材を接着してもよいが、この場合もそれらを向かい合う二面に配置して接着することが好ましく、この場合、木材の側面の四面に繊維強化樹脂複合材を配置して接着する態様になる。 In order to effectively express the suppression of warping during drying of the wood, it is preferable that the fiber reinforced resin composite material is disposed and bonded to two opposite surfaces of the undried wood. That is, in the present invention, fibers are formed on one surface in the longitudinal direction of wood having a moisture content of 20% or more, which is a single wood having a square cross section that does not include a core portion on the facet, and on the other surface facing the surface. It is preferable to integrate the reinforced resin composite material with an adhesive. The fiber reinforced resin composite material may be bonded to the other two surfaces facing each other, that is, the surface orthogonal to these surfaces, but in this case, it is preferable to arrange and bond them on the two surfaces facing each other. In this case, the fiber reinforced resin composite material is arranged and bonded to the four side surfaces of the wood.
[木材]
木材としては、従来から木材製材として使用されている木材を用いることができ、例えば、ヒノキ、スギ、カラマツ、ベイマツ、トウヒ、ツガ、スギラミナ、ナラ、キリ、ケヤキ、カエデ、トチ、ホオ、サクラ、チーク、ラワン、スピナールを用いることができる。木材の形状は、通常、木材の繊維方向と木材の長辺が一致するように切削加工した形状であり、例えば、ひき板や小角材等の形状で用いることができる。
[wood]
As the wood, wood conventionally used as wood lumber can be used. Teak, lawan, spinal can be used. The shape of the wood is usually a shape that is cut so that the fiber direction of the wood and the long side of the wood coincide with each other.
木材と繊維強化樹脂複合材とを強固に接着させるためには、木材の表面に、シボ加工を施すことが好ましい。シボ部分が木材にめり込むアンカー効果により接着性能が向上する。このシボは、木材の表面の深さ10〜1000μmの凹凸加工であることが好ましい。 In order to firmly bond the wood and the fiber reinforced resin composite material, it is preferable to apply a graining process to the surface of the wood. Adhesion performance is improved by the anchor effect that the embossed part is embedded in the wood. The texture is preferably a concavo-convex process having a depth of 10 to 1000 μm on the surface of the wood.
[繊維強化樹脂複合材]
繊維強化樹脂複合材は補強繊維とマトリクス樹脂からなる。これは、引抜成形法により成形されたものが好ましい。引抜成形法は補強繊維を連続的に引き出しマトリックス樹脂に含浸させて所望の断面形状、例えば四角形状、をした金型内を通過させ賦形する成形法である。この方法によると、均一断面の長尺成形品を連続的に製造することができる。
[Fiber reinforced resin composite]
The fiber reinforced resin composite material includes reinforcing fibers and a matrix resin. This is preferably formed by a pultrusion method. The pultrusion molding method is a molding method in which reinforcing fibers are continuously drawn out and impregnated into a matrix resin and passed through a mold having a desired cross-sectional shape, for example, a square shape. According to this method, a long molded product having a uniform cross section can be continuously produced.
[補強繊維]
繊維強化樹脂複合材に使用する補強繊維としては、例えば炭素繊維、アラミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサザール繊維、ポリフェニレンサルファイド繊維、ポリイミド繊維、四フッ化エチレン繊維、ガラス繊維を例示することができる。これらのなかでも、無機繊維または融点もしくはガラス転移温度が200℃以上である有機繊維を用いることが好ましい。このような繊維として、炭素繊維、ガラス繊維、アラミド繊維を例示することができる。なかでも炭素繊維が好ましく、ポリアクリロニトリル繊維から得られる炭素繊維が特に好ましい。補強繊維としては長繊維を用いることが好ましいが、短繊維を長繊維とともに用いていもよい。
[Reinforcing fiber]
Examples of reinforcing fibers used in fiber reinforced resin composite materials include carbon fibers, aramid fibers, polyarylate fibers, polyparaphenylene benzobisoxazal fibers, polyphenylene sulfide fibers, polyimide fibers, tetrafluoroethylene fibers, and glass fibers. can do. Among these, it is preferable to use inorganic fibers or organic fibers having a melting point or glass transition temperature of 200 ° C. or higher. Examples of such fibers include carbon fibers, glass fibers, and aramid fibers. Of these, carbon fibers are preferable, and carbon fibers obtained from polyacrylonitrile fibers are particularly preferable. Although it is preferable to use long fibers as the reinforcing fibers, short fibers may be used together with the long fibers.
