[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018185450A - 撮像装置及びその制御方法 - Google Patents

撮像装置及びその制御方法 Download PDF

Info

Publication number
JP2018185450A
JP2018185450A JP2017088082A JP2017088082A JP2018185450A JP 2018185450 A JP2018185450 A JP 2018185450A JP 2017088082 A JP2017088082 A JP 2017088082A JP 2017088082 A JP2017088082 A JP 2017088082A JP 2018185450 A JP2018185450 A JP 2018185450A
Authority
JP
Japan
Prior art keywords
imaging
flicker
pixel
signal
focus detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017088082A
Other languages
English (en)
Other versions
JP7071061B2 (ja
Inventor
淳一 今宮
Junichi Imamiya
淳一 今宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017088082A priority Critical patent/JP7071061B2/ja
Publication of JP2018185450A publication Critical patent/JP2018185450A/ja
Application granted granted Critical
Publication of JP7071061B2 publication Critical patent/JP7071061B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Abstract

【課題】フリッカ光源下においても位相差方式による焦点検出を高精度に行うことが可能な撮像装置及びその制御方法を提供する。【解決手段】撮像光学系によって結像された像に基づく撮像信号を出力する撮像画素、及び、撮像光学系の異なる瞳領域を通過した複数の像に基づく位相差信号を出力する焦点検出画素、を有する撮像素子と、撮像信号に基づいてフリッカを検出するフリッカ検出部と、フリッカ検出部がフリッカを検出した場合に、焦点検出画素の蓄積期間を撮像画素の蓄積期間とは独立に制御して位相差信号のフリッカ補正を行う制御部と、を備えることを特徴とする撮像装置が提供される。【選択図】図9

