[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018170303A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2018170303A
JP2018170303A JP2018152679A JP2018152679A JP2018170303A JP 2018170303 A JP2018170303 A JP 2018170303A JP 2018152679 A JP2018152679 A JP 2018152679A JP 2018152679 A JP2018152679 A JP 2018152679A JP 2018170303 A JP2018170303 A JP 2018170303A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
mass
lead
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018152679A
Other languages
Japanese (ja)
Inventor
裕司 荒城
Yuji Arashiro
裕司 荒城
平野 貴之
Takayuki Hirano
貴之 平野
大越 哲郎
Tetsuro Okoshi
哲郎 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2018152679A priority Critical patent/JP2018170303A/en
Publication of JP2018170303A publication Critical patent/JP2018170303A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead-acid battery capable of exhibiting excellent cycle life performance even when being used mainly under a partial charging state (a PSOC state).SOLUTION: The lead-acid battery includes: a positive electrode plate with a positive electrode collector and a positive electrode material charged into the positive electrode collector; a negative electrode plate with a negative electrode collector and a negative electrode material charged into the negative electrode collector; and an electrolyte containing sulfuric acid. The negative electrode collector includes a negative electrode lug part fitted on an upper peripheral edge part of the negative electrode collector. The negative electrode lug part includes a surface layer containing Sn. A ratio (M2/M1) of a mass M2 of the electrolyte to a sum total M1 of a mass of the positive electrode material and a mass of the negative electrode material is at least 0.7.SELECTED DRAWING: Figure 1

Description

本開示は、鉛蓄電池に関する。   The present disclosure relates to lead acid batteries.

鉛蓄電池は、信頼性に優れ、安価であることから、産業用、民生用等の用途に広く用いられている。特に、自動車用(いわゆるバッテリー)としての需要が多い。近年、環境保護及び燃費改善の取り組みとして、停車時にエンジンを停止させ、発進時に再始動するアイドリングストップシステム車(以下、「ISS車」という。)、エンジンの動力によるオルタネータの発電を低減する発電制御車等のマイクロハイブリッド車の開発が加速されている。   Lead storage batteries are widely used in industrial and consumer applications because they are reliable and inexpensive. In particular, there is a great demand for automobiles (so-called batteries). In recent years, as an effort to protect the environment and improve fuel efficiency, power generation control that reduces idling stop system vehicles (hereinafter referred to as “ISS vehicles”) that stop the engine when the vehicle is stopped and restart it when starting, and alternator power generation due to engine power Development of micro hybrid vehicles such as cars is accelerating.

ISS車及びマイクロハイブリッド車に搭載される鉛蓄電池は、ISS車及びマイクロハイブリッド車特有の以下の事情により、完全には充電されない状態、つまり部分充電(PSOC:Partial State Of Charge)状態で主に使用される。すなわち、ISS車では、頻繁にエンジンの始動及び停止が繰り返される。エンジンの始動時には大電流放電が必要であるため、その回数が必然的に増える。これに加え、ISS車が停車しているときは、エンジンを動力源とするオルタネータも停止するため、鉛蓄電池の充電を行うことができない。停車中であっても電装品(例えばエアコン)への電力供給が必要となるため、放電負荷が多くなる。同様に、マイクロハイブリッド車では、オルタネータによる発電量が少なくなり、鉛蓄電池の充電が間欠的に行われるため充電が不充分となる。   Lead-acid batteries mounted on ISS and micro hybrid vehicles are mainly used in the state where they are not fully charged, that is, partially charged (PSOC) due to the following circumstances specific to ISS and micro hybrid vehicles Is done. That is, in the ISS vehicle, the engine is frequently started and stopped repeatedly. Since a large current discharge is necessary when starting the engine, the number of times inevitably increases. In addition, when the ISS vehicle is stopped, the alternator using the engine as a power source is also stopped, so that the lead-acid battery cannot be charged. Even when the vehicle is stopped, it is necessary to supply power to an electrical component (for example, an air conditioner), which increases the discharge load. Similarly, in the micro hybrid vehicle, the amount of power generated by the alternator is reduced, and the lead storage battery is charged intermittently, so that the charging becomes insufficient.

鉛蓄電池がPSOC状態で使用されると、満充電状態で使用される場合よりもサイクル寿命が短くなることが知られている。例えば、PSOC状態における鉛蓄電池の使用は、従来の満充電状態で使用される状況では発生しなかった「耳痩せ現象」という問題を招来する。これは、負極集電体の耳部(集電部)が放電反応に使用される等の原因により、耳部の厚さが経時的に減少する現象である。耳痩せ現象が発生すると、耳部の抵抗が増加し、これにより、鉛蓄電池の性能(例えば充放電特性及びサイクル寿命)が低下する。耳痩せ現象が更に進行すると、耳部が破断し、これにより突如として鉛蓄電池から出力が得られないという事態に陥る。このような寿命モードは「突然寿命」とも称され、自動車用バッテリーにおいては特に避けるべき事態である。   It is known that when a lead storage battery is used in a PSOC state, the cycle life is shorter than when it is used in a fully charged state. For example, the use of a lead-acid battery in the PSOC state causes a problem of “ear-thinning phenomenon” that did not occur in a conventional situation where the battery is used in a fully charged state. This is a phenomenon in which the thickness of the ear portion decreases with time due to a cause such as that the ear portion (current collector portion) of the negative electrode current collector is used for the discharge reaction. When the ear thinning phenomenon occurs, the resistance of the ear portion increases, and thereby the performance (for example, charge / discharge characteristics and cycle life) of the lead-acid battery decreases. When the ear-harm phenomenon further proceeds, the ear part is broken, which suddenly falls into a situation in which no output can be obtained from the lead-acid battery. Such a life mode is also referred to as “sudden life”, and is a situation to be avoided particularly in an automobile battery.

特許文献1は、負極の耳痩せ現象を抑制する観点から、PSOC状態で使用される鉛蓄電池において、負極格子体の耳部に鉛―錫合金層を設け、且つ、負極活物質に所定量のカーボンを含有させることを開示する。   Patent Document 1 describes a lead-acid battery used in a PSOC state from the viewpoint of suppressing the ear-burning phenomenon of the negative electrode, in which a lead-tin alloy layer is provided in the ear part of the negative electrode grid body, and a predetermined amount of the negative electrode active material is provided. Disclose the inclusion of carbon.

国際公開第2010/032782号International Publication No. 2010/032782

特許文献1の技術は、負極集電体の耳痩せを抑制できるため、耳部破断による突然寿命を遅延させることができると考えられる。しかし、ISS車、マイクロハイブリッド車等で使用される鉛蓄電池には更なる長寿命化が求められている。かかる観点から、特許文献1の技術は未だ改善の余地があった。   Since the technique of patent document 1 can suppress the ear thinning of a negative electrode collector, it is thought that the sudden life by an ear | edge part fracture | rupture can be delayed. However, lead-acid batteries used in ISS vehicles, micro hybrid vehicles and the like are required to have a longer life. From this point of view, the technique of Patent Document 1 still has room for improvement.

本開示は、部分充電状態(PSOC状態)で主に使用される場合にも優れたサイクル寿命性能を発揮し得る鉛蓄電池を提供することを目的とする。   An object of the present disclosure is to provide a lead-acid battery that can exhibit excellent cycle life performance even when used mainly in a partially charged state (PSOC state).

本開示の一側面に係る鉛蓄電池は、正極集電体及び当該正極集電体に充填された正極材を有する正極板と、負極集電体及び当該負極集電体に充填された負極材を有する負極板と、硫酸を含む電解液と、を備え、負極集電体が、当該負極集電体の上部周縁部に設けられた負極耳部を有し、負極耳部が、Snを含む表面層を有し、正極材の質量と負極材の質量の合計M1に対する電解液の質量M2の比率(M2/M1)が0.7以上である。かかる鉛蓄電池は、部分充電状態(PSOC状態)で主に使用される場合にも優れたサイクル寿命性能を発揮し得る。   A lead storage battery according to one aspect of the present disclosure includes a positive electrode plate having a positive electrode current collector and a positive electrode material filled in the positive electrode current collector, a negative electrode current collector and a negative electrode material filled in the negative electrode current collector. And a negative electrode current collector having a negative electrode ear provided on an upper peripheral edge of the negative electrode current collector, and the negative electrode ear includes a surface containing Sn. The ratio (M2 / M1) of the electrolyte solution mass M2 to the total M1 of the mass of the positive electrode material and the mass of the negative electrode material is 0.7 or more. Such lead-acid batteries can also exhibit excellent cycle life performance when used mainly in a partially charged state (PSOC state).

ところで、鉛蓄電池を過充電した場合、電解液中の水が酸素ガスと水素ガスに分解される、電気分解が生じることが知られている。電気分解が生じると、電気分解によって発生したガス(酸素ガス及び水素ガス)が系外に排出されるため、電解液中の水分が減少する。その結果、電解液中の硫酸濃度が上昇し、正極板の腐食劣化などにより容量低下が進行する。また、電解液面の低下に伴って極板が電解液から露出すると、放電容量が急激に低下したり、負極板とストラップとの接続部又はストラップ自体が腐食したりする問題が発生する。電解液が減少したとしても、電槽に水を補給するメンテナンスを行えば問題は発生しない。しかし、メンテナンスの頻度を低くする観点から電解液中の水の減少を抑制することが求められている。また、本発明者らの知見により、PSOC下で使用される鉛蓄電池においても、電解液の電気分解が生じ、電解液中の水分が減少することが明らかとなった。この原因は必ずしも明らかではないが、これに関して本発明者らは、PSOC下であっても電極中において活物質が満充電状態となっている箇所が局所的に存在し、当該箇所において電解液の電気分解が生じることが主因であると推察している。   By the way, when the lead storage battery is overcharged, it is known that water in the electrolytic solution is decomposed into oxygen gas and hydrogen gas, resulting in electrolysis. When electrolysis occurs, gas (oxygen gas and hydrogen gas) generated by electrolysis is discharged out of the system, so that moisture in the electrolyte decreases. As a result, the sulfuric acid concentration in the electrolytic solution increases, and the capacity decreases due to corrosion deterioration of the positive electrode plate. Further, when the electrode plate is exposed from the electrolyte solution as the electrolytic solution level is lowered, there arises a problem that the discharge capacity is abruptly reduced and the connecting portion between the negative electrode plate and the strap or the strap itself is corroded. Even if the electrolyte is reduced, there is no problem if maintenance is performed to supply water to the battery case. However, from the viewpoint of reducing the frequency of maintenance, it is required to suppress the reduction of water in the electrolytic solution. Moreover, it became clear from the knowledge of the present inventors that electrolysis of the electrolytic solution occurs in the lead storage battery used under PSOC, and moisture in the electrolytic solution is reduced. The cause of this is not necessarily clear, but in this regard, the present inventors have a local area where the active material is fully charged in the electrode even under PSOC, and the electrolyte solution is in that area. It is assumed that electrolysis is the main cause.

負極耳部32の表面の少なくとも一部が実質的にSn(スズ)を含む場合、優れたサイクル寿命性能を発揮し得ることに加え、上記電解液の減少を効果的に抑制することができる。すなわち、本発明に係る鉛蓄電池は、減液性能(電解液の減少を抑制する性能)にも優れる。負極耳部32の表面の少なくとも一部が、実質的にSn(スズ)を含むことで、電解液の減少をより十分に抑制できる原因は、明らかではないが、本発明者らは以下のように推察する。すなわち、負極耳部32の表面の鉛の露出が少なくなることで局部電池を形成しにくくなり、局部電池作用による電解液の電気分解が抑制される。その結果、電解液の減少をより十分に抑制できると推察される。   When at least a part of the surface of the negative electrode lug 32 substantially contains Sn (tin), in addition to being able to exhibit excellent cycle life performance, it is possible to effectively suppress the decrease in the electrolyte solution. That is, the lead storage battery according to the present invention is also excellent in liquid reduction performance (performance for suppressing the decrease in electrolyte). Although it is not clear why at least a part of the surface of the negative electrode lug 32 substantially contains Sn (tin) and the decrease in the electrolyte can be more sufficiently suppressed, the present inventors have as follows. To guess. That is, since the exposure of lead on the surface of the negative electrode lug 32 is reduced, it becomes difficult to form a local battery, and electrolysis of the electrolytic solution due to the local battery action is suppressed. As a result, it is speculated that the decrease in the electrolyte can be more sufficiently suppressed.

一態様において、負極耳部の厚さは0.8mm以上である。かかる態様では、サイクル寿命性能に更に優れる傾向がある。   In one embodiment, the thickness of the negative electrode ear is 0.8 mm or more. In such an embodiment, the cycle life performance tends to be further improved.

一態様において、負極耳部の厚さは1.1mm以下である。かかる態様は、製造コストを低減する観点、鉛蓄電池を軽量化する観点、及びキャストオンストラップ時の湯回りが良くなり、製品不良率を低減できる観点から好ましい。   In one embodiment, the thickness of the negative electrode ear is 1.1 mm or less. Such an embodiment is preferable from the viewpoint of reducing the manufacturing cost, reducing the weight of the lead-acid battery, and improving the hot water at the time of cast-on strap and reducing the product defect rate.

