[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20160126580A - Battery electrolyte composition and a method of manufacturing the same - Google Patents

Battery electrolyte composition and a method of manufacturing the same Download PDF

Info

Publication number
KR20160126580A
KR20160126580A KR1020150057817A KR20150057817A KR20160126580A KR 20160126580 A KR20160126580 A KR 20160126580A KR 1020150057817 A KR1020150057817 A KR 1020150057817A KR 20150057817 A KR20150057817 A KR 20150057817A KR 20160126580 A KR20160126580 A KR 20160126580A
Authority
KR
South Korea
Prior art keywords
weight
battery
parts
lead
electrolyte
Prior art date
Application number
KR1020150057817A
Other languages
Korean (ko)
Inventor
김이환
Original Assignee
김이환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김이환 filed Critical 김이환
Priority to KR1020150057817A priority Critical patent/KR20160126580A/en
Publication of KR20160126580A publication Critical patent/KR20160126580A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/126

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a lead battery electrolyte composition and a producing method thereof. The lead battery electrolyte composition comprises: 10 liters of distilled water; 17-27 parts by weight of barium sulfate; 2-4 parts by weight of magnesium sulfate; 1-2 parts by weight of aluminum sulfate; 0.2-0.6 parts by weight of ammonium phosphate dibasic; and 0.2-0.7 parts by weight of ammonium.

Description

축전지 전해액 조성물 및 그 제조방법{Battery electrolyte composition and a method of manufacturing the same}[0001] The present invention relates to a battery electrolyte composition and a method of manufacturing the same,

본 발명은 축전지 전해액 조성물 및 그 제조방법에 관한 것이다. The present invention relates to a battery electrolyte composition and a method of manufacturing the same.

자동차, 선박, 건설기계 등의 폭넓은 분야에서 납축전지가 사용되고 있다. 그러나, 일반적인 납축전지는 충전과 방전을 반복함에 따라 전지의 기능이 서서히 저하되어 결국은 그 수명을 다하게 된다.Lead-acid batteries are used in a wide range of fields such as automobiles, ships, and construction machinery. However, as a general lead acid battery repeatedly performs charging and discharging, the function of the battery gradually decreases and eventually reaches its lifetime.

납축전지는 전극판인 납과 묽은 황산 수용액을 이용한 전해액과의 화학반응에 의해 기전력이 발생되는 2차 전지이다. 일반적인 납축전지는 10년 정도 사용할 수 있도록 설계되어 있으나, 통상 4 내지 5년, 빠른 것은 2년도 지나지 않아 폐기되는 것이 현재의 상황이다.A lead-acid battery is a secondary battery in which an electromotive force is generated by a chemical reaction between an electrode plate lead and an electrolyte solution using an aqueous dilute sulfuric acid solution. Conventional lead-acid batteries are designed to be used for about 10 years, but the current situation is that they are usually discarded after 4 to 5 years and sooner than 2 years.

납축전지가 충전과 방전을 반복함으로써 전해액 중의 황산과 전해판의 납 사이의 화학반응에 의한 결정화(이하, 설페이션(sulfation))된 황산납(PbSO4)이 전극판에 부착된다. 이에 따라, 납축전지는 내부저항이 증가되고 충전 불가능한 상태로 되어 폐기된다.
As the lead acid battery is repeatedly charged and discharged, the lead sulfate (PbSO4) crystallized (hereinafter referred to as sulfated) by the chemical reaction between the sulfuric acid in the electrolyte and the lead of the electrolytic plate is attached to the electrode plate. As a result, the lead acid battery is discarded in a state where the internal resistance is increased and becomes uncharged.

이러한 납축전지에는 다음과 같은 과제가 있다.Such lead-acid batteries have the following problems.

1. 황산 전해액을 사용하기 때문에 전해액은 부식성 및 독성이 강하여 환경에 대한 부하가 크다.1. Because of the use of sulfuric acid electrolytes, the electrolytic solution is highly corrosive and toxic and has a large environmental load.

2. 황산 전해액은 사용하지 않는 경우(재고 등), 정기적으로 보충액을 필요로 하며, 장기간 보존한 것은 곧 사용할 수 없게 된다.2. If the sulfuric acid electrolyte is not used (such as in stock), regular replenishment liquid is needed.

3. 충방전 시에 황산 전해액은 금속 부분에 유해한 산성 가스를 발생하므로, 인체에 악영향을 미친다.3. At the time of charging / discharging, the sulfuric acid electrolytic solution generates harmful acidic gas to the metal part, which adversely affects the human body.

4. 황산 전해액은 과방전, 충전 부족, 고온 등의 가혹한 사용 조건 하에서는 능력을 발휘하지 못하는 경우가 있다.4. Sulfuric acid electrolytes may not be able to exert their ability under severe use conditions such as overdischarge, insufficient charge, and high temperature.