Description

本発明は、焦点検出用の画素を備えた撮像装置及びその制御方法に関するものである。
近年、焦点検出用の画素を備えた撮像素子が実現されている。例えば、特許文献1には、撮像用の画素の間に焦点検出用の画素が配置された撮像素子を備える撮像装置が記載されている。特に、特許文献1の撮像装置では、焦点検出画素の蓄積期間を、撮像画素の蓄積期間とは独立に制御する技術について記載されている。これにより、焦点検出に最適な位相差信号の輝度となるように焦点検出画素の蓄積期間を調整し、焦点検出の精度を向上させている。
特開2010−219958号公報
一方、フリッカ光源下においてフリッカを抑制するために、フリッカ周波数に応じて撮像画素の蓄積期間を調整するフリッカ補正が知られている。しかし、特許文献1に記載の技術のように、焦点検出画素の蓄積期間を、撮像画素の蓄積期間とは独立に制御すると、撮像信号のフリッカはフリッカ補正により抑制されるものの、位相差信号のフリッカは補正されない。この結果、位相差信号に重畳されたフリッカの影響によって焦点検出の精度がかえって低下してしまうことがあった。そこで、本発明は、フリッカ光源下においても位相差方式による焦点検出を高精度に行うことが可能な撮像装置及びその制御方法を提供することを目的とする。
本発明の一観点によれば、撮像光学系によって結像された像に基づく撮像信号を出力する撮像画素、及び、撮像光学系の異なる瞳領域を通過した複数の像に基づく位相差信号を出力する焦点検出画素、を有する撮像素子と、撮像信号に基づいてフリッカを検出するフリッカ検出部と、フリッカ検出部がフリッカを検出した場合に、焦点検出画素の蓄積期間を撮像画素の蓄積期間とは独立に制御して位相差信号のフリッカ補正を行う制御部と、を備えることを特徴とする撮像装置が提供される。
本発明によれば、フリッカ光源下においても位相差方式による焦点検出を高精度に行うことが可能な撮像装置及びその制御方法を提供することができる。
第1実施形態に係る撮像装置の構成を概略的に示すブロック図である。 第1実施形態に係る撮像装置における撮像素子の構成を概略的に示す図である。 第1実施形態に係る撮像装置における画素単位の構成を概略的に示す等価回路図である。 第1実施形態に係る撮像装置における画素単位の構成を概略的に示す平面図である。 第1実施形態に係る撮像装置における画素アレイの構成を概略的に示す図である。 第1実施形態に係る撮像装置における瞳領域を概略的に示す図である。 第1実施形態に係る撮像装置における画素アレイの走査方法を概略的に示す図である。 第1実施形態に係る撮像装置におけるフリッカの検出方法の例を示す図である。 第1実施形態に係る撮像装置の制御方法を示すフローチャートである。 第1実施形態に係る撮像装置におけるフリッカの振幅の判定方法の例を示す図である。 第1実施形態に係る撮像装置における蓄積期間の設定方法の例を示す第1の図である。 第1実施形態に係る撮像装置における蓄積期間の設定方法の例を示す第2の図である。 第2実施形態に係る撮像装置の制御方法を示すフローチャートである。 第2実施形態に係る撮像装置における蓄積期間の設定方法の例を示す図である。
以下、本発明の好適な実施形態について図面を用いて説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において適宜変更可能である。また、各図において同一、又は相当する機能を有するものは、同一符号を付し、その説明を省略又は簡潔にすることもある。
(第1実施形態)
図1は、第1実施形態に係る撮像装置100の構成を概略的に示すブロック図である。図1に示す本実施形態の撮像装置100は、撮像素子101、フリッカ検出部102、蓄積期間算出部103、撮像素子駆動部104、及び制御部105を備えて構成される。
撮像素子101は、不図示の撮像光学系によって結像された像に基づく撮像信号を出力する撮像画素を有する。また、撮像素子101は、撮像光学系の異なる瞳領域を通過した複数の像に基づく位相差信号を出力する焦点検出画素を有する。撮像画素と焦点検出画素は、一般的には異なる構成を有するが、後述の図3〜図4に示すように、撮像信号と位相差信号のいずれをも出力し得る同一の構成とすることも可能である。
フリッカ検出部102は、撮像素子101が出力する撮像信号に含まれるフリッカの有無及びその振幅、周期等を検出する。例えば蛍光灯によるフリッカは、商用電源の周波数に同期した照明強度等のゆらぎが撮像信号に重畳されることによって発生する。蓄積期間算出部103は、フリッカ検出部102が検出したフリッカの振幅、周期等の情報に基づいて、フリッカを補正するための撮像素子101の駆動情報を算出し、撮像素子駆動部104に出力する。撮像素子駆動部104は、蓄積期間算出部103が算出した駆動情報に従って撮像素子101を駆動する。制御部105は、撮像装置100の全体の制御を司る。なお、蓄積期間算出部103及び撮像素子駆動部104が、制御部105に含まれる構成としてもよい。
本実施形態の制御部105は、撮像画素の蓄積期間と焦点検出画素の蓄積期間とを独立に制御可能である。撮像信号の蓄積期間は、予め撮影者が指定したシャッタースピード等に基づいて決定される。したがって、このように、焦点検出画素の蓄積期間を撮像画素の蓄積期間とは独立に制御可能な構成とすることで、焦点検出に最適な位相差信号の輝度となるように、焦点検出画素の蓄積期間を調整することが可能となる。
次に、図1に示した撮像素子101についてより具体的に説明する。図2は、第1実施形態に係る撮像装置100における撮像素子101の構成を概略的に示す図である。図2に示す撮像素子101は、画素アレイ201、垂直走査回路202、読み出し回路203、水平走査回路204、及びシリアルインターフェイス205を有して構成される。
