JP2018146408A - Acquisition method of inclination sensor correction amount in construction work machine - Google Patents
Acquisition method of inclination sensor correction amount in construction work machine Download PDFInfo
- Publication number
- JP2018146408A JP2018146408A JP2017042213A JP2017042213A JP2018146408A JP 2018146408 A JP2018146408 A JP 2018146408A JP 2017042213 A JP2017042213 A JP 2017042213A JP 2017042213 A JP2017042213 A JP 2017042213A JP 2018146408 A JP2018146408 A JP 2018146408A
- Authority
- JP
- Japan
- Prior art keywords
- correction amount
- measurement
- inclination
- inclination sensor
- acquisition method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012937 correction Methods 0.000 title claims abstract description 57
- 238000010276 construction Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000005259 measurement Methods 0.000 claims description 85
- 238000010586 diagram Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 3
- 238000009412 basement excavation Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F3/00—Dredgers; Soil-shifting machines
- E02F3/04—Dredgers; Soil-shifting machines mechanically-driven
- E02F3/28—Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
- E02F3/36—Component parts
- E02F3/42—Drives for dippers, buckets, dipper-arms or bucket-arms
- E02F3/43—Control of dipper or bucket position; Control of sequence of drive operations
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C9/00—Measuring inclination, e.g. by clinometers, by levels
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
- Component Parts Of Construction Machinery (AREA)
Abstract
Description
本発明は建築作業機械における傾斜センサーの補正量を取得する方法に関する。 The present invention relates to a method for obtaining a correction amount of an inclination sensor in a construction machine.
従来、土木、建設分野では、整地、舗装等を行うに際し、建設作業機械として油圧ショベルが使用される。近年この油圧ショベルの操作、油圧ショベル本体の移動や上部旋回体、ブーム、アーム、バケットの駆動や回転を指定した整地形状にあわせて自動的に制御したり、オペレータによる油圧ショベルの操作を補助したりする制御が行われている。このような制御を行うためには、バケットの刃先の位置(座標)を正確に把握しておく必要がある。このためには、上部旋回体、ブーム、アーム、バケット等の寸法と、各部材の傾斜角度を正確に把握しておく必要がある。このため、建築作業機械の回転部材には、回転部材の傾斜量を測定する傾斜センサーが設けられている。 Conventionally, in the civil engineering and construction fields, hydraulic excavators have been used as construction work machines when leveling and paving. In recent years, the operation of this excavator, the movement of the excavator body and the drive and rotation of the upper swing body, boom, arm, and bucket are automatically controlled according to the specified leveling shape, and the operation of the excavator by the operator is assisted. Control is performed. In order to perform such control, it is necessary to accurately grasp the position (coordinates) of the blade edge of the bucket. For this purpose, it is necessary to accurately grasp the dimensions of the upper-part turning body, the boom, the arm, the bucket, and the like and the inclination angle of each member. For this reason, the rotation sensor of the construction work machine is provided with an inclination sensor that measures the amount of inclination of the rotation member.
図6は本発明を適用できる建築作業機械を示す油圧ショベルの側面図である。図6に示すように。油圧ショベル10は、クローラ11を備えた移動部12、この移動部12の上に回転中心O1を中心に旋回可能な上部旋回体13、この上部旋回体13に回転中心O2を中心として回転可能なブーム14、このブーム14に回転中心O3を中心に旋回可能に配置されたアーム15、このアーム15に回転中心O4を旋回駆動可能に配置されたバケット16を備える。そして、ブーム14には傾斜センサー21、アーム15には傾斜センサー22、バケット16には傾斜センサー23を、上部旋回体13には、傾斜センサー24を配置している。 FIG. 6 is a side view of a hydraulic excavator showing a construction machine to which the present invention can be applied. As shown in FIG. The excavator 10 includes a moving unit 12 provided with a crawler 11, an upper revolving unit 13 that can be swiveled around a rotation center O1 on the moving unit 12, and a rotating center O2 that can be rotated about the upper revolving unit 13 as a center. A boom 14, an arm 15 disposed on the boom 14 so as to be pivotable about a rotation center O 3, and a bucket 16 disposed on the arm 15 so that the rotation center O 4 can be pivotally driven are provided. A tilt sensor 21 is disposed on the boom 14, a tilt sensor 22 is disposed on the arm 15, a tilt sensor 23 is disposed on the bucket 16, and a tilt sensor 24 is disposed on the upper swing body 13.