5. 황산 전해액은 이온의 흐름이 안정하지 않으므로 자기 방전량이 많아진다.
5. In the sulfuric acid electrolytic solution, since the flow of ions is not stable, the self-discharge amount increases.

6. 황산 전해액에 의해 부식된 극판은 내부 단축(短縮)을 발생시키기 쉽고, 자기 방전을 증대시키게 된다.6. The electrode plates corroded by sulfuric acid electrolytes are liable to cause internal shortening and increase self-discharge.

7. 완전 충전할 경우의 전력은, 충전 사용하는 축전지 용량의 5배 이상을 필요로 한다.
7. When fully charged, the battery requires at least five times the capacity of the rechargeable battery.

충전 과정을 진행함에 따라 음극에서 더 이상의 납으로 환원될 황산납이 존재하지 않게 되고 결국은 전해액이 전기분해되어 수소가 발생하게 된다.As the charging process proceeds, there is no lead sulfate to be reduced to lead in the negative electrode, and the electrolyte is electrolyzed to generate hydrogen.

또한 양극에서는 충전이 상당히 진행됨에 따라 즉, 만충전에 가까워지면서 전지 전압이 상승하여 축전지의 가스발생전압보다 높아지면 과충전반응이 시작되어 물이 분해되면서 양극에서는 산소가 발생되며 음극에서는 수소가 발생하게 된다.In addition, when the battery is sufficiently charged at the anode and the battery voltage becomes higher than the battery voltage, the overcharge reaction starts. As the water decomposes, oxygen is generated at the anode and hydrogen is generated at the cathode .

한편 과충전 반응식은 다음과 같다.On the other hand, the overcharge reaction formula is as follows.

양극반응: H2O → 1/2O2 + 2H++2e- -----------(6)Anode reaction: H2O - > 1 / 2O2 + 2H ++ 2e- - (6)

음극반응: 2H+ + 2e- → H2 --------------------(7)Cathode reaction: 2H + + 2e-? H2 - (7)

전체반응: H2O → H2 + 1/2O2 ------------------(8)Total reaction: H2O - > H2 + 1 / 2O2 - (8)

연축전지는 충전이 진행되면서 극판의 충전효율이 감소하므로 전지를 만충전시키기 위해서 과충전을 피할 수 없게 된다.
As the charging capacity of the lead-acid battery decreases, the charging efficiency of the electrode plate decreases. As a result, overcharging can not be avoided in order to fully charge the battery.

이러한 문제를 해결하기 위해, 배터리 기능의 저하를 억제하고, 보다 오랜 기간 사용할 수 있는 납축전지가 제안되고 있다.
In order to solve such a problem, a lead acid battery which can suppress deterioration of the battery function and can be used for a longer time has been proposed.

국내공개특허공보 공개번호 제1020070120011 (2007.12.21)호에는 황산이온; 카본입자; 및 물을 포함하는 축전지용 전해액 첨가제 및 이의 제조방법이 공개되어 있고,Korean Patent Laid-Open Publication No. 1020070120011 (Dec. 21, 2007) Carbon particles; And water, and a method for producing the electrolyte additive,

국내등록특허공보 등록번호 특허 제10-0608290(2006.07.26)호에는 종래 연분과 황산만으로 연분 페이스트를 제조하는 것과는 달리, 연분에 묽은 황산, 황산수소나트륨, 안티몬, 및 황산알루미늄으로 구성되는 첨가제를 혼합 및 반죽하여 제조되는 연분 페이스트를 이용하는 납축전지용 전극이 공개되어 있으며,Patent Registration No. 10-0608290 (2006.07.26) discloses an additive composed of diluted sulfuric acid, sodium hydrogen sulfate, antimony, and aluminum sulfate in the flour, in contrast to conventional flour paste which is produced only from fungi and sulfuric acid There is disclosed an electrode for a lead-acid battery using a flux paste prepared by mixing and kneading,

국내공개특허공보 공개번호 제1999-003203호에는 납과 산화납의 미세한 분말로 구성된 연분을 물 및 황산과 함께 혼합 및 반죽하는 단계, 이를 집전체에 도포한 후 일정시간 고온숙성 및 건조하는 단계, 전기를 흘려서 활물질을 이산화납으로 변환시키는 화성단계로 이루어진 납축전지 양극판의 제조에 있어서, 혼합 및 반죽단계에 연분의 100중량부에 대해 물에 용해되는 금속의 황산염을 0.5 내지 3중량부 및 알킬기를 갖는 알카리 금속 또는 알카리토금속의 유기황산염을 0.001 내지 0.3중량부를 함께 첨가하는 것을 특징으로 하는 납축전지 양극판의 제조방법이 기재되어 있고,Korean Patent Laid-Open Publication No. 1999-003203 discloses a method for manufacturing a steel sheet, which comprises mixing and kneading a frit composed of fine powders of lead and lead oxide together with water and sulfuric acid, applying the mixture to a current collector, , The active material is converted into lead dioxide. In the mixing and kneading step, 0.5 to 3 parts by weight of a sulfate of a metal dissolved in water in an amount of 100 parts by weight per 100 parts by weight of fines is added, Wherein 0.001 to 0.3 parts by weight of an organic alkali metal salt or an organic alkali metal salt of an alkaline earth metal is added together.

