[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2019043805A - Cement admixture, and hydraulic composition - Google Patents

Cement admixture, and hydraulic composition Download PDF

Info

Publication number
JP2019043805A
JP2019043805A JP2017167772A JP2017167772A JP2019043805A JP 2019043805 A JP2019043805 A JP 2019043805A JP 2017167772 A JP2017167772 A JP 2017167772A JP 2017167772 A JP2017167772 A JP 2017167772A JP 2019043805 A JP2019043805 A JP 2019043805A
Authority
JP
Japan
Prior art keywords
hydraulic composition
cement admixture
hydraulic
based compound
storage stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017167772A
Other languages
Japanese (ja)
Other versions
JP6488339B2 (en
Inventor
貴光 室川
Takamitsu Murokawa
貴光 室川
盛岡 実
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2017167772A priority Critical patent/JP6488339B2/en
Application granted granted Critical
Publication of JP6488339B2 publication Critical patent/JP6488339B2/en
Publication of JP2019043805A publication Critical patent/JP2019043805A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a cement admixture that hardly causes deterioration of storage stability of a hydraulic composition when mixed into the composition beforehand, has a super quick hardening property, and can yield a hydraulic composition capable of forming a hardened body of high strength, and a hydraulic composition that resists deteriorating of storage stability, has a super quick hardening property, and is capable of yielding a hardened body of high strength.SOLUTION: The cement admixture comprises an amorphous ALO-SObased compound showing a weight loss of 5 to 40 mass% upon being strongly heated at 500°C. The hydraulic composition comprises the cement admixture and an alkaline hydraulic substance.SELECTED DRAWING: None

Description

本発明は、土木分野、建築分野などで用いられるセメント混和剤及び水硬性組成物に関する。   The present invention relates to a cement admixture and a hydraulic composition used in the field of civil engineering, the field of construction, and the like.

近年、土木分野、建築分野などにおいて、水硬性組成物に多種多様な性能が要求されている。その中でも施工の簡略化は、作業員の安全性を考慮する上で非常に重要な要素となっている。ここで、施工の簡略化とは、例えば、施工スピードの向上、材料の一材化及び取扱性の向上などの総合的な合理化を指す。施工の簡略化を達成するために、例えば、水硬性組成物の硬化速度の向上、プレミックス化などを行うことが鍵となっており、実際、超速硬性を有する様々な水硬性組成物が提案されている(例えば、特許文献1〜3)。また最近では、施工の簡略化の更なる改善、及び新たな用途への対応に伴い、水硬性組成物に要求される性能も益々高まっている。   In recent years, various performances have been required for hydraulic compositions in the field of civil engineering, construction and the like. Among them, simplification of construction is a very important factor in considering the safety of workers. Here, the simplification of construction refers to, for example, comprehensive rationalization such as improvement of construction speed, conversion of materials into one material, and improvement of handleability. In order to achieve the simplification of construction, for example, it is the key to improve the curing speed of the hydraulic composition, to make the premix, etc., and in fact, various hydraulic compositions having super rapid hardness are proposed. (For example, patent documents 1-3). Also, recently, with the further improvement of the simplification of construction and the response to new applications, the performance required for hydraulic compositions is also increasing more and more.

特開平3−12350号公報Unexamined-Japanese-Patent No. 3-12350 特開平1−230455号公報Unexamined-Japanese-Patent No. 1-230455 特開平11−139859号公報Unexamined-Japanese-Patent No. 11-139859 gazette

水硬性組成物には、硬化速度などの各種特性の向上を目的としてセメント混和剤が配合されている。セメント混和剤としては、従来はアルカリ性のものが使用されてきたが、安全性の観点から、酸性のものを使用することが望まれている。
しかしながら、セメントのような水硬性物質は強アルカリ性のため、酸性のセメント混和剤と組み合わせることが難しく、所望の特性を有する水硬性組成物が得られないという問題がある。実際、硬化速度の向上及びプレミックス化に適した従来の酸性のセメント混和剤を水硬性組成物に配合すると、水硬性組成物の貯蔵安定性、硬化体の強度などが低下してしまう。
A cement admixture is blended in the hydraulic composition for the purpose of improving various characteristics such as the curing rate. As the cement admixture, conventionally, alkaline ones have been used, but from the viewpoint of safety, it is desirable to use acidic ones.
However, since hydraulic materials such as cement are strongly alkaline, they are difficult to combine with acidic cement admixtures, and there is a problem that hydraulic compositions having desired properties can not be obtained. In fact, when a conventional acidic cement admixture suitable for improving the curing rate and making into a premix is added to the hydraulic composition, the storage stability of the hydraulic composition, the strength of the cured product, and the like are reduced.

本発明は、上記のような問題を解決するためになされたものであり、水硬性組成物に予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を与えることが可能なセメント混和剤を提供することを目的とする。
また、本発明は、貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を提供することを目的とする。
The present invention has been made to solve the problems as described above, and it is difficult to reduce the storage stability even if it is blended in advance in the hydraulic composition, and it has super rapid hardness and the strength of the cured product is An object of the present invention is to provide a cement admixture capable of providing a highly hydraulic composition.
Another object of the present invention is to provide a hydraulic composition in which the storage stability is unlikely to be reduced, the ultra-high-speed curing is achieved, and the strength of the cured product is high.

本発明者らは、上記のような問題を解決するために鋭意研究を行った結果、特定の性質を有するAl23−SO3系化合物が、酸性であるにも関わらず、セメント混和剤として適していることを見出し、本発明を完成するに至った。
すなわち、本発明は、非晶質であり且つ500℃で強熱した際の減量が5〜40質量%であるAl23−SO3系化合物を含有するセメント混和剤である。
また、本発明は、前記セメント混和剤と、アルカリ性の水硬性物質とを含む水硬性組成物である。
As a result of intensive studies to solve the problems as described above, the present inventors found that, despite the fact that the Al 2 O 3 -SO 3 compounds having specific properties are acidic, cement admixtures As a result, the present invention has been completed.
That is, the present invention is a cement admixture containing an Al 2 O 3 —SO 3 based compound which is amorphous and has a weight loss of 5 to 40% by mass when ignited at 500 ° C.
Further, the present invention is a hydraulic composition comprising the cement admixture and an alkaline hydraulic material.