建築作業機械を構成する各部材の角度を取得する方法として、特許文献1には、複数の可動部を介して施工端部を支持する構成にしたアームが建設機械本体に旋回可能に設けられており、複数のポジションセンサーが複数の可動部のそれぞれの状態を検出し、GPS用のアンテナがアームの所定位置に設けられ、アンテナの3次元位置情報と複数のポジションセンサーからの出力に基づき、アームの旋回中心の3次元位置を演算する技術が記載されている。 As a method for obtaining the angle of each member constituting a construction machine, Patent Document 1 includes an arm configured to support a construction end via a plurality of movable parts so as to be pivotable on the construction machine body. A plurality of position sensors detect the respective states of the plurality of movable parts, and a GPS antenna is provided at a predetermined position of the arm. Based on the three-dimensional position information of the antenna and outputs from the plurality of position sensors, the arm A technique for calculating the three-dimensional position of the turning center is described.
従来、傾斜センサーの補正量を取得するには、ブームを既知の傾斜角度、例えば水平に設定し、この状態で傾斜センサーの出力を得、これらを比較することで行われる。しかし、従来の方法では、ブームの角度を既知の傾斜角度例えば水平にするためには他の傾斜角度測定装置が必要となる他、不安定な姿勢により角度誤差に影響しないよう注意をはらう必要がある。 Conventionally, the correction amount of the tilt sensor is obtained by setting the boom at a known tilt angle, for example, horizontal, obtaining the output of the tilt sensor in this state, and comparing them. However, in the conventional method, in order to make the boom angle a known tilt angle, for example, horizontal, another tilt angle measuring device is required, and care must be taken not to affect the angle error due to an unstable posture. is there.
本発明は上述した課題に鑑みてなされたものであり、建築作業機械の回転可能な部材に配置された傾斜センサーの補正量を簡単かつ確実に取得することができる建築作業機械における傾斜センサー補正量取得方法を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an inclination sensor correction amount in a construction machine that can easily and reliably obtain a correction amount of an inclination sensor disposed on a rotatable member of the construction machine. The purpose is to provide an acquisition method.
前記課題を解決する請求項1に記載の発明は、建設作業機械に配置された回転可能な部材に配置された傾斜センサーの補正量を取得する方法であって、前記傾斜センサーが配置された部材である測定対象部材に複数の測定点を設定し、これらの測定点の座標を測量装置で測量し、測定した複数の測定点の座標から前記測定対象部材の傾斜角度を算出し、取得した傾斜角度と前記傾斜センサーの出力値に基づいて前記傾斜センサーの補正値を取得することを特徴とする建築作業機械における傾斜センサー補正量取得方法である。 The invention according to claim 1, which solves the above problem, is a method for obtaining a correction amount of a tilt sensor disposed on a rotatable member disposed on a construction work machine, wherein the member on which the tilt sensor is disposed. A plurality of measurement points are set on the measurement target member, the coordinates of these measurement points are surveyed by a surveying device, the inclination angle of the measurement target member is calculated from the measured coordinates of the plurality of measurement points, and the obtained inclination A tilt sensor correction amount acquisition method in a construction machine, wherein a correction value of the tilt sensor is acquired based on an angle and an output value of the tilt sensor.
同じく請求項2に記載の発明は、請求項1に記載の建築作業機械における傾斜センサー補正量取得方法において、前記測量装置は、自己の位置、測定箇所の方位角、前記測定箇所の俯角又は仰角、及び前記測定箇所までの距離を測定し、デジタル出力するトータルステーションであることを特徴とする。 Similarly, the invention according to claim 2 is the tilt sensor correction amount acquisition method for the construction machine according to claim 1, wherein the surveying device includes its own position, the azimuth angle of the measurement location, the depression angle or elevation angle of the measurement location. And a total station that measures the distance to the measurement location and outputs the result digitally.
同じく請求項3に記載の発明は、請求項1に記載の建築作業機械における傾斜センサー補正量取得方法において、前記建築作業機械が油圧ショベルであり、前記測定対象部材が回転する腕部材又はバケットであることを特徴とする。 Similarly, the invention described in claim 3 is the tilt sensor correction amount acquisition method for the construction machine according to claim 1, wherein the construction machine is a hydraulic excavator, and the measurement target member is a rotating arm member or bucket. It is characterized by being.
同じく請求項4に記載の発明は、請求項1に記載の建築作業機械における傾斜センサー補正量取得方法において、計算機に測定結果を入力し、前記計算機が前記測定結果から前記測定対象部材の傾斜角度を演算することを特徴とする。 Similarly, the invention according to claim 4 is the tilt sensor correction amount acquisition method for the construction machine according to claim 1, wherein the measurement result is input to a computer, and the computer calculates the tilt angle of the measurement target member from the measurement result. Is calculated.
同じく請求項5に記載の発明は、請求項1に記載の建築作業機械における傾斜センサー補正量取得方法において、前記測定点の座標から測定対象部材の寸法をあわせて取得することを特徴とする。 Similarly, the invention according to claim 5 is the tilt sensor correction amount acquisition method for the construction work machine according to claim 1, wherein the measurement target member size is acquired from the coordinates of the measurement point.
