[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023166885A1 - Information calibration method - Google Patents

Information calibration method Download PDF

Info

Publication number
WO2023166885A1
WO2023166885A1 PCT/JP2023/002169 JP2023002169W WO2023166885A1 WO 2023166885 A1 WO2023166885 A1 WO 2023166885A1 JP 2023002169 W JP2023002169 W JP 2023002169W WO 2023166885 A1 WO2023166885 A1 WO 2023166885A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
measurement
bucket
boom
arm
Prior art date
Application number
PCT/JP2023/002169
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 片岡
崇幸 篠田
光 内田
創一 茨木
Original Assignee
株式会社小松製作所
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所, 国立大学法人広島大学 filed Critical 株式会社小松製作所
Publication of WO2023166885A1 publication Critical patent/WO2023166885A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the present disclosure relates to an information calibration method for calibrating information about work machines.
  • Information-aided construction is the use of information and communication technology (ICT) in the construction and civil engineering business to achieve highly efficient and highly accurate construction.
  • ICT information and communication technology
  • GNSS Global Navigation Satellite Systems
  • Machine guidance techniques have been proposed to provide differential information to a work machine cab monitor.
  • a hydraulic excavator is one of the work machines.
  • a hydraulic excavator may include a working machine that includes a boom, an arm, and a bucket.
  • the boom, arm and bucket may in turn be pivotally supported by pins.
  • Non-Patent Document 1 describes measuring the dimensions between pins and bucket dimensions of each movable part such as arm dimensions of an ICT hydraulic excavator.
  • this position data refers to the position data of the tip of the bucket.
  • the position data of the tip of the bucket is calculated from the position information of the GNSS antenna provided in the main body of the hydraulic excavator, the geometric shape of the work machine, and the information of the attitude of the work machine. Geometry includes the distance between each pin of the links that make up the implement. The distance between each pin is stored as information in the in-machine controller and calibrated prior to installation.
  • a survey target is attached to each pin position, and the position of each pin is measured using a surveying instrument such as a total station or laser tracker. Ta.
  • a surveying instrument such as a total station or laser tracker. Ta.
  • This disclosure proposes an information calibration method that can inexpensively and easily calibrate information about work machines for information-aided construction.
  • an information calibration method for calibrating information about work machines is proposed.
  • the working machine has a vehicle body and a working machine that is relatively movable with respect to the vehicle body.
  • a measurement target is set on the working machine of the working machine.
  • the information calibration method comprises the following processes.
  • the first process is to sequentially stop the measurement target at at least three different measurement points on the plane.
  • the second process is to measure the posture of the work implement with respect to the vehicle body while the measurement target is stopped at each measurement point.
  • the third process is to measure the distance between each measurement point.
  • the fourth processing is the calculation of the measurement points using the measurement coordinates of the measurement points based on the distance between the measurement points in the coordinate system defined on the plane, and the attitude of the work machine and information about the work machine. and updating the information by deriving information that minimizes the difference between the coordinates.
  • FIG. 1 is an external view of a hydraulic excavator; FIG. It is a side view of a hydraulic excavator.
  • FIG. 4 is a flow diagram showing a flow of processing for calibrating information about a hydraulic excavator;
  • FIG. 11 is a schematic side view showing an operation of aligning the cutting edge of the bucket with the first measurement point;
  • FIG. 11 is a schematic side view showing an operation of aligning the blade edge of the bucket with the second measurement point;
  • FIG. 11 is a schematic side view showing an operation of aligning the blade edge of the bucket with the third measurement point; It is a side schematic diagram showing the coordinates of the boom pin.
  • FIG. 1 is an external view of a hydraulic excavator 100 as an example of a working machine whose information is calibrated by the information calibrating method based on the embodiment.
  • a hydraulic excavator 100 will be described as an example of a working machine.
  • the hydraulic excavator 100 has a main body 1 and a work machine 2 that operates hydraulically.
  • the main body 1 has a revolving body 3 and a traveling body 5 .
  • the traveling body 5 has a pair of crawler belts 5Cr and a traveling motor 5M.
  • the traveling motor 5M is provided as a drive source for the traveling body 5.
  • the traveling motor 5M is a hydraulic motor operated by hydraulic pressure.
  • the traveling body 5 is in contact with the ground.
  • the traveling body 5 can travel on the ground by rotating the crawler belt 5Cr.
  • the traveling body 5 may have wheels (tires) instead of the crawler belts 5Cr.
  • the revolving body 3 is arranged on the running body 5 and supported by the running body 5 .
  • the revolving body 3 is relatively movable with respect to the traveling body 5 .
  • the revolving body 3 is mounted on the running body 5 so as to be able to revolve with respect to the running body 5 about the revolving axis RX.
  • the revolving body 3 is mounted on the traveling body 5 via a revolving circle portion.
  • the turning circle portion is arranged substantially in the center of the main body 1 in plan view.
  • the turning circle portion has an annular general shape, and has internal teeth for turning on its inner peripheral surface.
  • a pinion that meshes with the internal teeth is attached to a turning motor (not shown).
  • the revolving body 3 can rotate relative to the traveling body 5 by rotating the revolving circle portion by transmitting the driving force from the revolving motor.
  • the revolving body 3 has a cab 4.
  • a crew member (operator) of the hydraulic excavator 100 rides on the cab 4 and steers the hydraulic excavator 100 .
  • the cab 4 is provided with a driver's seat 4S on which an operator sits.
  • An operator can operate the excavator 100 inside the cab 4 .
  • the operator can operate the work implement 2 , can swivel the revolving body 3 with respect to the traveling body 5 , and can operate the excavator 100 to travel by the traveling body 5 .
  • the excavator 100 may be wirelessly remotely controlled from a location away from the excavator 100 .
  • the front-back direction refers to the front-back direction of the operator seated on the driver's seat 4S.
  • the direction facing the operator seated on the driver's seat 4S is the forward direction, and the direction behind the operator seated on the driver's seat 4S is the rearward direction.
  • the left-right direction refers to the left-right direction of the operator seated on the driver's seat 4S.
  • the right side and the left side when an operator sitting in the driver's seat 4S faces the front are the right direction and the left direction, respectively.
  • the vertical direction refers to the vertical direction of the operator seated on the driver's seat 4S.
  • the operator seated on the driver's seat 4S faces the lower side, and the upper side faces the operator's head.
  • the side where the working machine 2 protrudes from the revolving body 3 is the front direction
  • the direction opposite to the front direction is the rear direction.
  • the right side and the left side in the horizontal direction are the right direction and the left direction, respectively, when viewed in the forward direction.
  • the side with the ground is the lower side
  • the side with the sky is the upper side.
  • the revolving body 3 has an engine room 9 in which the engine is housed, and a counterweight provided at the rear part of the revolving body 3 .
  • an engine that generates a driving force a hydraulic pump that receives the driving force generated by the engine and supplies working oil to the hydraulic actuators, and the like are arranged.
  • the electric excavator may have a storage battery instead of the engine, drive an electric motor with electric power stored in the storage battery, and operate a hydraulic pump using the driving force of the electric motor.
  • a handrail 19 is provided in front of the engine room 9 in the revolving body 3 .
  • An antenna 21 is provided on the handrail 19 .
  • Antenna 21 is, for example, a GNSS antenna.
  • the antenna 21 has a first antenna 21A and a second antenna 21B provided on the revolving body 3 so as to be separated from each other in the horizontal direction.
  • the work machine 2 is mounted on the revolving body 3 and supported by the revolving body 3 .
  • the work implement 2 has a boom 6 , an arm 7 and a bucket 8 .
  • the boom 6 is rotatably connected to the revolving body 3 .
  • Arm 7 is rotatably connected to boom 6 .
  • Bucket 8 is rotatably connected to arm 7 .
  • Bucket 8 has a plurality of blades. A tip portion of the bucket 8 is referred to as a cutting edge 8a.
  • the bucket 8 may not have blades.
  • the tip of the bucket 8 may be formed of a straight steel plate.
  • the base end of the boom 6 is connected to the revolving body 3 via a boom foot pin 13 (hereinafter referred to as "boom pin”).
  • a base end portion of the arm 7 is connected to a tip end portion of the boom 6 via an arm connection pin 14 (hereinafter referred to as an arm pin).
  • the bucket 8 is connected to the tip of the arm 7 via a bucket connecting pin 15 (hereinafter referred to as bucket pin).
  • the boom 6 is movable relative to the revolving body 3.
  • the boom 6 is rotatable relative to the revolving body 3 around the boom pin 13 .
  • the boom pin 13 is provided on the revolving body 3 .
  • the boom pin 13 forms a reference point that serves as a reference for relative movement of the work implement 2 with respect to the revolving body 3 .
  • Arm 7 is relatively movable with respect to boom 6 .
  • the arm 7 is rotatable relative to the boom 6 around the arm pin 14 .