국내등록특허공보 등록번호 제1008323750000(2008.05.20)호에는 겔 전해질을 75~79.2wt%의 H2O, 15~19.2wt%의 SiO2, 0.5~0.6wt%의 Na2SO4, 5~6wt%의 H3PO4로 조성하고 이에 0.3~0.7wt%의 소디움 실리케이트를 더 첨가하거나 0.2~0.5wt%의 소디움 카복시메틸 셀룰로오스를 더 첨가하거나 0.1~0.3wt%의 소디움 실리케이트와 0.2~0.5wt%의 소디움 카복시메틸 셀룰로오스를 더 첨가한 기술이 공개되어 있으며, In the Korean Registered Patent Publication No. 1008323750000 (2008.05.20), the gel electrolyte is composed of 75 to 79.2 wt% of H 2 O, 15 to 19.2 wt% of SiO 2, 0.5 to 0.6 wt% of Na 2 SO 4 and 5 to 6 wt% of H 3 PO 4 , 0.3 to 0.7 wt% of sodium silicate is further added, or 0.2 to 0.5 wt% of sodium carboxymethyl cellulose is further added, or 0.1 to 0.3 wt% of sodium silicate and 0.2 to 0.5 wt% of sodium carboxymethyl cellulose are further added One technology is open,

국내공개특허공보 공개번호 제1020090045483(2009.05.08)호에는 전해액에 황산나트륨을 첨가하므로써 납축전지의 성능 및 수명을 향상시킬 수 있는 납축전지의 전해액 조성물이 공개되어 있음을 알 수 있다.In Korean Patent Laid-Open Publication No. 1020090045483 (2009.05.08), it is understood that an electrolyte composition of a lead-acid battery which can improve the performance and lifetime of a lead-acid battery by adding sodium sulfate to the electrolyte is disclosed.

1. 국내공개특허공보 공개번호 제1020070120011 (2007.12.21)호1. Korean Patent Laid-Open Publication No. 1020070120011 (December 21, 2007) 2. 국내등록특허공보 등록번호 제10-0608290(2006.07.26)호2. Registered Patent Registration No. 10-0608290 (2006.07.26) 3. 국내공개특허공보 공개번호 제1999-003203호3. Korean Patent Laid-Open Publication No. 1999-003203 4. 국내등록특허공보 등록번호 제1008323750000(2008.05.20)호4. Korean Patent Registration No. 1008323750000 (2008.05.20) 5. 국내공개특허공보 공개번호 제1020090045483(2009.05.08)호5. Domestic Published Patent Publication No. 1020090045483 (2009.05.08)

상기와 같은 종래의 기술들은 납축전지가 가지고 있는 단점 즉, 납축전지가 충전과 방전을 반복함으로써 전해액 중의 황산과 전해판의 납 사이의 화학반응에 의한 결정화(이하, 설페이션(sulfation))된 황산납(PbSO4)이 전극판에 부착되어 내부저항이 증가되고 충전 불가능한 상태로 되어 폐기되는 문제점이 본 발명이 해결하고자 하는 해결과제인 것이다.Such conventional techniques as described above have a disadvantage that the lead-acid battery has a disadvantage in that the lead-acid battery is repeatedly charged and discharged to cause crystallization (hereinafter referred to as sulfation) due to a chemical reaction between sulfuric acid in the electrolyte and lead of the electrolytic plate (PbSO4) is attached to the electrode plate to increase the internal resistance and become uncharged and discarded, which is a problem to be solved by the present invention.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명은 증류수 10ℓ에 황산바륨 17~27 중량부, 황산마그네슘 2~4 중량부, 황산알루미늄 1~2중량부, 제2인산암모늄 0.2~0.6 중량부, 암모늄 0.2~0.7중량부로 조성된 납축전지 전해액조성물 및 그 제조방법을 제공하는 것이 본 발명의 과제 해결수단인 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to solve the above problems, And 0.2 to 0.7 part by weight of ammonium, and a process for producing the same.