本発明に係る建築作業機械における傾斜センサー補正量取得方法によれば、建築作業機械の回転部材に配置された傾斜センサーの補正量を簡単かつ確実に取得することができる。 According to the inclination sensor correction amount acquisition method for a construction machine according to the present invention, the correction amount of the inclination sensor arranged on the rotating member of the construction machine can be acquired easily and reliably.
即ち、請求項1に記載の建築作業機械における傾斜センサー補正量取得方法によれば、傾斜センサーが配置された測定対象部材に複数の測定点を設定し、これらの測定点の座標を測量装置で測量し、測定した複数の測定点の座標から測定対象部材の傾斜角度を算出し、測定対象部材に配置された前記傾斜センサーの出力値と比較する。
よって、測定対象部材を任意の位置に配置した状態で測定対象物の傾斜角度を取得し、この取得した傾斜角度に基づいて傾斜センサーの補正量を取得できる。
That is, according to the inclination sensor correction amount acquisition method for a construction machine according to claim 1, a plurality of measurement points are set on the measurement target member on which the inclination sensor is arranged, and the coordinates of these measurement points are set by the surveying instrument. The measurement is performed, and the inclination angle of the measurement target member is calculated from the coordinates of the plurality of measured measurement points, and compared with the output value of the inclination sensor arranged on the measurement target member.
Therefore, it is possible to acquire the tilt angle of the measurement object in a state where the measurement target member is arranged at an arbitrary position, and to acquire the correction amount of the tilt sensor based on the acquired tilt angle.
また、請求項2に記載の建築作業機械における傾斜センサー補正量取得方法によれば、測量装置は、自己の位置、測定箇所の方位角、測定箇所の俯角又は仰角、及び測定箇所までの距離を測定し、デジタル出力するトータルステーションである。
よって、建設作業機械の測定対象物の測定点の位置を正確かつ迅速に測定してデジタル出力することができ、これに基づいて測定対象物の傾斜角度を取得し、傾斜センサーの補正量を取得できる。
Moreover, according to the inclination sensor correction amount acquisition method in the construction machine according to claim 2, the surveying device calculates the position of itself, the azimuth angle of the measurement location, the depression angle or elevation angle of the measurement location, and the distance to the measurement location. A total station that measures and outputs digitally.
Therefore, the position of the measurement point of the measurement object of the construction work machine can be measured accurately and quickly and digitally output. Based on this, the inclination angle of the measurement object can be obtained and the correction amount of the inclination sensor can be obtained. it can.
また、請求項3に記載の建築作業機械における傾斜センサー補正量取得方法によれば、建築作業機械が油圧ショベルであり、測定対象部材が回転する腕部材又はバケットであることを特徴とする請求項1に記載の建築作業機械における傾斜センサー補正量取得方法。
よって、油圧ショベルの腕部材であるブームやアーム、又はバケットに配置した傾斜センサーの補正量を取得できる。
According to the inclination sensor correction amount acquisition method for a construction machine according to claim 3, the construction machine is a hydraulic excavator, and the member to be measured is a rotating arm member or bucket. The inclination sensor correction amount acquisition method in the construction machine according to 1.
Therefore, it is possible to acquire the correction amount of the tilt sensor arranged on the boom or arm or bucket that is the arm member of the hydraulic excavator.
更に、請求項4に記載の建築作業機械における傾斜センサー補正量取得方法によれば、計算機に測定結果を入力し、計算機が前記測定結果から前記測定対象部材の傾斜角度を演算する。
よって、傾斜センサーの補正量の取得に必要な回転部材の傾斜角度を計算機で自動的に正確かつ迅速に取得できる。
Furthermore, according to the inclination sensor correction amount acquisition method in the construction machine according to claim 4, the measurement result is input to the computer, and the computer calculates the inclination angle of the measurement target member from the measurement result.
Therefore, the tilt angle of the rotating member necessary for acquiring the correction amount of the tilt sensor can be automatically and accurately acquired by the computer.
そして、請求項5に記載の建築作業機械における傾斜センサー補正量取得方法によれば、前記測定点の座標から測定対象部材の寸法をあわせて取得する。
よって、取得した各測定対象物の寸法から建築作業機械の制御に必要な各種補正値を取得することができる。
And according to the inclination sensor correction amount acquisition method in the construction machine according to claim 5, the dimension of the measurement target member is acquired from the coordinates of the measurement point.
Therefore, various correction values necessary for control of the construction machine can be acquired from the acquired dimensions of each measurement object.
以下、本発明を実施するための形態に係る建築作業機械における傾斜センサー補正量取得方法について説明する。図1は本発明の実施形態に係る建築作業機械における傾斜センサー補正量取得方法を示す模式図であり、(a)油圧ショベルと測量機の配置状態を示す平面図、(b)は測定状態を示す模式図、図2は同建築作業機械における傾斜センサー補正量取得方法におけるデータの流れを示すブロック図である。 Hereinafter, an inclination sensor correction amount acquisition method in a construction machine according to an embodiment for carrying out the present invention will be described. FIG. 1 is a schematic diagram showing an inclination sensor correction amount acquisition method in a construction machine according to an embodiment of the present invention, (a) a plan view showing an arrangement state of a hydraulic excavator and a surveying instrument, and (b) a measurement state. FIG. 2 is a block diagram showing a data flow in the inclination sensor correction amount acquisition method in the construction work machine.