  • Bucket 8 is relatively movable with respect to arm 7 .
  • Bucket 8 is rotatable relative to arm 7 around bucket pin 15 .
  • the arm 7 and the bucket 8 are integrally movable relative to the boom 6, specifically rotatable relative to each other, while the bucket 8 does not rotate relative to the arm 7.
  • the boom 6, the arm 7 and the bucket 8 are integrally movable relative to the revolving structure 3 while the bucket 8 does not rotate relative to the arm 7 and the arm 7 does not rotate relative to the boom 6. , specifically relatively rotatable.
  • the boom 6 of the work machine 2 rotates around the boom pin 13 provided at the base end of the boom 6 with respect to the revolving body 3 .
  • a locus along which a specific portion of the boom 6 that rotates relative to the revolving body 3, such as the tip of the boom 6, moves is arcuate.
  • a plane containing the arc is identified as the motion plane P shown in FIG.
  • the action plane P is a plane that extends in the vertical direction and in the front-rear direction.
  • the operation plane P is a plane that is located at the center of the work machine 2 in the left-right direction, includes the center axis of the revolving body 3, and extends in the up-down direction and the front-rear direction.
  • the boom pin 13, the arm pin 14, and the bucket pin 15 extend in a direction perpendicular to the plane of motion P, that is, in the left-right direction.
  • the plane of operation P is orthogonal to at least one (all three in the embodiment) of the axis of each of the boom 6 , the arm 7 and the bucket 8 .
  • the boom 6 rotates with respect to the revolving body 3 on the operation plane P.
  • the arm 7 rotates relative to the boom 6 on the plane P of motion
  • the bucket 8 rotates relative to the arm 7 on the plane P of motion.
  • the work machine 2 of the embodiment operates on the action plane P in its entirety in its longitudinal direction.
  • the cutting edge 8a of the bucket 8 moves on the action plane P.
  • the action plane P is a plane that includes the movable range of the work implement 2 .
  • a plane of motion P intersects each of boom 6 , arm 7 and bucket 8 .
  • the plane of motion P can be set at the center of the boom 6, the arm 7 and the bucket 8 in the lateral direction.
  • one direction on the motion plane P is set as the X-axis
  • a direction orthogonal to the one direction on the motion plane P is set as the Z-axis.
  • the X-axis and Z-axis are orthogonal to each other. The setting of the coordinate axes on the motion plane P will be described later.
  • the working machine 2 has a boom cylinder 10 , an arm cylinder 11 and a bucket cylinder 12 .
  • a boom cylinder 10 drives the boom 6 .
  • Arm cylinder 11 drives arm 7 .
  • Bucket cylinder 12 drives bucket 8 .
  • Each of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 is a hydraulic cylinder driven by hydraulic fluid.
  • the work machine 2 constitutes a link mechanism in which a plurality of link members are connected via joints.
  • the boom 6, arm 7 and bucket 8 each constitute a link member.
  • the boom pin 13 corresponds to a joint that connects the revolving body 3 and the boom 6 .
  • Arm pin 14 corresponds to a joint that connects boom 6 and arm 7 .
  • Bucket pin 15 corresponds to a joint that connects arm 7 and bucket 8 .
  • the bucket cylinder 12 is attached to the arm 7.
  • the bucket 8 rotates with respect to the arm 7 by expanding and contracting the bucket cylinder 12 .
  • the work machine 2 has a bucket link.
  • the bucket link connects the bucket cylinder 12 and the bucket 8 .
  • a controller 26 is mounted on the hydraulic excavator 100 .
  • the controller 26 controls operations of the excavator 100 .
  • the controller 26 is a computer including a CPU (Central Processing Unit), a nonvolatile memory, a timer, and the like.
  • FIG. 2 is a side view of hydraulic excavator 100 shown in FIG. As shown in FIG. 2, the excavator 100 further includes a boom IMU (Inertial Measurement Unit) 32, an arm IMU 33, and a bucket IMU . Boom IMU 32, arm IMU 33, and bucket IMU 34 are inertial measurement units.
  • boom IMU 32, arm IMU 33, and bucket IMU 34 are inertial measurement units.
  • the boom IMU 32 is attached to the boom 6.
  • Arm IMU 33 is attached to arm 7 .
  • Bucket IMU 34 is attached to bucket 8 .
  • the boom IMU 32, the arm IMU 33, and the bucket IMU 34 respectively detect the acceleration of the boom 6, the arm 7, and the bucket 8 in the longitudinal, lateral, and vertical directions, and the acceleration of the boom 6, the arm 7, and the bucket in the longitudinal, lateral, and vertical directions. 8 angular velocities are measured.
  • the angle of the boom 6 is calculated from the detection result of the boom IMU 32.
  • the angle of arm 7 is detected from the detection result of arm IMU 33 .
  • the angle of the bucket 8 is calculated from the detection result of the bucket IMU 34 .
  • Boom IMU 32, arm IMU 33, and bucket IMU 34 constitute an angle sensor that measures the attitude of work implement 2 with respect to revolving body 3 (the vehicle body of hydraulic excavator 100).
  • the boom IMU 32 detects the attitude (angle) of the boom 6 with respect to the direction of gravity.
  • Arm IMU 33 detects the posture (angle) of arm 7 with respect to the direction of gravity.
  • Bucket IMU 34 detects the attitude (angle) of bucket 8 with respect to the direction of gravity.
  • the angle sensor may include any other sensor in addition to each IMU described above.
  • the angle sensor uses a cylinder stroke sensor attached to the boom cylinder 10, the arm cylinder 11 or the bucket cylinder 12 that detects the amount of displacement of the cylinder rod with respect to the cylinder. 7.
  • the posture (angle) of the bucket 8 may be obtained.
  • the angle sensor may be a potentiometer or rotary encoder attached to boom pin 13 , arm pin 14 or bucket pin 15 .
  • a detection result of the angle sensor is input to the controller 26 (FIG. 1).
  • the distance bm shown in FIG. 2 is the distance between the boom pin 13 and the arm pin 14.
  • the distance bm is also called the link length of the boom 6 .
  • a distance am is the distance between the arm pin 14 and the bucket pin 15 .
  • Distance am is also referred to as the link length of arm 7 .
  • the distance cm is the distance between the bucket pin 15 and the cutting edge 8 a of the bucket 8 .
  • the distance cm is also called the link length of the bucket 8 .
  • FIG. 3 is a flow diagram showing the flow of processing for calibrating information regarding the hydraulic excavator 100.
  • FIG. Details of the process of calibrating the information about the hydraulic excavator 100 will be described below with appropriate reference to FIG. 3 and subsequent figures.
  • the process of calibrating information about the excavator 100 may be executed by the controller 26 mounted on the excavator 100, or may be executed by an external controller or information processing device.
  • an externally provided controller executes processing for calibrating information related to the hydraulic excavator 100
  • the controller 26 mounted on the hydraulic excavator 100 transmits the detection result of the angle sensor to the external controller.
  • the information about the hydraulic excavator 100 calibrated by the following processing is used to accurately derive the position of the cutting edge 8a of the bucket 8 and improve the accuracy of the calculation of the position of the work implement 2 when performing information-aided construction. It is necessary information.
  • Information about the excavator 100 to be calibrated includes, for example, the dimensions of the work implement 2 of the excavator 100 .
  • the distance bm, distance am, and distance cm are included in the information about the work machine.
  • the information about the excavator 100 may be position coordinate information of a predetermined portion of the excavator 100 in a three-dimensional space, distance information between two predetermined portions, and the like.
  • the coordinate system of the three-dimensional space may be the ITRF (International Terrestrial Reference Frame) coordinate system.
  • a measurement target is set.
  • a measurement target is set at one location on the work implement 2 of the hydraulic excavator 100 .
  • the bucket 8 is the tip link member that is farthest from the revolving body 3 .
  • a measurement target is set at one point of the bucket 8 which is a link member at the tip.
  • the cutting edge 8a of the bucket 8 is set as the measurement target.
  • step S1 the cutting edge 8a of the bucket 8 is aligned with the measurement point A1.
  • FIG. 4 is a schematic side view showing the operation of aligning the cutting edge 8a of the bucket 8 with the measurement point A1.
  • step S2 with the cutting edge 8a of the bucket 8 stopped at the measurement point A1, the angle of each link member of the working machine 2 detected by each angle sensor is acquired.
  • the angle of the boom 6 is detected by the boom IMU 32
  • the angle of the arm 7 is detected by the arm IMU 33
  • the angle of the bucket 8 is detected by the bucket IMU 34 when the cutting edge 8a of the bucket 8 is at the measurement point A1.
  • the posture of the working machine 2 with respect to the revolving body 3 is measured while the cutting edge 8a is stopped at the measuring point A1.