本発明によれば、水硬性組成物に予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を与えることが可能なセメント混和剤を提供することができる。
また、本発明によれば、貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を提供することができる。
According to the present invention, a cement admixture capable of providing a hydraulic composition having super fast-hardening and high strength of a cured body, while being difficult to reduce storage stability even when previously compounded in a hydraulic composition Can be provided.
Further, according to the present invention, it is possible to provide a hydraulic composition which has an ultra-fast-hardening property and a high strength of a cured body, while the storage stability is hardly reduced.

本発明のセメント混和剤は、Al23−SO3系化合物を含有する。このAl23−SO3系化合物は、非晶質であり且つ500℃で強熱した際の減量(強熱減量)が5〜40質量%である。
Al23−SO3系化合物が非晶質でない場合、セメントのような強アルカリ性を示す水硬性物質とプレミックス化することが難しいと共に、プレミックス化できたとしても水硬性組成物の貯蔵安定性が低下する。
ここで、Al23−SO3系化合物が非晶質であるか否かは、X線回折分析によって判断することができる。具体的には、Al23−SO3系化合物のX線回折スペクトルがブロードであれば、非晶質であると判断することができる。
The cement admixture of the present invention contains an Al 2 O 3 -SO 3 based compound. The Al 2 O 3 -SO 3 -based compound is amorphous and has a weight loss (ignition loss) of 5 to 40% by mass when ignited at 500 ° C.
When the Al 2 O 3 -SO 3 compound is not amorphous, it is difficult to be premixed with a hydraulic material exhibiting strong alkalinity such as cement, and storage of the hydraulic composition is possible even if it can be premixed. Stability is reduced.
Here, it can be judged by X-ray diffraction analysis whether the Al 2 O 3 -SO 3 based compound is amorphous. Specifically, if the X-ray diffraction spectrum of the Al 2 O 3 -SO 3 -based compound is broad, it can be judged to be amorphous.

また、500℃で強熱した際の減量が5質量%未満であると、水硬性組成物の硬化速度が低下する。一方、500℃で強熱した際の減量が40質量%を超えると、水硬性組成物の貯蔵安定性が低下する。500℃で強熱した際の減量は、水硬性組成物の硬化速度及び貯蔵安定性を安定して向上させる観点から、好ましくは10〜40質量%である。
ここで、本明細書において、500℃で強熱した際の減量(強熱減量)とは、Al23−SO3系化合物を500℃で1時間強熱した際の減量を意味し、以下の式(1)によって算出される。
強熱減量=(m−m’)/m×100 (1)
m:強熱前のAl23−SO3系化合物の質量
m’:強熱後のAl23−SO3系化合物の質量
In addition, when the weight loss at the time of ignition at 500 ° C. is less than 5% by mass, the curing speed of the hydraulic composition decreases. On the other hand, when the weight loss at the time of firing at 500 ° C. exceeds 40% by mass, the storage stability of the hydraulic composition is reduced. The weight loss when ignited at 500 ° C. is preferably 10 to 40% by mass from the viewpoint of stably improving the curing speed and storage stability of the hydraulic composition.
Here, in the present specification, the loss on ignition at 500 ° C. (loss on ignition) means the loss on ignition of the Al 2 O 3 —SO 3 compound at 500 ° C. for 1 hour, It is calculated by the following equation (1).
Ignition weight loss = (m-m ') / m × 100 (1)
m: Mass of Al 2 O 3 -SO 3 series compound before ignition m ': Mass of Al 2 O 3 -SO 3 series compound after ignition

本発明のセメント混和剤に用いられるAl23−SO3系化合物は、Al23源とSO3源とを用いて製造することができる。その製造方法としては、特に限定されないが、例えば、Al23源及びSO3源を混合した後に熱処理する方法、Al23源とSO3源とを直接化学反応させる方法、Al23源及びSO3源を純水などの溶媒中に投入して混合した後に化学反応させる方法などを用いることができる。これらの方法において、製造条件を制御することにより、上記のような特性を有するAl23−SO3系化合物を得ることができる。例えば、Al23源及びSO3源を溶媒中に投入して混合した後に化学反応させる方法を用いる場合、反応温度などの条件を制御することにより、Al23−SO3系化合物の強熱減量を調整することができる。このときの反応温度は、使用するAl23源及びSO3源の種類及び配合割合によって異なるため一義的に定義することはできないが、典型的に70℃〜280℃である。 The Al 2 O 3 -SO 3 -based compound used in the cement admixture of the present invention can be produced using an Al 2 O 3 source and an SO 3 source. As the manufacturing method, the method is not particularly limited, for example, the method of heat treatment after mixing Al 2 O 3 source and SO 3 source, is directly chemically reacting Al 2 O 3 source and SO 3 source, Al 2 O It is possible to use a method in which the three sources and the SO 3 source are introduced into a solvent such as pure water and mixed and then chemically reacted. In these methods, by controlling the production conditions, it is possible to obtain an Al 2 O 3 —SO 3 -based compound having the above-mentioned properties. For example, in the case of using a method in which an Al 2 O 3 source and an SO 3 source are introduced into a solvent and mixed and then subjected to a chemical reaction, the Al 2 O 3 -SO 3 based compound is controlled by controlling conditions such as reaction temperature. You can adjust the weight loss on ignition. The reaction temperature at this time can not be uniquely defined because it varies depending on the type and blending ratio of the Al 2 O 3 source and the SO 3 source used, but is typically 70 ° C. to 280 ° C.