본 발명은 충방전시 산성 미스트나 위험 가스 발생을 억제하고, 극판의 사용 수명이 연장되며, 축전지의 열, 진동, 설페이션 및 부식 등에 의해 발생되는 손상이 경감되고, 자기 방전량이 적으며, 완전 충전시 소요되는 전력량이 적고, 급속 충전이 가능하며, 완전 방전 후에도 통상적인 방법으로 재충전이 가능하고, 부하를 걸었을 때의 전압 강하가 적고, 무부하로 했을 경우의 전압 회복이 매우 빠른 장점이 있다.An object of the present invention is to provide a fuel cell system that suppresses the generation of acid mist or hazardous gas during charging and discharging, prolongs the service life of the electrode plate, reduces damage caused by heat, vibration, It is possible to recharge in a normal manner even after a complete discharge, to reduce the voltage drop when the load is applied, and to recover the voltage quickly when the load is unloaded. have.

본 발명은 증류수 10ℓ에 황산바륨 17~27 중량부, 황산마그네슘 2~4 중량부, 황산알루미늄 1~2중량부, 제2인산암모늄 0.2~0.6 중량부, 암모늄 0.2~0.7중량부로 조성된 납축전지 전해액조성물 및 그 제조방법에 관한 것이다.
The present invention relates to a lead acid battery comprising 10 liters of distilled water, 17 to 27 parts by weight of barium sulfate, 2 to 4 parts by weight of magnesium sulfate, 1 to 2 parts by weight of aluminum sulfate, 0.2 to 0.6 parts by weight of ammonium phosphate dicarboxylate, An electrolyte composition and a method for producing the same.

납축전지는 양극판(PbO2), 음극판(Pb), 그리고 이들을 분리시켜주는 격리판과 전해질로 구성되어 있다.Lead-acid batteries consist of a positive electrode plate (PbO2), a negative electrode plate (Pb), a separator separating them and an electrolyte.

각 극판은 기판과 활물질로 이루어져 있으며, 기판은 Pb-Ca이 주로 사용되고, 각 극판의 활물질은 전극의 표면적을 크게 하기 위하여 다공성이 큰 구조를 갖도록 제조된다. 양극 활물질은 이산화납(PbO2)이며, 음극 활물질은 해면상의 납(Pb)으로서, 이들이 전해질인 묽은 황산(H2SO4)과 반응하여 방전되면, 양극에서는 이산화납이 환원되고, 음극에서는 금속납이 산화되어 두 전극 모두 황산납(PbSO4)을 생성하게 된다.Each of the electrode plates is made of a substrate and an active material. The substrate is mainly made of Pb-Ca, and the active material of each electrode plate is manufactured to have a large porous structure in order to increase the surface area of the electrode. When the anode active material is lead dioxide (PbO2) and the anode active material is lead (Pb) on the sea surface, they react with dilute sulfuric acid (H2SO4), which is an electrolyte, to discharge lead dioxide in the anode, Both electrodes produce lead sulfate (PbSO4).

이를 반응식으로 나타내면 다음과 같다.
The reaction formula is as follows.

양극에서는On the anode

PbO2 + 4H+ → Pb4+ + 2H2O (1) PbO 2 + 4H + → Pb4 + + 2H2O (1)

Pb4+ + 2e- → Pb2+ (2)Pb 4+ + 2e-? Pb 2+ (2)

Pb2+ + SO4 2- → PbSO4 (3)
Pb 2+ + SO 4 2- ? PbSO 4 (3)

음극에서는At the cathode

Pb + SO42- → PbSO4 + 2e- (4)
Pb + SO4 2- → PbSO 4 + 2e- (4)

전해액에서는In the electrolytic solution

2H2SO4 → 4H+ + 2SO4 2- (5)
2H 2 SO 4 ? 4H + + 2SO 4 2- (5)

전체에서는In all

Pb + PbO2 + 2H2SO4 → PbSO4 + 2H2O (6)
Pb + PbO 2 + 2H 2 SO 4 ? PbSO 4 + 2H 2 O (6)

식(6)에서 볼 수 있는 바와 같이, 전해액인 황산이온용액이 방전에 참여하여 소모되어 물이 되므로, 전해액도 반응활물질로서 납축전지의 중요한 설계 요인으로서 작용한다.
As can be seen from Equation (6), the electrolyte solution also acts as an important design factor of the lead-acid battery as a reaction active material since the sulfate ion solution which is the electrolyte is consumed and consumed by discharging.

식(2), (3)에서 볼 수 있는 바와 같이, 전지의 방전에 의해 Pb2+ As can be seen from the formulas (2) and (3), by discharging the battery, Pb 2+

이온이 발생되며, 반응에 전해액량이 적으면 Pb2+ 이온이 다공성인 격리판에 침투하여 관통 숏트를 일으켜서 수명이 종료되는 현상이 발생된다.Ions is generated, this phenomenon is less the amount of electrolyte solution to the reaction Pb 2+ ions to penetrate the porous separator life is terminated by producing a short-through occurs.