補強繊維の使用量は、繊維強化樹脂複合材の全体体積に対して、好ましくは40〜70体積%である。40体積%未満であると補強繊維による樹脂補強効果が小さくなり好ましくない。また、70体積%を超えると、樹脂により繊維を均一含浸することが困難となり、弱部となる樹脂未含浸部分への応力集中により複合材としての物性が低下するため好ましくない。 The amount of the reinforcing fiber used is preferably 40 to 70% by volume with respect to the total volume of the fiber reinforced resin composite material. If it is less than 40% by volume, the effect of reinforcing the resin by the reinforcing fiber is reduced, which is not preferable. On the other hand, if it exceeds 70% by volume, it is difficult to uniformly impregnate the fibers with the resin, and the physical properties of the composite material are deteriorated due to stress concentration on the resin non-impregnated portion, which is a weak portion.
補強繊維の形態として、一方向に繊維を引き揃えたUD材やその2方向以上の組合せ、織物(例えば、平織、綾織、ハイブリッドクロス)、不織布など様々な形態を採用することができ、必要とする強度に応じて設計することができる。補強性能とコストとのバランスをから、一方向に引き揃えたUD材を用いることが特に好ましい。 As the form of the reinforcing fiber, various forms such as a UD material in which fibers are aligned in one direction, a combination of two or more directions, a woven fabric (for example, plain weave, twill weave, hybrid cloth), and a non-woven fabric can be adopted. It can be designed according to the strength. It is particularly preferable to use a UD material that is aligned in one direction from the balance between reinforcement performance and cost.
補強繊維として炭素繊維を用いる場合、単糸の繊維直径5〜9μm、構成本数1000〜300000本からなる繊維束(ストランド)を用いることが好ましい。これらの繊維束は所望分を集束し、またはシート状に拡幅して使用することができる。 When carbon fibers are used as the reinforcing fibers, it is preferable to use a fiber bundle (strand) composed of a single yarn having a fiber diameter of 5 to 9 μm and a constitutional number of 1000 to 300,000. These fiber bundles can be used by converging a desired amount or by expanding the sheet bundle.
[マトリクス樹脂]
繊維強化樹脂複合材に用いられるマトリックス樹脂としては、熱可塑性樹脂、熱硬化性樹のいずれも用いることができ、好ましくは熱硬化性樹脂を用いる。例示すれば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ビスマレイミド樹脂、ポリイミド、ポリアミドイミド、ポリウレタン樹脂、レゾルシン樹脂、尿素樹脂、メラミン樹脂を挙げることができる。
[Matrix resin]
As the matrix resin used in the fiber reinforced resin composite material, either a thermoplastic resin or a thermosetting resin can be used, and a thermosetting resin is preferably used. Examples include phenol resin, epoxy resin, unsaturated polyester resin, diallyl phthalate resin, bismaleimide resin, polyimide, polyamideimide, polyurethane resin, resorcin resin, urea resin, and melamine resin.
本発明では、繊維強化樹脂複合材を木材に接着させるが、その方法としては、木材の繊維方向と同一方向に補強繊維の補強方向を合わせるように配置して接着させるのが通常であるが、必要に応じて補強方向が交差するようにシート状の繊維強化樹脂複合材を積層したものを使用してもよい。 In the present invention, the fiber reinforced resin composite material is adhered to wood, and as a method thereof, it is usual to arrange and adhere so that the reinforcing direction of the reinforcing fiber is aligned with the fiber direction of the wood, You may use what laminated | stacked the sheet-like fiber reinforced resin composite material so that the reinforcement direction might cross | intersect as needed.
乾燥時の反りの発生を防ぐためには、木材と繊維強化樹脂複合材とが強固に接着していることが望ましい。 In order to prevent warping during drying, it is desirable that the wood and the fiber-reinforced resin composite material are firmly bonded.
[接着]
接着は、木材と繊維強化樹脂複合材とを公知の方法で接着剤を介して積層したのち、例えば面圧5×105〜15×105Paの圧力下、20〜40℃で5〜24時間圧締め処理することで行うことができる。
[Adhesion]
The adhesion is performed by laminating wood and a fiber reinforced resin composite material with an adhesive by a known method, and then, for example, under a pressure of 5 × 10 5 to 15 × 10 5 Pa at 20 to 40 ° C. and 5 to 24. This can be done by performing a time-tightening process.
接着剤として例えば、レゾルシノール樹脂接着剤、レゾルシノール・フェノール樹脂接着剤、水性高分子−イソシアネート系接着剤、ユリア樹脂接着剤、メラミン・ユリア樹脂接着剤、フェノール樹脂接着剤、カゼイン木材接着剤、水性高分子−イソシアネート系接着剤、α−オレフイン無水マレイン酸樹脂接着剤、酢酸ビニル樹脂接着剤、ホットメルト接着剤を用いることができる。特に良好な接着強度を得る観点から、レゾルシノール樹脂接着剤または水溶性高分子‐イソシアネート系接着剤が好ましい。 Examples of adhesives include resorcinol resin adhesive, resorcinol / phenol resin adhesive, aqueous polymer-isocyanate adhesive, urea resin adhesive, melamine / urea resin adhesive, phenol resin adhesive, casein wood adhesive, aqueous high A molecular-isocyanate-based adhesive, an α-olefin maleic anhydride resin adhesive, a vinyl acetate resin adhesive, or a hot melt adhesive can be used. From the viewpoint of obtaining particularly good adhesive strength, a resorcinol resin adhesive or a water-soluble polymer-isocyanate adhesive is preferable.
木材と繊維強化樹脂複合材との接着に用いる接着剤の量は、例えば100〜400g/m2、好ましくは200〜250g/m2である。 The amount of the adhesive used for bonding the wood and the fiber reinforced resin composite material is, for example, 100 to 400 g / m 2 , preferably 200 to 250 g / m 2 .
本発明を実施例を例示してさらに詳しく説明する。
(1)反り
試料を庫内温度65〜85℃の乾燥炉の中に投入して延べ125時間乾燥した。試料の反りの計測は、平滑な平面である床面上に試料を置き、長さ方向の一方の辺と床面とを合わせ、対向する他方の辺が床面から浮いた高さをスケールで計測して行った。また、幅方向の一方の辺と床面とを合せ、対向する他方の辺が床面から浮いた高さを計測することでも行った。
(2)含水率
高周波式含水率計((株)佐藤商事製LG6NG)を用いて、木材表面にスプリング式センサーを接触させて測定した。
(3)接着強度
接着強度はブロックせん断接着試験によって評価した。試料のせん断試験時の破断箇所が木部であれば「良」、接着剤層またはその界面であれば「不良」とした。そして、乾燥後の接着面剥離が目視で確認できなければ「良」とし、目視で確認できれば「不良」とした。
(4)繊維直径
測定対象を走査型電子顕微鏡JSM6330F(JEOL社製)にて観察・写真撮影し、繊維100本を任意に選出して測長し、それらの平均繊維径を算出した。なお、観察・写真撮影は1000倍で行った。
The present invention will be described in more detail with reference to examples.
(1) Warpage The sample was put into a drying furnace having an internal temperature of 65 to 85 ° C and dried for a total of 125 hours. To measure the warpage of a sample, place the sample on the floor surface, which is a flat surface, align one side in the length direction with the floor surface, and use the scale to measure the height at which the opposite side floats from the floor surface. Measured and performed. Also, the measurement was performed by measuring the height at which one side in the width direction and the floor surface were combined and the other side facing the floor was lifted from the floor surface.
(2) Moisture content Using a high-frequency moisture meter (LG6NG, manufactured by Sato Corporation), measurement was performed by bringing a spring-type sensor into contact with the wood surface.
(3) Adhesive strength Adhesive strength was evaluated by a block shear adhesion test. The sample was evaluated as “good” if the broken part in the shear test was a wood part, and “bad” if it was an adhesive layer or its interface. And when adhesion surface peeling after drying was not able to be confirmed visually, it was set as "good", and when it could be confirmed visually, it was set as "bad".
(4) Fiber Diameter The object to be measured was observed and photographed with a scanning electron microscope JSM6330F (manufactured by JEOL), 100 fibers were arbitrarily selected and measured, and the average fiber diameter was calculated. Observation and photography were performed at 1000 times.
[実施例1]
未乾燥木材として、厚み30mm×幅150mm×長さ1000mmで、小口面(30mm×150mmの面)に芯部分を含まない未乾燥のスギラミナ材(含水率40%)を用い、繊維強化樹脂複合材として、炭素繊維連続繊維を含有する熱硬化性樹脂の硬化物からなり引抜成形で成形した繊維強化樹脂複合材を用いた。この繊維強化樹脂複合材は、60体積%の炭素繊維と40体積%のビニルエステル樹脂からなり、ビニルエステル樹脂の硬化物中に炭素繊維が一方向に引き揃えられている。
[Example 1]
As undried wood, a fiber reinforced resin composite material using undried shiramina material (water content 40%) that is 30 mm thick × 150 mm wide × 1000 mm long and does not include a core part on the small face (30 mm × 150 mm surface) A fiber reinforced resin composite material made of a thermosetting resin containing carbon fiber continuous fibers and formed by pultrusion molding was used. The fiber reinforced resin composite material is composed of 60% by volume of carbon fiber and 40% by volume of vinyl ester resin, and the carbon fiber is aligned in one direction in a cured product of vinyl ester resin.
炭素繊維として、単糸の繊維直径7μm、構成本数24000本からなる一方向に配向した繊維束をシート状に拡幅して使用した。 As a carbon fiber, a fiber bundle oriented in one direction consisting of a single yarn fiber diameter of 7 μm and the number of constituents of 24,000 was widened into a sheet and used.
厚み0.9mm×幅50mm×長さ1000mmの上述の繊維強化樹脂複合材を幅方向に3枚並べて厚み0.9mm×幅150mm×長さ1000mmの平面板状の繊維強化樹脂複合材とし、上述の未乾燥のスギラミナ材の上面と下面にそれぞれを接着した。接着剤には、水性高分子―イソシアネート系接着剤(光洋産業(株)製 水性高分子−イソシアネート系接着剤 主剤:KR134L 硬化剤:AX200)を200g/m2の量で使用し、面圧7.5×105〜10.0×105Paで1時間常温圧締め処理することで、平面板状の繊維強化樹脂複合材と木材を接着して、繊維強化樹脂複合木材を得た。反りと接着強度を評価した。 The above-mentioned fiber reinforced resin composites of thickness 0.9 mm × width 50 mm × length 1000 mm are arranged in the width direction to form a flat plate-like fiber reinforced resin composite of thickness 0.9 mm × width 150 mm × length 1000 mm. The undried cedarmina material was bonded to the upper and lower surfaces, respectively. For the adhesive, an aqueous polymer-isocyanate adhesive (manufactured by Koyo Sangyo Co., Ltd., aqueous polymer-isocyanate adhesive, main agent: KR134L curing agent: AX200) is used in an amount of 200 g / m 2 , and the surface pressure is 7 The flat plate-like fiber reinforced resin composite material and the wood were adhered by subjecting the flat plate-like fiber reinforced resin composite material to a normal pressure pressing treatment at 5 × 10 5 to 10.0 × 10 5 Pa for 1 hour to obtain a fiber reinforced resin composite wood. Warpage and adhesive strength were evaluated.
[比較例1]
試料として、厚み30mm×幅150mm×長さ1000mmで、小口面(30mm×150mmの面)に芯部分を含まない未乾燥のスギラミナ材(含水率40%)をそのまま用い、反りを評価した。なお、この比較例では繊維強化樹脂複合材を用いなかった。
[Comparative Example 1]
As a sample, an undried shiramina material (water content: 40%) having a thickness of 30 mm, a width of 150 mm, and a length of 1000 mm, and having no core portion on the facet (30 mm × 150 mm) was used as it was, and the warpage was evaluated. In this comparative example, a fiber reinforced resin composite material was not used.
本発明により製材計画で反りを考慮する必要が無くなり、より効率的な木材の利用ができる。さらに、木材の乾燥後には繊維強化樹脂複合材が力学的な補強層として機能するため、力学物性が向上した繊維強化樹脂複合木材を得ることができる。通常の木材よりも撓みが少なため、断面を縮小し、長スパン化させることができる。 According to the present invention, it is not necessary to consider warpage in the lumbering plan, and more efficient use of wood can be achieved. Furthermore, since the fiber reinforced resin composite material functions as a mechanical reinforcing layer after the wood is dried, a fiber reinforced resin composite wood with improved mechanical properties can be obtained. Since the bending is less than that of normal wood, the cross section can be reduced and the span can be increased.
1 繊維強化樹脂複合材
2 接着剤層
3 未乾燥木材
1 Fiber reinforced resin composite material 2 Adhesive layer 3 Undried wood
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018048004A JP2019155806A (en) | 2018-03-15 | 2018-03-15 | Fiber-reinforced resin composite lumber and method for suppressing lumber warp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018048004A JP2019155806A (en) | 2018-03-15 | 2018-03-15 | Fiber-reinforced resin composite lumber and method for suppressing lumber warp |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019155806A true JP2019155806A (en) | 2019-09-19 |
Family
ID=67995485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018048004A Pending JP2019155806A (en) | 2018-03-15 | 2018-03-15 | Fiber-reinforced resin composite lumber and method for suppressing lumber warp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019155806A (en) |
-
2018
- 2018-03-15 JP JP2018048004A patent/JP2019155806A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Verma et al. | Development of layered laminate bamboo composite and their mechanical properties | |
US4888228A (en) | Composite laminates comprising matrix bound plies having interlocked transverse fibers and a method of making the same | |
KR101659591B1 (en) | Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby | |
Verma et al. | Tensile strength analysis of bamboo and layered laminate bamboo composites | |
CN112571888B (en) | Resin-based carbon fiber composite material reinforced laminate and preparation method thereof | |
JP2006515809A (en) | Three-dimensional knitted spacer woven sandwich composite | |
Tehrani-Dehkordi et al. | Effects of plies stacking sequence and fiber volume ratio on flexural properties of basalt/nylon-epoxy hybrid composites | |
Abdurohman et al. | Effect of water and seawater on mechanical properties of fiber reinforced polymer composites: a review for amphibious aircraft float development | |
JP2018039115A (en) | Fiber-reinforced resin composite structure and high-pressure container, and method for producing them | |
Asif et al. | Comparative study on mechanical properties of bamboo and bamboo-glass fiber reinforced hybrid composites | |
US9551109B2 (en) | Doctor blade including combination carbon/glass yarns | |
JPH03234506A (en) | Unidirectionally paralleled prepreg reinforced with single fiber | |
JPH0575575B2 (en) | ||
JP2019155806A (en) | Fiber-reinforced resin composite lumber and method for suppressing lumber warp | |
Kramár et al. | Reinforcing effect of a thin basalt fiber-reinforced polymer plywood coating | |
Acosta et al. | Hybrid wood-glass and wood-jute-glass laminates manufactured by vacuum infusion | |
Mariatti et al. | Effect of laminate configuration on the properties of glass fiber-reinforced plastics (GFRPs) mixed composites | |
CN104772949B (en) | A kind of high-performance aramid fiber shuffling cloth peculiar to vessel and its manufacture method | |
CN104802234A (en) | Composite board, preparation method and application thereof | |
Malaiah et al. | Investigation on effect of fiber and orientation on the properties of bio-fibre reinforced laminates | |
Al-Sulaiman | Mechanical properties of date palm leaves | |
JP6623967B2 (en) | Wood material for wind instruments and wind instruments | |
CN109572075A (en) | Sandwich structure of fiber tape toughening honeycomb core | |
Tsampas et al. | Mechanical performance of novel high Tg polyimide matrix carbon fibre-reinforced laminates | |
Eberts et al. | Mechanical characterization of bamboo and glass fiber biocomposite laminates |