  • FIG. 5 is a schematic side view showing the operation of aligning the cutting edge 8a of the bucket 8 with the measurement point A2.
  • the cutting edge 8a of the bucket 8 is brought into contact with the ground or the like at a position different from the measurement point A1.
  • the cutting edge 8a is moved forward (in the direction away from the vehicle body) and brought into contact with the ground at a position forward of the measurement point A1.
  • the working machine 2 is stopped in that posture.
  • the position of the cutting edge 8a at that time is defined as a measurement point A2.
  • the cutting edge 8a which is the measurement target, is moved from the measurement point A1 to the measurement point A2 different from the measurement point A1.
  • the boom 6 is lowered and the arm 7 and the bucket 8 are moved forward.
  • step S4 the X direction is set.
  • the direction connecting the measurement points A1 and A2 is set as the X-axis on the motion plane P.
  • the X direction is the horizontal direction.
  • step S5 with the cutting edge 8a of the bucket 8 stopped at the measurement point A2, the angle of each link member of the working machine 2 detected by each angle sensor is obtained.
  • the angle of the boom 6 is detected by the boom IMU 32
  • the angle of the arm 7 is detected by the arm IMU 33
  • the angle of the bucket 8 is detected by the bucket IMU 34 when the cutting edge 8a of the bucket 8 is at the measurement point A2.
  • the posture of the working machine 2 with respect to the revolving body 3 is measured while the cutting edge 8a is stopped at the measuring point A2.
  • step S6 the distance between the measurement points A1 and A2 is measured.
  • This distance measurement may be performed using an inexpensive length measuring device such as a laser length measuring device.
  • a measurement result of the length measuring device may be input to a controller that executes a process of calibrating information regarding the hydraulic excavator 100 .
  • a length measuring device When a length measuring device is used, a reflector that reflects laser light may be attached to the cutting edge 8a of the bucket 8, which is the measurement target, and a marker may be provided to facilitate recognition of the position.
  • the reflector reflects light in the same direction as the direction in which the laser light is emitted.
  • the operator may manually measure the distance using a wire-type length measuring device, a tape measure, or the like. The operator may manually input the measurement results into the controller.
  • the cutting edge 8a of the bucket 8 is brought into contact with the ground, but by attaching a water thread to the cutting edge 8a of the bucket 8 and hanging it, the X direction is set without contacting the cutting edge 8a with the ground. is also possible.
  • step S7 the cutting edge 8a of the bucket 8 is aligned with the measurement point A3.
  • FIG. 6 is a schematic side view showing the operation of aligning the cutting edge 8a of the bucket 8 with the measurement point A3.
  • the cutting edge 8a of the bucket 8 is moved above the measurement points A1 and A2.
  • the working machine 2 is stopped in that posture.
  • the position of the cutting edge 8a at that time is defined as a measurement point A3.
  • the cutting edge 8a which is the measurement target, is moved to a measurement point A3 different from the measurement points A1 and A2 on the plane containing the measurement points A1 and A2.
  • the boom 6 is raised and the arm 7 and bucket 8 are moved backward.
  • Measurement points A1, A2, and A3 are set on an operation plane P, which is a plane.
  • the measurement points A1, A2, A3 form a triangle with each point as the vertex.
  • FIG. 6 shows an example in which the measurement point A3 is between the measurement points A1 and A2 in the front-rear direction (horizontal direction in the drawing). , or may be further away from the vehicle body than the measurement point A2.
  • step S8 the Z direction is set.
  • the direction of the perpendicular drawn from the measuring point A3 to the straight line connecting the measuring points A1 and A2 is set as the Z-axis on the operating plane P.
  • the Z direction is up and down.
  • the measurement point A1 is set as the origin
  • the direction connecting the measurement points A1 and A2 is set as the X axis
  • the direction perpendicular to the X axis is set as the Z axis.
  • a measurement coordinate system is defined on the operation plane P.
  • step S9 with the cutting edge 8a of the bucket 8 stopped at the measurement point A3, the angle of each link member of the working machine 2 detected by each angle sensor is acquired.
  • the angle of the boom 6 is detected by the boom IMU 32
  • the angle of the arm 7 is detected by the arm IMU 33
  • the angle of the bucket 8 is detected by the bucket IMU 34 when the cutting edge 8a of the bucket 8 is at the measurement point A3.
  • the posture of the working machine 2 with respect to the revolving body 3 is measured while the cutting edge 8a is stopped at the measuring point A3.
  • step S10 the distance between measurement points A1 and A3 is measured, and the distance between measurement points A2 and A3 is measured.
  • This distance measurement may be performed using an inexpensive length-measuring device, or may be performed manually, as in step S6.
  • step S11 the measurement coordinates of the measurement point A3 are set.
  • the X coordinate of the measurement point A3 be the distance from the point where the X axis intersects with the perpendicular drawn from the measurement point A3 to the measurement point A1 (origin).
  • the Z coordinate of the measurement point A3 is defined as the length between two points, starting from the measurement point A3 and ending at the point at which the perpendicular to the X axis intersects the X axis.
  • the distance between the measurement points A1 and A2 measured in step S6, the distance between the measurement points A1 and A3 measured in step S10, and the distance between the measurement points A2 and A3 is used to calculate the cosine of the angle between the straight line connecting the measurement points A1 and A3 and the X-axis by the cosine theorem, and from this cosine and the distance between the measurement points A1 and A3, the measurement point A3 may be obtained.
  • the sine of the angle between the straight line connecting the measurement points A1 and A3 and the X-axis is calculated by the trigonometric ratio formula, and the distance between the measurement points A1 and A3 is used to calculate the angle of the measurement point A3.
  • a Z coordinate may be determined.
  • the work machine 2 is operated to move the cutting edge 8a to a position other than the measurement points A1, A2, and A3, and the information calibration method shown in this embodiment is used to determine each coordinate. Calculation should be performed.
  • step S12 the initial values of the information used to calculate the calculated coordinates of the measurement points are entered.
  • the information used to calculate the calculated coordinates of the measurement points is the X coordinate Xbf of the boom pin 13, the Z coordinate Zbf of the boom pin 13, the link length bm of the boom 6, the link length am of the arm 7, the link length cm of the bucket 8, the link length cm of the arm 7,
  • the offset value ⁇ of for the output value ⁇ of the boom IMU 32 that detects the angle of the boom 6, and the offset value ⁇ of for the output value C of the bucket IMU 34 that detects the angle of the bucket 8. value Cof.
  • FIG. 7 is a schematic side view showing the coordinates of the boom pin 13.
  • the X-axis and Z-axis are set with the measurement point A1 as the origin.
  • the X coordinate Xbf of the boom pin 13 is the distance in the X direction (horizontal direction, for example) between the boom pin 13 and the measurement point A1.
  • the Z coordinate Zbf of the boom pin 13 is the distance in the Z direction (for example, vertical direction) between the boom pin 13 and the X axis (for example, the ground).
  • the design value of the dimension from 13 to the lower surface of crawler belt 5Cr may be used as the initial value.
  • a design value is a dimension of each part determined for manufacturing the hydraulic excavator 100 .
  • Design values can be used for the initial values of the link length bm of the boom 6, the link length am of the arm 7, and the link length cm of the bucket 8.
  • the initial values of the angle sensor offset values ⁇ of, ⁇ of, and Cof may be zero. These initial values are input to a controller that executes processing for calibrating information about the excavator 100 .
  • An automatic input from the length measuring device to the controller may be performed, or a manual input to the controller may be performed.
  • the controller may have an information storage section for storing information, and part or all of the information, such as the design value of the link length, may be stored in advance in the information storage section.
  • the X coordinate Xat of the arm pin 14 is expressed by the following equation (1): Calculate with
  • the Z coordinate Zat of the arm pin 14 is calculated by the following formula (2).
  • Equation (3) Calculate with
  • the Z coordinate Ztt of the cutting edge 8a of the bucket 8 is calculated by the following formula (4) using the Zat calculated by the formula (2), the output value C of the bucket IMU 34, and the initial values of each information.
  • the number of measurement points is n, and the following description will be made using mathematical formulas. Measurement coordinates are obtained for n measurement points, and calculated coordinates of the measurement target corresponding to those measurement points are calculated. The n calculated coordinates can be expressed using a matrix, as in Equation (5).
  • the measurement coordinates for the n measurement points can be expressed using a matrix as shown in Equation (6).
  • each piece of information about the working machine 2 is derived by the method of least squares.
  • the derived information includes the X coordinate Xbf of the boom pin 13, the Z coordinate Zbf of the boom pin 13, the link length bm of the boom 6, the link length am of the arm 7, the link length cm of the bucket 8, and the angle of the arm 7.
  • the offset value ⁇ of for the output value ⁇ of the arm IMU 33 to be detected, the offset value ⁇ of for the output value ⁇ of the boom IMU 32 for detecting the angle of the boom 6, and the offset value Cof for the output value C of the bucket IMU 34 for detecting the angle of the bucket 8. is.