画素アレイ201には、撮像画素及び焦点検出画素が行列状に配置されている。垂直走査回路202は、画素アレイ201の行を垂直方向に走査する。読み出し回路203は、垂直走査回路202によって走査された行の撮像画素及び焦点検出画素から、撮像信号及び位相差信号を読み出す。読み出し回路203は、撮像画素及び焦点検出画素から信号を読み出すためのメモリ、ゲインアンプ、AD変換器等を列ごとに有している。水平走査回路204は、読み出し回路203によって読み出された各列の信号を順に走査して撮像素子101の外部に出力する。シリアルインターフェイス205は、撮像素子101内の各回路の動作モード等を、撮像素子101の外部から決定するためのものである。
なお、撮像素子101は、図2に示した構成要素以外にも、例えばタイミングジェネレータを有していてもよい。タイミングジェネレータは、垂直走査回路202、読み出し回路203、水平走査回路204等に対してタイミング信号を出力する。
次に、図2に示した画素アレイ201に配置された撮像画素及び焦点検出画素について説明する。図3は、第1実施形態に係る撮像装置100における画素単位300の構成を概略的に示す等価回路図である。また、図4は、第1実施形態に係る撮像装置100における画素単位300の構成を概略的に示す平面図である。以下の説明では、撮像画素と焦点検出画素が共に図3及び図4に示す画素単位300の構成を有し、撮像信号と位相差信号のいずれをも出力し得ることを想定するが、本実施形態は必ずしもこのような構成に限定されない。撮像画素と焦点検出画素とは異なる構成を有してもよい。
図3及び図4に示す画素単位300は、光電変換部301、302、転送トランジスタ307、308、リセットトランジスタ305、増幅トランジスタ304、及び選択トランジスタ306を有して構成される。垂直走査回路202は、転送トランジスタ307、308、リセットトランジスタ305、選択トランジスタ306を、それぞれ、制御信号φTXA_n、φTXB_n、φRES_n、φSEL_nにより制御する。制御信号φTXA_n、φTXB_n、φRES_n、φSEL_nは、それぞれ、制御線312、313、311、310に出力される。各制御信号のnは行番号を示しており、例えば、制御信号φTXA_nは、第n行の画素単位300に出力された制御信号であることを示している。
光電変換部301、302は、例えば半導体基板上に形成されたフォトダイオード(PD:Photo Diode)であって、同一のマイクロレンズ401によって結像された像をそれぞれ光電変換する。以下の説明では、光電変換部301を「A画素」と称し、光電変換部302を「B画素」と称する。また、A画素が出力する信号を「A信号」と称し、B画素が出力する信号を「B信号」と称する。図4に示すように、A画素とB画素は、マイクロレンズ401の中心に対して、それぞれ左右にオフセットして配置されている。これにより、A画素とB画素とは、撮像光学系の異なる瞳領域を通過した像に基づくA信号とB信号をそれぞれ出力することになるので、A信号とB信号を比較して被写体像の焦点を検出することが可能となる。
転送トランジスタ307は、制御信号φTXA_nがH(ハイレベル)のときにオンとなり、制御信号φTXA_nがL(ローレベル)のときにオフとなる。転送トランジスタ307をオンすることで、A画素に生じた信号電荷がフローティングディフュージョン領域303に転送される。同様に、転送トランジスタ308は、制御信号φTXB_nがH(ハイレベル)のときにオンとなり、制御信号φTXB_nがL(ローレベル)のときにオフとなる。転送トランジスタ308をオンすることで、B画素に生じた信号電荷がフローティングディフュージョン領域303に転送される。なお、図4には、転送トランジスタ307、308のゲート電極のみを示している。フローティングディフュージョン領域303は、増幅トランジスタ304のゲート端子に接続され、画素アンプを構成すると共に、電荷/電圧変換部としても機能する。
リセットトランジスタ305は、制御信号φRES_nがH(ハイレベル)のときにオンとなり、制御信号φRES_nがL(ローレベル)のときにオフとなる。リセットトランジスタ305をオンすることで、フローティングディフュージョン領域303に保持された信号電荷がリセットされる。また、リセットトランジスタ305と転送トランジスタ307を同時にオンすることで、A画素に蓄積された信号電荷がリセットされる。また、リセットトランジスタ305と転送トランジスタ308を同時にオンすることで、B画素に蓄積された信号電荷がリセットされる。
選択トランジスタ306は、制御信号φSEL_nがH(ハイレベル)のときにオンとなり、制御信号φSEL_nがL(ローレベル)のときにオフとなる。選択トランジスタ306をオンすることで、増幅トランジスタ304の出力が垂直出力線309に出力される。垂直出力線309には不図示の定電流源が接続されており、不図示の定電流源と増幅トランジスタ304はソースフォロワ回路を構成している。
前述のように、図3及び図4に示した画素単位300は、撮像画素と焦点検出画素のいずれとして用いることも可能である。画素単位300を撮像画素として用いる場合は、A信号とB信号とを加算して撮像信号を生成する。一方、画素単位300を焦点検出画素として用いる場合は、A信号とB信号のペアを位相差信号として使用する。なお、図3及び図4に示した画素単位300において光電変換部302を省略して、ただ1つの光電変換部301を有する画素単位300を撮像画素として用いることも可能である。