一態様において、比率(M2/M1)は1.0未満である。かかる態様では、充電受入性に優れる傾向がある。すなわち、かかる態様では、優れたサイクル寿命性能と優れた充電受入性とを両立しやすい。   In one embodiment, the ratio (M2 / M1) is less than 1.0. In such an aspect, the charge acceptance tends to be excellent. That is, in this aspect, it is easy to achieve both excellent cycle life performance and excellent charge acceptance.

一態様において、上記表面層の厚さは10μmよりも大きい。かかる態様では、サイクル寿命性能に更に優れる傾向がある。   In one embodiment, the thickness of the surface layer is greater than 10 μm. In such an embodiment, the cycle life performance tends to be further improved.

一態様において、上記表面層の厚さは60μm未満である。かかる態様は、製造上の観点及び製造コストを低減する観点から好ましい。   In one aspect, the thickness of the surface layer is less than 60 μm. Such an embodiment is preferable from the viewpoint of manufacturing and reducing the manufacturing cost.

一態様において、電解液の比重は1.26より大きい。かかる態様では、低温高率放電性能に優れる傾向がある。すなわち、かかる態様では、優れたサイクル寿命性能と優れた低温高率放電性能とを両立しやすい。   In one embodiment, the specific gravity of the electrolyte is greater than 1.26. In such an embodiment, there is a tendency that the low-temperature high-rate discharge performance is excellent. That is, in this aspect, it is easy to achieve both excellent cycle life performance and excellent low-temperature high-rate discharge performance.

一態様において、電解液の比重は1.29未満である。かかる態様では、充電受入性に優れる傾向がある。すなわち、かかる態様では、優れたサイクル寿命性能と優れた充電受入性とを両立しやすい。   In one embodiment, the specific gravity of the electrolyte is less than 1.29. In such an aspect, the charge acceptance tends to be excellent. That is, in this aspect, it is easy to achieve both excellent cycle life performance and excellent charge acceptance.

本開示によれば、部分充電状態(PSOC状態)で主に使用される場合にも優れたサイクル寿命性能を発揮し得る鉛蓄電池を提供することができる。すなわち、本開示に係る鉛蓄電池は、間欠的な充電及び大電流放電が繰り返されてPSOC状態で使用される場合であっても、突然寿命に至りにくい。また、本開示によれば、優れた減液性能を有する鉛蓄電池を提供することができる。   According to the present disclosure, it is possible to provide a lead storage battery that can exhibit excellent cycle life performance even when used mainly in a partially charged state (PSOC state). That is, the lead storage battery according to the present disclosure is unlikely to reach a sudden life even when intermittent charge and large current discharge are repeated and used in a PSOC state. Moreover, according to this indication, the lead storage battery which has the outstanding liquid reduction performance can be provided.

本開示に係る鉛蓄電池は、充電が間欠的に行われ、PSOC下で高率放電が行われる液式鉛蓄電池として、ISS車、マイクロハイブリッド車等の自動車において好適に用いることができる。本開示によれば、鉛蓄電池のマイクロハイブリッド車への応用を提供できる。本発明によれば、鉛蓄電池のISS車への応用を提供できる。   The lead acid battery according to the present disclosure can be suitably used in an automobile such as an ISS car or a micro hybrid car as a liquid lead acid battery in which charging is intermittently performed and high rate discharge is performed under PSOC. According to the present disclosure, application of a lead storage battery to a micro hybrid vehicle can be provided. ADVANTAGE OF THE INVENTION According to this invention, the application to the ISS vehicle of a lead storage battery can be provided.

図1は実施形態に係る鉛蓄電池を示す斜視図である。FIG. 1 is a perspective view showing a lead storage battery according to an embodiment. 図2は図1に示す鉛蓄電池の内部構造を示す図である。FIG. 2 is a diagram showing an internal structure of the lead storage battery shown in FIG. 図3は極板群の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the electrode plate group. 図4は電極板(正極板又は負極板)を示す正面図である。FIG. 4 is a front view showing an electrode plate (positive electrode plate or negative electrode plate). 図5(a)は図4のV−V線における断面図であって正極板を示す断面図であり、図5(b)は図4のV−V線における断面図であって負極板を示す断面図である。5A is a cross-sectional view taken along line VV in FIG. 4 and shows a positive electrode plate, and FIG. 5B is a cross-sectional view taken along line VV in FIG. It is sectional drawing shown. 図6(a)及び図6(b)は集電体(正極集電体又は負極集電体)の一例を示す正面図である。FIG. 6A and FIG. 6B are front views showing an example of a current collector (a positive electrode current collector or a negative electrode current collector).

本明細書中において、「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。本明細書中において、「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書中に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書中において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。比重は温度によって変化するため、本明細書においては、20℃で換算した比重と定義する。   In this specification, the term “layer” includes not only a structure having a shape formed on the entire surface but also a structure having a shape formed on a part when observed as a plan view. In the present specification, numerical ranges indicated using “to” indicate ranges including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in the present specification, the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step. In the numerical range described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples. “A or B” only needs to include either A or B, and may include both. The materials exemplified in the present specification can be used singly or in combination of two or more unless otherwise specified. In the present specification, the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity. Since specific gravity changes with temperature, in this specification, it defines as specific gravity converted at 20 degreeC.

以下、図面を参照して、本開示に係る鉛蓄電池の実施形態について詳細に説明する。なお、全図中、同一又は相当部分には同一符号を付すこととする。   Hereinafter, an embodiment of a lead storage battery according to the present disclosure will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.

<鉛蓄電池>
本実施形態に係る鉛蓄電池は、正極集電体及び当該正極集電体に充填された正極材を有する正極板と、負極集電体及び当該負極集電体に充填された負極材を有する負極板と、硫酸を含む電解液と、を備える。かかる鉛蓄電池において、負極集電体は、当該負極集電体の上部周縁部に設けられた負極耳部を有し、負極耳部は、Snを含む表面層を有し、正極材の質量と負極材の質量の合計(電極材の質量)M1に対する電解液の質量M2の比率(M2/M1)は0.7以上である。なお、本実施形態における正極材及び負極材は、それぞれ化成後(例えば満充電状態)の正極材及び負極材を意味し、正極材の質量と負極材の質量の合計(電極材の質量)M1に対する電解液の質量M2の比率(M2/M1)は、化成後の正極材の質量と化成後の負極材の質量の合計に対する化成後の電解液の質量を意味する。未化成の段階においては、正極材に相当する材料は、化成によって正極材となる物質を含有しており、負極材に相当する材料は、化成によって負極材となる物質を含有している。
<Lead battery>
The lead storage battery according to this embodiment includes a positive electrode plate having a positive electrode current collector and a positive electrode material filled in the positive electrode current collector, and a negative electrode having a negative electrode current collector and a negative electrode material filled in the negative electrode current collector. A plate and an electrolyte containing sulfuric acid. In such a lead storage battery, the negative electrode current collector has a negative electrode ear provided at the upper peripheral edge of the negative electrode current collector, the negative electrode ear has a surface layer containing Sn, and the mass of the positive electrode material The ratio (M2 / M1) of the mass M2 of the electrolytic solution to the total mass (mass of the electrode material) M1 of the negative electrode material is 0.7 or more. In addition, the positive electrode material and the negative electrode material in this embodiment mean the positive electrode material and negative electrode material after chemical conversion (for example, a fully charged state), respectively, and the total of the mass of a positive electrode material and the mass of a negative electrode material (mass of electrode material) M1 The ratio (M2 / M1) of the electrolyte solution mass M2 to the mass means the mass of the electrolyte solution after conversion with respect to the total of the mass of the positive electrode material after conversion and the mass of the negative electrode material after conversion. In the unformed stage, the material corresponding to the positive electrode material contains a substance that becomes the positive electrode material by chemical conversion, and the material corresponding to the negative electrode material contains a substance that becomes the negative electrode material by chemical conversion.

図1は本実施形態に係る鉛蓄電池(液式鉛蓄電池)の斜視図であり、図2は鉛蓄電池1の内部構造を示す図である。これらの図に示すとおり、鉛蓄電池1は、上面が開口して複数の極板群11が格納される電槽2と、電槽2の開口を閉じる蓋3とを備えている。蓋3は、例えば、ポリプロピレン製となっており、正極端子4と、負極端子5と、蓋3に設けられた注液口を閉塞する液口栓6とを備えている。電槽2には、電解液(不図示)が収容されている。   FIG. 1 is a perspective view of a lead storage battery (liquid lead storage battery) according to this embodiment, and FIG. 2 is a view showing an internal structure of the lead storage battery 1. As shown in these drawings, the lead storage battery 1 includes a battery case 2 in which an upper surface is opened and a plurality of electrode plate groups 11 are stored, and a lid 3 that closes the opening of the battery case 2. The lid 3 is made of, for example, polypropylene, and includes a positive electrode terminal 4, a negative electrode terminal 5, and a liquid port plug 6 that closes a liquid injection port provided in the lid 3. The battery case 2 contains an electrolyte (not shown).

なお、図1に示す鉛蓄電池は液式鉛蓄電池であるが、本開示に係る鉛蓄電池の形式は、特に限定されず、種々の形式であってよい。例えば、制御弁式鉛蓄電池、密閉式鉛蓄電池等であってもよい。製造コスト等の観点から、液式鉛蓄電池が好ましい。   In addition, although the lead acid battery shown in FIG. 1 is a liquid lead acid battery, the format of the lead acid battery which concerns on this indication is not specifically limited, A various form may be sufficient. For example, a control valve type lead acid battery, a sealed lead acid battery, or the like may be used. From the viewpoint of manufacturing cost and the like, a liquid lead acid battery is preferable.

(極板群)
図3は極板群を示す斜視図である。図2及び図3に示すように、極板群11は、例えば、正極板12と、負極板13と、セパレータ14と、正極側ストラップ15と、負極側ストラップ16と、セル間接続部17又は極柱18とを備えている。正極板12及び負極板13は、セパレータ14を介して交互に積層されることにより極板群11を構成している。図2及び図3に示すセパレータ14は袋状であり、負極板13が袋状のセパレータ内に配置されている。また、セパレータ14は、その一方面上に、長手方向に延びるように複数(多数本)形成された凸状のリブを複数有している。なお、セパレータ14は袋状でなくてもよく、リブを有していなくてもよい。
(Plate group)
FIG. 3 is a perspective view showing the electrode plate group. 2 and 3, the electrode plate group 11 includes, for example, a positive electrode plate 12, a negative electrode plate 13, a separator 14, a positive electrode side strap 15, a negative electrode side strap 16, and an inter-cell connection portion 17 or And a pole column 18. The positive electrode plate 12 and the negative electrode plate 13 constitute the electrode plate group 11 by being alternately stacked via the separator 14. The separator 14 shown in FIG.2 and FIG.3 is bag shape, and the negative electrode plate 13 is arrange | positioned in the bag-shaped separator. Moreover, the separator 14 has a plurality of convex ribs formed on its one surface so as to extend in the longitudinal direction. In addition, the separator 14 does not need to be a bag shape and does not need to have a rib.

極板群11における正極板12及び負極板13の枚数は、例えば、正極板7枚に対し負極板8枚であってよく、正極板8枚に対し負極板8枚であってよく、正極板8枚に対し負極板9枚であってよい。正極板及び負極板の枚数が増えるほど、サイクル寿命性能が更に向上する傾向がある。   The number of the positive electrode plates 12 and the negative electrode plates 13 in the electrode plate group 11 may be, for example, eight negative electrode plates with respect to seven positive electrode plates, or eight negative electrode plates with respect to eight positive electrode plates. There may be nine negative electrode plates for eight. As the number of positive and negative electrode plates increases, the cycle life performance tends to further improve.

[電極板]
図4は、電極板(正極板12又は負極板13)を示す正面図である。図5は、図4のV−V線における断面図であり、図5(a)は正極板12の断面を図示したものであり、図5(b)は負極板13の断面を図示したものである。図6は、集電体(正極集電体又は負極集電体)を示す正面図である。図4及び図6において、カッコ書きした符号は負極板の構成を示している。
[Electrode plate]
FIG. 4 is a front view showing an electrode plate (positive plate 12 or negative plate 13). 5 is a cross-sectional view taken along the line VV in FIG. 4, FIG. 5A illustrates a cross section of the positive electrode plate 12, and FIG. 5B illustrates a cross section of the negative electrode plate 13. It is. FIG. 6 is a front view showing a current collector (a positive electrode current collector or a negative electrode current collector). 4 and 6, the reference numerals in parentheses indicate the configuration of the negative electrode plate.

図4、図5(a)及び図6に示すように、正極板12は、正極集電体21と、正極集電体21に充填された正極材23とを有する。正極材23は正極材充填部24を構成している。正極板12のうち、正極材23が充填された部分が正極材充填部24(図4において砂地状にハッチングした部分)となる。なお、正極材充填部24は、正極板12の表裏面に形成される。通常、正極集電体21の全面に正極材23が充填されるが、必ずしも正極集電体21の全面に正極材23が充填される必要はなく、正極集電体21の一部に正極材23が充填されない部分があってもよい。この場合、正極集電体21のうち正極材23が充填された部分のみが正極材充填部24となり、正極集電体21のうち正極材23が充填されていない部分は正極材充填部24から除外される。   As shown in FIG. 4, FIG. 5A and FIG. 6, the positive electrode plate 12 includes a positive electrode current collector 21 and a positive electrode material 23 filled in the positive electrode current collector 21. The positive electrode material 23 constitutes a positive electrode material filling portion 24. A portion of the positive electrode plate 12 filled with the positive electrode material 23 becomes a positive electrode material filling portion 24 (portion hatched in a sandy shape in FIG. 4). The positive electrode material filling portion 24 is formed on the front and back surfaces of the positive electrode plate 12. Usually, the entire surface of the positive electrode current collector 21 is filled with the positive electrode material 23, but it is not always necessary to fill the entire surface of the positive electrode current collector 21 with the positive electrode material 23. There may be a portion where 23 is not filled. In this case, only the portion of the positive electrode current collector 21 that is filled with the positive electrode material 23 becomes the positive electrode material filling portion 24, and the portion of the positive electrode current collector 21 that is not filled with the positive electrode material 23 is from the positive electrode material filling portion 24. Excluded.