  • Information related to the work implement 2 is derived so as to minimize the difference between the measured coordinates Ptt of the measurement point given by Equation (6) and the calculated coordinates P * tt of the measurement point given by Equation (5).
  • the Newton method was used as described in the reference.
  • the nonlinear least-squares method it is possible to simultaneously derive each piece of information including the length of the link member of the working machine 2 and the offset value of the angle sensor.
  • step S14 the information is updated.
  • the initial value of the information about the work machine 2 stored in the information storage unit of the controller is overwritten with the value derived in step S13 to update the information about the work machine 2 .
  • END a series of processes for calibrating the information on the hydraulic excavator 100 is completed (“END” in FIG. 3).
  • the measurement coordinate system is specified in steps S4 and S8, but the measurement coordinates of the measurement points may be obtained based on the distances of the measurement points without specifying the measurement coordinate system.
  • step S1 the cutting edge 8a, which is the measurement target, is sequentially stopped at the measurement points A1, A2, and A3.
  • steps S2, S5, and S9 the posture of the work implement 2 with respect to the vehicle body is measured while the cutting edge 8a is stopped at each of the measurement points A1, A2, and A3.
  • steps S6 and S10 the distances between the measurement points A1, A2 and A3 are measured.
  • step S13 information for minimizing the difference between the measurement coordinates of the measurement points based on the distance between the measurement points and the calculated coordinates of the measurement points calculated using the attitude of the work machine 2 and the information on the work machine is obtained. derive
  • step S14 information is updated.
  • the work machine 2 has a revolving structure 3 and a boom 6 connected via a boom pin 13, a boom 6 and an arm 7 connected via an arm pin 14, and an arm 7 and a bucket. 8 are connected via a bucket pin 15.
  • Information calibrated by the information calibration method of the embodiment includes the distance between boom pin 13 and arm pin 14 and the distance between arm pin 14 and bucket pin 15 . From this distance information, the link length bm of the boom 6 and the link length am of the arm 7 shown in FIG. 2 can be calibrated appropriately.
  • the measurement target is set on the bucket 8, which is the tip link member of the plurality of link members.
  • Information calibrated by the information calibrating method of the embodiment includes the position of the cutting edge 8a, which is the measurement target, and the distance between the bucket pin 15. FIG. From this distance information, the link length cm of the bucket 8 shown in FIG. 2 can be calibrated appropriately.
  • the hydraulic excavator 100 further has a boom IMU 32, an arm IMU 33, and a bucket IMU 34.
  • Boom IMU 32 , arm IMU 33 , and bucket IMU 34 function as angle sensors that measure the attitude of work implement 2 .
  • Information calibrated by the information calibration method of the embodiment includes offset values for output values of boom IMU 32 , arm IMU 33 and bucket IMU 34 . This allows the angle sensor to be properly calibrated.
  • the revolving body 3 of the hydraulic excavator 100 is provided with a boom pin 13 that serves as a reference point for relative movement of the work implement 2 with respect to the revolving body 3 .
  • Information calibrated by the information calibrating method of the embodiment includes the X coordinate Xbf of the boom pin 13 and the Z coordinate Zbf of the boom pin 13 in the coordinate system defined on the operation plane P. This allows the position of the boom pin 13 to be properly calibrated.
  • the information calibration method of the embodiment further comprises a step S4 of setting the X-axis on the motion plane P, which is a plane, and a step S8 of setting the Z-axis on the motion plane P.
  • a step S4 of setting the X-axis on the motion plane P which is a plane
  • a step S8 of setting the Z-axis on the motion plane P there is By setting a coordinate system based on the measurement points A1, A2, and A3 as shown in FIGS. , information about the work machine can be calibrated.
  • the measurement point A1 is set as the origin on the operation plane P, and the direction connecting the measurement points A1 and A2 is set as the X axis on the operation plane P.
  • the direction orthogonal to the X-axis can be set as the Z-axis, thereby easily setting the XZ orthogonal coordinate system.
  • the blade edge 8a of the bucket 8 may be brought into contact with the ground or the like at one or more positions between the measurement points A1 and A2, and the position of the blade edge 8a at that time may be used as the measurement point.
  • the blade edge 8a of the bucket 8 may be moved to one or more positions above the measurement points A1 and A2 and different from the measurement point A3, and the position of the blade edge 8a at that time may be used as the measurement point.
  • the value of the angle sensor may be obtained multiple times while the cutting edge 8a of the bucket 8 is stopped at each measurement point.
  • the cutting edge 8a at the tip of the working machine 2 may drop naturally due to deviation due to backlash of each link member of the working machine 2, minute leakage peculiar to the hydraulic system, or the like.
  • the angle sensor value is acquired in step S5, and after the distance is measured, the angle sensor value is acquired again to confirm that there is no difference in the angle sensor value. It may have functions.
  • the hydraulic excavator 100 is given as an example of a working machine, but the excavator is not limited to the hydraulic excavator 100, and other types of work such as loading excavators, mechanical rope excavators, electric excavators, bucket cranes, etc. It is also applicable to machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

The present invention accurately calibrates information pertaining to a work machine by means of simple tasks. This information calibration method comprises: stopping a measurement target at at least three different measurement points in a plane, in order; measuring the posture of a work machine relative to a vehicle body when the measurement target is stopped at each measurement point; measuring the distance between each of the measurement points; and deriving information in which the difference is minimized between measurement point measurement coordinates based on the distances and in a coordinate system defined in the plane, and measurement point calculated coordinates calculated using the posture and the information, and updating the information.

Description

情報較正方法Information calibration method
 本開示は、作業機械に関する情報を較正するための情報較正方法に関する。 The present disclosure relates to an information calibration method for calibrating information about work machines.
 情報化施工とは、建設土木事業における施工において、情報通信技術(ICT)の活用により、高効率かつ高精度な施工を実現するものである。情報化施工技術の一例として、トータルステーションまたはGNSS(Global Navigation Satellite Systems:全地球航法衛星システム)などの位置計測装置を用いて作業機械の位置を取得し、施工箇所の設計データと現況地形データとの差分に関する情報を作業機械の運転席モニタへ提供する、マシンガイダンス技術が提案されている。 Information-aided construction is the use of information and communication technology (ICT) in the construction and civil engineering business to achieve highly efficient and highly accurate construction. As an example of information-aided construction technology, we acquire the position of the work machine using a position measuring device such as a total station or GNSS (Global Navigation Satellite Systems), and compare the design data of the construction site with the current topographical data. Machine guidance techniques have been proposed to provide differential information to a work machine cab monitor.
 作業機械の一つに油圧ショベルがある。油圧ショベルは、ブーム、アーム、及びバケットから構成される作業機を備えてよい。ブーム、アーム、及びバケットは、順にピンにより回動可能に支持されてよい。マシンガイダンス技術を用いた施工に関し、非特許文献1には、ICT油圧ショベルのアーム寸法など各可動部のピン間の寸法およびバケット寸法を測定することが記載されている。 A hydraulic excavator is one of the work machines. A hydraulic excavator may include a working machine that includes a boom, an arm, and a bucket. The boom, arm and bucket may in turn be pivotally supported by pins. Regarding construction using machine guidance technology, Non-Patent Document 1 describes measuring the dimensions between pins and bucket dimensions of each movable part such as arm dimensions of an ICT hydraulic excavator.
 情報化施工の精度を担保するには、作業機械の位置データを正確に取得することが求められる。油圧ショベルの場合、この位置データとは、バケットの先端の位置データを指す。バケットの先端の位置データは、油圧ショベルの本体に備わるGNSSアンテナの位置情報、作業機の幾何形状、および作業機の姿勢の情報から算出される。幾何形状には、作業機を構成するリンクの各ピン間の距離がある。各ピン間の距離は、機械内コントローラに情報として記憶されており、施工の前に較正される。  In order to ensure the accuracy of information-aided construction, it is necessary to accurately acquire the position data of work machines. In the case of excavators, this position data refers to the position data of the tip of the bucket. The position data of the tip of the bucket is calculated from the position information of the GNSS antenna provided in the main body of the hydraulic excavator, the geometric shape of the work machine, and the information of the attitude of the work machine. Geometry includes the distance between each pin of the links that make up the implement. The distance between each pin is stored as information in the in-machine controller and calibrated prior to installation.
 作業機の各ピン間の距離を較正するには、各ピンの位置に測量ターゲットを取り付けて、トータルステーション、レーザトラッカなどの測量機器を用いて、各ピンの位置をそれぞれ測定することが行われていた。これらの測量機器は高価なため、較正にコストがかかっていた。工事現場に高価な測量機器を用意せずとも簡便に較正ができる方法の提供が望まれている。 In order to calibrate the distance between each pin of a work machine, a survey target is attached to each pin position, and the position of each pin is measured using a surveying instrument such as a total station or laser tracker. Ta. These surveying instruments are expensive and therefore costly to calibrate. It is desired to provide a simple calibration method without preparing expensive surveying equipment at the construction site.