実施形態に係る建築作業機械における傾斜センサー補正量取得方法では、図1及び図5に示すように、建設作業機械である油圧ショベル10の回転可能な腕部材、即ち上部旋回体13、ブーム14、アーム15や、バケット16の寸法や、これらに配置された傾斜センサー21、22、23、24を修正するための補正量を取得する。 In the inclination sensor correction amount acquisition method in the construction work machine according to the embodiment, as shown in FIGS. 1 and 5, the rotatable arm member of the excavator 10 that is the construction work machine, that is, the upper swing body 13, the boom 14, The dimensions of the arm 15 and the bucket 16 and the correction amount for correcting the tilt sensors 21, 22, 23, 24 arranged on these are acquired.
上述のように、油圧ショベル10は、クローラ11を備えた移動部12と、上部旋回体13と、ブーム14と、アーム15と、バケット16を備える。上部旋回体13は回転中心O1を中心として移動部12に対して水平面において回転可能(旋回可能)である。また、ブーム14は、回転中心O2を中心として上部旋回体13に対して上下方向に回転(揺動)可能である。同様に、アーム15は、回転中心O3を中心としてブーム14に対して上下方向に回転(揺動)可能である。そして、バケット16は、回転中心O4を中心としてアーム15に対して上下方向に回転(揺動)可能である。 As described above, the excavator 10 includes the moving unit 12 including the crawler 11, the upper swing body 13, the boom 14, the arm 15, and the bucket 16. The upper swing body 13 is rotatable (turnable) in a horizontal plane with respect to the moving unit 12 around the rotation center O1. Further, the boom 14 can rotate (swing) in the vertical direction with respect to the upper swing body 13 around the rotation center O2. Similarly, the arm 15 can rotate (swing) in the vertical direction with respect to the boom 14 around the rotation center O3. The bucket 16 can rotate (swing) in the vertical direction with respect to the arm 15 about the rotation center O4.
本実施形態では、図1及び図2に示すように、平面に配置した油圧ショベル10の側方に測量装置30を配置し、この測量装置30で油圧ショベル10に設定した測定点の座標を測定する。なお、図中符号31は測量装置30を固定する三脚、符号40はオペレータを示している。また、全ての計測点を、一箇所に配置した測量装置30で一方向から計測できない場合、測量装置30の設置場所を移動し、他の方向から計測しててもよい。測量装置30により油圧ショベル10に設定した測定点の座標を取得し、この取得した座標に基づいて油圧ショベル10の回転部材の寸法と傾斜量を算出することができる。 In this embodiment, as shown in FIGS. 1 and 2, a surveying device 30 is disposed on the side of a hydraulic excavator 10 disposed on a plane, and the coordinates of measurement points set on the excavator 10 are measured by the surveying device 30. To do. In the figure, reference numeral 31 denotes a tripod for fixing the surveying instrument 30, and reference numeral 40 denotes an operator. Moreover, when all the measurement points cannot be measured from one direction by the surveying device 30 arranged at one place, the installation location of the surveying device 30 may be moved and measured from another direction. The coordinates of the measurement points set on the excavator 10 can be acquired by the surveying device 30, and the dimensions and the tilt amount of the rotating member of the excavator 10 can be calculated based on the acquired coordinates.
本実施形態で使用する測量装置30は、トータルステーションであり、測定箇所の方位角、測定箇所の俯角又は仰角、及び測定箇所までの距離を測定し、デジタル出力する。測量装置30はミラーやプリズムからの反射光を受信して計測するプリズムモード、及び測定対象部材からの反射光を受信して計測を行うノンプリズムモードでの測定ができる。 The surveying device 30 used in the present embodiment is a total station, and measures the azimuth angle of the measurement location, the depression angle or elevation angle of the measurement location, and the distance to the measurement location, and outputs them digitally. The surveying instrument 30 can perform measurement in a prism mode that receives and measures reflected light from a mirror or a prism, and a non-prism mode that receives and measures reflected light from a measurement target member.
そして、図2に示すように、これら測定データを計算機50に入力して、計算機50にインストールされているソフトウエアにより各測定点の座標から各部材の長さや傾斜を演算する。計算機50にインストールされているソフトウエアとしては表計算ソフトウエアを使用することができる。 Then, as shown in FIG. 2, these measurement data are input to the computer 50, and the length and inclination of each member are calculated from the coordinates of each measurement point by software installed in the computer 50. As software installed in the computer 50, spreadsheet software can be used.