正極集電体21は、正極材支持部21aと、正極材支持部21aの上側に帯状に形成された上側フレーム部(上部周縁部)21bと、上側フレーム部21bに設けられた正極集電部(正極耳部)22とを備える。正極耳部22は、例えば、上側フレーム部21bから部分的に上方に突出するように設けられている。正極材支持部21aの外形は例えば矩形(長方形又は正方形)であり、格子状に形成されている。正極材支持部21aは、図6(b)に示すように、下方の隅部が切り落とされた形状であってもよい。正極集電体21は正極材23からの電流の導電路を構成するものである。   The positive electrode current collector 21 includes a positive electrode material support portion 21a, an upper frame portion (upper peripheral portion) 21b formed in a strip shape above the positive electrode material support portion 21a, and a positive electrode current collector portion provided in the upper frame portion 21b. (Positive electrode ear) 22. For example, the positive electrode ear portion 22 is provided so as to partially protrude upward from the upper frame portion 21b. The outer shape of the positive electrode material support portion 21a is, for example, a rectangle (rectangle or square), and is formed in a lattice shape. As illustrated in FIG. 6B, the positive electrode material support portion 21 a may have a shape in which a lower corner portion is cut off. The positive electrode current collector 21 constitutes a conductive path for current from the positive electrode material 23.

正極集電体21の幅W2は、例えば10.0〜16.0cmである。正極集電体21の高さH2は、例えば10.0〜12.0cmである。正極集電体21の厚さ(例えば正極耳部の厚さ)は、例えば0.6〜1.1mmである。なお、正極材支持部21aが、下方の隅部が切り落とされた形状である場合、下方の隅部が存在するものとしてW2及びH2を算出する(図6(b)参照)。   The width W2 of the positive electrode current collector 21 is, for example, 10.0 to 16.0 cm. The height H2 of the positive electrode current collector 21 is, for example, 10.0 to 12.0 cm. The thickness of the positive electrode current collector 21 (for example, the thickness of the positive electrode ear) is, for example, 0.6 to 1.1 mm. When the positive electrode material support portion 21a has a shape in which the lower corner is cut off, W2 and H2 are calculated assuming that the lower corner exists (see FIG. 6B).

正極集電体21の組成としては、例えば、鉛−カルシウム−錫合金、鉛−カルシウム合金及び鉛−アンチモン合金が挙げられる。これらの鉛合金を重力鋳造法、エキスパンド法、打ち抜き法等で格子状に形成することにより正極集電体21を得ることができる。なお、図6に示す正極集電体21は、エキスパンド格子体である。   Examples of the composition of the positive electrode current collector 21 include a lead-calcium-tin alloy, a lead-calcium alloy, and a lead-antimony alloy. The positive electrode current collector 21 can be obtained by forming these lead alloys in a lattice shape by a gravity casting method, an expanding method, a punching method, or the like. Note that the positive electrode current collector 21 shown in FIG. 6 is an expanded lattice.

図4、図5(b)及び図6に示すように、負極板13は、負極集電体31と、負極集電体31に充填された負極材33とを有する。負極材33は負極材充填部34を構成している。正極板12と同様、負極板13のうち、負極材33が充填された部分が負極材充填部34となる。負極材充填部34の詳細は正極材充填部24と同様である。   As shown in FIG. 4, FIG. 5B and FIG. 6, the negative electrode plate 13 includes a negative electrode current collector 31 and a negative electrode material 33 filled in the negative electrode current collector 31. The negative electrode material 33 constitutes a negative electrode material filling portion 34. Similar to the positive electrode plate 12, a portion of the negative electrode plate 13 filled with the negative electrode material 33 becomes a negative electrode material filling portion 34. The details of the negative electrode material filling portion 34 are the same as those of the positive electrode material filling portion 24.

負極集電体31は、負極材支持部31aと、負極材支持部31aの上側に帯状に形成された上側フレーム部(上部周縁部)31bと、上側フレーム部31bに設けられた負極集電部(負極耳部)32とを備える。負極耳部32は、例えば、上側フレーム部31bから部分的に上方に突出するように設けられている。負極材支持部31aの外形は例えば矩形(長方形又は正方形)であり、格子状に形成されている。負極材支持部31aは、図6(b)に示すように、下方の隅部が切り落とされた形状であってもよい。負極集電体31は負極材33への電流の導電路を構成するものである。   The negative electrode current collector 31 includes a negative electrode material support portion 31a, an upper frame portion (upper peripheral portion) 31b formed in a strip shape above the negative electrode material support portion 31a, and a negative electrode current collector portion provided in the upper frame portion 31b. (Negative electrode ear) 32. For example, the negative electrode ear 32 is provided so as to partially protrude upward from the upper frame portion 31b. The external shape of the negative electrode material support portion 31a is, for example, rectangular (rectangular or square), and is formed in a lattice shape. As shown in FIG. 6B, the negative electrode material support portion 31a may have a shape in which a lower corner portion is cut off. The negative electrode current collector 31 constitutes a current conduction path to the negative electrode material 33.

負極耳部32はSnを含む表面層32aを有する。すなわち、負極耳部32の表面はSnを含む表面層32aによって構成されている。負極耳部32の表面の少なくとも一部が実質的にSn(スズ)を含むことで、負極耳部32の劣化(耳痩せ現象)が充分に抑制され、これにより優れたサイクル寿命性能を達成できる。すなわち、負極耳部32の表面の少なくとも一部がSnを含む負極板13は、PSOC下で突然寿命に至りにくい、長寿命な鉛蓄電池の提供に有用である。表面層32aは、Sn以外にPbを主要に含んでいてもよい。   The negative electrode lug 32 has a surface layer 32a containing Sn. That is, the surface of the negative electrode ear 32 is constituted by a surface layer 32a containing Sn. When at least a part of the surface of the negative electrode ear 32 substantially contains Sn (tin), the deterioration (ear thinning phenomenon) of the negative electrode ear 32 is sufficiently suppressed, and thereby excellent cycle life performance can be achieved. . That is, the negative electrode plate 13 in which at least a part of the surface of the negative electrode lug 32 contains Sn is useful for providing a long-life lead-acid battery that is unlikely to reach a sudden life under PSOC. The surface layer 32a may mainly contain Pb in addition to Sn.

Snの含有量は、負極耳部32の劣化(耳痩せ)が抑制され、サイクル寿命性能に更に優れる観点から、表面層32aの全質量を基準として、例えば、4質量部以上であり、9質量部以上、30質量部以上又は50質量部以上であってもよい。サイクル寿命性能に特に優れる観点及び製造上の観点からは、100質量部であってもよい。なお、Snの含有量が100質量部である場合、すなわち、表面層32aがSnからなる場合は、Snの他に不可避的な不純物を含んでいてもよい。このような不純物としては、例えば、Ag、Al、As、Bi、Ca、Cd、Cu、Fe、Ni、Sb、Zn等が挙げられる。   The content of Sn is, for example, 4 parts by mass or more and 9 parts by mass based on the total mass of the surface layer 32a from the viewpoint of suppressing deterioration (ear loss) of the negative electrode ear 32 and further improving cycle life performance. Part or more, 30 parts by mass or more, or 50 parts by mass or more. 100 mass parts may be sufficient from a viewpoint which is excellent in cycle life performance, and a viewpoint on manufacture. In addition, when content of Sn is 100 mass parts, ie, when the surface layer 32a consists of Sn, an inevitable impurity other than Sn may be included. Examples of such impurities include Ag, Al, As, Bi, Ca, Cd, Cu, Fe, Ni, Sb, and Zn.

負極耳部32にSnを含む表面層32aを設けたことで負極耳部32の劣化(耳痩せ現象)又は破断が抑制される理由は必ずしも明らかではないが、これについて本発明者らは以下のとおり推察している。まず、完全な充電が行われず充電が不足した状態(PSOC状態)で鉛蓄電池が使用される場合には、電池内の電極板における上部と下部との間で、電解液である希硫酸の濃淡差が生じる成層化現象が起こる。これは完全な充電が行われなる場合に電極板から発生する気泡がPSOC状態では発生しないため、電解液の撹拌が不充分になるからである。この場合、電極下部の希硫酸の濃度が高くなりサルフェーションが発生する。サルフェーションは、放電生成物である硫酸鉛が充電状態に戻りにくい現象である。そのため、サルフェーションが発生すると、電極上部のみが集中的に反応するようになる。その結果、電極上部において、活物質間の結びつきが弱くなる等の劣化が進み、耳部においても充放電反応が進行し、耳部が硫酸鉛化すると推察される。上記のようなメカニズムにより、耳部においても、硫酸鉛の溶解と析出が繰り返されることによって、耳痩せ又は破断が生じると考えられる。負極耳部32にSnを含む表面層32aを設けることで、表面層32aの電位を硫酸鉛の溶解と析出を繰り返す電位よりも高い状態に維持しやすく、これにより、負極耳部32の劣化(耳痩せ又は破断)が抑制されると推察される。   The reason why the negative electrode ear 32 is provided with the surface layer 32a containing Sn to suppress deterioration (ear thinning phenomenon) or breakage of the negative electrode ear 32 is not necessarily clear. I guess as follows. First, when a lead storage battery is used in a state where charging is not complete and charging is insufficient (PSOC state), the concentration of dilute sulfuric acid, which is an electrolyte, between the upper and lower parts of the electrode plate in the battery A stratification phenomenon occurs where a difference occurs. This is because, when complete charging is performed, bubbles generated from the electrode plate are not generated in the PSOC state, so that the stirring of the electrolyte becomes insufficient. In this case, the concentration of dilute sulfuric acid in the lower part of the electrode becomes high and sulfation occurs. Sulfation is a phenomenon in which lead sulfate, which is a discharge product, is difficult to return to a charged state. Therefore, when sulfation occurs, only the upper part of the electrode reacts intensively. As a result, it is presumed that deterioration such as weakening of the connection between the active materials progresses in the upper part of the electrode, the charge / discharge reaction proceeds also in the ear, and the ear becomes lead sulfate. Due to the mechanism described above, it is considered that the thinning or breakage of the ear portion occurs due to repeated dissolution and precipitation of lead sulfate. By providing the surface layer 32a containing Sn in the negative electrode ear 32, it is easy to maintain the potential of the surface layer 32a higher than the potential of repeatedly dissolving and precipitating lead sulfate. It is presumed that (ear thinness or breakage) is suppressed.

なお、負極耳部32の全体が表面層32aで覆われていることが好ましいが、負極耳部32には、表面層32aが設けられていない箇所が存在していてもよい。例えば、表面層32aは、負極耳部32においてその一方の主面にのみ設けられていてもよい。負極集電体31における負極耳部32以外の箇所(例えば上側フレーム部31b)の劣化も抑制すべき場合には当該箇所の表面にもSnを含む表面層を設ければよい。   In addition, although it is preferable that the whole negative electrode ear | edge part 32 is covered with the surface layer 32a, in the negative electrode ear | edge part 32, the location where the surface layer 32a is not provided may exist. For example, the surface layer 32 a may be provided only on one main surface of the negative electrode ear 32. When deterioration of a portion other than the negative electrode ear 32 (for example, the upper frame portion 31b) in the negative electrode current collector 31 is to be suppressed, a surface layer containing Sn may be provided on the surface of the portion.

負極集電体31の表面層32a以外の組成は、正極集電体21と同様であってよい。負極集電体31は、例えば表面層32aを形成すること以外は、正極集電体21と同様の方法により作製することができる。負極集電体31を作製する方法は、例えば、正極集電体21と同様の方法により集電体を作製する工程と、その後に所定の箇所に表面層32aを形成する工程とを含んでもよく、あるいは、予め表面層32aが形成された合金板を準備する工程と、この合金板を加工することによって集電体を得る工程とを含んでもよい。   The composition other than the surface layer 32 a of the negative electrode current collector 31 may be the same as that of the positive electrode current collector 21. The negative electrode current collector 31 can be produced by the same method as that of the positive electrode current collector 21, except that the surface layer 32a is formed, for example. The method for producing the negative electrode current collector 31 may include, for example, a step of producing a current collector by a method similar to that of the positive electrode current collector 21, and a step of subsequently forming the surface layer 32a at a predetermined location. Alternatively, the method may include a step of preparing an alloy plate on which the surface layer 32a is formed in advance, and a step of obtaining a current collector by processing the alloy plate.