 本開示では、情報化施工のための作業機械に関する情報を安価で容易に較正できる、情報較正方法が提案される。 This disclosure proposes an information calibration method that can inexpensively and easily calibrate information about work machines for information-aided construction.
 本開示に従うと、作業機械に関する情報を較正する情報較正方法が提案される。作業機械は、車体と、車体に対して相対移動可能な作業機とを有している。作業機械の作業機に、測定ターゲットが設定される。情報較正方法は、以下の処理を備えている。第1の処理は、平面上の少なくとも3点の相異なる測定点に、測定ターゲットを順次停止させることである。第2の処理は、測定ターゲットを各々の測定点に停止させた状態で、車体に対する作業機の姿勢を計測することである。第3の処理は、各々の測定点間の距離を計測することである。第4の処理は、平面上に規定される座標系における、測定点間の距離に基づく測定点の計測座標と、作業機の姿勢と作業機械に関する情報とを用いて計算される測定点の計算座標と、の差を最小化する情報を導出して、情報を更新することとである。 According to the present disclosure, an information calibration method for calibrating information about work machines is proposed. The working machine has a vehicle body and a working machine that is relatively movable with respect to the vehicle body. A measurement target is set on the working machine of the working machine. The information calibration method comprises the following processes. The first process is to sequentially stop the measurement target at at least three different measurement points on the plane. The second process is to measure the posture of the work implement with respect to the vehicle body while the measurement target is stopped at each measurement point. The third process is to measure the distance between each measurement point. The fourth processing is the calculation of the measurement points using the measurement coordinates of the measurement points based on the distance between the measurement points in the coordinate system defined on the plane, and the attitude of the work machine and information about the work machine. and updating the information by deriving information that minimizes the difference between the coordinates.
 本開示に係る情報較正方法によれば、作業機械に関する情報を安価で容易に較正することができる。 According to the information calibrating method according to the present disclosure, it is possible to calibrate information about work machines easily and inexpensively.
油圧ショベルの外観図である。1 is an external view of a hydraulic excavator; FIG. 油圧ショベルの側面図である。It is a side view of a hydraulic excavator. 油圧ショベルに関する情報を較正する処理の流れを示すフロー図である。FIG. 4 is a flow diagram showing a flow of processing for calibrating information about a hydraulic excavator; バケット刃先を第1の測定点に合わせる動作を示す側面模式図である。FIG. 11 is a schematic side view showing an operation of aligning the cutting edge of the bucket with the first measurement point; バケット刃先を第2の測定点に合わせる動作を示す側面模式図である。FIG. 11 is a schematic side view showing an operation of aligning the blade edge of the bucket with the second measurement point; バケット刃先を第3の測定点に合わせる動作を示す側面模式図である。FIG. 11 is a schematic side view showing an operation of aligning the blade edge of the bucket with the third measurement point; ブームピンの座標を示す側面模式図である。It is a side schematic diagram showing the coordinates of the boom pin.
 以下、実施形態について図に基づいて説明する。以下の説明では、同一部品には、同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 The embodiment will be described below based on the drawings. In the following description, the same reference numerals are given to the same parts. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1は、実施形態に基づく情報較正方法によって情報が較正される作業機械の一例としての、油圧ショベル100の外観図である。実施形態においては、作業機械として、油圧ショベル100を例に挙げて説明する。 FIG. 1 is an external view of a hydraulic excavator 100 as an example of a working machine whose information is calibrated by the information calibrating method based on the embodiment. In the embodiments, a hydraulic excavator 100 will be described as an example of a working machine.
 図1に示されるように、油圧ショベル100は、本体1と、油圧により作動する作業機2とを有している。本体1は、旋回体3と、走行体5とを有している。走行体5は、一対の履帯5Crと、走行モータ5Mとを有している。走行モータ5Mは、走行体5の駆動源として設けられている。走行モータ5Mは、油圧により作動する油圧モータである。 As shown in FIG. 1, the hydraulic excavator 100 has a main body 1 and a work machine 2 that operates hydraulically. The main body 1 has a revolving body 3 and a traveling body 5 . The traveling body 5 has a pair of crawler belts 5Cr and a traveling motor 5M. The traveling motor 5M is provided as a drive source for the traveling body 5. As shown in FIG. The traveling motor 5M is a hydraulic motor operated by hydraulic pressure.
 油圧ショベル100の動作時には、走行体5、より具体的には履帯5Crが、地面に接触している。走行体5は、履帯5Crの回転により地面を走行可能である。なお、走行体5が履帯5Crの代わりに車輪(タイヤ)を有していてもよい。 During operation of the hydraulic excavator 100, the traveling body 5, more specifically the crawler belt 5Cr, is in contact with the ground. The traveling body 5 can travel on the ground by rotating the crawler belt 5Cr. Note that the traveling body 5 may have wheels (tires) instead of the crawler belts 5Cr.
 旋回体3は、走行体5の上に配置され、かつ走行体5により支持されている。旋回体3は、走行体5に対して相対移動可能である。旋回体3は、旋回軸RXを中心として走行体5に対して旋回可能に、走行体5に搭載されている。旋回体3は、走行体5上に、旋回サークル部を介して取り付けられている。旋回サークル部は、平面視した本体1の略中央部に配置されている。旋回サークル部は、円環状の概略形状を有しており、内周面に旋回用の内歯を有している。この内歯と噛み合うピニオンが、図示しない旋回モータに装着されている。旋回モータから駆動力が伝達されて旋回サークル部が回転することにより、旋回体3が走行体5に対して相対回転可能とされている。 The revolving body 3 is arranged on the running body 5 and supported by the running body 5 . The revolving body 3 is relatively movable with respect to the traveling body 5 . The revolving body 3 is mounted on the running body 5 so as to be able to revolve with respect to the running body 5 about the revolving axis RX. The revolving body 3 is mounted on the traveling body 5 via a revolving circle portion. The turning circle portion is arranged substantially in the center of the main body 1 in plan view. The turning circle portion has an annular general shape, and has internal teeth for turning on its inner peripheral surface. A pinion that meshes with the internal teeth is attached to a turning motor (not shown). The revolving body 3 can rotate relative to the traveling body 5 by rotating the revolving circle portion by transmitting the driving force from the revolving motor.
 旋回体3は、キャブ4を有している。油圧ショベル100の乗員(オペレータ)は、このキャブ4に搭乗して、油圧ショベル100を操縦する。キャブ4には、オペレータが着座する運転席4Sが設けられている。オペレータは、キャブ4内において油圧ショベル100を操作可能である。オペレータは、キャブ4内において、作業機2の操作が可能であり、走行体5に対する旋回体3の旋回操作が可能であり、また走行体5による油圧ショベル100の走行操作が可能である。油圧ショベル100は、油圧ショベル100から離れた場所から無線により遠隔操作されてもよい。 The revolving body 3 has a cab 4. A crew member (operator) of the hydraulic excavator 100 rides on the cab 4 and steers the hydraulic excavator 100 . The cab 4 is provided with a driver's seat 4S on which an operator sits. An operator can operate the excavator 100 inside the cab 4 . In the cab 4 , the operator can operate the work implement 2 , can swivel the revolving body 3 with respect to the traveling body 5 , and can operate the excavator 100 to travel by the traveling body 5 . The excavator 100 may be wirelessly remotely controlled from a location away from the excavator 100 .
 実施形態においては、キャブ4内の運転席4Sに着座したオペレータを基準として、油圧ショベル100の旋回体3における各部の位置関係について説明する。前後方向とは、運転席4Sに着座したオペレータの前後方向をいう。運転席4Sに着座したオペレータに正対する方向が前方向であり、運転席4Sに着座したオペレータの背後方向が後方向である。左右方向とは、運転席4Sに着座したオペレータの左右方向をいう。運転席4Sに着座したオペレータが正面に正対したときの右側、左側がそれぞれ右方向、左方向である。上下方向とは、運転席4Sに着座したオペレータの上下方向をいう。運転席4Sに着座したオペレータの足元側が下側、頭上側が上側である。 In the embodiment, the positional relationship of each part of the revolving body 3 of the hydraulic excavator 100 will be described with reference to the operator seated in the driver's seat 4S in the cab 4. The front-back direction refers to the front-back direction of the operator seated on the driver's seat 4S. The direction facing the operator seated on the driver's seat 4S is the forward direction, and the direction behind the operator seated on the driver's seat 4S is the rearward direction. The left-right direction refers to the left-right direction of the operator seated on the driver's seat 4S. The right side and the left side when an operator sitting in the driver's seat 4S faces the front are the right direction and the left direction, respectively. The vertical direction refers to the vertical direction of the operator seated on the driver's seat 4S. The operator seated on the driver's seat 4S faces the lower side, and the upper side faces the operator's head.
 前後方向において、旋回体3から作業機2が突き出している側が前方向であり、前方向と反対方向が後方向である。前方向を視て左右方向の右側、左側がそれぞれ右方向、左方向である。上下方向において地面のある側が下側、空のある側が上側である。 In the front-rear direction, the side where the working machine 2 protrudes from the revolving body 3 is the front direction, and the direction opposite to the front direction is the rear direction. The right side and the left side in the horizontal direction are the right direction and the left direction, respectively, when viewed in the forward direction. In the vertical direction, the side with the ground is the lower side, and the side with the sky is the upper side.
 旋回体3は、エンジンが収容されるエンジンルーム9と、旋回体3の後部に設けられるカウンタウェイトとを有している。エンジンルーム9には、駆動力を発生するエンジン、エンジンの発生する駆動力を受けて油圧アクチュエータに作動油を供給する油圧ポンプなどが配置されている。エンジンの代わりに蓄電池を搭載し、蓄電池に蓄えられた電力によって電動モータを駆動させ、電動モータの駆動力を用いて油圧ポンプを作動させる電動ショベルであってもよい。 The revolving body 3 has an engine room 9 in which the engine is housed, and a counterweight provided at the rear part of the revolving body 3 . In the engine room 9, an engine that generates a driving force, a hydraulic pump that receives the driving force generated by the engine and supplies working oil to the hydraulic actuators, and the like are arranged. The electric excavator may have a storage battery instead of the engine, drive an electric motor with electric power stored in the storage battery, and operate a hydraulic pump using the driving force of the electric motor.
 旋回体3において、エンジンルーム9の前方に手すり19が設けられている。手すり19には、アンテナ21が設けられている。アンテナ21は、たとえばGNSS用のアンテナである。アンテナ21は、左右方向に互いに離れるように旋回体3に設けられた第1アンテナ21Aおよび第2アンテナ21Bを有している。 A handrail 19 is provided in front of the engine room 9 in the revolving body 3 . An antenna 21 is provided on the handrail 19 . Antenna 21 is, for example, a GNSS antenna. The antenna 21 has a first antenna 21A and a second antenna 21B provided on the revolving body 3 so as to be separated from each other in the horizontal direction.
 作業機2は、旋回体3に搭載されており、旋回体3によって支持されている。作業機2は、ブーム6と、アーム7と、バケット8とを有している。ブーム6は、旋回体3に回転可能に連結されている。アーム7は、ブーム6に回転可能に連結されている。バケット8は、アーム7に回転可能に連結されている。バケット8は、複数の刃を有している。バケット8の先端部を、刃先8aと称する。 The work machine 2 is mounted on the revolving body 3 and supported by the revolving body 3 . The work implement 2 has a boom 6 , an arm 7 and a bucket 8 . The boom 6 is rotatably connected to the revolving body 3 . Arm 7 is rotatably connected to boom 6 . Bucket 8 is rotatably connected to arm 7 . Bucket 8 has a plurality of blades. A tip portion of the bucket 8 is referred to as a cutting edge 8a.
 なお、バケット8は、刃を有していなくてもよい。バケット8の先端部は、ストレート形状の鋼板で形成されていてもよい。 It should be noted that the bucket 8 may not have blades. The tip of the bucket 8 may be formed of a straight steel plate.
 ブーム6の基端部は、ブームフートピン13(以下、ブームピンという)を介して旋回体3に連結されている。アーム7の基端部は、アーム連結ピン14(以下、アームピンという)を介してブーム6の先端部に連結されている。バケット8は、バケット連結ピン15(以下、バケットピンという)を介してアーム7の先端部に連結されている。 The base end of the boom 6 is connected to the revolving body 3 via a boom foot pin 13 (hereinafter referred to as "boom pin"). A base end portion of the arm 7 is connected to a tip end portion of the boom 6 via an arm connection pin 14 (hereinafter referred to as an arm pin). The bucket 8 is connected to the tip of the arm 7 via a bucket connecting pin 15 (hereinafter referred to as bucket pin).
 ブーム6は、旋回体3に対して相対移動可能である。ブーム6は、ブームピン13を中心に、旋回体3に対して相対回転可能である。ブームピン13は、旋回体3に設けられている。ブームピン13は、旋回体3に対する作業機2の相対移動の基準となる、基準点をなす。アーム7は、ブーム6に対して相対移動可能である。アーム7は、アームピン14を中心に、ブーム6に対して相対回転可能である。バケット8は、アーム7に対して相対移動可能である。バケット8は、バケットピン15を中心に、アーム7に対して相対回転可能である。 The boom 6 is movable relative to the revolving body 3. The boom 6 is rotatable relative to the revolving body 3 around the boom pin 13 . The boom pin 13 is provided on the revolving body 3 . The boom pin 13 forms a reference point that serves as a reference for relative movement of the work implement 2 with respect to the revolving body 3 . Arm 7 is relatively movable with respect to boom 6 . The arm 7 is rotatable relative to the boom 6 around the arm pin 14 . Bucket 8 is relatively movable with respect to arm 7 . Bucket 8 is rotatable relative to arm 7 around bucket pin 15 .
 アーム7およびバケット8は、バケット8がアーム7に対して相対回転しない状態で、一体的にブーム6に対して相対移動可能、具体的には相対回転可能である。ブーム6、アーム7およびバケット8は、バケット8がアーム7に対して相対回転せず、かつアーム7がブーム6に対して相対回転しない状態で、一体的に旋回体3に対して相対移動可能、具体的には相対回転可能である。 The arm 7 and the bucket 8 are integrally movable relative to the boom 6, specifically rotatable relative to each other, while the bucket 8 does not rotate relative to the arm 7. The boom 6, the arm 7 and the bucket 8 are integrally movable relative to the revolving structure 3 while the bucket 8 does not rotate relative to the arm 7 and the arm 7 does not rotate relative to the boom 6. , specifically relatively rotatable.
 作業機2のブーム6は、旋回体3に対して、ブーム6の基端部に設けられたブームピン13を中心に回動する。旋回体3に対して回動するブーム6の特定の部分、たとえばブーム6の先端部が移動する軌跡は円弧状である。その円弧を含む平面が、図1に示す動作平面Pとして特定される。動作平面Pは、上下方向に延びるとともに前後方向に延びる平面である。動作平面Pは、作業機2の左右方向の中心にあって旋回体3の中心軸を含み、上下方向および前後方向に広がる平面である。ブームピン13、アームピン14およびバケットピン15は、動作平面Pと直交する方向、すなわち左右方向に延びている。動作平面Pは、ブーム6、アーム7およびバケット8の各々の回動中心となる軸線の、少なくとも一つ(実施形態の場合、三つ全て)と直交している。 The boom 6 of the work machine 2 rotates around the boom pin 13 provided at the base end of the boom 6 with respect to the revolving body 3 . A locus along which a specific portion of the boom 6 that rotates relative to the revolving body 3, such as the tip of the boom 6, moves is arcuate. A plane containing the arc is identified as the motion plane P shown in FIG. The action plane P is a plane that extends in the vertical direction and in the front-rear direction. The operation plane P is a plane that is located at the center of the work machine 2 in the left-right direction, includes the center axis of the revolving body 3, and extends in the up-down direction and the front-rear direction. The boom pin 13, the arm pin 14, and the bucket pin 15 extend in a direction perpendicular to the plane of motion P, that is, in the left-right direction. The plane of operation P is orthogonal to at least one (all three in the embodiment) of the axis of each of the boom 6 , the arm 7 and the bucket 8 .
 ブーム6は動作平面P上で旋回体3に対して回動動作する。同様に、アーム7は動作平面P上でブーム6に対して回動動作し、バケット8は動作平面P上でアーム7に対して回動動作する。実施形態の作業機2は、その長手方向における全体が動作平面P上で動作する。バケット8の刃先8aは、動作平面P上を移動する。動作平面Pは、作業機2の可動範囲を含む平面である。動作平面Pは、ブーム6、アーム7およびバケット8の各々と交差している。動作平面Pは、ブーム6、アーム7およびバケット8の左右方向の中心に設定することができる。 The boom 6 rotates with respect to the revolving body 3 on the operation plane P. Similarly, the arm 7 rotates relative to the boom 6 on the plane P of motion, and the bucket 8 rotates relative to the arm 7 on the plane P of motion. The work machine 2 of the embodiment operates on the action plane P in its entirety in its longitudinal direction. The cutting edge 8a of the bucket 8 moves on the action plane P. As shown in FIG. The action plane P is a plane that includes the movable range of the work implement 2 . A plane of motion P intersects each of boom 6 , arm 7 and bucket 8 . The plane of motion P can be set at the center of the boom 6, the arm 7 and the bucket 8 in the lateral direction.