次に、測量装置30による油圧ショベル10の測定点について説明する。図3は測定対象部材の測定点を説明するものであり、(a)は測定点を示す油圧ショベルの写真、(b)は測定結果の入力表を示す図である。測定対象となる油圧ショベル10には、位置取得手段としてトータルステーション装置が配置され、上部旋回体13には、プリズム17(図1(b))が配置されている。 Next, measurement points of the excavator 10 by the surveying device 30 will be described. 3A and 3B are diagrams for explaining the measurement points of the measurement target member. FIG. 3A is a photograph of a hydraulic excavator showing the measurement points, and FIG. 3B is a diagram showing an input table of measurement results. The hydraulic excavator 10 to be measured is provided with a total station device as position acquisition means, and the upper swing body 13 is provided with a prism 17 (FIG. 1B).
油圧ショベル10の測定点は複数、例えば以下の12箇所とすることができる。なお、この測定点は必要に応じて変更できる。また、名称の前に付されたアルファベットa〜lは図3(a)の写真に対応する。測定に際して、測量装置30から視認でき直接測定できる場合は、測量装置30のノンプリズムモードで測定し、測定箇所が視認できない場合は、反射用のミラー等を先端に配置した補助具を用いて、プリズムモードで測定を行う。測定補助具を使用する場合は、測定後補助具の寸法(H)を高さ位置から差し引く。 The number of measurement points of the excavator 10 can be plural, for example, the following 12 points. This measurement point can be changed as necessary. In addition, alphabets a to l attached to the front of the name correspond to the photograph in FIG. At the time of measurement, when it is visible from the surveying instrument 30 and can be measured directly, it is measured in the non-prism mode of the surveying instrument 30, and when the measurement location is not visible, using an auxiliary tool with a reflecting mirror or the like placed at the tip, Measure in prism mode. When using a measurement auxiliary tool, the dimension (H) of the auxiliary tool after measurement is subtracted from the height position.
a:プリズム
b:IMU
c:旋回中心
d:掘削軸上
e:ブームピン
f:アームピン
g:バケットピン
h:リンクピン
i:リンクピン
j:リンクピン
k:バケット中央
l:履帯下
a: Prism b: IMU
c: Center of rotation d: On excavation axis e: Boom pin f: Arm pin g: Bucket pin h: Link pin i: Link pin j: Link pin k: Bucket center l: Under track
また、本実施形態では、平面Gの任意の3箇所を測定する。これにより、平面Gの傾斜を取得する。なお、測量装置30による測定点は、傾斜センサーの補正量の取得だけのためだけではなく、各測定対象部材の長さ寸法(軸間寸法)を取得し、この長さ寸法と傾斜からバケット16の先端部とプリズム17とのオフセット量を取得するためにも使用できる。 Moreover, in this embodiment, arbitrary three places of the plane G are measured. Thereby, the inclination of the plane G is acquired. Note that the measurement point by the surveying device 30 is not only for acquiring the correction amount of the tilt sensor, but also acquires the length dimension (inter-axis dimension) of each measurement target member, and the bucket 16 from the length dimension and the tilt. It can also be used to obtain the offset amount between the tip of the prism and the prism 17.
オペレータ40は測量装置30での測定データを計算機50に入力する。入力表を図3(b)に示す。図4(b)に示すように、各部の位置が3次元情報(X,Y,Z)と目標高「H」とを入力する。計算機50はソフトウエアにより測定データを処理して、上部旋回体13、ブーム14、アーム15、バケット16の寸法と、各傾斜量を算出して出力する。この傾斜量と傾斜センサー21、22、23、24の出力値との差を各傾斜センサー21、22、23、24の補正値とする。 The operator 40 inputs measurement data from the surveying instrument 30 to the computer 50. An input table is shown in FIG. As shown in FIG. 4B, the position of each part inputs three-dimensional information (X, Y, Z) and a target height “H”. The computer 50 processes the measurement data by software, and calculates and outputs the dimensions of the upper swing body 13, the boom 14, the arm 15, and the bucket 16 and the respective tilt amounts. The difference between the amount of inclination and the output value of the inclination sensors 21, 22, 23, 24 is used as a correction value for each of the inclination sensors 21, 22, 23, 24.
次に実施形態に係る建築作業機械における傾斜センサー補正量取得方法の処理について説明する。図4は同建築作業機械における傾斜センサー補正量取得方法の処理の流れを示すフローチャートである。補正値の取得に際しては、まず、油圧ショベル10を平面Gに配置する(ステップST1)。油圧ショベル10を配置する平面Gは水平であることが望ましい。しかし、平面Gに傾斜があった場合でも、後の処理により傾斜を補正することができる。 Next, the process of the inclination sensor correction amount acquisition method in the construction machine according to the embodiment will be described. FIG. 4 is a flowchart showing a processing flow of the inclination sensor correction amount acquisition method in the construction work machine. In obtaining the correction value, first, the excavator 10 is placed on the plane G (step ST1). The plane G on which the excavator 10 is disposed is preferably horizontal. However, even when the plane G is inclined, the inclination can be corrected by subsequent processing.