또한, 이러한 현상은 전기에너지를 활물질에 충전하는 초충전 공정에서 발생할 수 있는데, 초충전을 실시하기 전의 양극 활물질은 주로 4PbO·PbSO4이며, 충전후 이산화납(PbO2)으로 된다. 이때 전해액을 주입후 반응시간이 길어지면 Pb2+ 이온이 생성되어 역시 격리판 관통 숏트에 의한 수명 종료현상이 발생된다.
In addition, this phenomenon may occur in a supercharging process in which electric energy is charged into the active material. The positive electrode active material before the supercharging is mainly 4PbO · PbSO 4 and becomes lead dioxide (PbO 2 ) after charging. At this time, Pb 2+ ions are generated when the reaction time is longer after injecting the electrolyte, and the end of life due to the penetration through the separator occurs.

본 발명 금속의 황산염은 황산이온 농도를 증가시켜 사염기 황산납의 결정핵 생성속도를 증가시켜서 입자크기를 감소시키는 것으로 여겨진다.
It is believed that the sulphate of the metal of the present invention increases the sulfate ion concentration and increases the nucleation rate of the tetrabasic lead sulfate to reduce the particle size.

금속황산염중에서 황산바륨은 증류수 10ℓ에 17~27 중량부, 황산마그네슘은 2~4 중량부, 황산알루미늄은 1~2중량부를 사용하며,Among the metal sulfates, barium sulfate is used in an amount of 17 to 27 parts by weight in 10 liters of distilled water, 2 to 4 parts by weight of magnesium sulfate and 1 to 2 parts by weight of aluminum sulfate,

그보다 적으면 입자크기가 감소되어 효과적이지 않고,If it is less, the particle size is reduced, which is not effective,

그보다 많으면 물에 용해되지 않아, 상기 조성비로 사용하는 것이 바람직하다.
And if it is more than that, it is not dissolved in water, and it is preferable to use it at the above composition ratio.

상기와 같이 황산금속이 전해액에 첨가되었을때, 황산납의 용해도가 증가하기 때문에, 그리드 계면상에 형성된 부도체 황산납은 용해되고. 그리드와 활성물질 사이의 전도도는 회복하여서 충전전류의 흐름을 용이하게 한다.
When the sulfuric acid metal is added to the electrolytic solution as described above, since the solubility of the lead sulfate increases, the lead sulphate lead formed on the grid interface is dissolved. The conductivity between the grid and the active material recovers and facilitates the flow of charge current.

상기 황산금속을 단독으로 작용된다면, 그 효과는 충전력의 회복에 별 영향을 주지못한다. 그러나, 두가지이사의 황산금속을 동시에 사용하면, 축전지가 과-방전상태에 방치된 후에도 축전지의 충전력을 증가시킬 수 있다.
If the sulfuric acid metal acts alone, its effect does not significantly affect the recovery of the filling power. However, when the two moving bodies of sulfuric acid are used simultaneously, the charging power of the storage battery can be increased even after the storage battery is left in the over-discharged state.

본 발명에서 사용하는 제2인산암모늄은 인에 암모늄을 반응시킨 화합물.인산일암모늄 (NH4)H2PO4, 인산이암모늄 (NH4)2HPO4, 인산삼암모늄 (NH4)3PO4의 세 종류가 있다. 그러나, 인산삼암모늄은 불안정하므로 인산일암모늄과 인산이암모늄만이 비료용 원료로 사용된다. 인산일암모늄은 질소 12% 인산 P2O5 61%로 산성을 나타내는 화합물이고, 인산이암모늄은 질소 21%, 인산 53%로 중성인 화합물이다. 인산일암모늄과 인산이암모늄은 순수한 것은 비효(肥效)에 차이가 있으나, 인산의 비율이 단독이면 농작물에 적합하지 않으므로, 고도화성비료(高度化成肥料)의 원료 또는 구성성분으로서 이용된다. The second ammonium phosphate used in the present invention is a compound obtained by reacting phosphorus with ammonium. There are three kinds of ammonium phosphate (NH4) H2PO4, ammonium phosphate (NH4) 2HPO4 and triammonium phosphate (NH4) 3PO4. However, since ammonium triphosphate is unstable, only ammonium monophosphate and ammonium dihydrogen phosphate are used as raw materials for fertilizer. Ammonium phosphate is a compound which shows an acidity of 12% nitrogen P2O5 phosphate 61%, and ammonium phosphate is a compound which is neutral to 21% nitrogen and 53% phosphoric acid. Ammonium phosphate and ammonium phosphate are pure, but there is a difference in fertilizing effect. However, if the ratio of phosphoric acid is sole, it is not suitable for crops, so it is used as a raw material or constituent of high-grade fertilizer.