Al23源としては、特に限定されないが、アルミニウムの硫酸塩、アルミン酸塩、及びその他の無機アルミニウム化合物、有機アルミニウム化合物、並びにアルミニウム錯体を用いることができる。
アルミニウムの硫酸塩としては、特に限定されないが、例えば、アンモニウム明礬、ヒドロキシ硫酸アルミニウム、及び硫酸アルミニウムなどが挙げられる。
アルミン酸塩としては、特に限定されないが、例えば、アルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム、アルミン酸カルシウム、及びアルミン酸マグネシウムなどが挙げられる。
その他の無機アルミニウム化合物としては、特に限定されないが、例えば、ボーキサイト、酸化アルミニウム、水酸化アルミニウム、塩化アルミニウム、リン酸アルミニウム、硝酸アルミニウム、フッ化アルミニウム、ポリ塩化アルミニウム、炭酸水酸化アルミニウム、合成ヒドロタルサイト、及びメタケイ酸アルミニウムなどが挙げられる。
The Al 2 O 3 source is not particularly limited, and aluminum sulfate, aluminate, and other inorganic aluminum compounds, organic aluminum compounds, and aluminum complexes can be used.
The sulfate of aluminum is not particularly limited, and examples thereof include ammonium alum, aluminum hydroxysulfate, and aluminum sulfate.
The aluminate is not particularly limited, and examples thereof include lithium aluminate, sodium aluminate, potassium aluminate, calcium aluminate, and magnesium aluminate.
Other inorganic aluminum compounds are not particularly limited. For example, bauxite, aluminum oxide, aluminum hydroxide, aluminum chloride, aluminum phosphate, aluminum nitrate, aluminum fluoride, polyaluminum chloride, aluminum hydroxide hydroxide, synthetic hydrotalcite Site, and aluminum metasilicate and the like.

有機アルミニウム化合物としては、特に限定されないが、例えば、ステアリン酸アルミニウム、シュウ酸アルミニウム、アルミニウムイソプロポキシド、及びギ酸アルミニウムなどが挙げられる。
アルミニウム錯体としては、特に限定されないが、例えば、トリス(8−ヒドロキシキノリナト)アルミニウムなどが挙げられる。
Al23源としては、単一種を用いることができるが、2種以上を組み合わせて用いてもよい。また、上記の様々なAl23源の中でも、水への溶解性が高く、製造コストが安く且つ凝結性に優れる点から、アルミニウムの硫酸塩が好ましい。
The organic aluminum compound is not particularly limited, and examples thereof include aluminum stearate, aluminum oxalate, aluminum isopropoxide, and aluminum formate.
The aluminum complex is not particularly limited, and examples thereof include tris (8-hydroxyquinolinato) aluminum and the like.
A single species can be used as the Al 2 O 3 source, but two or more species may be used in combination. Further, among the various Al 2 O 3 sources described above, aluminum sulfate is preferred in view of high solubility in water, low production cost and excellent setting property.

SO3源としては、特に限定されないが、イオウ及びイオウ華などの元素状態のイオウの他に、硫化物、硫酸、硫酸塩、亜硫酸、亜硫酸塩、チオ硫酸、チオ硫酸塩、及び有機イオウ化合物などを用いることができる。
硫化物としては、特に限定されないが、例えば、硫化マグネシウム、硫化カルシウム、硫化鉄、及び五硫化リンなどが挙げられる。
硫酸塩としては、特に限定されないが、例えば、硫酸アニリン、硫酸アルミニウム、硫酸アンモニウム、硫酸マグネシウム、硫酸マンガン、硫酸バリウム、硫酸カルシウム、ナトリウム明礬、カリウム明礬、アンモニウム明礬、及び硫酸ヒドロキシルアミンなどが挙げられる。
The SO 3 source is not particularly limited, but in addition to elemental sulfur such as sulfur and sulfur, sulfide, sulfuric acid, sulfate, sulfite, sulfite, thiosulfate, thiosulfate, organic sulfur compounds, etc. Can be used.
Although it does not specifically limit as a sulfide, For example, magnesium sulfide, calcium sulfide, iron sulfide, and phosphorus pentasulfide etc. are mentioned.
The sulfate is not particularly limited, and examples thereof include aniline sulfate, aluminum sulfate, ammonium sulfate, magnesium sulfate, manganese sulfate, barium sulfate, calcium sulfate, sodium alum, potassium alum, ammonium alum, and hydroxylamine sulfate.

亜硫酸塩としては、特に限定されないが、例えば、亜硫酸水素アンモニウム及び亜硫酸カルシウムなどが挙げられる。
チオ硫酸塩としては、特に限定されないが、例えば、チオ硫酸アンモニウム及びチオ硫酸バリウムなどが挙げられる。
有機イオウ化合物としては、特に限定されないが、例えば、スルホン酸誘導体、スルホン酸誘導体の塩、メルカプタン、チオフェン、チオフェン誘導体、ポリサルホン、ポリエーテルサルホン、及びポリフェニレンサルファイドなどの樹脂が挙げられる。
SO3源としては、単一種を用いることができるが、2種以上を組み合わせて用いてもよい。また、上記の様々なSO3源の中でも、水への溶解性が高く、製造コストが安く且つ凝結性に優れる点から、硫酸塩が好ましく、アンモニウム明礬が最も好ましい。
The sulfite is not particularly limited, and examples thereof include ammonium bisulfite and calcium sulfite.
The thiosulfate is not particularly limited, and examples thereof include ammonium thiosulfate and barium thiosulfate.
The organic sulfur compound is not particularly limited, and examples thereof include sulfonic acid derivatives, salts of sulfonic acid derivatives, mercaptan, thiophene, thiophene derivatives, polysulfone, polyether sulfone, and resins such as polyphenylene sulfide.
Although a single species can be used as the SO 3 source, two or more species may be used in combination. Further, among the various SO 3 sources described above, sulfates are preferable, and ammonium alum is most preferable, from the viewpoints of high solubility in water, low manufacturing cost, and excellent aggregation.