表面層32aを形成する方法としては、例えば、圧延法、溶融メッキ法等が挙げられる。圧延法とは、表面層32aが形成される材料(例えば、金属板、合金板等)と、表面層32aを形成する材料(例えばSnを含むシート)とを重ね合わせて、これらを圧延する方法である。一方、溶融メッキ法とは、表面層32aを形成する材料(Snを含む材料)が溶融した溶融槽に、表面層32aを形成すべき箇所を浸漬させてメッキする方法である。本実施形態では、これらの方法のうち、圧延法が好ましい。   Examples of the method for forming the surface layer 32a include a rolling method and a hot dipping method. The rolling method is a method in which a material for forming the surface layer 32a (for example, a metal plate, an alloy plate, etc.) and a material for forming the surface layer 32a (for example, a sheet containing Sn) are superposed and rolled. It is. On the other hand, the hot dipping method is a method in which plating is performed by immersing a portion where the surface layer 32a is to be formed in a melting tank in which a material (material containing Sn) for forming the surface layer 32a is melted. In this embodiment, the rolling method is preferable among these methods.

圧延法により表面層32aを形成する方法は、例えば、以下のような方法であってもよい。まず、板状の鉛合金(基材)の両面に、表面層32aを形成するためのSnシートを重ね合わせた後、これを圧延ローラで圧延して圧延シートを作製する(圧延シートを作製する工程)。次に、負極集電体31の負極耳部32となる領域に表面層32aが形成されるように圧延シートの位置を調整しながら、圧延シートをエキスパンド機により展開する(エキスパンド法)。これにより、表面層32aを有する負極集電体31が得られる。なお、この圧延法においては、基材となる合金の厚さ、表面層32aとなるシートの厚さ、及び/又は圧延後のシートの厚さを調整することによって、表面層32aの厚さを容易に調節可能である。表面層32aの厚さdは、サイクル寿命性能に更に優れる観点から、例えば、10μmよりも大きいことが好ましい。圧延後の表面層32aの厚さdは、製造上の観点及び製造コストを低減する観点から、60μm未満であることが好ましい。これらの観点から、圧延後の表面層32aの厚さdは、10μmより大きく60μm未満であることが好ましい。   The method of forming the surface layer 32a by a rolling method may be, for example, the following method. First, Sn sheets for forming the surface layer 32a are superimposed on both surfaces of a plate-like lead alloy (base material), and then rolled with a rolling roller to produce a rolled sheet (a rolled sheet is produced). Process). Next, the rolled sheet is developed by an expanding machine while adjusting the position of the rolled sheet so that the surface layer 32a is formed in the region that becomes the negative electrode ear 32 of the negative electrode current collector 31 (expanding method). Thereby, the negative electrode current collector 31 having the surface layer 32a is obtained. In this rolling method, the thickness of the surface layer 32a is adjusted by adjusting the thickness of the alloy serving as the base material, the thickness of the sheet serving as the surface layer 32a, and / or the thickness of the sheet after rolling. It is easily adjustable. The thickness d of the surface layer 32a is preferably larger than 10 μm, for example, from the viewpoint of further excellent cycle life performance. The thickness d of the surface layer 32a after rolling is preferably less than 60 μm from the viewpoint of manufacturing and reducing the manufacturing cost. From these viewpoints, the thickness d of the surface layer 32a after rolling is preferably greater than 10 μm and less than 60 μm.

負極耳部32の厚さDは、負極耳部32が破断しにくくなり、サイクル寿命性能に更に優れる観点から、0.7mm以上であることが好ましく、0.8mm以上、0.85mm以上、0.90mm以上、0.95mm以上、又は1.0mm以上であってもよい。負極耳部32の厚さDは、鉛蓄電池を軽量化する観点、製造コストを低減する観点、及びキャストオンストラップ時の湯周りが良くなり製品不良率を低減できる観点から、例えば、1.1mm以下であることが好ましい。これらの観点から、負極耳部32の厚さDは、0.7〜1.1mmであることが好ましく、0.8〜1.1mm、0.85〜1.1mm、0.90〜1.1mm、0.95〜1.1mm、又は1.0〜1.1mmであってもよい。なお、負極耳部32の厚さDとは、表面層32aの厚さdを含めた負極耳部32の厚さを測定した際の厚さである。   The thickness D of the negative electrode ear 32 is preferably 0.7 mm or more from the viewpoint that the negative electrode ear 32 is less likely to break and is further excellent in cycle life performance, 0.8 mm or more, 0.85 mm or more, 0 90 mm or more, 0.95 mm or more, or 1.0 mm or more. The thickness D of the negative electrode ear 32 is, for example, 1.1 mm from the viewpoint of reducing the weight of the lead storage battery, reducing the manufacturing cost, and improving the hot water around the cast-on strap and reducing the product defect rate. The following is preferable. From these viewpoints, the thickness D of the negative electrode ear portion 32 is preferably 0.7 to 1.1 mm, 0.8 to 1.1 mm, 0.85 to 1.1 mm, 0.90 to 1. It may be 1 mm, 0.95 to 1.1 mm, or 1.0 to 1.1 mm. In addition, the thickness D of the negative electrode ear | edge part 32 is the thickness at the time of measuring the thickness of the negative electrode ear | edge part 32 including the thickness d of the surface layer 32a.

負極集電体31の幅W2及び高さH2は、正極集電体21と同様であってよく、同様でなくてもよい。なお、負極材支持部31aが、下方の隅部が切り落とされた形状である場合、下方の隅部が存在するものとしてW2及びH2を算出する(図6(b)参照)。   The width W2 and height H2 of the negative electrode current collector 31 may or may not be the same as those of the positive electrode current collector 21. When the negative electrode material support portion 31a has a shape in which the lower corner is cut off, W2 and H2 are calculated assuming that the lower corner exists (see FIG. 6B).

(電極材及び電解液)
[正極材]
正極材23は、例えば、正極活物質を含有している。正極材23は、例えば、化成によって正極活物質となる物質(正極活物質の原料)を含む正極材ペーストを熟成及び乾燥し、これを化成することによって得られる。正極活物質としては、β−二酸化鉛(β−PbO)及びα−二酸化鉛(α−PbO)が挙げられる。これらのうち、一方が正極材23に含まれていてもよいし、両方が正極材23に含まれていてもよい。正極活物質の原料としては、特に制限はなく、例えば鉛粉が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。正極活物質の原料として鉛丹(Pb)を用いてもよい。正極材ペーストは、例えば、三塩基性硫酸鉛(正極活物質の原料)を主成分として含有する。
(Electrode material and electrolyte)
[Positive electrode material]
The positive electrode material 23 contains, for example, a positive electrode active material. The positive electrode material 23 is obtained, for example, by aging and drying a positive electrode material paste containing a material (a raw material for the positive electrode active material) that becomes a positive electrode active material by chemical conversion and then forming the positive electrode material paste. Examples of the positive electrode active material include β-lead dioxide (β-PbO 2 ) and α-lead dioxide (α-PbO 2 ). One of these may be included in the positive electrode material 23, or both may be included in the positive electrode material 23. There is no restriction | limiting in particular as a raw material of a positive electrode active material, For example, lead powder is mentioned. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ). Red lead as a raw material of the positive electrode active material (Pb 3 O 4) may be used. The positive electrode material paste contains, for example, tribasic lead sulfate (a raw material for the positive electrode active material) as a main component.

低温高率放電性能及び充電受入性に優れる観点、及び、サイクル寿命性能に更に優れる観点から、正極活物質の含有量(正極材23の全質量基準)は、例えば95質量%以上であり、97質量%以上又は99質量%以上であってもよい。正極活物質の含有量の上限は例えば100質量%であってよい。つまり、正極材23が実質的に正極活物質からなるものであってもよい。なお、ここでいう正極活物質の含有量とは、正極材23(化成されたもの)に含まれる正極活物質(化成されたもの)の量を意味する。   From the viewpoint of excellent low-temperature high-rate discharge performance and charge acceptability, and further excellent cycle life performance, the content of the positive electrode active material (based on the total mass of the positive electrode material 23) is, for example, 95% by mass or more, 97 It may be not less than mass% or not less than 99 mass%. The upper limit of the content of the positive electrode active material may be, for example, 100% by mass. That is, the positive electrode material 23 may be substantially made of a positive electrode active material. In addition, content of a positive electrode active material here means the quantity of the positive electrode active material (chemically formed) contained in the positive electrode material 23 (chemically formed).

正極材23は、添加剤を更に含有していてもよい。添加剤としては、炭素質材料(炭素質導電材)、補強用短繊維等が挙げられる。炭素質材料としては、カーボンブラック、黒鉛等が挙げられる。カーボンブラックとしては、ファーネスブラック(ケッチェンブラック等)、チャンネルブラック、アセチレンブラック、サーマルブラックなどが挙げられる。補強用短繊維としては、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。なお、ここで補強用短繊維として挙げた炭素繊維は、炭素質材料(炭素質導電材)として正極材に添加してもよい。   The positive electrode material 23 may further contain an additive. Examples of the additive include carbonaceous materials (carbonaceous conductive materials), reinforcing short fibers, and the like. Examples of the carbonaceous material include carbon black and graphite. Examples of carbon black include furnace black (Ketjen black, etc.), channel black, acetylene black, thermal black, and the like. Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers. In addition, you may add the carbon fiber quoted here as a reinforcing short fiber to a positive electrode material as a carbonaceous material (carbonaceous conductive material).

[負極材]
負極材33は、例えば、負極活物質を含有している。負極材33は、例えば、化成によって負極活物質となる物質(負極活物質の原料)を含む負極材ペーストを熟成及び乾燥し、これを化成することによって得られる。負極活物質としては、海綿状鉛(Spongylead)等が挙げられる。海綿状鉛は、電解液中の硫酸と反応して、次第に硫酸鉛(PbSO)に変わる傾向がある。負極活物質の原料としては、鉛粉等が挙げられる。鉛粉としては、例えば、ボールミル式鉛粉製造機又はバートンポット式鉛粉製造機によって製造される鉛粉(ボールミル式鉛粉製造機においては、主成分PbOの粉体と鱗片状金属鉛の混合物)が挙げられる。負極材ペーストは、例えば、塩基性硫酸鉛及び金属鉛、並びに、低級酸化物から構成される。
[Negative electrode material]
The negative electrode material 33 contains, for example, a negative electrode active material. The negative electrode material 33 is obtained, for example, by aging and drying a negative electrode material paste containing a material (a raw material for the negative electrode active material) that becomes a negative electrode active material by chemical conversion and then forming this. Examples of the negative electrode active material include spongy lead. Spongy lead tends to react with sulfuric acid in the electrolyte and gradually change to lead sulfate (PbSO 4 ). Examples of the raw material for the negative electrode active material include lead powder. As the lead powder, for example, lead powder manufactured by a ball mill type lead powder manufacturing machine or a barton pot type lead powder manufacturing machine (in the ball mill type lead powder manufacturing machine, a mixture of powder of main component PbO and scale-like metal lead) ). The negative electrode material paste is composed of, for example, basic lead sulfate, metallic lead, and a lower oxide.

低温高率放電性能及び充電受入性に優れる観点、及び、サイクル寿命性能に更に優れる観点から、負極活物質の含有量(負極材33の全質量基準)は、例えば93質量%以上であり、95質量%以上又は98質量%以上であってもよい。負極活物質の含有量の上限は例えば100質量%であってよい。つまり、負極材33が実質的に負極活物質からなるものであってもよい。なお、ここでいう負極活物質の含有量とは、負極材33(化成されたもの)に含まれる負極活物質(化成されたもの)の量を意味する。   From the viewpoint of excellent low-temperature high-rate discharge performance and charge acceptability, and further excellent cycle life performance, the content of the negative electrode active material (based on the total mass of the negative electrode material 33) is, for example, 93% by mass or more, and 95 It may be not less than mass% or not less than 98 mass%. The upper limit of the content of the negative electrode active material may be 100% by mass, for example. That is, the negative electrode material 33 may be substantially made of a negative electrode active material. In addition, content of a negative electrode active material here means the quantity of the negative electrode active material (chemically formed) contained in the negative electrode material 33 (chemically formed).

負極材33は、添加剤を含有していてもよい。添加剤としては、スルホン基及びスルホン酸塩基からなる群より選択される少なくとも一種の樹脂(スルホン基及び/又はスルホン酸塩基を有する樹脂)、及び、その他の添加剤が挙げられる。   The negative electrode material 33 may contain an additive. Examples of the additive include at least one resin selected from the group consisting of a sulfone group and a sulfonate group (a resin having a sulfonate group and / or a sulfonate group), and other additives.

スルホン基及び/又はスルホン酸塩基を有する樹脂としては、スルホン基及び/又はスルホン酸塩基を有するビスフェノール系樹脂(以下、単に「ビスフェノール系樹脂」という)、リグニンスルホン酸、リグニンスルホン酸塩等が挙げられる。スルホン基及び/又はスルホン酸塩基を有する樹脂は、充電受入性が向上する観点から、ビスフェノール系樹脂であってよい。負極材33がビスフェノール系樹脂を含有することにより、充電受入性に優れる。さらに、本実施形態に係る鉛蓄電池1は、負極材33がビスフェノール系樹脂を含有することにより、サイクル寿命性能に更に優れる。   Examples of the resin having a sulfone group and / or a sulfonate group include bisphenol resins having a sulfone group and / or a sulfonate group (hereinafter simply referred to as “bisphenol resins”), lignin sulfonic acid, and lignin sulfonate. It is done. The resin having a sulfone group and / or a sulfonate group may be a bisphenol resin from the viewpoint of improving charge acceptance. When the negative electrode material 33 contains a bisphenol-based resin, the charge acceptability is excellent. Furthermore, the lead storage battery 1 according to the present embodiment is further excellent in cycle life performance because the negative electrode material 33 contains a bisphenol-based resin.

負極材は、その他の添加剤を含んでいてもよい。その他の添加剤としては、例えば、硫酸バリウム、炭素質材料(炭素質導電材)、補強用短繊維等が挙げられる。なお、補強用短繊維の一例として炭素繊維が挙げられるが、これを炭素質材料(炭素質導電材)として負極材に添加してもよい。   The negative electrode material may contain other additives. Examples of other additives include barium sulfate, carbonaceous material (carbonaceous conductive material), reinforcing short fibers, and the like. In addition, although a carbon fiber is mentioned as an example of the short fiber for reinforcement, you may add this to a negative electrode material as a carbonaceous material (carbonaceous conductive material).

炭素質導電材は、好ましくは、黒鉛、カーボンブラック、活性炭、炭素繊維及びカーボンナノチューブからなる材料群の中から選択される。炭素質導電材の含有量は、満充電状態の負極活物質(海綿状金属鉛)100質量部に対し0.1〜3質量部の範囲とするのが好ましい。好ましくは、黒鉛を選択し、更に好ましくは、鱗片状黒鉛を選択する。鱗片状黒鉛の平均一次粒子径は、好ましくは、100μm以上とする。   The carbonaceous conductive material is preferably selected from a material group consisting of graphite, carbon black, activated carbon, carbon fiber, and carbon nanotube. The content of the carbonaceous conductive material is preferably in the range of 0.1 to 3 parts by mass with respect to 100 parts by mass of the fully charged negative electrode active material (spongy metal lead). Preferably, graphite is selected, and more preferably, scaly graphite is selected. The average primary particle size of the flaky graphite is preferably 100 μm or more.

補強用短繊維は、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリエチレンテレフタレート繊維、炭素繊維等が挙げられる。   Examples of the reinforcing short fibers include acrylic fibers, polyethylene fibers, polypropylene fibers, polyethylene terephthalate fibers, and carbon fibers.

[電解液]
電解液は、硫酸を含有する。電解液は、過放電時の短絡を抑制できる観点及び減液性能に更に優れる観点から、アルミニウムイオンを更に含有することが好ましい。
[Electrolyte]
The electrolytic solution contains sulfuric acid. The electrolytic solution preferably further contains aluminum ions from the viewpoint of suppressing a short circuit during overdischarge and further improving the liquid reducing performance.

硫酸及びアルミニウムイオンを含有する電解液は、例えば、硫酸及び硫酸アルミニウム(例えば、硫酸アルミニウム粉末)を混合することにより得ることができる。電解液中に溶解させる硫酸アルミニウムは、無水物又は水和物として添加することができる。   The electrolytic solution containing sulfuric acid and aluminum ions can be obtained, for example, by mixing sulfuric acid and aluminum sulfate (for example, aluminum sulfate powder). Aluminum sulfate to be dissolved in the electrolytic solution can be added as an anhydride or a hydrate.

化成後の電解液(例えば、アルミニウムイオンを含む電解液)の比重は、低温高率放電性能に優れる観点から、例えば、1.26より大きいことが好ましく、1.265以上又は1.27以上であってもよい。化成後の電解液の比重は、充電受入性に優れる観点から、1.29未満が好ましく、1.285以下又は1.28以下であってもよい。これらの観点から、化成後の電解液の比重は、1.26より大きく1.29未満が好ましく、1.265〜1.285又は1.26〜1.28であってもよい。電解液の比重の値は、例えば、浮式比重計、又は、京都電子工業株式会社製のデジタル比重計によって測定することができる。   The specific gravity of the electrolytic solution after formation (for example, an electrolytic solution containing aluminum ions) is preferably greater than 1.26, for example, from the viewpoint of excellent low-temperature high-rate discharge performance, and is 1.265 or more or 1.27 or more. There may be. The specific gravity of the electrolytic solution after chemical conversion is preferably less than 1.29, and may be 1.285 or less or 1.28 or less from the viewpoint of excellent charge acceptance. From these viewpoints, the specific gravity of the electrolytic solution after chemical conversion is preferably greater than 1.26 and less than 1.29, and may be 1.265 to 1.285 or 1.26 to 1.28. The value of the specific gravity of the electrolytic solution can be measured by, for example, a floating hydrometer or a digital hydrometer manufactured by Kyoto Electronics Industry Co., Ltd.

電解液のアルミニウムイオン濃度は、充電受入性が向上する観点、減液性能に更に優れる観点及びサイクル寿命性能に更に優れる観点から、0.01mol/L以上が好ましく、0.02mol/L以上がより好ましく、0.03mol/L以上が更に好ましい。電解液のアルミニウムイオン濃度は、充電受入性が向上する観点及びサイクル寿命性能に更に優れる観点から、0.2mol/L以下が好ましく、0.15mol/L以下がより好ましく、0.13mol/L以下が更に好ましい。これらの観点から、電解液のアルミニウムイオン濃度は、0.01〜0.2mol/Lが好ましく、0.02〜0.15mol/Lがより好ましく、0.03〜0.13mol/Lが更に好ましい。電解液のアルミニウムイオン濃度は、例えば、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により測定することができる。   The aluminum ion concentration of the electrolytic solution is preferably 0.01 mol / L or more, more preferably 0.02 mol / L or more, from the viewpoint of improving charge acceptability, a viewpoint of further excellent liquid reduction performance, and a viewpoint of further excellent cycle life performance. Preferably, 0.03 mol / L or more is more preferable. The aluminum ion concentration of the electrolytic solution is preferably 0.2 mol / L or less, more preferably 0.15 mol / L or less, and more preferably 0.13 mol / L or less from the viewpoint of improving charge acceptance and further excellent cycle life performance. Is more preferable. From these viewpoints, the aluminum ion concentration of the electrolytic solution is preferably 0.01 to 0.2 mol / L, more preferably 0.02 to 0.15 mol / L, and still more preferably 0.03 to 0.13 mol / L. . The aluminum ion concentration of the electrolytic solution can be measured by, for example, ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).

電解液のアルミニウムイオン濃度が前記所定範囲であることにより充電受入性が向上するメカニズムの詳細については明らかではないが、任意の低SOC下において、放電生成物である結晶性硫酸鉛の電解液中への溶解度が上がるため、又は、アルミニウムイオンの高いイオン伝導性により電解液の電極活物質内部への拡散性が向上するためと考えられる。   Although the details of the mechanism for improving the charge acceptability when the aluminum ion concentration of the electrolytic solution is within the predetermined range are not clear, in any electrolytic solution of crystalline lead sulfate as a discharge product under any low SOC This is considered to be because the solubility in the electrode active material increases or the diffusibility of the electrolytic solution into the electrode active material improves due to the high ion conductivity of aluminum ions.

電解液のアルミニウムイオン濃度が所定範囲であることにより減液性能に優れるメカニズムの詳細については明らかではないが、これについて本発明者らは以下のとおり推察する。大電流充電が繰り返されることによって電解液中の水の電気分解が起こると、負極近傍に存在する水素イオンに起因して水素ガスが発生し、当該水素ガスが電池外に排出されるため、電解液中の水が減少しやすい。一方、アルミニウムイオン濃度が所定範囲であると、充電時に、水素イオンだけでなく、アルミニウムイオンも負極近傍に移動してくる。このアルミニウムイオンの影響により、負極近傍に存在する水素イオンの数が減少するため、反応電位が下がり、水素発生過電圧が大きくなる。このような理由により、アルミニウムイオン濃度が所定範囲であると、減液性能に優れる(電解液の減液を抑制することができる)と推察される。   Although the details of the mechanism that is excellent in the liquid reducing performance when the aluminum ion concentration of the electrolytic solution is in a predetermined range are not clear, the present inventors infer as follows. When electrolysis of water in the electrolyte occurs due to repeated high-current charging, hydrogen gas is generated due to hydrogen ions existing near the negative electrode, and the hydrogen gas is discharged out of the battery. Water in the liquid tends to decrease. On the other hand, when the aluminum ion concentration is within a predetermined range, not only hydrogen ions but also aluminum ions move to the vicinity of the negative electrode during charging. Due to the influence of the aluminum ions, the number of hydrogen ions existing in the vicinity of the negative electrode is reduced, so that the reaction potential is lowered and the hydrogen generation overvoltage is increased. For these reasons, it is presumed that when the aluminum ion concentration is within a predetermined range, the liquid reduction performance is excellent (the liquid reduction of the electrolytic solution can be suppressed).

また、電解液のアルミニウムイオン濃度が前記所定範囲であることによりサイクル寿命性能が向上するメカニズムについては、以下のように推測される。まず、アルミニウムイオンを含まない通常の電解液を用いた場合、充電時に電解液に供給される硫酸イオン(例えば硫酸鉛から生成する硫酸イオン)は、電極(極板等)の表面を伝って下方へと移動する。PSOC下では、電池が満充電になることがなく、ガス発生による電解液の撹拌が行われないため、上述の成層化現象が起こる。すなわち、電池下部での電解液比重が高くなるのに対し電池上部の電解液比重が低くなり、電解液濃度の不均一化が生じる。このような現象が起こると、充電しても元に戻り難い結晶性硫酸鉛が生成するとともに、活物質の反応面積が低下する。これにより、充放電が繰り返される寿命試験において性能の劣化が起こる。一方、電解液のアルミニウムイオン濃度が前記所定範囲であると、アルミニウムイオンの静電的引力により硫酸イオンが強く引き付けられるため、成層化が発現しにくくなると考える。   Further, the mechanism by which the cycle life performance is improved when the aluminum ion concentration of the electrolytic solution is within the predetermined range is estimated as follows. First, when a normal electrolyte solution that does not contain aluminum ions is used, sulfate ions (for example, sulfate ions generated from lead sulfate) supplied to the electrolyte solution at the time of charging travel downward along the surface of the electrode (electrode plate, etc.). Move to. Under PSOC, the battery is not fully charged and the electrolyte is not agitated by gas generation, so the above-described stratification phenomenon occurs. That is, the electrolyte specific gravity at the lower part of the battery increases, whereas the electrolyte specific gravity at the upper part of the battery decreases, resulting in non-uniform electrolyte concentration. When such a phenomenon occurs, crystalline lead sulfate that does not easily return to the original state is generated even when charged, and the reaction area of the active material decreases. Thereby, performance deterioration occurs in a life test in which charge and discharge are repeated. On the other hand, when the aluminum ion concentration of the electrolytic solution is within the predetermined range, sulfate ions are strongly attracted by the electrostatic attraction of aluminum ions, so that stratification is unlikely to occur.

[電極材の質量M1に対する電解液の質量M2の比率(M2/M1)]
電極材の質量M1に対する電解液の質量M2の比率(M2/M1)は0.7以上である。比率(M2/M1)は、サイクル寿命性能に更に優れる観点から0.8以上が好ましく、0.9以上がより好ましい。比率(M2/M1)は充電受入性に優れる観点から1.0未満が好ましい。これらの観点から、比率(M2/M1)は0.7以上1.0未満が好ましく、0.8以上1.0未満がより好ましく、0.9以上1.0未満が更に好ましい。比率(M2/M1)は、例えば、電極板の枚数、電極材の充填量、電解液の比重、電解液の注入量等によって調整することができる。
[Ratio of electrolyte solution mass M2 to electrode material mass M1 (M2 / M1)]
The ratio (M2 / M1) of the electrolyte solution mass M2 to the electrode material mass M1 is 0.7 or more. The ratio (M2 / M1) is preferably 0.8 or more, and more preferably 0.9 or more, from the viewpoint of further excellent cycle life performance. The ratio (M2 / M1) is preferably less than 1.0 from the viewpoint of excellent charge acceptance. From these viewpoints, the ratio (M2 / M1) is preferably 0.7 or more and less than 1.0, more preferably 0.8 or more and less than 1.0, and still more preferably 0.9 or more and less than 1.0. The ratio (M2 / M1) can be adjusted by, for example, the number of electrode plates, the filling amount of the electrode material, the specific gravity of the electrolytic solution, the injection amount of the electrolytic solution, and the like.

電極材の質量M1は、化成後(例えば満充電状態)の鉛蓄電池における電極材の質量であり、鉛蓄電池が備えるすべての極板群における正極材の質量と負極材の質量の合計である。電極材の質量M1は、例えば、以下の方法により測定することができる。まず、化成後の鉛蓄電池からすべての極板群を取り出し、各極板群から化成後の正極板及び負極板を一枚毎に分離させる。次いで、正極板及び負極板を水洗した後乾燥させる。なお、正極板は空気雰囲気において乾燥させ、負極板は窒素雰囲気において乾燥させる。乾燥後、すべての正極板の質量及びすべての負極板の質量を測定し、これらの合計をM1aとする。次いで、乾燥後の正極板及び負極板から電極材(正極材及び負極材)を取り除いた後、水洗いし、乾燥させる。乾燥後、得られたすべての集電体(正極集電体及び負極集電体)の質量を測定し、これらの合計をM1bとする。M1aからM1bを引いた値が電極材の質量M1となる。   The mass M1 of the electrode material is the mass of the electrode material in the lead storage battery after chemical conversion (for example, in a fully charged state), and is the sum of the mass of the positive electrode material and the mass of the negative electrode material in all the electrode plate groups provided in the lead storage battery. The mass M1 of the electrode material can be measured, for example, by the following method. First, all the electrode plate groups are taken out from the lead storage battery after chemical conversion, and the positive electrode plate and the negative electrode plate after chemical conversion are separated from each electrode plate group one by one. Next, the positive electrode plate and the negative electrode plate are washed with water and then dried. The positive electrode plate is dried in an air atmosphere, and the negative electrode plate is dried in a nitrogen atmosphere. After drying, the mass of all positive plates and the mass of all negative plates are measured, and the sum of these is M1a. Next, the electrode material (positive electrode material and negative electrode material) is removed from the dried positive electrode plate and negative electrode plate, and then washed with water and dried. After drying, the masses of all the current collectors obtained (the positive electrode current collector and the negative electrode current collector) are measured, and the total of these is defined as M1b. A value obtained by subtracting M1b from M1a is the mass M1 of the electrode material.