(네이버 지식백과에서 발췌)
(Excerpt from Naver Knowledge Encyclopedia)

본 발명에서 사용하는 제2인산암모늄은 증류수 10ℓ에 0.2~0.6 중량부를 사용하며, 그보다 적으면 입자크기가 감소되어 효과적이지 않고,The second ammonium phosphate used in the present invention is used in an amount of 0.2 to 0.6 part by weight per 10 liters of distilled water,

그보다 많으면 거품이 많이 생겨 상기 조성비로 사용하는 것이 바람직하다.
If the amount is larger than the above range, it is preferable to use the composition at the above composition ratio.

본 발명에서 사용되는 암모늄은 증류수 10ℓ에 0.2~0.7중량부 그보다 적으면 입자크기가 감소되어 효과적이지 않고,The amount of ammonium used in the present invention is less than 0.2-0.7 parts by weight per 10 liters of distilled water,

그보다 많으면 전해액의 전기전도도가 감소되므로 축전지는 충전효율이 감소되어 상기 조성비로 사용하는 것이 바람직하다.
If it is larger than the above range, the electric conductivity of the electrolyte decreases, so that it is preferable to use the battery at the above composition ratio because the charging efficiency is decreased.

모든 입자에 작용하는 정도도 유사하여 그 형태를 보다 균일하게 하고, 아울러 크기가 큰 입자의 수가 상대적으로 적게하여 효과를 더욱 좋게 할 수 있다.The degree of action on all the particles is similar to make the shape more uniform, and the number of particles having a large size can be made relatively small, and the effect can be further improved.

다른 한편으로, 전해액을 이루는 황산농도를 언급하면, 황산농도는 과一방전상태에서 상당히 감소하여서, 전해액의 전기전도성 역시 상당히 감소되므로 축전지는 충전될 수 없게 된다.
On the other hand, referring to the sulfuric acid concentration that forms the electrolyte, the sulfuric acid concentration decreases considerably in the overdischarged state, and the electrical conductivity of the electrolyte is also considerably reduced, so that the battery can not be charged.

축전지를 과도하게 사용시 전해액의 저항은 크게 증가되고, 충전전류가 흐르는 것을 어렵게 한다. 그래서, 암모늄을 전해액에 첨가시켜서 전해액의 전기전도성을 향상시키고 충전전류를 증가시킨다.
When the battery is used excessively, the resistance of the electrolyte greatly increases, making it difficult for the charging current to flow. Thus, ammonium is added to the electrolyte to improve the electrical conductivity of the electrolyte and increase the charge current.

본 발명은 다음의 실시예를 참고하여 다음과 같이 상세히 기재한다.
The present invention will now be described in detail with reference to the following examples.

실시예1Example 1

증류수 10ℓ에 황산바륨 17kg, 황산마그네슘 2kg, 황산알루미늄 1kg을 넣고 교반기로 RPM 200~400으로 15분간 교반한 다음, 제2인산암모늄 0.2kg, 암모늄 0.2kg을 혼합한 후에 교반기로 RPM 200~400으로 30분간 교반하여 축전지 전해액 조성물을 제조하였다.
17 kg of barium sulfate, 2 kg of magnesium sulfate, and 1 kg of aluminum sulfate were added to distilled water, and the mixture was stirred for 15 minutes at a RPM of 200 to 400 with a stirrer. Then, 0.2 kg of ammonium phosphate dibasic and 0.2 kg of ammonium were mixed, And the mixture was stirred for 30 minutes to prepare a battery electrolyte composition.

실시예2Example 2

증류수 10ℓ 에 황산바륨 27kg, 황산마그네슘 4kg, 황산알루미늄 2kg,을 넣고 교반기로 RPM 200~400으로 15분간 교반한 다음, 제2인산암모늄 0.6 kg, 암모늄 0.7kg을 을 혼합한 후에 교반기로 RPM 200~400으로 30분간 교반하여 축전지 전해액조성물을 제조하였다.
27 kg of barium sulfate, 4 kg of magnesium sulfate and 2 kg of aluminum sulfate were added to distilled water, and the mixture was stirred for 15 minutes at 200 to 400 rpm with a stirrer. Then 0.6 kg of ammonium phosphate dibasic and 0.7 kg of ammonium were mixed, 400 for 30 minutes to prepare a battery electrolyte composition.