そして、測量装置30で測定点の計測を行う(ステップST2)。本例では、測定点は上述した12箇所の他、平面Gの任意の3箇所である。 And the measurement point 30 measures a measurement point (step ST2). In this example, the measurement points are any three locations on the plane G in addition to the 12 locations described above.
次いで、油圧ショベル10の12箇所の測定結果と、平面Gの3箇所の測定結果を計算機50に入力する。すると、計算機50のソフトウエアは、まず、平面Gの3箇所の座標から油圧ショベル10を配置した平面の傾斜を計算し(ステップST3)、傾斜補正が必要であるかを確認する(ステップST4)。傾斜補正が必要な場合(ステップST4のYes)、傾斜補正量を計算する(ステップST5)。この傾斜補正量は、ブーム14、アーム15等の寸法等からプリズム17からバケット16先端までのオフセット量を測定する際に必要となる。 Next, 12 measurement results of the excavator 10 and 3 measurement results on the plane G are input to the computer 50. Then, the software of the computer 50 first calculates the inclination of the plane on which the excavator 10 is arranged from the three coordinates of the plane G (step ST3) and confirms whether inclination correction is necessary (step ST4). . When tilt correction is necessary (Yes in step ST4), a tilt correction amount is calculated (step ST5). This inclination correction amount is necessary when measuring the offset amount from the prism 17 to the tip of the bucket 16 based on the dimensions of the boom 14, the arm 15, and the like.
傾斜補正量の計算では、図5(a)に示すように油圧ショベル10を配置した平面Gに水平面Hに対して傾斜「α」があり、傾斜補正が必要な場合(ステップST4のYes)、計算機50が測定したプリズム17の高さ寸法「h1」から傾斜補正をした「h0」を計算する(ステップST6)。この傾斜補正した高さ寸法「h0」やプリズム17の座標に基づいてブーム14、アーム15、バケット16の寸法と傾斜量を計算する(ステップST6)。 In the calculation of the inclination correction amount, as shown in FIG. 5A, the plane G on which the excavator 10 is arranged has an inclination “α” with respect to the horizontal plane H, and inclination correction is necessary (Yes in step ST4). “H0” corrected for inclination is calculated from the height “h1” of the prism 17 measured by the computer 50 (step ST6). Based on the height dimension “h0” corrected for inclination and the coordinates of the prism 17, the dimensions and inclination amounts of the boom 14, the arm 15, and the bucket 16 are calculated (step ST6).
傾斜補正が必要ない場合(ステップST4のNo)にはそのままブーム14、アーム15、バケット16の寸法と傾斜量を計算する。これにより、上部旋回体13、ブーム14、アーム15、バケット16の傾斜量が取得できた。次いで、この値と、傾斜センサー21、22、23、24の出力値とを比較して、傾斜センサー21、22、23、24の補正量を取得する(ステップST7)。これにより、一連の処理は終了する。 When tilt correction is not necessary (No in step ST4), the dimensions and tilt amounts of the boom 14, the arm 15, and the bucket 16 are calculated as they are. Thereby, the inclination amount of the upper swing body 13, the boom 14, the arm 15, and the bucket 16 was acquired. Next, this value is compared with the output values of the inclination sensors 21, 22, 23, 24, and the correction amounts of the inclination sensors 21, 22, 23, 24 are acquired (step ST7). As a result, a series of processing ends.
以上のように、本実施形態に係る建築作業機械における傾斜センサー補正量取得方法によれば、容易かつ正確に上部旋回体13、ブーム14、アーム15、バケット16の寸法や、傾斜センサー21、22、23、24の補正量を取得できる。よって、油圧ショベル10の自動運転制御や、運転支援にこれらの値を使用して正確な制御を行うことができる。 As described above, according to the inclination sensor correction amount acquisition method in the construction machine according to the present embodiment, the dimensions of the upper swing body 13, the boom 14, the arm 15, and the bucket 16, and the inclination sensors 21 and 22 are easily and accurately. , 23 and 24 can be acquired. Therefore, accurate control can be performed by using these values for automatic operation control of the excavator 10 and driving support.
なお、油圧ショベル10を配置した平面Gの傾斜量を傾斜計で測定して計算機50で取得した傾斜量と比較することや、図5(b)に示すように、バケット16等の寸法Lを巻尺等で測定して計算機50の計算値と比較することにより、計算機50の演算結果を確認することができる。また、油圧ショベル10に配置した位置測定システムとしてGNSS(Global Navigation Satellite System)を利用してもよい。 It should be noted that the inclination amount of the plane G on which the excavator 10 is disposed is measured with an inclinometer and compared with the inclination amount obtained by the computer 50, and as shown in FIG. The calculation result of the computer 50 can be confirmed by measuring with a tape measure and comparing with the calculated value of the computer 50. Further, a GNSS (Global Navigation Satellite System) may be used as a position measurement system arranged on the excavator 10.