本発明のセメント混和剤に用いられるAl23−SO3系化合物は、水硬性組成物の硬化速度及び貯蔵安定性を向上させる観点から、真密度が1.9〜2.3g/cm3であることが好ましい。真密度が1.9g/cm3未満であると、水硬性組成物の貯蔵安定性が低下する場合がある。一方、真密度が2.3g/cm3を超えると、水硬性組成物の硬化速度が低下する場合がある。
ここで、Al23−SO3系化合物の真密度は、市販の密度計を用いて測定することができる。
The Al 2 O 3 -SO 3 based compound used for the cement admixture of the present invention has a true density of 1.9 to 2.3 g / cm 3 from the viewpoint of improving the curing rate and storage stability of the hydraulic composition. Is preferred. If the true density is less than 1.9 g / cm 3 , the storage stability of the hydraulic composition may be reduced. On the other hand, if the true density exceeds 2.3 g / cm 3 , the curing speed of the hydraulic composition may be reduced.
Here, the true density of the Al 2 O 3 -SO 3 based compound can be measured using a commercially available densitometer.

本発明のセメント混和剤に用いられるAl23−SO3系化合物は、水硬性組成物の硬化速度を向上させる観点から、BET比表面積が5m2/g以下であることが好ましく、3m2/g以下であることが更に好ましい。BET比表面積が5m2/gを超えると、水硬性組成物の硬化速度の向上効果が得られない場合がある上、粉砕処理の手間が増大するためコスト上昇につながる。
ここで、Al23−SO3系化合物のBET比表面積は、市販のBET比表面積測定装置を用いて測定することができる。
The Al 2 O 3 -SO 3 compound used for the cement admixture of the present invention preferably has a BET specific surface area of 5 m 2 / g or less, and 3 m 2 , from the viewpoint of improving the curing rate of the hydraulic composition. It is more preferable that it is / g or less. When the BET specific surface area exceeds 5 m 2 / g, the effect of improving the curing rate of the hydraulic composition may not be obtained, and the time and effort of the pulverization treatment increase, leading to an increase in cost.
Here, the BET specific surface area of the Al 2 O 3 -SO 3 -based compound can be measured using a commercially available BET specific surface area measuring device.

本発明のセメント混和剤に用いられるAl23−SO3系化合物は、水硬性組成物の硬化速度及び貯蔵安定性を向上させる観点から、固体27Al−NMRによって得られるスペクトルにおいて、化学シフト−0.51〜−23.21ppmにピークを有し、且つその半値幅が5ppm以上であることが好ましい。ピークの化学シフトが−0.51ppmよりも大きいと、水硬性物質とプレミックス化することが難しいと共に、プレミックス化できたとしても水硬性組成物の貯蔵安定性が低下する場合がある。一方、ピークの化学シフトが−23.21ppmよりも小さいと、水硬性組成物の硬化速度の向上効果が得られない場合がある。また、半値幅が5ppm未満であると、水硬性組成物の硬化速度及び貯蔵安定性の向上効果が十分に得られない場合がある。 The Al 2 O 3 -SO 3 compounds used in the cement admixture of the present invention have chemical shifts in the spectrum obtained by solid 27 Al-NMR from the viewpoint of improving the curing rate and storage stability of the hydraulic composition. It is preferable to have a peak at -0.51 to -23.21 ppm and a half width of 5 ppm or more. When the chemical shift of the peak is larger than -0.51 ppm, it is difficult to be premixed with the hydraulic substance, and the storage stability of the hydraulic composition may decrease even if the premix can be achieved. On the other hand, if the chemical shift of the peak is smaller than -23.21 ppm, the effect of improving the curing rate of the hydraulic composition may not be obtained. When the half width is less than 5 ppm, the effect of improving the curing speed and storage stability of the hydraulic composition may not be sufficiently obtained.

ここで、Al23−SO3系化合物の固体27Al−NMR測定は、市販の測定装置、例えば、日本電子株式会社製 超伝導核磁気共鳴装置「ECX−400」などを用い、下記の条件で行うことができる。
観測核:27Al
試料管回転数:10KHz
測定温度:室温
パルス幅:3.3μsec(90°パルス)
待ち時間:5秒
外部標準:硝酸アルミニウム
Here, solid-state 27 Al-NMR measurement of the Al 2 O 3 -SO 3 -based compound is carried out using a commercially available measuring device, for example, a superconducting nuclear magnetic resonance device “ECX-400” manufactured by Nippon Denshi Co., Ltd. It can be done on condition.
Observation nucleus: 27 Al
Sample tube rotation speed: 10 KHz
Measurement temperature: Room temperature Pulse width: 3.3 μsec (90 ° pulse)
Wait time: 5 seconds External standard: Aluminum nitrate

本発明のセメント混和剤に用いられるAl23−SO3系化合物は、水硬性組成物の硬化速度及び貯蔵安定性を向上させる観点から、FT−IRによって得られるスペクトルにおいて、OH基伸縮振動に由来するピーク面積に対するSO4基伸縮振動に由来するピーク面積の比が0.2〜3.0であることが好ましい。ピーク面積の比が0.2未満であると、水硬性組成物の硬化速度の向上効果が得られない場合がある。一方、ピーク面積の比が3.0を超えると、水硬性組成物の貯蔵安定性が低下する場合がある。 The Al 2 O 3 -SO 3 based compound used in the cement admixture of the present invention has OH group stretching vibration in the spectrum obtained by FT-IR from the viewpoint of improving the curing rate and storage stability of the hydraulic composition. Preferably, the ratio of the peak area derived from the SO 4 group stretching vibration to the peak area derived from is 0.2 to 3.0. If the ratio of peak areas is less than 0.2, the effect of improving the curing speed of the hydraulic composition may not be obtained. On the other hand, when the ratio of peak areas exceeds 3.0, the storage stability of the hydraulic composition may be reduced.

ここで、Al23−SO3系化合物のFT−IR(フーリエ変換赤外分光分析)は、ATR法により、市販のFT−IR装置、例えば、Perkin Elmer社製のFrontierを用いて行うことができる。
本明細書においては、OH基伸縮振動に由来するピークが3,000cm-1を中心にして現れるため、3,000cm-1を中心としたピークの面積を、OH基伸縮振動に由来するピーク面積とした。また、SO4基伸縮振動に由来するピークが1,100cm-1を中心にして現れるため、1,100cm-1を中心としたピークの面積を、SO4基伸縮振動に由来するピーク面積とした。
OH基伸縮振動に由来するピーク面積に対するSO4基伸縮振動に由来するピーク面積の比は、SO4基伸縮振動に由来するピーク面積をOH基伸縮振動に由来するピーク面積で除することによって算出することができる。
Here, FT-IR (Fourier transform infrared spectroscopy) of the Al 2 O 3 -SO 3 based compound is performed by the ATR method using a commercially available FT-IR apparatus, for example, Frontier manufactured by Perkin Elmer. Can.
In this specification, the peak derived from OH group stretching vibration appears around the 3,000 cm -1, the peak areas derived from the area of the peak centered at 3,000 cm -1, the OH group stretching vibration And Furthermore, peaks derived from SO 4 group stretching vibration to appear around the 1,100Cm -1, the area of the peak centered at 1,100Cm -1, and the peak area derived from the SO 4 group stretching vibration .
The ratio of the peak area derived from the SO 4 group stretching vibration to the peak area derived from the OH group stretching vibration is calculated by dividing the peak areas derived from the peak areas derived from the SO 4 group stretching vibration OH group stretching vibration can do.

本発明のセメント混和剤は、様々な水硬性物質と共に用いて水硬性組成物を調製することができる。特に、本発明のセメント混和剤は、酸性であるにも関わらず、アルカリ性の水硬性物質と共に用いることが可能である。一般的に、酸性のセメント混和剤は、アルカリ性の水硬性物質と共に用いて水硬性組成物を調製すると、貯蔵安定性が低下し易いが、本発明のセメント混和材は、アルカリ性の水硬性物質と共に用い水硬性組成物を調製しても貯蔵安定性が低下し難い。そのため、本発明のセメント混和材を用いて調製された水硬性組成物は、特殊な保存方法、施工方法又は取扱方法を行わなくても長期保存が可能である。また、この水硬性組成物は、超速硬性を有し、強度が高い硬化体を形成することができる。したがって、この水硬性組成物を用いることにより、施工の簡略化が可能となる。   The cement admixture of the present invention can be used together with various hydraulic substances to prepare hydraulic compositions. In particular, the cement admixture according to the present invention can be used together with an alkaline hydraulic substance despite being acidic. In general, when a cementitious composition containing an acid is used together with an alkaline hydraulic substance to prepare a hydraulic composition, the storage stability tends to decrease, but the cement admixture according to the present invention together with an alkaline hydraulic substance Even if the hydraulic composition is prepared, the storage stability hardly decreases. Therefore, the hydraulic composition prepared using the cement admixture of the present invention can be stored for a long time without performing a special storage method, a construction method or a handling method. Moreover, this hydraulic composition can form a hardened | cured material which has super rapid-hardening property and high intensity | strength. Therefore, simplification of construction becomes possible by using this hydraulic composition.

水硬性組成物に用いられる水硬性物質としては、特に限定されないが、例えば、普通、早強、中庸熱、低熱、白色などの各種ポルトランドセメント;都市ゴミ焼却灰、下水汚泥焼却灰を原料として製造されるエコセメント;高炉スラグ、シリカヒューム、石灰石、フライアッシュ、石膏などを含む混合セメントなどが挙げられる。
水硬性物質のpHとしては、特に限定されないが、好ましくは7超過、より好ましくは8以上、さらに好ましくは10以上である。
The hydraulic material used for the hydraulic composition is not particularly limited, but, for example, various portland cements such as normal, early strong, moderate heat, low heat, white, etc .; manufactured from municipal waste incineration ash, sewage sludge incineration ash Mixed cement including blast furnace slag, silica fume, limestone, fly ash, gypsum and the like.
The pH of the hydraulic material is not particularly limited, but preferably 7 or more, more preferably 8 or more, and still more preferably 10 or more.

水硬性組成物は、本発明の効果を阻害しない範囲において、水硬性組成物に一般的に配合され得る公知の添加剤を含有することができる。添加剤としては、特に限定されないが、防錆剤、着色剤、ポリマー、繊維、流動化剤、中性化抑制剤、防水剤、増粘剤、防水剤、遅延剤、早強剤、促進剤、減水剤、高性能(AE)減水剤、起泡剤、発泡剤、AE剤、乾燥収縮低減剤、急結剤、膨張剤、耐寒促進剤、エフロレッセンス防止剤、アルカリ骨材反応抑制剤、黒色むら低減剤、環境浄化混和剤などが挙げられる。これらの添加剤は、単独又は2種以上を組み合わせて用いることができる。   A hydraulic composition can contain the well-known additive which can be generally mix | blended with a hydraulic composition in the range which does not inhibit the effect of this invention. Although it does not specifically limit as an additive, A rust inhibitor, a coloring agent, a polymer, a fiber, a fluidizer, a carbonization inhibitor, a waterproofing agent, a thickener, a waterproofing agent, a retarder, an early strengthening agent, an accelerator Water-reducing agent, High-performance (AE) water-reducing agent, Foaming agent, Foaming agent, AE agent, Drying shrinkage reducing agent, Fastening agent, Swelling agent, Cold weather accelerator, Efflorescence inhibitor, Alkali aggregate reaction inhibitor, Black unevenness reducing agents, environmental purification admixtures, etc. may be mentioned. These additives may be used alone or in combination of two or more.

以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。
<Al23−SO3系化合物の調製>
原料として下記の物質を使用した。
Al23源:水酸化アルミニウム、試薬、純度99%
SO3源:硫酸、試薬、純度99%
溶媒:純水
Al23源とSO3源と溶媒とを2:3:10のモル比で混合し、混合物を表1に示す各温度に加熱して反応させることにより、Al23−SO3系化合物(No.1〜15)を調製した。
上記で調製したAl23−SO3系化合物について、X線回折、強熱減量、真密度、BET比表面積、固体27Al−NMR、及びFT−IRの評価を行った。
Hereinafter, the present invention will be more specifically described using examples and comparative examples, but the present invention is not limited to the following examples without departing from the scope of the present invention.
<Preparation of Al 2 O 3 -SO 3 Compound>
The following substances were used as raw materials.
Al 2 O 3 source: aluminum hydroxide, reagent, purity 99%
SO 3 source: sulfuric acid, reagent, purity 99%
Solvent: pure water Al 2 O 3 source, SO 3 source and solvent are mixed at a molar ratio of 2: 3: 10, and the mixture is heated to react at each temperature shown in Table 1 to react, Al 2 O 3 -SO 3 based compound (No.1~15) was prepared.
The X-ray diffraction, the loss on ignition, the true density, the BET specific surface area, the solid 27 Al-NMR, and the FT-IR were evaluated for the Al 2 O 3 -SO 3 compounds prepared above.

X線回折は、リガク社製のMulti−Flexを用いて測定した。測定は、管電圧−管電流を40KV−40mAとし、2θ:5°〜60°、5°/分の条件で行った。また、解析ソフトはPDXLを用いた。X線回折の評価において、X線回折スペクトルがブロードであれば非晶質、それ以外を結晶質と判定した。
強熱減量は、株式会社いすゞ製作所製のマッフル炉を用いて500℃で1時間強熱した際の減量を測定し、上記(1)の式に基づいて算出した。
真密度は、マイクロメリティックス社製の乾式自動密度計(アキュピックII 1340)を用いて測定した。
BET比表面積は、ユアサアイオニクス社製のモノソーブ(MONOSORB)を用い、BET一点法によって測定した。
X-ray diffraction was measured using Rigaku Multi-Flex. The measurement was performed under the conditions of 2θ: 5 ° to 60 °, 5 ° / min, with a tube voltage-tube current of 40 KV-40 mA. Moreover, analysis software used PDXL. In the evaluation of X-ray diffraction, if the X-ray diffraction spectrum was broad, it was judged as amorphous, and the others were judged as crystalline.
The ignition loss was calculated based on the above equation (1) by measuring the loss when ignited at 500 ° C. for 1 hour using a muffle furnace manufactured by Isuzu Seisakusho Co., Ltd.
The true density was measured using a dry-type automatic densitometer (Aucpic II 1340) manufactured by Micromeritics.
The BET specific surface area was measured by the BET single-point method using a monosorb (MONOSORB) manufactured by Yuasa Ionics.

固体27Al−NMRは、日本電子株式会社製の超伝導核磁気共鳴装置(ECX−400)を用いて上記した条件で行い、ピークの化学シフト及び半値幅を測定した。
FT−IRは、パーキンエルマー社製のFrontierを用いて測定した。測定は、1回反射型ATRを用いてバックグラウンド測定を行った後、サンプルをセットし、スキャニング回数16回でサンプル表面を測定した。測定結果は、縦軸(Y軸)を吸光度、横軸を波数として出力し、OH基伸縮振動に由来するピーク面積(積分値)及びSO4基伸縮振動に由来するピーク面積(積分値)を解析ソフト(パーキンエルマー社製のSpectrum)によって算出した。
上記の各評価の結果を表1に示す。
Solid 27 Al-NMR was performed under the above conditions using a superconducting nuclear magnetic resonance apparatus (ECX-400) manufactured by JEOL Ltd., and the chemical shift and the half width of the peak were measured.
FT-IR was measured using a Perkin-Elmer Frontier. For measurement, after performing background measurement using a single reflection ATR, the sample was set, and the sample surface was measured by 16 times of scanning. The measurement results are output as absorbance on the vertical axis (Y axis) and wave number on the horizontal axis, and peak area (integral value) derived from OH group stretching vibration and peak area (integral value) derived from SO 4 group stretching vibration Calculated by analysis software (Spectrum manufactured by Perkin Elmer).
The results of each of the above evaluations are shown in Table 1.

次に、上記で調製したAl23−SO3系化合物を用いて水硬性組成物を調製した。具体的には、水硬性物質として普通ポルトランドセメント(pH14、工業品)を用い、水硬性物質100質量部に対してAl23−SO3系化合物3質量部を配合して混合することで水硬性組成物を得た。その後、この水硬性組成物に水(上水道水)50質量部を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。
凝結試験及び圧縮強度の測定は、JIS R5201「セメントの物理試験方法」に準拠して行った。凝結試験は、凝結の始発及び終結の時間を測定した。また、圧縮強度は、水を加えたときを起点とし、材齢1日、7日及び28日で測定した。
上記の各評価の結果を表2に示す。
Next, to prepare a hydraulic composition with the above prepared Al 2 O 3 -SO 3 compound. Specifically, ordinary portland cement (pH 14, manufactured goods) is used as the hydraulic substance, and 3 parts by mass of Al 2 O 3 -SO 3 compound is mixed and mixed with 100 parts by mass of the hydraulic substance. A hydraulic composition was obtained. Thereafter, 50 parts by mass of water (tap water) was further blended with this hydraulic composition and mixed, and a setting test and measurement of compressive strength were performed.
The setting test and the measurement of the compressive strength were performed in accordance with JIS R 5201 "Physical test method of cement". The coagulation test measured the time of initiation and termination of coagulation. In addition, compressive strength was measured at material ages of 1, 7 and 28 days, starting from the time of addition of water.
The results of each of the above evaluations are shown in Table 2.