次に、図2に示した画素アレイ201について説明する。図5は、第1実施形態に係る撮像装置100における画素アレイ201の構成を概略的に示す図である。図5に示す画素アレイ201には、図3及び図4に示した画素単位300が行列状に配置されている。このような構成により、画素単位300が出力する撮像信号を用いて2次元画像を生成することができる。また、画素単位300が出力する位相差信号を比較して被写体像の焦点を検出することができる。
図6は、第1実施形態に係る撮像装置100における瞳領域607、608を概略的に示す図である。図6の左側から入射した光は、不図示の撮像光学系によって集光され、射出瞳606を通過して光軸609に沿って右に進む。その後、マイクロレンズ401及びカラーフィルタ603を通過した光束は、画素アレイ201の光電変換部301、302にそれぞれ像を結ぶ。
図6に示すように、A画素(光電変換部301)とB画素(光電変換部302)は、マイクロレンズ401の中心に対して、それぞれ上下にオフセットして配置されている。これにより、A画素とB画素とは、撮像光学系の異なる瞳領域608、607を通過した像に基づくA信号とB信号をそれぞれ出力することになるので、A信号とB信号を比較して被写体像の焦点を検出することが可能となる。図6には、上側の瞳領域607を通過して下側のB画素に結像する光束の最外周610と、下側の瞳領域608を通過して上側のA画素に結像する光束の最外周612を示している。
図7は、第1実施形態に係る撮像装置100における画素アレイ201の走査方法を概略的に示す図である。図7(a)は、図5に示した画素アレイ201を概略的に示している。画素アレイ201の上部及び左部の斜線部は、遮光された画素単位300が配置されたオプティカルブラック(OB:Optical Black)部を示している。また、図7(a)の左側には、画素アレイ201の行番号を示している。
図7(b)は、図7(a)に示した画素アレイ201の走査方法の例を示している。垂直走査回路202は、まず、画像を生成するための第1の走査を行う。この第1の走査では、画素アレイ201を垂直方向に第1の周期で間引いて走査しながら、A信号とB信号を加算した撮像信号を順に読み出す。次に、垂直走査回路202は、焦点検出を行うための第2の走査を行う。この第2の走査では、第1の走査で読み出されなかった画素アレイ201の行を第2の周期で間引いて走査しながら、A信号とB信号のペアである位相差信号を順に読み出す。このように、第2の走査では、同一の画素単位300に対してA信号とB信号を別々に読み出すが、第2の走査は、A信号のみを読み出す走査と、B信号のみを読み出す走査の2つの走査に分けてもよい。
その後、第1の走査で読み出した撮像信号から画像を生成すると共に、第2の走査で読み出した位相差信号を比較して焦点を検出する。このように垂直方向に間引きながら行う読み出し方法では、生成される画像の解像度が小さくなる。したがって、静止画モードと比較して読み出し対象の行が少なくて済むライブビュー画像や動画に好適である。なお、焦点検出を行わない場合には、画素アレイ201の全ての行を間引きすることなしに、第1の走査のみを行う。
続いて、図7(b)を参照しながら、垂直走査回路202による第1の走査及び第2の走査についてより具体的に説明する。図7(b)において太枠で囲まれた行は、第1の走査の読み出し対象行であり、その他の行は第1の走査において間引かれる行である。また、図7(b)に縦線パターンが付加された行は、第2の走査の読み出し対象行であり、その他の行は第2の走査において読み出されずに間引かれる行である。
垂直走査回路202は、まず、V0行に配置された画素単位300からA信号とB信号を加算した撮像信号を読み出した後、同様に3行周期でV1行からV7行まで撮像信号を読み出す。これらのV0行〜V7行に対する読み出しが第1の走査である。この第1の走査により読み出された撮像信号は、同一のマイクロレンズ401を共有する光電変換部301、302の両方に生じた信号電荷に基づくものである。このため、画素単位300の全体に入射した光に基づく信号が、撮像信号として出力される。その後、第1の走査で読み出したV0行〜V7行の撮像信号から画像が生成される。
このように、垂直方向に行を間引いて読み出す一方で、水平方向には列を間引かないで読み出すと、水平方向と垂直方向で読み出し画素数が異なり、生成された画像の縦横比が異なってしまう。そこで、後段の処理において縦横比の変換が行われる。或いは、垂直方向と同じ比率で水平方向を間引いて読み出してもよいし、間引きする代わりに複数列を加算して読み出してもよい。
V7行まで第1の走査が行われると、垂直走査回路202は、走査行をV8行に戻す。そして、V8行に配置された画素単位300からA信号及びB信号のペアである位相差信号を読み出した後、同様にV9行からV13行まで位相差信号を読み出す。この際、第1の走査で既に読み出した行については走査をスキップする。これらのV8行〜V13行に対する読み出しが第2の走査である。この第2の走査により読み出された位相差信号は、同一のマイクロレンズ401を共有する光電変換部301、302のそれぞれに生じた信号電荷に基づくものである。このため、撮像光学系の異なる瞳領域を通過した光に基づくA信号とB信号を比較して、被写体像の焦点を検出することができる。
なお、第2の走査でも第1の走査と同様に所定の周期で間引いて走査することで、読み出し時間を短縮して高速なフレームレートに対応することができる。また、撮影者の操作等によって、焦点検出を行う焦点検出領域が予め指定されている場合は、この焦点検出領域を含む最も狭い行範囲を、第2の走査の対象行とすることが好ましい。例えば、図7(b)において、V8行からV13行の範囲に焦点検出領域が設定されている場合には、上述の動作のように、V8行目からV13行目までを第2の走査の対象行とする。焦点検出領域は、固定の領域であってもよいし、被写体検出等の公知の方法によって自動的に設定されてもよい。
図7(c)は、図7(b)に示した第1の走査及び第2の走査により走査した行を、読み出した順に並べ替えた図である。第1の走査で読み出したV0行〜V7行の画素単位300からは、A信号とB信号を加算した撮像信号が読み出される。また、第2の走査で読み出したV8行〜V13行の画素単位300からは、A信号とB信号のペアである位相差信号が読み出される。図7(c)には、第2の走査で読み出したA信号とB信号を、例えばV8aとV8bのように別々に示している。
前述のように、本実施形態の制御部105は、第1の走査で読み出す撮像画素の蓄積期間と、第2の走査で読み出す焦点検出画素の蓄積期間とを独立に制御可能である。撮像信号の蓄積期間は、予め撮影者が指定したシャッタースピード等に基づいて決定される。したがって、このように、焦点検出画素の蓄積期間を撮像画素の蓄積期間とは独立に制御可能な構成とすることで、焦点検出に最適な位相差信号の輝度となるように、焦点検出画素の蓄積期間を調整することが可能となる。
図8は、第1実施形態に係る撮像装置100におけるフリッカの検出方法の例を示す図である。例えば蛍光灯のフリッカは、商用電源の周波数に同期して発生する。商用電源の周波数は、東日本では50Hz、西日本では60Hzである。
ライブビューに用いる撮像画像の蓄積期間の周期が、フリッカ周期に対して半周期だけ異なっていると、連続する撮像画像のフレーム間で、図8(a)、図8(b)に示すようにフリッカのパターンのずれが生じる。例えば、フリッカ周期が、商用電源の電源周波数50Hzに同期した10msの場合、パターンのずれが生じる撮像画素の蓄積期間の周期は、15ms(67fps)、25ms(40fps)、35ms(28fps)、45ms(22fps)等である。ここで、フリッカ周期10msは、商用電源の周期20msの半分となることに注意されたい。
したがって、図8(a)の画像と図8(b)の画像の差分を算出することで、撮像画像のフリッカを除く成分を相殺して、フリッカ成分のみを抽出することができる。図8(a)の画像と図8(b)の画像から算出した差分画像を図8(c)に示す。また、図8(c)に示す差分画像の垂直方向のX−Y線に沿った信号分布を図8(d)に示す。このようにして得られた図8(d)に示す波形は、抽出されたフリッカノイズの波形を示している。したがって、図8(d)に示す波形に基づいて、フリッカの有無及びその振幅、周期等を検出することが可能である。
ライブビュー表示中はフレームレートが30fps等に固定されるため、ライブビュー表示中にフリッカ検出を行うことはできない。そのため、フリッカの検出は、ライブビュー表示の開始前のタイミングで一度だけ行われる。また、フリッカ検出に用いる撮像画素の蓄積期間の周期を45ms(22fps)とすると、50Hzと60Hzのいずれの商用電源に同期したフリッカも検出することができる。なお、フリッカの検出タイミングやフリッカ周期は、必ずしもこのような値には限定されず、環境等に応じて適宜設定することが可能である。
以下、図9〜図12を用いて、焦点検出に最適な位相差信号の輝度となるように焦点検出画素の蓄積期間を調整しながら、位相差信号のフリッカを抑制する方法について説明する。図9は、第1実施形態に係る撮像装置100の制御方法を示すフローチャートである。
ステップS801において、撮影者の操作等によりライブビューが起動される。フリッカ検出部102は、ステップS802において、図8に示した方法等を用いてフリッカの有無、及びその周波数を検出する。
ステップS803において、制御部105は、フリッカ検出部102によってフリッカが検出されたか否かを判定する。フリッカが検出された場合(YES)はステップS804に進み、フリッカの振幅を算出する。一方、フリッカが検出されなかった場合(NO)はステップS807に進み、フリッカ補正フラグをOFFに設定して、ステップS808に進む。
ステップS805において、制御部105は、算出したフリッカの振幅が、焦点検出精度に影響を与える所定の閾値以上であるか否かを判定する。図10は、ステップS805におけるフリッカの振幅の判定方法の例を示す図である。図10(a)は、フリッカの振幅が焦点検出精度に影響を与えない場合を示し、図10(b)は、フリッカの振幅が焦点検出精度に影響を与える場合を示している。
図10(a)に示すように、フリッカの振幅の大きさが閾値未満である場合(NO)はステップS807に進み、フリッカ補正フラグをOFFに設定して、ステップS808に進む。一方、図10(b)に示すように、フリッカの振幅の大きさが閾値以上である場合(YES)はステップS806に進み、フリッカ補正フラグをONに設定して、ステップS808に進む。ステップS808では、ライブビュー表示を開始する。
ステップS809において、制御部105は、焦点検出(AF)を行うために最適な焦点検出画素の蓄積期間の長さを算出する。ステップS810において、制御部105は、フリッカ補正フラグを確認して、フリッカ補正を行うか否かを判定する。図11及び図12は、ステップS810〜S812における蓄積期間の設定方法の例を示す図である。前述のように、本実施形態の制御部105は、撮像画素の蓄積期間と焦点検出画素の蓄積期間とを独立に制御可能である。図11は、焦点検出画素の蓄積期間が撮像画素の蓄積期間よりも短く制御された場合を示し、図12は、焦点検出画素の蓄積期間が撮像画素の蓄積期間よりも長く制御された場合を示している。
フリッカ補正フラグがONの場合はステップS811に進み、ステップS809で算出した焦点検出画素の蓄積期間を、図11(b)又は図12(b)に示すように、フリッカが抑制されるように補正する。例えば、焦点検出画素の蓄積期間の長さを、図11及び図12に黒丸で示すような、フリッカ周期又はその整数倍に設定することで、フリッカが抑制される。そして、ステップS812において、フリッカ補正後の蓄積期間を設定する。