10:油圧ショベル(建築作業機械)
11:クローラ
12:移動部
13:上部旋回体
14:ブーム(腕部材)
15:アーム(腕部材)
16:バケット
21、22、23、24:傾斜センサー
30:測量装置
50:計算機
10: Hydraulic excavator (construction machine)
11: Crawler 12: Moving part 13: Upper turning body 14: Boom (arm member)
15: Arm (arm member)
16: Bucket 21, 22, 23, 24: Inclination sensor 30: Surveying device 50: Computer
Claims (5)
前記傾斜センサーが配置された部材である測定対象部材に複数の測定点を設定し、
これらの測定点の座標を測量装置で測量し、
測定した複数の測定点の座標から前記測定対象部材の傾斜角度を算出し、
取得した傾斜角度と前記傾斜センサーの出力値に基づいて前記傾斜センサーの補正値を取得することを特徴とする建築作業機械における傾斜センサー補正量取得方法。 A method for obtaining a correction amount of an inclination sensor arranged on a rotatable member arranged on a construction machine,
A plurality of measurement points are set on a measurement target member that is a member on which the tilt sensor is arranged,
Survey the coordinates of these measurement points with a surveying instrument,
Calculate the inclination angle of the measurement target member from the coordinates of the plurality of measured measurement points,
An inclination sensor correction amount acquisition method for a construction machine, wherein the inclination sensor correction value is acquired based on the acquired inclination angle and the output value of the inclination sensor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017042213A JP6918524B2 (en) | 2017-03-06 | 2017-03-06 | Inclination sensor correction amount acquisition method for construction work machines |
PCT/JP2018/008414 WO2018164079A1 (en) | 2017-03-06 | 2018-03-05 | Method for acquiring tilt sensor correction amount in construction work machinery |
JP2020215405A JP6905137B2 (en) | 2017-03-06 | 2020-12-24 | Inclination sensor correction amount acquisition method for construction work machines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017042213A JP6918524B2 (en) | 2017-03-06 | 2017-03-06 | Inclination sensor correction amount acquisition method for construction work machines |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020215405A Division JP6905137B2 (en) | 2017-03-06 | 2020-12-24 | Inclination sensor correction amount acquisition method for construction work machines |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018146408A true JP2018146408A (en) | 2018-09-20 |
JP6918524B2 JP6918524B2 (en) | 2021-08-11 |
Family
ID=63447608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017042213A Active JP6918524B2 (en) | 2017-03-06 | 2017-03-06 | Inclination sensor correction amount acquisition method for construction work machines |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6918524B2 (en) |
WO (1) | WO2018164079A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022061455A (en) * | 2020-09-28 | 2022-04-18 | 日本精機株式会社 | Control method of work support system and control program of work support system |
US11747483B2 (en) | 2020-03-18 | 2023-09-05 | Totalmasters Co. Ltd | Positioning calibration method for construction working machines and its positioning calibration controller |
WO2024010024A1 (en) * | 2022-07-08 | 2024-01-11 | 株式会社ニコン | Measuring method, and method for constructing structure |
JP7514459B2 (en) | 2021-02-03 | 2024-07-11 | 大成建設株式会社 | Excavation assistance system, construction machine, and tunnel excavator control method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113565165B (en) * | 2021-09-27 | 2022-02-15 | 徐州徐工挖掘机械有限公司 | Method for establishing electronic enclosure wall of excavator |
JP2023120883A (en) * | 2022-02-18 | 2023-08-30 | 株式会社小松製作所 | Information acquisition system, and information acquisition method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001097697A (en) * | 1999-09-29 | 2001-04-10 | Aichi Corp | Failure detecting device for working vehicle |
JP2001133264A (en) * | 1999-11-08 | 2001-05-18 | Kansai Koji Sokuryo Kk | Laser marking system and method therefor |
JP2007064853A (en) * | 2005-08-31 | 2007-03-15 | Hitachi Ltd | Controller, system and program for positioning mobile object by using complex positioning |
JP2012202061A (en) * | 2011-03-24 | 2012-10-22 | Komatsu Ltd | Calibration system and calibration method for hydraulic shovel |
WO2016056676A1 (en) * | 2015-10-30 | 2016-04-14 | 株式会社小松製作所 | Work equipment and method of correcting work machine parameters for work equipment |
JP2016070141A (en) * | 2014-09-29 | 2016-05-09 | マツダ株式会社 | Engine control device |
JP2017181340A (en) * | 2016-03-31 | 2017-10-05 | 日立建機株式会社 | Construction machine and calibration method of construction machine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6164117A (en) * | 1999-01-22 | 2000-12-26 | Caterpillar Inc. | Inclination sensor and method of measuring the accuracy thereof |
US7246456B2 (en) * | 2004-02-18 | 2007-07-24 | Caterpillar Trimble Control Technologies Llc | Linked mode for a multi-axis machine control |