상기와 같이 제조된 본 발명의 전해액 조성물은 증류수 10ℓ에 황산바륨 17~27 kg, 황산마그네슘 2~4 kg, 황산알루미늄 1~2 kg, 제2인산암모늄 0.2~0.6 kg, 1N-암모늄 0.2~0.7 kg로 조성되어 있음을 알 수 있다.
The electrolytic solution composition of the present invention prepared as described above was prepared by adding 17 to 27 kg of barium sulfate, 2 to 4 kg of magnesium sulfate, 1 to 2 kg of aluminum sulfate, 0.2 to 0.6 kg of dibasic ammonium phosphate, 0.2 to 0.7 of 1N- kg. < / RTI >

비교예1Comparative Example 1

H2SO4 37.4중량%와 물 62.6중량% 로 제조된 종래의 축전지용 전해액 조성물
A conventional electrolytic solution composition for a battery made of 37.4% by weight of H 2 SO 4 and 62.6% by weight of water

비교예2Comparative Example 2

H2SO4 37.4중량%와 물 62.6중량% 로 제조된 종래의 납축전지용 전해액 조성물 1리터당 20g의 황산나트륨을 첨가한 축전지 전해액 조성물
A battery electrolyte composition prepared by adding 20 g of sodium sulfate per liter of a conventional electrolyte composition for a lead-acid battery prepared from 37.4% by weight of H 2 SO 4 and 62.6% by weight of water

실험예
Experimental Example

본 발명의 실시예1에 따른 축전지 전해액 조성물을 사용한 축전지를 종래의 축전지인 비교예1을 사용하여 수명시험을 한 결과 다음 표1과 같은 결과를 얻었다.
The battery using the battery electrolyte composition according to Example 1 of the present invention was subjected to a life test using Comparative Example 1 which is a conventional battery, and the results are shown in Table 1 below.

수명시험은 최대의 충전상태에서 25A로 4분간 방전시킨 후, 10분 14.8V 최대 25A로 충전하는 과정을 1주 480회 반복하고 그 이후 56시간 정치후, 저온시동성능 잔류치를 고율 방전하여 30초 전압을 측정하여 판정하였다.The life test was repeated 480 times per week for 4 minutes at 25A and 10 minutes at 14.8V maximum at 25A for a period of 56 hours. After discharging at a high rate, The voltage was measured and determined.

이 실험에서 30초 전압이 7.2V 이상이면 다시 1주 반복하고, 7.2V 이하이면 수명종료로 판정하였다.
In this experiment, if the 30-second voltage was 7.2 V or more, it was repeated for another week. When the voltage was 7.2 V or less, the life was terminated.

표1 수명비교예 Table 1 Life comparison example 충방전 회수Charging / discharging times 30초 전압30 second voltage 비교예Comparative Example 실시예Example 450450 9.569.56 8.928.92 900900 9.549.54 8.728.72 1,3501,350 9.369.36 8.458.45 1,8001,800 9.289.28 8.378.37 2,2502,250 9.199.19 8.228.22 2,7002,700 9.119.11 8.168.16 3,1503,150 9.049.04 8.068.06 3,6003,600 8.898.89 7.957.95 4,0504,050 8.778.77 7.837.83 4,5004,500 8.678.67 7.717.71 4,9504,950 8.578.57 7.627.62 5,4005,400 8.428.42 7.577.57 5,8505,850 8.198.19 7.487.48 6,3006,300 7.857.85 7.367.36 6,7506,750 7.307.30 7.327.32 7,2007,200 6.926.92 7.257.25 7,6507,650 -- 7.187.18 수명 판정Life judgment 6,9226,922 7,4657,465

표1에 나타난 바와 같이, 본 발명의 실시예1에 다른 축전지 전해액조성물은 충반전 7,465회에 비교예1 은 6,922회에서 수명이 종료되어 본 발명의 실시예가 7.8%의 수명연장 효과를 나타낸 것을 보았다.As shown in Table 1, the battery electrolyte composition according to Example 1 of the present invention showed 7,465 times of charge-inversion and 6,922 times of Comparative Example 1, indicating that the embodiment of the present invention showed a life extension effect of 7.8% .

Claims (2)