この際、撮像画素の蓄積期間についても同様にフリッカ補正を行うが、焦点検出画素の蓄積期間は、必ずしも撮像画素の蓄積期間と同じ長さに補正する必要はない。焦点検出画素の蓄積期間は、フリッカが抑制される複数の蓄積期間の長さのうちから、焦点検出に最適なものを選択すればよい。例えば、図11(b)又は図12(b)に示すように、フリッカが抑制される複数の蓄積期間の長さのうちから、ステップS809において算出した蓄積期間の長さに最も近いものを選択して設定する。
一方、ステップS810において、フリッカ補正フラグがOFFの場合はステップS811をスキップしてS812に進む。そして、図11(a)又は図12(a)に示すように、ステップS809で算出した焦点検出画素の蓄積期間をそのまま設定する。
ステップS813において、制御部105は、撮影者等によってライブビューの終了操作が行われたか否かを判定する。ライブビューの終了操作が行われた場合(YES)はステップS814に進んでライブビュー表示を終了し、ステップS815に進んでライブビューを終了する。一方、ライブビューの終了操作が行われていない場合(NO)は、ステップS809に戻って、同様の焦点検出画素の蓄積期間の算出/補正処理をフレームごとに繰り返す。
以上のように、本実施形態の撮像装置は、撮像光学系によって結像された像に基づく撮像信号を出力する撮像画素、及び、撮像光学系の異なる瞳領域を通過した複数の像に基づく位相差信号を出力する焦点検出画素を有する撮像素子を備えている。そして、フリッカ検出部がフリッカを検出した場合に、焦点検出画素の蓄積期間を撮像画素の蓄積期間とは独立に制御して位相差信号のフリッカ補正を行う。このような構成により、フリッカ光源下においても位相差方式による焦点検出を高精度に行うことが可能な撮像装置及びその制御方法を提供することができる。
(第2実施形態)
第2実施形態に係る撮像装置100及びその制御方法について、図13及び図14を参照しながら説明する。図13は、第2実施形態に係る撮像装置100の制御方法を示すフローチャートである。図13に示す本実施形態のフローチャートでは、図9に示したフローチャートにおけるステップS804及びステップS805が省略されている。すなわち、本実施形態では、フリッカの振幅の大きさに関わらず、フリッカ検出部102がフリッカを検出した場合にはフリッカ補正を行う。その他の処理については図9と概ね同じである。以下、図9と異なる処理について説明を行う。
ステップS802までの処理は先の図9と同じである。ステップS1301において、制御部105は、フリッカ検出部102によってフリッカが検出されたか否かを判定する。フリッカが検出された場合(YES)はステップS806に進み、フリッカ補正フラグをONに設定して、ステップS808に進む。一方、フリッカが検出されなかった場合(NO)はステップS807に進み、フリッカ補正フラグをOFFに設定して、ステップS808に進む。ステップS808では、ライブビュー表示を開始する。本実施形態では、図9のステップS804に示したフリッカの振幅の算出処理と、ステップS805に示したフリッカの振幅の判定処理が省略されている。
ステップS809において、制御部105は、焦点検出(AF)を行うために最適な蓄積期間の長さを算出する。ステップS810において、制御部105は、フリッカ補正フラグを確認して、フリッカ補正を行うか否かを判定する。図14は、ステップS810〜S812における蓄積期間の設定方法の例を示す図である。図14(a)は、焦点検出画素の蓄積期間が撮像画素の蓄積期間よりも短く制御された場合を示し、図14(b)は、焦点検出画素の蓄積期間が撮像画素の蓄積期間よりも長く制御された場合を示している。
フリッカ補正フラグがONの場合はステップS1302に進み、ステップS809で算出した焦点検出画素の蓄積期間の長さを、図14に示すように、フリッカ補正された撮像画素の蓄積期間と同じ長さに補正する。そして、ステップS812において、フリッカ補正後の蓄積期間を設定する。
一方、ステップS810において、フリッカ補正フラグがOFFの場合はステップS1302をスキップしてS812に進む。そして、図11(a)又は図12(a)に示すように、ステップS809で算出した焦点検出画素の蓄積期間をそのまま設定する。
以上のように、本実施形態では、フリッカ検出部がフリッカを検出した場合に、焦点検出画素の蓄積期間の長さを撮像画素の蓄積期間と同じ長さに設定して、位相差信号のフリッカ補正を行う。これにより、フリッカ光源下においても位相差方式による焦点検出の精度を維持することができる。
(その他の実施形態)
本発明は、上記実施形態に限らず種々の変形が可能である。例えば、上記実施形態に記載の撮像装置100の構成は一例を示したものであり、本発明を適用可能な撮像装置100はこのような構成に限定されるものではない。
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
なお、上記実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならない。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
100 :撮像装置
101 :撮像素子
102 :フリッカ検出部
105 :制御部
201 :画素アレイ
202 :垂直走査回路
203 :読み出し回路
204 :水平走査回路
300 :画素単位
301、302 :光電変換部
303 :フローティングディフュージョン領域
304 :増幅トランジスタ
305 :リセットトランジスタ
306 :選択トランジスタ
307、308 :転送トランジスタ