US9020776B2 (en) * | 2011-09-28 | 2015-04-28 | Caterpillar Inc. | Inclination angle compensation systems and methods |
JP6721291B2 (en) * | 2015-03-19 | 2020-07-15 | 住友建機株式会社 | Excavator |
-
2017
- 2017-03-06 JP JP2017042213A patent/JP6918524B2/en active Active
-
2018
- 2018-03-05 WO PCT/JP2018/008414 patent/WO2018164079A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001097697A (en) * | 1999-09-29 | 2001-04-10 | Aichi Corp | Failure detecting device for working vehicle |
JP2001133264A (en) * | 1999-11-08 | 2001-05-18 | Kansai Koji Sokuryo Kk | Laser marking system and method therefor |
JP2007064853A (en) * | 2005-08-31 | 2007-03-15 | Hitachi Ltd | Controller, system and program for positioning mobile object by using complex positioning |
JP2012202061A (en) * | 2011-03-24 | 2012-10-22 | Komatsu Ltd | Calibration system and calibration method for hydraulic shovel |
JP2016070141A (en) * | 2014-09-29 | 2016-05-09 | マツダ株式会社 | Engine control device |
WO2016056676A1 (en) * | 2015-10-30 | 2016-04-14 | 株式会社小松製作所 | Work equipment and method of correcting work machine parameters for work equipment |
JP2017181340A (en) * | 2016-03-31 | 2017-10-05 | 日立建機株式会社 | Construction machine and calibration method of construction machine |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11747483B2 (en) | 2020-03-18 | 2023-09-05 | Totalmasters Co. Ltd | Positioning calibration method for construction working machines and its positioning calibration controller |
JP2022061455A (en) * | 2020-09-28 | 2022-04-18 | 日本精機株式会社 | Control method of work support system and control program of work support system |
JP7127715B2 (en) | 2020-09-28 | 2022-08-30 | 日本精機株式会社 | Work support system control method, work support system control program |
JP7514459B2 (en) | 2021-02-03 | 2024-07-11 | 大成建設株式会社 | Excavation assistance system, construction machine, and tunnel excavator control method |
WO2024010024A1 (en) * | 2022-07-08 | 2024-01-11 | 株式会社ニコン | Measuring method, and method for constructing structure |
Also Published As
Publication number | Publication date |
---|---|
JP6918524B2 (en) | 2021-08-11 |
WO2018164079A1 (en) | 2018-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018164079A1 (en) | Method for acquiring tilt sensor correction amount in construction work machinery | |
US9428885B2 (en) | Guidance system for earthmoving machinery | |
JP5823046B1 (en) | Hydraulic excavator calibration system and calibration method | |
US9746329B2 (en) | Systems and methods for augmenting an inertial navigation system | |
US7640683B2 (en) | Method and apparatus for satellite positioning of earth-moving equipment | |
JP6966108B2 (en) | Positioning calibration method for construction work machines and its positioning calibration controller | |
FI125464B (en) | System and method for locating a construction machine | |
JP2012233353A (en) | Calibration system for hydraulic shovel and calibration method for the hydraulic shovel | |
JPWO2019012650A1 (en) | Calibration method for measuring jig and hydraulic excavator | |
US11808015B2 (en) | Tracking rotation with a swing sensor | |
WO2018164078A1 (en) | Method for acquiring center of rotation of rotating member in construction work machinery | |
JP6905137B2 (en) | Inclination sensor correction amount acquisition method for construction work machines | |
KR20230002979A (en) | Information Acquisition System and Information Acquisition Method | |
JP6878051B2 (en) | How to get the position correction amount of the soil removal plate | |
US20230019245A1 (en) | Work assist device for work machine and method for recognizing construction surface at work site | |
JPWO2019012649A1 (en) | Work machine calibration method, calibration device, and work machine calibration system | |
JP4175727B2 (en) | Method for detecting elevation angle and turning angle of excavation boom in free section excavator | |
CN111851634B (en) | Measuring arrangement for measuring the three-dimensional position and orientation of the central axis of a first shaft relative to the central axis of a second shaft | |
JP2002181539A (en) | Position detection method and apparatus using gps in construction machine for civil engineering | |
JP7349956B2 (en) | Construction method and construction system | |
WO2023166885A1 (en) | Information calibration method | |
JP7065002B2 (en) | Work machine | |
JP2023010051A (en) | Control system of working machine, working machine, and control method of working machine | |
JP2021001435A (en) | Work machine and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170309 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200826 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210721 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6918524 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |