[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019047585A5 - - Google Patents

Download PDF

Info

Publication number
JP2019047585A5
JP2019047585A5 JP2017166740A JP2017166740A JP2019047585A5 JP 2019047585 A5 JP2019047585 A5 JP 2019047585A5 JP 2017166740 A JP2017166740 A JP 2017166740A JP 2017166740 A JP2017166740 A JP 2017166740A JP 2019047585 A5 JP2019047585 A5 JP 2019047585A5
Authority
JP
Japan
Prior art keywords
current
reactor
semiconductor switching
switching element
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017166740A
Other languages
Japanese (ja)
Other versions
JP6910250B2 (en
JP2019047585A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2017166740A priority Critical patent/JP6910250B2/en
Priority claimed from JP2017166740A external-priority patent/JP6910250B2/en
Publication of JP2019047585A publication Critical patent/JP2019047585A/en
Publication of JP2019047585A5 publication Critical patent/JP2019047585A5/ja
Application granted granted Critical
Publication of JP6910250B2 publication Critical patent/JP6910250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

デッタイム期間bでは、第1の半導体スイッチング素子1がオフ状態となる。その結果、第1の半導体スイッチング素子1と第2の半導体スイッチング素子2とが共にオフ状態となる。このときには、電源101の正極→リアクトル5→第2のダイオード4→負荷102→電源102の負極の経路を電流が流れる。期間bでは、リアクトル5の電流は減少するが、どれだけ電流が減少するかは、リアクトル5のインダクタンス値と、電源101の電圧と、負荷102の電圧と、デッドタイム期間bの長さとに依存する。リアクトル5のインダクタンス値が小さければ電流減少量は多くなる。電源101と負荷102の電圧差が大きければ電流減少量が多くなる。デッドタイム期間bが長ければ電流減少量は多くなる。 In dead de time period b, a first semiconductor switching element 1 is turned off. As a result, both the first semiconductor switching element 1 and the second semiconductor switching element 2 are turned off. At this time, a current flows through the path of the positive electrode of the power supply 101 → the reactor 5 → the second diode 4 → the load 102 → the negative electrode of the power supply 102. In the period b, the current of the reactor 5 decreases, but how much the current decreases depends on the inductance value of the reactor 5, the voltage of the power source 101, the voltage of the load 102, and the length of the dead time period b. To do. If the inductance value of the reactor 5 is small, the amount of current decrease increases. If the voltage difference between the power supply 101 and the load 102 is large, the amount of current decrease increases. If the dead time period b is long, the amount of current decrease increases.

デッドタイム期間dでは、第2の半導体スイッチング素子2がオフ状態となる。その結果、第1の半導体スイッチング素子1と第2の半導体スイッチング素子2とが共にオフ状態となる。期間dでも、デッタイム期間bと同様の電流経路で電流が流れる。 In the dead time period d, the second semiconductor switching element 2 is turned off. As a result, both the first semiconductor switching element 1 and the second semiconductor switching element 2 are turned off. Any period d, a current flows in the same current path and dead de-time period b.

デッタイム期間fでは、第1の半導体スイッチング素子1がオフ状態となる。その結果、第1の半導体スイッチング素子1と第2の半導体スイッチング素子2とが共にオフ状態となる。このときには、電源101の正極→リアクトル5→第2のダイオード4→負荷102→電源102の負極の経路を電流が流れる。このとき、リアクトル5の電流は減少する。 In dead de time period f, the first semiconductor switching element 1 is turned off. As a result, both the first semiconductor switching element 1 and the second semiconductor switching element 2 are turned off. At this time, a current flows through the path of the positive electrode of the power supply 101 → the reactor 5 → the second diode 4 → the load 102 → the negative electrode of the power supply 102. At this time, the current of the reactor 5 decreases.

デッタイム期間b′では、第2の半導体スイッチング素子2がオフ状態となる。その結果、第1の半導体スイッチング素子1と第2の半導体スイッチング素子2とが共にオフ状態となる。このときには、負荷801の負極→第1のダイオード3→リアクトル5→負荷801の正極の経路を電流が流れる。デッタイム期間b′では、リアクトル5の電流は減少するが、どれだけ電流が減少するかは、リアクトル5のインダクタンス値と、負荷801の電圧と、デッドタイムの期間とに依存する。リアクトル5のインダクタンス値が小さければ電流減少量は多くなる。負荷801の電圧が高ければ電流減少量が多くなる。デッドタイム期間b′の長さが長ければ電流減少量は多くなる。
In dead de-time period b ', the second semiconductor switching element 2 is turned off. As a result, both the first semiconductor switching element 1 and the second semiconductor switching element 2 are turned off. At this time, a current flows through a path of the negative electrode of the load 801 → the first diode 3 → the reactor 5 → the positive electrode of the load 801. In dead de-time period b ', although the current of the reactor 5 decreases, how much current is reduced, depends on the inductance value of the reactor 5, the voltage of the load 801 and to the duration of the dead time. If the inductance value of the reactor 5 is small, the amount of current decrease increases. If the voltage of the load 801 is high, the amount of current decrease increases. If the length of the dead time period b ′ is long, the amount of current decrease increases.

駆動装置12は、制御信号CtAと比較の対象となる三角波TA、制御信号CtBと比較の対象となる三角波TB、制御信号CtCと比較の対象となる三角波TCを生成する三角波TA、TB、TCの位相を等間隔でずらすことによって、2つの半導体スイッチング素子がそれぞれオン状態となるタイミング、すなわちスイッチング位相がDC−DC変換回路ごとにずれる。その結果、リアクトル2003を流れる電流リプルの位相と、リアクトル2004を流れる電流リプルの位相と、リアクトル2005を流れる電流リプルの位相とがずれることになる。これによって、電源2001、第1のコンデンサ6、第2のコンデンサ7、および負荷2002には、位相がすれた複数の電流が入力される。互いに電流の増減を打ち消しあうように動作する期間が発生し、結果として電流のリプルが低減して動作することができる。 Drive 12, the control signal CtA and subject to triangular wave TA of the comparison, the control signal CtB and subject to triangular wave TB of the comparison, the control signal CtC the comparison subject to triangular wave TC triangular wave TA that generates a, TB By shifting the phase of TC at equal intervals, the timing at which the two semiconductor switching elements are turned on, that is, the switching phase is shifted for each DC-DC conversion circuit. As a result, the phase of the current ripple flowing through the reactor 2003, the phase of the current ripple flowing through the reactor 2004, and the phase of the current ripple flowing through the reactor 2005 are shifted. As a result, a plurality of currents out of phase are input to the power supply 2001, the first capacitor 6, the second capacitor 7, and the load 2002. A period in which the currents increase and decrease to cancel each other is generated, and as a result, the operation can be performed with reduced current ripple.

JP2017166740A 2017-08-31 2017-08-31 Power converter Active JP6910250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017166740A JP6910250B2 (en) 2017-08-31 2017-08-31 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017166740A JP6910250B2 (en) 2017-08-31 2017-08-31 Power converter

Publications (3)

Publication Number Publication Date
JP2019047585A JP2019047585A (en) 2019-03-22
JP2019047585A5 true JP2019047585A5 (en) 2019-12-12
JP6910250B2 JP6910250B2 (en) 2021-07-28

Family

ID=65814839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017166740A Active JP6910250B2 (en) 2017-08-31 2017-08-31 Power converter

Country Status (1)

Country Link
JP (1) JP6910250B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511004A (en) * 2020-12-09 2021-03-16 苏州市职业大学 Efficient bidirectional Buck-Boost circuit

Similar Documents

Publication Publication Date Title
US9660533B2 (en) Buck-boost converter with smooth transition circuits and methods
JP5901635B2 (en) Switched mode power converter using bridge topology and switching method thereof
TWI559661B (en) Power supply device
US20140253066A1 (en) Power circuit
WO2014090044A1 (en) Voltage regulation method, pre-regulator power supply circuit and system
JP2012060854A (en) Dc-dc converter
TWI514730B (en) Ultra high step-down converter
BR112013033084A2 (en) power supply with an output rectifier
JP5979252B2 (en) Power supply
JP5630895B2 (en) Switching power supply circuit
JP2019047585A5 (en)
JP6012008B2 (en) Switching circuit
JP6714528B2 (en) Switching power supply
CN105449994A (en) Control circuit of power converter
RU2016141212A (en) Device for producing direct current flowing in the load power circuit
JP2016178812A5 (en)
JP2017139925A5 (en)
JP2010273501A (en) Buck-boost switching power supply circuit
JP6264098B2 (en) Chopper circuit
CN105811764A (en) Converter
Taddy et al. Modeling and simulation of a switch-mode synchronous buck converter
JP2011142761A (en) Dc-dc converter
KR101681934B1 (en) A single-phase pwm ac-ac converter with inverting, non-inverting and matrix converter and control method thereof
JP2014003728A (en) Step-up power supply device
TWI605678B (en) Synchronous rectification control circuit and its control method