 図1に示すように、動作平面P上における一方向がX軸として設定され、動作平面P状における上記一方向に直交する方向がZ軸として設定される。X軸とZ軸とは、互いに直交している。動作平面Pにおける座標軸の設定については後述する。 As shown in FIG. 1, one direction on the motion plane P is set as the X-axis, and a direction orthogonal to the one direction on the motion plane P is set as the Z-axis. The X-axis and Z-axis are orthogonal to each other. The setting of the coordinate axes on the motion plane P will be described later.
 作業機2は、ブームシリンダ10と、アームシリンダ11と、バケットシリンダ12とを有している。ブームシリンダ10は、ブーム6を駆動する。アームシリンダ11は、アーム7を駆動する。バケットシリンダ12は、バケット8を駆動する。ブームシリンダ10、アームシリンダ11、およびバケットシリンダ12のそれぞれは、作動油によって駆動される油圧シリンダである。 The working machine 2 has a boom cylinder 10 , an arm cylinder 11 and a bucket cylinder 12 . A boom cylinder 10 drives the boom 6 . Arm cylinder 11 drives arm 7 . Bucket cylinder 12 drives bucket 8 . Each of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 is a hydraulic cylinder driven by hydraulic fluid.
 作業機2は、複数のリンク部材が関節を介して接続されたリンク機構を構成している。ブーム6、アーム7およびバケット8は、それぞれリンク部材を構成している。ブームピン13は、旋回体3とブーム6とを接続する関節に相当する。アームピン14は、ブーム6とアーム7とを接続する関節に相当する。バケットピン15は、アーム7とバケット8とを接続する関節に相当する。 The work machine 2 constitutes a link mechanism in which a plurality of link members are connected via joints. The boom 6, arm 7 and bucket 8 each constitute a link member. The boom pin 13 corresponds to a joint that connects the revolving body 3 and the boom 6 . Arm pin 14 corresponds to a joint that connects boom 6 and arm 7 . Bucket pin 15 corresponds to a joint that connects arm 7 and bucket 8 .
 バケットシリンダ12は、アーム7に取り付けられている。バケットシリンダ12が伸縮することにより、アーム7に対してバケット8が回転する。作業機2は、バケットリンクを有している。バケットリンクは、バケットシリンダ12とバケット8とを連結している。 The bucket cylinder 12 is attached to the arm 7. The bucket 8 rotates with respect to the arm 7 by expanding and contracting the bucket cylinder 12 . The work machine 2 has a bucket link. The bucket link connects the bucket cylinder 12 and the bucket 8 .
 油圧ショベル100には、コントローラ26が搭載されている。コントローラ26は、油圧ショベル100の動作を制御する。コントローラ26は、CPU(Central Processing Unit)、不揮発性メモリ、タイマなどを含んで構成されるコンピュータである。 A controller 26 is mounted on the hydraulic excavator 100 . The controller 26 controls operations of the excavator 100 . The controller 26 is a computer including a CPU (Central Processing Unit), a nonvolatile memory, a timer, and the like.
 図2は、図1に示される油圧ショベル100の側面図である。図2に示されるように、油圧ショベル100は、ブームIMU(Inertial Measurement Unit)32、アームIMU33、およびバケットIMU34をさらに備えている。ブームIMU32、アームIMU33、およびバケットIMU34は、慣性計測装置である。 FIG. 2 is a side view of hydraulic excavator 100 shown in FIG. As shown in FIG. 2, the excavator 100 further includes a boom IMU (Inertial Measurement Unit) 32, an arm IMU 33, and a bucket IMU . Boom IMU 32, arm IMU 33, and bucket IMU 34 are inertial measurement units.
 ブームIMU32は、ブーム6に取り付けられている。アームIMU33は、アーム7に取り付けられている。バケットIMU34は、バケット8に取り付けられている。ブームIMU32、アームIMU33、バケットIMU34のそれぞれは、前後方向、左右方向および上下方向におけるブーム6、アーム7、バケット8の加速度と、前後方向、左右方向および上下方向まわりのブーム6、アーム7、バケット8の角速度とを計測する。 The boom IMU 32 is attached to the boom 6. Arm IMU 33 is attached to arm 7 . Bucket IMU 34 is attached to bucket 8 . The boom IMU 32, the arm IMU 33, and the bucket IMU 34 respectively detect the acceleration of the boom 6, the arm 7, and the bucket 8 in the longitudinal, lateral, and vertical directions, and the acceleration of the boom 6, the arm 7, and the bucket in the longitudinal, lateral, and vertical directions. 8 angular velocities are measured.
 ブームIMU32の検出結果から、ブーム6の角度が算出される。アームIMU33の検出結果から、アーム7の角度が検出される。バケットIMU34の検出結果から、バケット8の角度が算出される。ブームIMU32、アームIMU33およびバケットIMU34は、旋回体3(油圧ショベル100の車体)に対する作業機2の姿勢を計測する角度センサを構成している。 The angle of the boom 6 is calculated from the detection result of the boom IMU 32. The angle of arm 7 is detected from the detection result of arm IMU 33 . The angle of the bucket 8 is calculated from the detection result of the bucket IMU 34 . Boom IMU 32, arm IMU 33, and bucket IMU 34 constitute an angle sensor that measures the attitude of work implement 2 with respect to revolving body 3 (the vehicle body of hydraulic excavator 100).
 ブームIMU32は、重力方向に対するブーム6の姿勢(角度)を検出する。アームIMU33は、重力方向に対するアーム7の姿勢(角度)を検出する。バケットIMU34は、重力方向に対するバケット8の姿勢(角度)を検出する。 The boom IMU 32 detects the attitude (angle) of the boom 6 with respect to the direction of gravity. Arm IMU 33 detects the posture (angle) of arm 7 with respect to the direction of gravity. Bucket IMU 34 detects the attitude (angle) of bucket 8 with respect to the direction of gravity.
 角度センサは、上述した各IMUのほか、他の任意のセンサを含んでもよい。角度センサは、ブームシリンダ10、アームシリンダ11またはバケットシリンダ12に取り付けられた、シリンダに対するシリンダロッドの変位量を検出するシリンダストロークセンサを用い、得られた変位量のデータに基づいてブーム6、アーム7、バケット8の姿勢(角度)を求める形態でもよい。角度センサは、ブームピン13、アームピン14またはバケットピン15に取り付けられたポテンショメータまたはロータリーエンコーダであってもよい。角度センサの検出結果は、コントローラ26(図1)に入力される。 The angle sensor may include any other sensor in addition to each IMU described above. The angle sensor uses a cylinder stroke sensor attached to the boom cylinder 10, the arm cylinder 11 or the bucket cylinder 12 that detects the amount of displacement of the cylinder rod with respect to the cylinder. 7. Alternatively, the posture (angle) of the bucket 8 may be obtained. The angle sensor may be a potentiometer or rotary encoder attached to boom pin 13 , arm pin 14 or bucket pin 15 . A detection result of the angle sensor is input to the controller 26 (FIG. 1).
 図2に示される距離bmは、ブームピン13とアームピン14との間の距離である。距離bmを、ブーム6のリンク長とも称する。距離amは、アームピン14とバケットピン15との間の距離である。距離amを、アーム7のリンク長とも称する。距離cmは、バケットピン15とバケット8の刃先8aとの間の距離である。距離cmを、バケット8のリンク長とも称する。 The distance bm shown in FIG. 2 is the distance between the boom pin 13 and the arm pin 14. The distance bm is also called the link length of the boom 6 . A distance am is the distance between the arm pin 14 and the bucket pin 15 . Distance am is also referred to as the link length of arm 7 . The distance cm is the distance between the bucket pin 15 and the cutting edge 8 a of the bucket 8 . The distance cm is also called the link length of the bucket 8 .
 図3は、油圧ショベル100に関する情報を較正する処理の流れを示すフロー図である。図3および以降の図を適宜参照して、油圧ショベル100に関する情報を較正する処理の詳細について、以下に説明する。油圧ショベル100に関する情報を較正する処理は、油圧ショベル100に搭載されているコントローラ26で実行されてもよく、外部に設けられたコントローラまたは情報処理装置で実行されてもよい。外部に設けられたコントローラが油圧ショベル100に関する情報を較正する処理を実行する場合、油圧ショベル100に搭載されているコントローラ26から、外部のコントローラに、角度センサの検出結果が送信される。 FIG. 3 is a flow diagram showing the flow of processing for calibrating information regarding the hydraulic excavator 100. FIG. Details of the process of calibrating the information about the hydraulic excavator 100 will be described below with appropriate reference to FIG. 3 and subsequent figures. The process of calibrating information about the excavator 100 may be executed by the controller 26 mounted on the excavator 100, or may be executed by an external controller or information processing device. When an externally provided controller executes processing for calibrating information related to the hydraulic excavator 100, the controller 26 mounted on the hydraulic excavator 100 transmits the detection result of the angle sensor to the external controller.