Claims (12)

  1. 撮像光学系によって結像された像に基づく撮像信号を出力する撮像画素、及び、撮像光学系の異なる瞳領域を通過した複数の像に基づく位相差信号を出力する焦点検出画素、を有する撮像素子と、
    前記撮像信号に基づいてフリッカを検出するフリッカ検出部と、
    前記フリッカ検出部がフリッカを検出した場合に、前記焦点検出画素の蓄積期間を前記撮像画素の蓄積期間とは独立に制御して前記位相差信号のフリッカ補正を行う制御部と、
    を備えることを特徴とする撮像装置。
  2. 前記撮像素子は、
    前記撮像画素及び前記焦点検出画素が行列状に配置された画素アレイと、
    前記撮像画素が配置された複数の行から前記撮像信号を読み出す第1の走査、及び、前記焦点検出画素が配置された複数の行から前記位相差信号を読み出す第2の走査、を行う垂直走査回路と、
    を有し、
    前記垂直走査回路は、前記第1の走査を行った後に前記第2の走査を行う
    ことを特徴とする請求項1に記載の撮像装置。
  3. 前記撮像画素及び前記焦点検出画素は、A信号を出力するA画素、及び、B信号を出力するB画素を有し、
    前記撮像素子は、前記第1の走査において、前記A信号と前記B信号とが加算された前記撮像信号を読み出し、前記第2の走査において、前記A信号と前記B信号のペアである前記位相差信号を読み出す
    ことを特徴とする請求項2に記載の撮像装置。
  4. 前記フリッカ検出部は、フリッカの振幅を検出し、
    前記制御部は、検出したフリッカの振幅の大きさが所定の閾値以上である場合に、フリッカ補正を行う
    ことを特徴とする請求項1から3のいずれか1項に記載の撮像装置。
  5. 前記制御部は、前記焦点検出画素の蓄積期間の長さを、フリッカが抑制される蓄積期間の長さであって前記撮像画素の蓄積期間とは異なる長さに設定して、前記位相差信号のフリッカ補正を行う
    ことを特徴とする請求項4に記載の撮像装置。
  6. 前記制御部は、検出したフリッカの振幅の大きさが前記閾値未満である場合に、前記焦点検出画素の蓄積期間を前記撮像画素の蓄積期間とは独立に制御して、前記位相差信号の輝度を調整する
    ことを特徴とする請求項4又は5に記載の撮像装置。
  7. 前記制御部は、前記フリッカ検出部がフリッカを検出した場合に、前記焦点検出画素の蓄積期間の長さを前記撮像画素の蓄積期間と同じ長さに設定して、前記位相差信号のフリッカ補正を行う
    ことを特徴とする請求項1から3のいずれか1項に記載の撮像装置。
  8. 前記フリッカ検出部は、フリッカ周期を検出し、
    前記制御部は、前記焦点検出画素の蓄積期間の長さを、前記フリッカ周期又は前記フリッカ周期の整数倍に設定して、前記位相差信号のフリッカ補正を行う
    ことを特徴とする請求項1から7のいずれか1項に記載の撮像装置。
  9. 前記フリッカ検出部は、連続するフレーム間で前記撮像信号を比較してフリッカを検出する
    ことを特徴とする請求項1から8のいずれか1項に記載の撮像装置。
  10. 撮像光学系によって結像された像に基づく撮像信号を出力する撮像画素、及び、撮像光学系の異なる瞳領域を通過した複数の像に基づく位相差信号を出力する焦点検出画素、を有する撮像素子を備えた撮像装置の制御方法であって、
    前記撮像信号に基づいてフリッカを検出するフリッカ検出ステップと、
    前記フリッカ検出ステップにおいてフリッカを検出した場合に、前記焦点検出画素の蓄積期間を前記撮像画素の蓄積期間とは独立に制御して前記位相差信号のフリッカ補正を行う制御ステップと、
    を有することを特徴とする撮像装置の制御方法。
  11. 撮像光学系によって結像された像に基づく撮像信号を出力する撮像画素、及び、撮像光学系の異なる瞳領域を通過した複数の像に基づく位相差信号を出力する焦点検出画素、を有する撮像素子を備えた撮像装置において、コンピュータを、
    前記撮像信号に基づいてフリッカを検出するフリッカ検出手段と、
    前記フリッカ検出手段がフリッカを検出した場合に、前記焦点検出画素の蓄積期間を前記撮像画素の蓄積期間とは独立に制御して前記位相差信号のフリッカ補正を行う制御手段と、
    として機能させることを特徴とするプログラム。
  12. 請求項11に記載のプログラムを記憶したコンピュータが読み取り可能な記憶媒体。
JP2017088082A 2017-04-27 2017-04-27 撮像装置及びその制御方法 Active JP7071061B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017088082A JP7071061B2 (ja) 2017-04-27 2017-04-27 撮像装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017088082A JP7071061B2 (ja) 2017-04-27 2017-04-27 撮像装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2018185450A true JP2018185450A (ja) 2018-11-22
JP7071061B2 JP7071061B2 (ja) 2022-05-18

Family

ID=64356817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017088082A Active JP7071061B2 (ja) 2017-04-27 2017-04-27 撮像装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP7071061B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115499597A (zh) * 2022-09-13 2022-12-20 豪威集成电路(成都)有限公司 成像系统目标频率光源的识别方法及装置、终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217618A (ja) * 2009-03-18 2010-09-30 Canon Inc 撮像装置及び信号処理装置
JP2010263568A (ja) * 2009-05-11 2010-11-18 Canon Inc 撮像装置
JP2015111252A (ja) * 2013-11-05 2015-06-18 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP2016197177A (ja) * 2015-04-03 2016-11-24 キヤノン株式会社 表示制御装置及びその制御方法、及び撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217618A (ja) * 2009-03-18 2010-09-30 Canon Inc 撮像装置及び信号処理装置
JP2010263568A (ja) * 2009-05-11 2010-11-18 Canon Inc 撮像装置
JP2015111252A (ja) * 2013-11-05 2015-06-18 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体
JP2016197177A (ja) * 2015-04-03 2016-11-24 キヤノン株式会社 表示制御装置及びその制御方法、及び撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115499597A (zh) * 2022-09-13 2022-12-20 豪威集成电路(成都)有限公司 成像系统目标频率光源的识别方法及装置、终端设备
CN115499597B (zh) * 2022-09-13 2024-06-04 豪威集成电路(成都)有限公司 成像系统目标频率光源的识别方法及装置、终端设备

Also Published As

Publication number Publication date
JP7071061B2 (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
US10771718B2 (en) Imaging device and imaging system
JP6264616B2 (ja) 撮像装置及び固体撮像装置
JP5850680B2 (ja) 撮像装置及びその制御方法
JP6253272B2 (ja) 撮像装置、撮像システム、信号処理方法、プログラム、および、記憶媒体
JP6588702B2 (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP6066593B2 (ja) 撮像システムおよび撮像システムの駆動方法
JP2012231333A (ja) 撮像装置及びその制御方法、プログラム
JP2009164846A (ja) 固体撮像装置及びその駆動方法
US8913161B2 (en) Image capturing apparatus and control method thereof
US9930273B2 (en) Image pickup apparatus, image pickup system, and control method for the image pickup apparatus for controlling transfer switches
JP2008042298A (ja) 固体撮像装置
US10003734B2 (en) Image capturing apparatus and control method of image sensor
JP6362511B2 (ja) 撮像装置及びその制御方法
US20110037882A1 (en) Solid-state imaging device, method of driving solid-state imaging device, and electronic apparatus
US9635241B2 (en) Image capturing apparatus and method of controlling image capturing apparatus
JP7071061B2 (ja) 撮像装置及びその制御方法
JP5010655B2 (ja) 固体撮像装置
US9813646B2 (en) Solid-state imaging apparatus, imaging system, and method for driving solid-state imaging apparatus, where longer accumulation time is used for light-shielded pixels
RU2637728C2 (ru) Способ возбуждения для устройства фиксации изображений и устройство фиксации изображений
JP2007173986A (ja) 撮像装置及びその制御方法、コンピュータプログラム及び記憶媒体
JP2017098790A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2017118329A (ja) 撮像装置、撮像方法、画像フレーム読出し制御回路および信号処理装置
JP2020057892A (ja) 撮像装置
US11652940B2 (en) Photoelectric conversion device and method of controlling photoelectric conversion device
US12120441B2 (en) Image capturing apparatus which improves focus detection accuracy by using an image sensor having a pupil division function

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220506

R151 Written notification of patent or utility model registration

Ref document number: 7071061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151