電解液の質量M2は、化成後(例えば満充電状態)の鉛蓄電池における電解液の質量である。電解液の質量M2は、例えば、以下の方法により測定することができる。まず、化成後の鉛蓄電池の質量を測定し、この測定値をM2aとする。次いで、鉛蓄電池から電解液を排出した後、電槽からすべての極板群を取り出し、各極板群から正極板、負極板及びセパレータを分離させる。次いで、すべての正極板、負極板、セパレータ及び電槽を水洗いし、乾燥させる。なお、正極板、セパレータ及び電槽は空気雰囲気において乾燥させ、負極板は窒素雰囲気において乾燥させる。乾燥後、正極板、負極板及びセパレータを電槽に戻し、この電池の質量(化成後の鉛蓄電池から電解液を取り除いた後の質量)を測定する。この測定値をM2bとする。M2aからM2bを引いた値が電解液の質量M2となる。   The mass M2 of the electrolytic solution is the mass of the electrolytic solution in the lead storage battery after chemical conversion (for example, in a fully charged state). The mass M2 of the electrolytic solution can be measured, for example, by the following method. First, the mass of the lead storage battery after chemical conversion is measured, and this measured value is defined as M2a. Next, after discharging the electrolytic solution from the lead storage battery, all the electrode plate groups are taken out from the battery case, and the positive electrode plate, the negative electrode plate, and the separator are separated from each electrode plate group. Next, all the positive plates, negative plates, separators, and battery cases are washed with water and dried. Note that the positive electrode plate, the separator, and the battery case are dried in an air atmosphere, and the negative electrode plate is dried in a nitrogen atmosphere. After drying, the positive electrode plate, the negative electrode plate, and the separator are returned to the battery case, and the mass of this battery (the mass after removing the electrolyte from the lead storage battery after chemical conversion) is measured. This measured value is assumed to be M2b. A value obtained by subtracting M2b from M2a is the mass M2 of the electrolytic solution.

電極材の質量M1に占める正極材の質量p1の割合及び電極材の質量M1に占める負極材の質量n1の割合は特に限定されない。負極材33の質量n1に対する正極材23の質量p1の比率(p1/n1)は、サイクル寿命性能に更に優れる観点から、例えば、1.15以上であり、1.20以上、1.25以上、1.35以上、又は1.40以上であってもよい。比率(p1/n1)は、充分な電池容量が得られやすい観点及び実用上の観点から、例えば、1.60以下であり、1.45以下であってもよい。これらの観点から、比率(p1/n1)は、例えば、1.15〜1.60であり、1.20〜1.60、1.25〜1.60、1.35〜1.60、1.40〜1.60、1.15〜1.45であり、1.20〜1.45、1.25〜1.45、1.35〜1.45又は1.40〜1.45であってもよい。なお、ここでいう正極材23の質量p1及び負極材33の質量n1は、化成後の正極材23の質量及び化成後の負極材33の質量をそれぞれ意味する。   The ratio of the mass p1 of the positive electrode material to the mass M1 of the electrode material and the ratio of the mass n1 of the negative electrode material to the mass M1 of the electrode material are not particularly limited. The ratio of the mass p1 of the positive electrode material 23 to the mass n1 of the negative electrode material 33 (p1 / n1) is, for example, 1.15 or more, 1.20 or more, 1.25 or more, from the viewpoint of further excellent cycle life performance. It may be 1.35 or more, or 1.40 or more. The ratio (p1 / n1) is, for example, 1.60 or less and may be 1.45 or less from the viewpoint of obtaining a sufficient battery capacity and a practical viewpoint. From these viewpoints, the ratio (p1 / n1) is 1.15 to 1.60, for example, 1.20 to 1.60, 1.25 to 1.60, 1.35 to 1.60, .40 to 1.60, 1.15 to 1.45, 1.20 to 1.45, 1.25 to 1.45, 1.35 to 1.45, or 1.40 to 1.45. May be. Here, the mass p1 of the positive electrode material 23 and the mass n1 of the negative electrode material 33 refer to the mass of the positive electrode material 23 after chemical conversion and the mass of the negative electrode material 33 after chemical conversion, respectively.

質量比p1/n1を上記範囲とすることで一層優れたサイクル寿命性能を達成できる要因は定かではないが、これについて本発明者らは以下のとおり推察する。すなわち、質量比p1/n1が上記範囲であると、負極活物質が十分に還元され易くなるため、鉛蓄電池の充電状態(SOC)が比較的高い範囲を推移しやすくなる。その結果、負極耳部32が硫酸鉛化しにくくなる。これが一層優れたISSサイクル特性を達成できる一因であると推察される。   Although the factor which can achieve the further outstanding cycle life performance by making mass ratio p1 / n1 into the said range is not certain, the present inventors guess about this as follows. That is, when the mass ratio p1 / n1 is in the above range, the negative electrode active material is easily reduced sufficiently, so that the state of charge (SOC) of the lead-acid battery tends to change in a relatively high range. As a result, the negative electrode ear 32 is less likely to be converted to lead sulfate. It is surmised that this is one of the factors that can achieve even better ISS cycle characteristics.

電極材の質量M1に占める電極活物質の質量(正極活物質の質量と負極活物質の質量の合計)の割合は、例えば、95%以上であり、97%以上又は99%以上であってもよい。当該割合の上限は例えば100%であってよい。   The ratio of the mass of the electrode active material to the mass M1 of the electrode material (the total of the mass of the positive electrode active material and the mass of the negative electrode active material) is, for example, 95% or more, even if it is 97% or more or 99% or more. Good. The upper limit of the ratio may be 100%, for example.

<鉛蓄電池の製造>
本実施形態に係る鉛蓄電池1の製造方法は、例えば、電極板(正極板12及び負極板13)を得る電極板製造工程と、電極板を含む構成部材を組み立てて鉛蓄電池1を得る組み立て工程とを備える。
<Manufacture of lead-acid batteries>
The manufacturing method of the lead storage battery 1 which concerns on this embodiment is the assembly process of assembling the electrode plate manufacturing process which obtains an electrode plate (the positive electrode plate 12 and the negative electrode plate 13), and the structural member containing an electrode plate, for example. With.

電極板製造工程では、例えば、電極材ペースト(正極材ペースト及び負極材ペースト)を集電体(例えば、鋳造格子体、エキスパンド格子体等の集電体格子)に充填した後に、熟成及び乾燥を行うことにより未化成の電極板(未化成の正極板及び未化成の負極板)を得る。正極材ペーストは、例えば、正極活物質の原料(鉛粉等)を含有しており、他の添加剤を更に含有していてもよい。負極材ペーストは、例えば、負極活物質の原料(鉛粉等)、及びスルホン基及び/又はスルホン酸塩基を有する樹脂(ビスフェノール系樹脂等)を含有しており、他の添加剤を更に含有していてもよい。   In the electrode plate manufacturing process, for example, an electrode material paste (a positive electrode material paste and a negative electrode material paste) is filled in a current collector (for example, a current collector grid such as a cast grid, an expanded grid, etc.), and then aged and dried. By performing this, an unformed electrode plate (an unformed positive plate and an unformed negative plate) is obtained. The positive electrode material paste contains, for example, a raw material (lead powder or the like) of the positive electrode active material, and may further contain other additives. The negative electrode material paste contains, for example, a raw material for the negative electrode active material (such as lead powder) and a resin having a sulfone group and / or a sulfonate group (such as a bisphenol-based resin), and further includes other additives. It may be.

組み立て工程では、例えば、上記のように作製した未化成の負極板及び未化成の正極板を、セパレータを介して交互に積層し、同極性の電極の集電部(耳部)をストラップに連結(溶接等)させて極板群を得る。この極板群を電槽内に配置して未化成の電池を作製する。次に、未化成の電池に電解液(例えば希硫酸)を注液した後、直流電流を通電して電槽化成を行うことにより鉛蓄電池1が得られる。通常は、通電のみで所定比重の鉛蓄電池が得られるが、通電時間の短縮を目的として、化成後に希硫酸を一度抜いた後、電解液を注液してもよい。   In the assembly process, for example, the unformed negative electrode plate and the unformed positive plate produced as described above are alternately stacked via separators, and the current collector (ear part) of the same polarity electrode is connected to the strap. (Welding etc.) to obtain the electrode plate group. This electrode group is placed in a battery case to produce an unformed battery. Next, after injecting an electrolytic solution (for example, dilute sulfuric acid) into an unformed battery, a lead-acid battery 1 is obtained by energizing a direct current to perform battery case formation. Usually, a lead storage battery having a specific gravity is obtained only by energization. However, for the purpose of shortening the energization time, after the dilute sulfuric acid is once extracted after chemical conversion, the electrolytic solution may be injected.

化成条件及び硫酸の比重は電極活物質の性状に応じて調整することができる。また、化成処理は、組み立て工程後に実施されることに限られず、電極製造工程における熟成及び乾燥後に実施されてもよい(タンク化成)。   Chemical conversion conditions and specific gravity of sulfuric acid can be adjusted according to the properties of the electrode active material. The chemical conversion treatment is not limited to being performed after the assembly process, and may be performed after aging and drying in the electrode manufacturing process (tank chemical conversion).

以上、本開示に係る鉛蓄電池の実施形態について説明したが、本開示は上記実施形態に限定されるものではない。   As mentioned above, although embodiment of the lead storage battery concerning this indication was described, this indication is not limited to the above-mentioned embodiment.

次に、本開示の実施例について説明する。但し、本開示は次の実施例に限定されるものではない。   Next, examples of the present disclosure will be described. However, the present disclosure is not limited to the following examples.

(実施例1)
<鉛蓄電池の作製>
[正極板の作製]
正極集電体として、板状の鉛−カルシウム−錫合金(カルシウム含有量:0.05質量%、錫含有量0.5質量%)に切れ目を入れ、この切れ目を拡開するように引き伸ばして作製したエキスパンド格子体を用意した。ボールミル法によって作製した鉛粉に、補強用短繊維としてアクリル繊維0.07質量%と、硫酸ナトリウム0.01質量%とを加えて乾式混合し、鉛粉を含む混合物を得た。アクリル繊維及び硫酸ナトリウムそれぞれの配合量は、鉛粉の全質量を基準とした配合量である。次に、前記鉛粉を含む混合物に対して、水10質量%と、希硫酸(比重1.28)9質量%とを加えて混練して正極材ペーストを作製した(水及び希硫酸それぞれの配合量は、鉛粉の全質量を基準とした配合量である。)。正極材ペーストの作製に際しては、急激な温度上昇を避けるため、希硫酸の添加は段階的に行った。続いて、作製した正極材ペーストを、上記正極集電体に充填し、正極材ペーストが充填された集電体を温度50℃、湿度98%の雰囲気で24時間熟成した。これにより、正極集電体に未化成の正極材が充填された未化成の正極板を得た。
Example 1
<Production of lead acid battery>
[Production of positive electrode plate]
As a positive electrode current collector, a plate-like lead-calcium-tin alloy (calcium content: 0.05 mass%, tin content: 0.5 mass%) is cut and stretched to widen the cut. The produced expanded lattice body was prepared. To the lead powder produced by the ball mill method, 0.07% by mass of acrylic fiber and 0.01% by mass of sodium sulfate were added as reinforcing short fibers and dry mixed to obtain a mixture containing lead powder. The blending amounts of acrylic fiber and sodium sulfate are blending amounts based on the total mass of lead powder. Next, to the mixture containing the lead powder, 10% by mass of water and 9% by mass of dilute sulfuric acid (specific gravity 1.28) were added and kneaded to prepare positive electrode material pastes (each of water and dilute sulfuric acid). The blending amount is based on the total mass of the lead powder.) In preparing the positive electrode material paste, dilute sulfuric acid was added step by step in order to avoid a rapid temperature rise. Subsequently, the produced positive electrode material paste was filled in the positive electrode current collector, and the current collector filled with the positive electrode material paste was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. As a result, an unformed positive electrode plate in which the positive electrode current collector was filled with the unformed positive electrode material was obtained.