축전지 전해액조성물에 있어서, 증류수 10ℓ에 황산바륨 17~27 중량부, 황산마그네슘 2~4 중량부, 황산알루미늄 1~2중량부, 제2인산암모늄 0.2~0.6 중량부, 암모늄 0.2~0.7중량부로 조성되어 있음을 특징으로 하는 축전지 전해액조성물. In the battery electrolyte composition, 17 to 27 parts by weight of barium sulfate, 2 to 4 parts by weight of magnesium sulfate, 1 to 2 parts by weight of aluminum sulfate, 0.2 to 0.6 parts by weight of dibasic ammonium phosphate and 0.2 to 0.7 parts by weight of ammonium are added to 10 liters of distilled water Wherein the electrolyte solution is a mixture of the electrolyte and the electrolyte. 축전지 전해액조성물의 제조방법에 있어서,
증류수 10ℓ에 황산바륨 27kg, 황산마그네슘 4kg, 황산알루미늄 2kg을 넣고 교반기로 RPM 200~400으로 15분간 교반한 다음, 제2인산암모늄 0.6 kg, 암모늄 0.7kg을 혼합한 후에 교반기로 RPM 200~400으로 30분간 교반하여 제조함을 특징으로 하는 축전지 전해액조성물의 제조방법.
A method for manufacturing a battery electrolyte composition,
To 10 liters of distilled water, 27 kg of barium sulfate, 4 kg of magnesium sulfate, and 2 kg of aluminum sulfate were added. After stirring for 15 minutes at 200 to 400 rpm with a stirrer, 0.6 kg of ammonium phosphate dibasic and 0.7 kg of ammonium were mixed, And the mixture is stirred for 30 minutes to prepare a battery electrolyte composition.
KR1020150057817A 2015-04-24 2015-04-24 Battery electrolyte composition and a method of manufacturing the same KR20160126580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150057817A KR20160126580A (en) 2015-04-24 2015-04-24 Battery electrolyte composition and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150057817A KR20160126580A (en) 2015-04-24 2015-04-24 Battery electrolyte composition and a method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20160126580A true KR20160126580A (en) 2016-11-02

Family

ID=57518249

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150057817A KR20160126580A (en) 2015-04-24 2015-04-24 Battery electrolyte composition and a method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20160126580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020051406A1 (en) * 2018-09-06 2020-03-12 Tygrus Llc Battery electrolyte composition
KR102187662B1 (en) * 2019-07-24 2020-12-07 주식회사 한국아트라스비엑스 A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990037832A (en) 1999-02-01 1999-05-25 장복남 A movale cooking table
KR100608290B1 (en) 2005-02-24 2006-08-08 김광수 Electrode for lead storage battery and manufacturing method thereof
KR20070120011A (en) 2006-06-16 2007-12-21 아키라 요네마루 Additives for electrolyte solution of storage battery, and method for preparing the same
KR100832375B1 (en) 2006-11-22 2008-05-28 세방하이테크 주식회사 A Gel electrolyte of Long Life Valve regulated sealed lead acid battery for Solar and Wind Power
KR20090045483A (en) 2007-11-02 2009-05-08 세방전지주식회사 Composition of electrolyte of lead storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990037832A (en) 1999-02-01 1999-05-25 장복남 A movale cooking table
KR100608290B1 (en) 2005-02-24 2006-08-08 김광수 Electrode for lead storage battery and manufacturing method thereof
KR20070120011A (en) 2006-06-16 2007-12-21 아키라 요네마루 Additives for electrolyte solution of storage battery, and method for preparing the same
KR100832375B1 (en) 2006-11-22 2008-05-28 세방하이테크 주식회사 A Gel electrolyte of Long Life Valve regulated sealed lead acid battery for Solar and Wind Power
KR20090045483A (en) 2007-11-02 2009-05-08 세방전지주식회사 Composition of electrolyte of lead storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020051406A1 (en) * 2018-09-06 2020-03-12 Tygrus Llc Battery electrolyte composition
US11658348B2 (en) 2018-09-06 2023-05-23 Tygrus, LLC Battery electrolyte composition
KR102187662B1 (en) * 2019-07-24 2020-12-07 주식회사 한국아트라스비엑스 A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement

Similar Documents

Publication Publication Date Title
KR101761803B1 (en) Aqueous slurry for battery electrodes
CN102664256A (en) Anode lead plaster of power lead-acid storage battery polar plate
US9570779B2 (en) Flooded lead-acid battery
KR20170129238A (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
JP5748091B2 (en) Lead acid battery
JP2013218894A (en) Lead acid battery
WO2011130127A4 (en) Positive active material for a lead-acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
CN106058246A (en) Lead paste formula for positive electrode of lead acid storage battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
TW201535847A (en) Valve-regulated lead-acid storage battery
JP6388094B1 (en) Lead acid battery
KR20160126580A (en) Battery electrolyte composition and a method of manufacturing the same
JP2019067663A (en) Negative electrode mixture for all solid lithium ion secondary battery
JP5396216B2 (en) Lead acid battery
CN117334995A (en) Low-cost and ultra-long-service-life sodium ion battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
KR20090045483A (en) Composition of electrolyte of lead storage battery
JP6996274B2 (en) Lead-acid battery
JP6164502B2 (en) Lead acid battery
JPH11162456A (en) Lead-acid battery
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
CN111600078A (en) Lead-acid storage battery electrolyte capable of preventing anode from being corroded and preparation method thereof
JP2006107984A (en) Manufacturing method of positive electrode plate for lead-acid battery and lead-acid battery using this positive electrode plate

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application