表2に示されるように、非晶質であり且つ強熱減量が5〜40質量%であるAl23−SO3系化合物(No.3〜13)を用いた水硬性組成物は、当該性質を有していないAl23−SO3系化合物(No.1〜2及び14〜15)を用いた水硬性組成物に比べて、凝結時間が早く、圧縮強度も同等又はそれ以上であった。 As shown in Table 2, a hydraulic composition using an Al 2 O 3 -SO 3 based compound (No. 3 to 13) which is amorphous and has a loss on ignition of 5 to 40% by mass is Compared with hydraulic compositions using Al 2 O 3 -SO 3 compounds (Nos. 1 to 2 and 14 to 15) not having the above properties, setting time is faster and compressive strength is equivalent or higher Met.

次に、上記と同様にして水硬性組成物を調製した後、ビニール袋に入れて密閉し、温度20℃、湿度60%の条件下で一ヶ月貯蔵した。その後、上記と同様にして、水硬性組成物に水(上水道水)を更に配合して混合し、凝結試験及び圧縮強度の測定を行った。その結果を表3に示す。   Next, a hydraulic composition was prepared in the same manner as described above, and the composition was put in a plastic bag and sealed, and stored for one month at a temperature of 20 ° C. and a humidity of 60%. Thereafter, in the same manner as described above, the hydraulic composition was further mixed with water (tap water) and mixed, and the setting test and the measurement of the compressive strength were performed. The results are shown in Table 3.

表3に示されるように、非晶質であり且つ強熱減量が5〜40質量%であるAl23−SO3系化合物(No.3〜13)を用いた水硬性組成物は、一ヶ月の貯蔵を行っても凝結時間及び圧縮強度にほとんど変化が見られず、貯蔵安定性に優れていることが確認された。これに対して当該性質を有していないAl23−SO3系化合物を用いた水硬性組成物のいくつか(No.1〜2)は、凝結時間が長くなっており、貯蔵安定性が十分でないことが確認された。 As shown in Table 3, a hydraulic composition using an Al 2 O 3 -SO 3 based compound (No. 3 to 13) which is amorphous and has a loss on ignition of 5 to 40% by mass is Almost no change was observed in setting time and compressive strength even after storage for one month, and it was confirmed that the storage stability was excellent. On the other hand, some of the hydraulic compositions (Nos. 1 and 2) using the Al 2 O 3 -SO 3 series compound not having the property have a long setting time, and the storage stability is Was not enough.

次に、上記と同様にして水硬性組成物を調製した後、ビニール袋に入れて密閉し、温度20℃、湿度60%の条件下で表4に示す期間貯蔵した。その後、上記と同様にして、水硬性組成物に水(上水道水)を更に配合して混合し、凝結試験を行った。その結果を表4に示す。   Next, the hydraulic composition was prepared in the same manner as described above, and then placed in a plastic bag, sealed, and stored under the conditions of temperature 20 ° C. and humidity 60% for the period shown in Table 4. Thereafter, in the same manner as described above, the hydraulic composition was further mixed with water (tap water) and mixed, and a setting test was performed. The results are shown in Table 4.

表4に示されるように、非晶質であり且つ強熱減量が5〜40質量%であるAl23−SO3系化合物(No.3〜13)を用いた水硬性組成物は、12ヶ月の貯蔵を行っても凝結時間にほとんど変化が見られず、貯蔵安定性に優れていることが確認された。
これに対して当該性質を有していないAl23−SO3系化合物を用いたNo.1の水硬性組成物は、貯蔵1日では良好な凝結性状が得られたものの、貯蔵1ヶ月で凝結性状が低下し、6ヶ月及び12ヶ月も同様の傾向となった。また、当該性質を有していないAl23−SO3系化合物を用いたNo.2の水硬性組成物も同様の傾向を示した。さらに、当該性質を有していないAl23−SO3系化合物を用いたNo.14及び15の水硬性組成物は、貯蔵性は良好であったものの、貯蔵1日でも凝結時間が長いことが確認された。
As shown in Table 4, a hydraulic composition using an Al 2 O 3 -SO 3 based compound (No. 3 to 13) which is amorphous and has a loss on ignition of 5 to 40% by mass is Almost no change was observed in the setting time after storage for 12 months, and it was confirmed that the storage stability was excellent.
On the other hand, No. 1 using an Al 2 O 3 -SO 3 series compound not having the above properties. In the hydraulic composition of No. 1, good setting properties were obtained on 1 day of storage, but the setting properties on 1 month of storage decreased, and the same tendency was observed for 6 months and 12 months. In addition, No. 1 using an Al 2 O 3 -SO 3 series compound not having the above properties. The hydraulic composition of 2 showed the same tendency. Furthermore, No. 1 using an Al 2 O 3 -SO 3 series compound not having such properties. Although the hydraulic compositions 14 and 15 had good storability, it was confirmed that setting time is long even on 1 day of storage.

以上の結果からわかるように、本発明によれば、水硬性組成物に予め配合しても貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を与えることが可能なセメント混和剤を提供することができる。また、本発明によれば、貯蔵安定性が低下し難いと共に、超速硬性を有し且つ硬化体の強度が高い水硬性組成物を提供することができる。   As can be seen from the above results, according to the present invention, a hydraulic composition which has super fast hardenability and high strength of a cured product, while having reduced storage stability even if it is compounded in advance in the hydraulic composition It is possible to provide a cement admixture that can be provided. Further, according to the present invention, it is possible to provide a hydraulic composition which has an ultra-fast-hardening property and a high strength of a cured body, while the storage stability is hardly reduced.