[負極集電体の作製]
負極集電体を下記の手順で作製した。まず、基材として、厚さが12mmであり、板状の鉛−カルシウム−錫合金(カルシウム含有量:0.05質量%、錫含有量:0.5質量%)を用意し、表面層を形成するための金属シートとして、厚さが0.2mmである錫(Sn)シートを用意した。錫−カルシウム−錫合金の両面に、負極集電体の耳部の位置にSnからなる表面層が備えられるように錫シートを重ね合わせ、圧延ローラで圧延することにより、厚さが0.8mmの圧延シートを作製した。圧延シートに形成された表面層となる層(Snからなる表面層)の厚さは約13μmであった。
[Preparation of negative electrode current collector]
A negative electrode current collector was produced by the following procedure. First, as a base material, a plate-like lead-calcium-tin alloy (calcium content: 0.05 mass%, tin content: 0.5 mass%) having a thickness of 12 mm is prepared. As a metal sheet for forming, a tin (Sn) sheet having a thickness of 0.2 mm was prepared. A tin sheet is superposed on both surfaces of a tin-calcium-tin alloy so that a surface layer made of Sn is provided at the position of the ear portion of the negative electrode current collector, and rolled with a rolling roller to obtain a thickness of 0.8 mm. A rolled sheet was prepared. The thickness of the surface layer (surface layer made of Sn) formed on the rolled sheet was about 13 μm.

負極集電体の耳部の位置にSnからなる表面層が備えられるように圧延シートの位置を調整しながら、圧延シートをレシプロ式エキスパンド機により展開した。これにより、耳部の表面にSnからなる表面層(厚さ:13μm)が形成された負極集電体(負極耳部の厚さD:0.8mm)を作製した。   The rolled sheet was developed with a reciprocating expander while adjusting the position of the rolled sheet so that the surface layer made of Sn was provided at the position of the ear of the negative electrode current collector. In this way, a negative electrode current collector (negative electrode ear thickness D: 0.8 mm) in which a surface layer (thickness: 13 μm) made of Sn was formed on the surface of the ear was prepared.

[負極板の作製]
負極活物質の原料として鉛粉を用いた。ビスフェノール系樹脂を0.2質量%(固形分換算、日本製紙(株)製、商品名:ビスパーズP215)、補強用短繊維(アクリル繊維)を0.1質量%、硫酸バリウムを1.0質量%、及び、炭素質導電材(ファーネスブラック)を0.2質量%含む混合物を前記鉛粉に添加した後に乾式混合した(前記配合量は、負極活物質の原料の全質量を基準とした配合量である)。次に、水10質量%(負極活物質の原料の全質量を基準とした配合量である)を加えた後に混練した。続いて、比重1.280の希硫酸9.5質量%(負極活物質の原料の全質量を基準とした配合量である)を少量ずつ添加しながら混練して、負極材ペーストを作製した。続いて、前記の方法で作製した負極集電体にこの負極材ペーストを充填した。次いで、負極材ペーストが充填された集電体を温度50℃、湿度98%の雰囲気で24時間熟成した。その後、乾燥して未化成の負極板を得た。
[Production of negative electrode plate]
Lead powder was used as a raw material for the negative electrode active material. 0.2% by mass of bisphenol-based resin (converted to solid content, manufactured by Nippon Paper Industries Co., Ltd., trade name: Vispaz P215), 0.1% by mass of reinforcing short fibers (acrylic fibers), and 1.0% by mass of barium sulfate %, And a mixture containing 0.2% by mass of carbonaceous conductive material (furnace black) was added to the lead powder and then dry-mixed (the blending amount is based on the total mass of the negative electrode active material) Amount). Next, 10% by mass of water (a blending amount based on the total mass of the raw material of the negative electrode active material) was added and then kneaded. Subsequently, 9.5% by mass of dilute sulfuric acid having a specific gravity of 1.280 (mixing amount based on the total mass of the negative electrode active material raw material) was added little by little and kneaded to prepare a negative electrode material paste. Subsequently, this negative electrode material paste was filled into the negative electrode current collector produced by the above method. Next, the current collector filled with the negative electrode material paste was aged in an atmosphere of a temperature of 50 ° C. and a humidity of 98% for 24 hours. Thereafter, it was dried to obtain an unformed negative electrode plate.

[電池の組み立て]
表面にリブを有するポリエチレン製のセパレータを、リブを有する面が外側となるように袋状に加工し、得られた袋状のセパレータに未化成の負極板を挿入した。次に、未化成の正極板7枚と、袋状のセパレータに収容された未化成の負極板8枚とを、セパレータのリブが未化成の正極板に接するようにして交互に積層した。次に、未化成の正極板の集電部(正極耳部)及び未化成の負極板の集電部(負極耳部)をキャストオンストラップ方式により極性毎に正極側ストラップ及び負極側ストラップに集合溶接して、極板群を得た。
[Battery assembly]
A polyethylene separator having ribs on the surface was processed into a bag shape so that the surface having ribs was on the outside, and an unformed negative electrode plate was inserted into the obtained bag-shaped separator. Next, seven unformed positive plates and eight unformed negative plates housed in a bag-like separator were alternately laminated so that the ribs of the separator were in contact with the unformed positive plates. Next, the current collector (positive electrode ear) of the unformed positive electrode plate and the current collector (negative electrode ear) of the unformed negative electrode plate are assembled into the positive side strap and the negative side strap for each polarity by the cast-on strap method. The electrode group was obtained by welding.

6つのセル室を有する電槽を用意し、6つのセル室にそれぞれ極板群を挿入した。次いで、極板群をセル間接続した後、電槽に蓋を熱溶着した。その後、各液口栓を開栓して蓋に設けられた各注液口から各セルに電解液として希硫酸を注液した。次いで、周囲温度40℃、電流25Aで20時間通電することにより電槽化成を行い、JISD5301規定の85D23形電池(鉛蓄電池)を作製した。化成後の電解液の比重は1.28に調整した。化成後の正極活物質の含有量(正極材の全質量基準)は、99.9質量%であり、化成後の負極活物質の含有量(負極材の全質量基準)は、98.4質量%であった。   A battery case having six cell chambers was prepared, and an electrode plate group was inserted into each of the six cell chambers. Next, after the electrode plate group was connected between cells, a lid was thermally welded to the battery case. Thereafter, each liquid port plug was opened, and dilute sulfuric acid was injected as an electrolyte into each cell from each liquid injection port provided on the lid. Next, a battery case was formed by energizing for 20 hours at an ambient temperature of 40 ° C. and a current of 25 A, and a 85D23 type battery (lead storage battery) defined in JIS D5301 was produced. The specific gravity of the electrolyte after the formation was adjusted to 1.28. The content of the positive electrode active material after conversion (based on the total mass of the positive electrode material) is 99.9% by mass, and the content of the negative electrode active material after conversion (based on the total mass of the negative electrode material) is 98.4 mass. %Met.

[電極材の質量M1に対する電解液の質量M2の比率の算出]
化成後の鉛蓄電池の質量を測定し、この測定値をM2aとした。次いで、鉛蓄電池から電解液を排出した後、電槽からすべての極板群を取り出し、各極板群から正極板、負極板及びセパレータを分離させた。すべての正極板、負極板及びセパレータを水洗いし、乾燥させた。なお、正極板及びセパレータは空気雰囲気において乾燥させ、負極板は窒素雰囲気において乾燥させた。同様に電槽を水洗いし、乾燥させた。乾燥後のすべての正極板の質量及び負極板の質量を測定し、これらの測定値の合計をM1aとした。乾燥後の正極板、負極板及びセパレータを乾燥後の電槽に戻し、この電池の質量(化成後の鉛蓄電池から電解液を取り除いた後の質量)を測定した。この測定値をM2bとした。次いで、乾燥後の正極板及び負極板から電極材(正極材及び負極材)を取り除いた後、水洗いし、乾燥させた。乾燥後、得られた集電体(正極集電体及び負極集電体)の質量を測定し、これらの測定値の合計をM1bとした。M1aからM1bを引くことにより電極材の質量M1を求め、M2aからM2bを引くことにより電解液の質量M2を求めた。すなわち、電極材の質量M1に対する電解液の質量M2の比率(M2/M1)は0.7であった。
[Calculation of ratio of electrolyte solution mass M2 to electrode material mass M1]
The mass of the lead storage battery after chemical conversion was measured, and this measured value was designated as M2a. Next, after discharging the electrolytic solution from the lead storage battery, all the electrode plate groups were taken out from the battery case, and the positive electrode plate, the negative electrode plate, and the separator were separated from each electrode plate group. All positive plates, negative plates and separators were washed with water and dried. The positive electrode plate and the separator were dried in an air atmosphere, and the negative electrode plate was dried in a nitrogen atmosphere. Similarly, the battery case was washed with water and dried. The mass of all the positive electrode plates after drying and the mass of the negative electrode plates were measured, and the total of these measured values was defined as M1a. The dried positive electrode plate, negative electrode plate, and separator were returned to the dried battery case, and the mass of the battery (the mass after removing the electrolyte from the lead storage battery after conversion) was measured. This measured value was designated as M2b. Next, the electrode material (positive electrode material and negative electrode material) was removed from the dried positive electrode plate and negative electrode plate, and then washed with water and dried. After drying, the mass of the obtained current collector (positive electrode current collector and negative electrode current collector) was measured, and the total of these measured values was defined as M1b. The electrode material mass M1 was determined by subtracting M1b from M1a, and the electrolyte solution mass M2 was determined by subtracting M2b from M2a. That is, the ratio (M2 / M1) of the electrolyte solution mass M2 to the electrode material mass M1 was 0.7.

(実施例2〜4)
正極材の充填量及び負極材の充填量を調整することによりM2/M1を表1に示す値としたこと以外は、実施例1と同様にして、実施例2〜4の鉛蓄電池を得た。実施例2〜4の鉛蓄電池における化成後の正極活物質の含有量(正極材の全質量基準)及び化成後の負極活物質の含有量(負極材の全質量基準)は実施例1と同一であった。
(Examples 2 to 4)
The lead acid batteries of Examples 2 to 4 were obtained in the same manner as in Example 1 except that M2 / M1 was set to the value shown in Table 1 by adjusting the filling amount of the positive electrode material and the filling amount of the negative electrode material. . In the lead-acid batteries of Examples 2 to 4, the content of the positive electrode active material after conversion (based on the total mass of the positive electrode material) and the content of the negative electrode active material after conversion (based on the total mass of the negative electrode material) are the same as in Example 1. Met.

(実施例5〜9)
負極集電体の作製の際に、負極耳部の厚さD(圧延シートの厚さ)及び表面層の厚さdが表1に示す値となるように圧延を行ったこと以外は実施例1と同様にして、実施例5〜9の鉛蓄電池を得た。なお、鉛−カルシウム−錫合金及び金属シートは、実施例1で用いた鉛−カルシウム−錫合金及び金属シートを用いた。実施例5〜9の鉛蓄電池における化成後の正極活物質の含有量(正極材の全質量基準)及び化成後の負極活物質の含有量(負極材の全質量基準)は実施例1と同一であった。
(Examples 5 to 9)
Example except that the negative electrode current collector was rolled so that the thickness D of the negative electrode ear (thickness of the rolled sheet) and the thickness d of the surface layer were the values shown in Table 1 when the negative electrode current collector was produced. In the same manner as in Example 1, lead storage batteries of Examples 5 to 9 were obtained. The lead-calcium-tin alloy and metal sheet used were the lead-calcium-tin alloy and metal sheet used in Example 1. In the lead storage batteries of Examples 5 to 9, the content of the positive electrode active material after conversion (based on the total mass of the positive electrode material) and the content of the negative electrode active material after conversion (based on the total mass of the negative electrode material) are the same as in Example 1. Met.

(実施例10)
正極材の充填量及び負極材の充填量を調整することによりM2/M1を表1に示す値としたこと、及び、負極集電体の作製の際に、負極耳部の厚さD(圧延シートの厚さ)及び表面層の厚さdが表1に示す値となるように圧延を行ったこと以外は実施例1と同様にして、実施例10の鉛蓄電池を得た。なお、鉛−カルシウム−錫合金及び金属シートは、実施例1で用いた鉛−カルシウム−錫合金及び金属シートを用いた。実施例10の鉛蓄電池における化成後の正極活物質の含有量(正極材の全質量基準)及び化成後の負極活物質の含有量(負極材の全質量基準)は実施例1と同一であった。
(Example 10)
M2 / M1 was adjusted to the value shown in Table 1 by adjusting the filling amount of the positive electrode material and the filling amount of the negative electrode material, and the thickness D (rolled) of the negative electrode ear when the negative electrode current collector was produced. A lead storage battery of Example 10 was obtained in the same manner as in Example 1 except that rolling was performed so that the thickness d of the sheet and the thickness d of the surface layer were the values shown in Table 1. The lead-calcium-tin alloy and metal sheet used were the lead-calcium-tin alloy and metal sheet used in Example 1. In the lead storage battery of Example 10, the content of the positive electrode active material after conversion (based on the total mass of the positive electrode material) and the content of the negative electrode active material after conversion (based on the total mass of the negative electrode material) were the same as in Example 1. It was.

(比較例1)
負極集電体として、鉛−カルシウム−錫合金(カルシウム含有量:0.05質量%、錫含有量:0.5質量%)からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体(負極耳部の厚さ:0.8mm)を用いたこと以外は、実施例1と同様にして、比較例1の鉛蓄電池を得た。比較例1の鉛蓄電池における化成後の正極活物質の含有量(正極材の全質量基準)及び化成後の負極活物質の含有量(負極材の全質量基準)は実施例1と同一であった。
(Comparative Example 1)
An expanded lattice body produced by subjecting a rolled sheet made of a lead-calcium-tin alloy (calcium content: 0.05 mass%, tin content: 0.5 mass%) to an expanding process as a negative electrode current collector A lead-acid battery of Comparative Example 1 was obtained in the same manner as in Example 1 except that (negative electrode ear thickness: 0.8 mm) was used. The content of the positive electrode active material after conversion (based on the total mass of the positive electrode material) and the content of the negative electrode active material after conversion (based on the total mass of the negative electrode material) in the lead storage battery of Comparative Example 1 were the same as in Example 1. It was.

(比較例2及び3)
正極材の充填量及び負極材の充填量を調整することによりM2/M1を表1に示す値としたこと以外は、比較例1と同様にして、比較例2及び3の鉛蓄電池を得た。比較例2及び3の鉛蓄電池における化成後の正極活物質の含有量(正極材の全質量基準)及び化成後の負極活物質の含有量(負極材の全質量基準)は実施例1と同一であった。
(Comparative Examples 2 and 3)
The lead acid batteries of Comparative Examples 2 and 3 were obtained in the same manner as Comparative Example 1 except that M2 / M1 was adjusted to the value shown in Table 1 by adjusting the filling amount of the positive electrode material and the filling amount of the negative electrode material. . The content of the positive electrode active material after conversion (based on the total mass of the positive electrode material) and the content of the negative electrode active material after conversion (based on the total mass of the negative electrode material) in the lead acid batteries of Comparative Examples 2 and 3 are the same as in Example 1. Met.

(比較例4)
負極集電体として、鉛−カルシウム−錫合金(カルシウム含有量:0.05質量%、錫含有量:0.5質量%)からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体(負極耳部の厚さ:0.6mm)を用いたこと以外は、比較例1と同様にして、比較例4の鉛蓄電池を得た。比較例4の鉛蓄電池における化成後の正極活物質の含有量(正極材の全質量基準)及び化成後の負極活物質の含有量(負極材の全質量基準)は実施例1と同一であった。
(Comparative Example 4)
An expanded lattice body produced by subjecting a rolled sheet made of a lead-calcium-tin alloy (calcium content: 0.05 mass%, tin content: 0.5 mass%) to an expanding process as a negative electrode current collector A lead-acid battery of Comparative Example 4 was obtained in the same manner as Comparative Example 1 except that (negative electrode ear thickness: 0.6 mm) was used. The content of the positive electrode active material after conversion (based on the total mass of the positive electrode material) and the content of the negative electrode active material after conversion (based on the total mass of the negative electrode material) in the lead storage battery of Comparative Example 4 were the same as in Example 1. It was.

(比較例5)
負極集電体として、鉛−カルシウム−錫合金(カルシウム含有量:0.05質量%、錫含有量:0.5質量%)からなる圧延シートにエキスパンド加工を施すことにより作製されたエキスパンド格子体(負極耳部の厚さ:1.1mm)を用いたこと以外は、比較例1と同様にして、比較例5の鉛蓄電池を得た。比較例5の鉛蓄電池における化成後の正極活物質の含有量(正極材の全質量基準)及び化成後の負極活物質の含有量(負極材の全質量基準)は実施例1と同一であった。
(Comparative Example 5)
An expanded lattice body produced by subjecting a rolled sheet made of a lead-calcium-tin alloy (calcium content: 0.05 mass%, tin content: 0.5 mass%) to an expanding process as a negative electrode current collector A lead-acid battery of Comparative Example 5 was obtained in the same manner as Comparative Example 1 except that (Negative electrode ear thickness: 1.1 mm) was used. In the lead storage battery of Comparative Example 5, the content of the positive electrode active material after conversion (based on the total mass of the positive electrode material) and the content of the negative electrode active material after conversion (based on the total mass of the negative electrode material) were the same as in Example 1. It was.

<電池特性の評価>
前記の鉛蓄電池について、充電受入性、低温高率放電性能、サイクル寿命性能及び減液性能を下記のとおり測定した。結果を表1に示す。なお、減液性能の評価は実施例1及び比較例1についてのみ行った。
<Evaluation of battery characteristics>
About the said lead acid battery, charge acceptance property, low-temperature high-rate discharge performance, cycle life performance, and liquid reduction performance were measured as follows. The results are shown in Table 1. In addition, evaluation of the liquid reduction performance was performed only for Example 1 and Comparative Example 1.

[充電受入性]
作製した鉛蓄電池において、25℃、10.4Aで30分間定電流放電を行い、12時間放置した。その後、鉛蓄電池を、100Aの制限電流の下、14.0Vで60秒間定電圧充電を行い、充電開始から5秒目の電流値を測定した。この電流値を比較することにより充電受入性を評価した。なお、充電受入性は、比較例1の測定結果を100として相対評価した。
[Charge acceptance]
In the produced lead acid battery, constant current discharge was performed for 30 minutes at 25 degreeC and 10.4A, and it was left to stand for 12 hours. Thereafter, the lead-acid battery was charged at a constant voltage of 100 A at 14.0 V for 60 seconds, and the current value at 5 seconds from the start of charging was measured. The charge acceptance was evaluated by comparing the current values. The charge acceptance was evaluated relative to the measurement result of Comparative Example 1 as 100.

[低温高率放電性能]
作製した電池において、電池温度を−15℃に調整し、300Aで定電流放電を行い、放電開始後30秒目の端子電圧を測定した。この端子電圧を比較することにより低温高率放電性能を評価した。なお、低温高率放電性能は、比較例1の測定結果を100として相対評価した。
[Low temperature high rate discharge performance]
In the produced battery, the battery temperature was adjusted to −15 ° C., constant current discharge was performed at 300 A, and the terminal voltage 30 seconds after the start of discharge was measured. The terminal voltage was compared to evaluate the low temperature high rate discharge performance. The low-temperature high-rate discharge performance was evaluated relative to the measurement result of Comparative Example 1 as 100.

[サイクル寿命性能]
電池温度が25℃になるように雰囲気温度を調整した。45A−59秒間の定電流放電及び300A−1秒間の定電流放電を行った後に100A−14.0V−60秒間の定電流・定電圧充電を行う操作を1サイクルとし、3600サイクル毎に40時間放置してからサイクルを再開する、サイクル試験を行った。このサイクル試験では、放電量に対して充電量が少ないため、充電が完全に行われないと徐々に充電不足になる。その結果、放電電流を300Aとして1秒間放電した時の1秒目電圧が徐々に低下する。すなわち、定電流・定電圧充電時に負極が分極して早期に定電圧充電に切り替わると、充電電流が減衰して充電不足になる。この寿命試験では、300A放電時の1秒目電圧が7.2Vを下回ったときを、その電池の寿命と判定し、寿命までに行ったサイクル回数を比較することによりサイクル寿命性能を評価した。なお、サイクル寿命性能は、実施例1の測定結果を100として相対評価した。
[Cycle life performance]
The ambient temperature was adjusted so that the battery temperature was 25 ° C. The operation of performing constant current / constant voltage charging for 100A-14.0V-60 seconds after performing constant current discharge for 45A-59 seconds and constant current discharge for 300A-1 seconds is one cycle and 40 hours for every 3600 cycles. A cycle test was conducted in which the cycle was restarted after being left standing. In this cycle test, since the amount of charge is small with respect to the amount of discharge, if the charging is not performed completely, the charging gradually becomes insufficient. As a result, the first-second voltage when the discharge current is 300 A for 1 second is gradually reduced. That is, if the negative electrode is polarized during constant current / constant voltage charging and switched to constant voltage charging at an early stage, the charging current is attenuated, resulting in insufficient charging. In this life test, when the first-second voltage at the time of 300 A discharge fell below 7.2 V, the battery life was determined, and the cycle life performance was evaluated by comparing the number of cycles performed until the battery life. The cycle life performance was evaluated relative to the measurement result of Example 1 as 100.

[減液性能]
減液性能の評価は次のように行った。電池温度が60℃になるように調整し、42日間(1008時間)、14.4Vで定電圧充電を行った。電池温度が60℃に達し定電圧充電を行う直前の電池重量と、42日間の定電圧充電が終了した直後の電池重量の差を減液量とし、この量を比較することにより減液性能を評価した。比較例1の減液量を100として相対評価した。
[Liquid reduction performance]
Evaluation of the liquid reduction performance was performed as follows. The battery temperature was adjusted to 60 ° C., and constant voltage charging was performed at 14.4 V for 42 days (1008 hours). The difference between the battery weight immediately before the battery temperature reaches 60 ° C and the constant voltage charging and the battery weight immediately after the constant voltage charging for 42 days is defined as the liquid reduction amount. evaluated. Relative evaluation was made assuming that the liquid reduction amount of Comparative Example 1 was 100.

Figure 2018170303
Figure 2018170303

1…鉛蓄電池、2…電槽、11…極板群、12…正極板、13…負極板、21…正極集電体、23…正極材、31…負極集電体、32…負極集電部(負極耳部)、32a…表面層、33…負極材。

DESCRIPTION OF SYMBOLS 1 ... Lead storage battery, 2 ... Battery case, 11 ... Electrode plate group, 12 ... Positive electrode plate, 13 ... Negative electrode plate, 21 ... Positive electrode collector, 23 ... Positive electrode material, 31 ... Negative electrode collector, 32 ... Negative electrode collector Part (negative electrode ear part), 32a ... surface layer, 33 ... negative electrode material.

Claims (8)

正極集電体及び当該正極集電体に充填された正極材を有する正極板と、
負極集電体及び当該負極集電体に充填された負極材を有する負極板と、
硫酸を含む電解液と、を備え、
前記負極集電体が、当該負極集電体の上部周縁部に設けられた負極耳部を有し、
前記負極耳部が、Snを含む表面層を有し、
前記正極材の質量と前記負極材の質量の合計M1に対する前記電解液の質量M2の比率(M2/M1)が0.7以上である、鉛蓄電池。
A positive electrode plate having a positive electrode current collector and a positive electrode material filled in the positive electrode current collector;
A negative electrode plate having a negative electrode current collector and a negative electrode material filled in the negative electrode current collector;
An electrolyte solution containing sulfuric acid,
The negative electrode current collector has a negative electrode ear provided on an upper peripheral edge of the negative electrode current collector;
The negative electrode ear has a surface layer containing Sn;
The lead acid battery whose ratio (M2 / M1) of the mass M2 of the electrolyte solution to the total M1 of the mass of the positive electrode material and the negative electrode material is 0.7 or more.
前記負極耳部の厚さが0.8mm以上である、請求項1に記載の鉛蓄電池。   The lead acid battery of Claim 1 whose thickness of the said negative electrode ear | edge part is 0.8 mm or more. 前記負極耳部の厚さが1.1mm以下である、請求項1又は2に記載の鉛蓄電池。   The lead acid battery of Claim 1 or 2 whose thickness of the said negative electrode ear | edge part is 1.1 mm or less. 前記比率(M2/M1)が1.0未満である、請求項1〜3のいずれか一項に記載の鉛蓄電池。   The lead acid battery according to any one of claims 1 to 3, wherein the ratio (M2 / M1) is less than 1.0. 前記表面層の厚さが10μmよりも大きい、請求項1〜4のいずれか一項に記載の鉛蓄電池。   The lead acid battery as described in any one of Claims 1-4 whose thickness of the said surface layer is larger than 10 micrometers. 前記表面層の厚さが60μm未満である、請求項1〜5のいずれか一項に記載の鉛蓄電池。   The lead acid battery as described in any one of Claims 1-5 whose thickness of the said surface layer is less than 60 micrometers. 前記電解液の比重が1.26より大きい、請求項1〜6のいずれか一項に記載の鉛蓄電池。   The lead acid battery as described in any one of Claims 1-6 whose specific gravity of the said electrolyte solution is larger than 1.26. 前記電解液の比重が1.29未満である、請求項1〜7のいずれか一項に記載の鉛蓄電池。

The lead acid battery as described in any one of Claims 1-7 whose specific gravity of the said electrolyte solution is less than 1.29.

JP2018152679A 2018-08-14 2018-08-14 Lead-acid battery Pending JP2018170303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018152679A JP2018170303A (en) 2018-08-14 2018-08-14 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018152679A JP2018170303A (en) 2018-08-14 2018-08-14 Lead-acid battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018511765A Division JP6388094B1 (en) 2016-12-07 2016-12-07 Lead acid battery

Publications (1)

Publication Number Publication Date
JP2018170303A true JP2018170303A (en) 2018-11-01

Family

ID=64020608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018152679A Pending JP2018170303A (en) 2018-08-14 2018-08-14 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2018170303A (en)

Similar Documents

Publication Publication Date Title
JP6354912B2 (en) Lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
US11870096B2 (en) Absorbent glass mat battery
JP2017063001A (en) Lead storage battery
JP5858048B2 (en) Lead acid battery
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
JP6977770B2 (en) Liquid lead-acid battery
JP6388094B1 (en) Lead acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP5016306B2 (en) Lead acid battery
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP2018170303A (en) Lead-acid battery
JP6996274B2 (en) Lead-acid battery
KR20160126580A (en) Battery electrolyte composition and a method of manufacturing the same
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JP7493329B2 (en) Lead-acid battery
JP6734456B1 (en) Lead acid battery
JP7285206B2 (en) Method for determining electrode performance, lead-acid battery, and method for manufacturing the same
JP5088679B2 (en) Lead acid battery
JP2022138753A (en) Lead-acid battery
WO2020100213A1 (en) Electrode plate, lattice body, and lead storage cell
WO2018025837A1 (en) Lead storage cell
JP2005268061A (en) Lead storage cell
JP4556250B2 (en) Lead acid battery
JPWO2019235216A1 (en) Lead-acid battery