Claims (7)

非晶質であり且つ500℃で強熱した際の減量が5〜40質量%であるAl23−SO3系化合物を含有するセメント混和剤。 A cement admixture containing an Al 2 O 3 -SO 3 based compound which is amorphous and has a weight loss of 5 to 40% by mass when ignited at 500 ° C. 前記Al23−SO3系化合物の真密度が1.9〜2.3g/cm3である、請求項1に記載のセメント混和剤。 The cement admixture according to claim 1, wherein a true density of the Al 2 O 3 -SO 3 based compound is 1.9 to 2.3 g / cm 3 . 前記Al23−SO3系化合物のBET比表面積が5m2/g以下である、請求項1又は2に記載のセメント混和剤。 The cement admixture according to claim 1, wherein a BET specific surface area of the Al 2 O 3 —SO 3 based compound is 5 m 2 / g or less. 前記Al23−SO3系化合物は、固体27Al−NMRによって得られるスペクトルにおいて、化学シフト−0.51〜−23.21ppmにピークを有し、且つその半値幅が5ppm以上である、請求項1〜3のいずれか一項に記載のセメント混和剤。 The Al 2 O 3 -SO 3 based compound has a peak at a chemical shift of −0.51 to −23.21 ppm and a half width of 5 ppm or more in a spectrum obtained by solid 27 Al-NMR. The cement admixture according to any one of claims 1 to 3. 前記Al23−SO3系化合物は、FT−IRによって得られるスペクトルにおいて、OH基伸縮振動に由来するピーク面積に対するSO4基伸縮振動に由来するピーク面積の比が0.2〜3.0である、請求項1〜4のいずれか一項に記載のセメント混和剤。 The Al 2 O 3 -SO 3 based compound, in a spectrum obtained by FT-IR, the ratio of the peak area derived from the SO 4 group stretching vibration to the peak area derived from the OH group stretching vibration 0.2-3. The cement admixture according to any one of claims 1 to 4, which is 0. アルカリ性の水硬性物質と共に用いられる、請求項1〜5のいずれか一項に記載のセメント混和剤。   The cement admixture according to any one of claims 1 to 5, which is used together with an alkaline hydraulic substance. 請求項1〜6のいずれか一項に記載のセメント混和剤と、アルカリ性の水硬性物質とを含む水硬性組成物。   A hydraulic composition comprising the cement admixture according to any one of claims 1 to 6 and an alkaline hydraulic substance.
JP2017167772A 2017-08-31 2017-08-31 Cement admixture and hydraulic composition Active JP6488339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017167772A JP6488339B2 (en) 2017-08-31 2017-08-31 Cement admixture and hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017167772A JP6488339B2 (en) 2017-08-31 2017-08-31 Cement admixture and hydraulic composition

Publications (2)

Publication Number Publication Date
JP6488339B2 JP6488339B2 (en) 2019-03-20
JP2019043805A true JP2019043805A (en) 2019-03-22

Family

ID=65802327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017167772A Active JP6488339B2 (en) 2017-08-31 2017-08-31 Cement admixture and hydraulic composition

Country Status (1)

Country Link
JP (1) JP6488339B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024853A1 (en) * 2019-08-02 2021-02-11 デンカ株式会社 Cement admixture and hydraulic composition
JP2021024755A (en) * 2019-08-02 2021-02-22 デンカ株式会社 Cement admixture and hydraulic composition
JP2021147268A (en) * 2020-03-18 2021-09-27 デンカ株式会社 Cement admixture and hydraulic composition
JP2021147270A (en) * 2020-03-18 2021-09-27 デンカ株式会社 Cement admixture and hydraulic composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105396A1 (en) * 2010-02-26 2011-09-01 電気化学工業株式会社 Cement admixture for repair, cement composition for repair using same, and cement mortar material for repair
JP2015231931A (en) * 2014-06-10 2015-12-24 デンカ株式会社 Powder rapid hardening agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105396A1 (en) * 2010-02-26 2011-09-01 電気化学工業株式会社 Cement admixture for repair, cement composition for repair using same, and cement mortar material for repair
JP2015231931A (en) * 2014-06-10 2015-12-24 デンカ株式会社 Powder rapid hardening agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024853A1 (en) * 2019-08-02 2021-02-11 デンカ株式会社 Cement admixture and hydraulic composition
JP2021024755A (en) * 2019-08-02 2021-02-22 デンカ株式会社 Cement admixture and hydraulic composition
JP2021147268A (en) * 2020-03-18 2021-09-27 デンカ株式会社 Cement admixture and hydraulic composition
JP2021147270A (en) * 2020-03-18 2021-09-27 デンカ株式会社 Cement admixture and hydraulic composition

Also Published As

Publication number Publication date
JP6488339B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP5091519B2 (en) Geopolymer composition and method for producing the same
JP6488339B2 (en) Cement admixture and hydraulic composition
JP5818579B2 (en) Neutralization suppression type early strong cement composition
JP6488340B2 (en) Quick hardening material and quick hardening cement composition
ES2639612T3 (en) Aqueous polymer dispersions
MX2010010596A (en) Additives for cement.
JP2005537208A (en) High speed setting cement composition
PT1171398E (en) Rapid hardening, ultra-high early strength portland-type cement compositions, novel clinkers and methods for their manufacture
JP2016088833A (en) Magnesia cement
JP6429126B2 (en) Cement clinker and cement composition
JP6429125B2 (en) Cement clinker and cement composition
JP6718551B1 (en) Powder quick-setting agent
JP6972213B2 (en) Cement admixture and hydraulic composition
JP7037879B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
KR20110053833A (en) Blast furnace slag cement synthetic method and blast furnace slag cement produced by this method
AU696359B2 (en) Hydraulic cement set accelerators based on nitroalcohols
JP2003277111A (en) Hardening accelerator and cement composition
JP6675033B1 (en) Cement admixture and hydraulic composition
WO2017109583A2 (en) Magnesium phosphate based cement, mortar and concrete compositions with increased working time
JP6972214B2 (en) Cement admixture and hydraulic composition
JP2010076999A (en) Cement admixture and cement composition
JP6902644B1 (en) Cement admixture and hydraulic composition
WO2023022172A1 (en) Cement admixture, method for producing cement admixture, and cement composition
WO2021024853A1 (en) Cement admixture and hydraulic composition
JP6900761B2 (en) Cement mortar / concrete composition and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R150 Certificate of patent or registration of utility model

Ref document number: 6488339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250