 以下の処理によって較正される油圧ショベル100に関する情報は、情報化施工を実施するに当たり、バケット8の刃先8aの位置を正確に導出して、作業機2の位置の演算の精度を向上するために必要な情報である。較正される油圧ショベル100に関する情報は、たとえば、油圧ショベル100の作業機2の寸法を含む。距離bm、距離am、距離cmは、作業機械に関する情報に含まれる。油圧ショベル100に関する情報は、三次元空間における油圧ショベル100の所定部位の位置座標情報、2つの所定部位間の距離情報などであってよい。三次元空間の座標系は、ITRF(International Terrestrial Reference Frame)座標系であってよい。 The information about the hydraulic excavator 100 calibrated by the following processing is used to accurately derive the position of the cutting edge 8a of the bucket 8 and improve the accuracy of the calculation of the position of the work implement 2 when performing information-aided construction. It is necessary information. Information about the excavator 100 to be calibrated includes, for example, the dimensions of the work implement 2 of the excavator 100 . The distance bm, distance am, and distance cm are included in the information about the work machine. The information about the excavator 100 may be position coordinate information of a predetermined portion of the excavator 100 in a three-dimensional space, distance information between two predetermined portions, and the like. The coordinate system of the three-dimensional space may be the ITRF (International Terrestrial Reference Frame) coordinate system.
 まずステップS0において、測定ターゲットを設定する。油圧ショベル100の作業機2の一箇所に、測定ターゲットが設定される。作業機2の複数のリンク部材のうち、バケット8が、旋回体3から最も離れている先端のリンク部材である。先端のリンク部材であるバケット8の一箇所に、測定ターゲットが設定される。実施形態では、バケット8の刃先8aを、測定ターゲットとして設定する。 First, in step S0, a measurement target is set. A measurement target is set at one location on the work implement 2 of the hydraulic excavator 100 . Among the plurality of link members of the work machine 2 , the bucket 8 is the tip link member that is farthest from the revolving body 3 . A measurement target is set at one point of the bucket 8 which is a link member at the tip. In the embodiment, the cutting edge 8a of the bucket 8 is set as the measurement target.
 ステップS1において、バケット8の刃先8aを測定点A1に合わせる。図4は、バケット8の刃先8aを測定点A1に合わせる動作を示す側面模式図である。作業機2を動かすことで、バケット8の刃先8aを地面などに接触させる。その姿勢で、作業機2を停止させる。そのときの刃先8aの位置を、測定点A1とする。ステップS1で、測定ターゲットである刃先8aを、測定点A1に移動させる。 In step S1, the cutting edge 8a of the bucket 8 is aligned with the measurement point A1. FIG. 4 is a schematic side view showing the operation of aligning the cutting edge 8a of the bucket 8 with the measurement point A1. By moving the working machine 2, the cutting edge 8a of the bucket 8 is brought into contact with the ground or the like. The working machine 2 is stopped in that posture. The position of the cutting edge 8a at that time is defined as a measurement point A1. In step S1, the cutting edge 8a, which is the measurement target, is moved to the measurement point A1.
 ステップS2において、バケット8の刃先8aを測定点A1に停止させた状態で、各角度センサで検出される作業機2の各リンク部材の角度を取得する。バケット8の刃先8aが測定点A1の位置にあるときの、ブーム6の角度がブームIMU32により検出され、アーム7の角度がアームIMU33により検出され、バケット8の角度がバケットIMU34により検出される。これにより、刃先8aを測定点A1に停止させた状態での、旋回体3に対する作業機2の姿勢が計測される。 In step S2, with the cutting edge 8a of the bucket 8 stopped at the measurement point A1, the angle of each link member of the working machine 2 detected by each angle sensor is acquired. The angle of the boom 6 is detected by the boom IMU 32, the angle of the arm 7 is detected by the arm IMU 33, and the angle of the bucket 8 is detected by the bucket IMU 34 when the cutting edge 8a of the bucket 8 is at the measurement point A1. As a result, the posture of the working machine 2 with respect to the revolving body 3 is measured while the cutting edge 8a is stopped at the measuring point A1.
 ステップS3において、バケット8の刃先8aを測定点A2に合わせる。図5は、バケット8の刃先8aを測定点A2に合わせる動作を示す側面模式図である。作業機2を動かすことで、バケット8の刃先8aを、測定点A1とは異なる位置で地面などに接触させる。図5に示される例では、刃先8aを前方(車体から離れる方向)へ移動させて、測定点A1よりも前方の位置で刃先8aを地面に接触させている。その姿勢で、作業機2を停止させる。そのときの刃先8aの位置を、測定点A2とする。ステップS3で、測定ターゲットである刃先8aを、測定点A1から、測定点A1とは異なる測定点A2へと移動させる。図5に示される例では、ブーム6を下げるとともにアーム7とバケット8とを前方向に移動させている。 In step S3, the cutting edge 8a of the bucket 8 is aligned with the measurement point A2. FIG. 5 is a schematic side view showing the operation of aligning the cutting edge 8a of the bucket 8 with the measurement point A2. By moving the working machine 2, the cutting edge 8a of the bucket 8 is brought into contact with the ground or the like at a position different from the measurement point A1. In the example shown in FIG. 5, the cutting edge 8a is moved forward (in the direction away from the vehicle body) and brought into contact with the ground at a position forward of the measurement point A1. The working machine 2 is stopped in that posture. The position of the cutting edge 8a at that time is defined as a measurement point A2. In step S3, the cutting edge 8a, which is the measurement target, is moved from the measurement point A1 to the measurement point A2 different from the measurement point A1. In the example shown in FIG. 5, the boom 6 is lowered and the arm 7 and the bucket 8 are moved forward.
 ステップS4において、X方向を設定する。図5に示されるように、測定点A1と測定点A2とを結ぶ方向を、動作平面P上のX軸として設定する。測定点A1と測定点A2との上下方向における位置が同じであってもよく、この場合X方向は水平方向となる。 In step S4, the X direction is set. As shown in FIG. 5, the direction connecting the measurement points A1 and A2 is set as the X-axis on the motion plane P. As shown in FIG. The positions of the measurement points A1 and A2 in the vertical direction may be the same, and in this case the X direction is the horizontal direction.
 ステップS5において、バケット8の刃先8aを測定点A2に停止させた状態で、各角度センサで検出される作業機2の各リンク部材の角度を取得する。バケット8の刃先8aが測定点A2の位置にあるときの、ブーム6の角度がブームIMU32により検出され、アーム7の角度がアームIMU33により検出され、バケット8の角度がバケットIMU34により検出される。これにより、刃先8aを測定点A2に停止させた状態での、旋回体3に対する作業機2の姿勢が計測される。 In step S5, with the cutting edge 8a of the bucket 8 stopped at the measurement point A2, the angle of each link member of the working machine 2 detected by each angle sensor is obtained. The angle of the boom 6 is detected by the boom IMU 32, the angle of the arm 7 is detected by the arm IMU 33, and the angle of the bucket 8 is detected by the bucket IMU 34 when the cutting edge 8a of the bucket 8 is at the measurement point A2. As a result, the posture of the working machine 2 with respect to the revolving body 3 is measured while the cutting edge 8a is stopped at the measuring point A2.
 ステップS6において、測定点A1と測定点A2との間の距離を計測する。この距離の計測は、レーザ測長器などの安価な測長機器を使用して行なわれてもよい。測長機器の計測結果が、油圧ショベル100に関する情報を較正する処理を実行するコントローラに入力されてもよい。測長機器が用いられる場合、測定ターゲットであるバケット8の刃先8aに、レーザ光を反射する反射器が取り付けられてもよく、位置の認識を容易にするためのマーカが設けられてもよい。測定ターゲットとしてレーザ光を反射する反射器を用いる場合、反射器は、レーザ光が照射された方向と同じ方向に光を反射する。また、作業者がワイヤ式測長器または巻き尺などを使用して、手作業で距離を計測してもよい。作業者が、計測結果をコントローラに手入力してもよい。 In step S6, the distance between the measurement points A1 and A2 is measured. This distance measurement may be performed using an inexpensive length measuring device such as a laser length measuring device. A measurement result of the length measuring device may be input to a controller that executes a process of calibrating information regarding the hydraulic excavator 100 . When a length measuring device is used, a reflector that reflects laser light may be attached to the cutting edge 8a of the bucket 8, which is the measurement target, and a marker may be provided to facilitate recognition of the position. When a reflector that reflects laser light is used as the measurement target, the reflector reflects light in the same direction as the direction in which the laser light is emitted. Alternatively, the operator may manually measure the distance using a wire-type length measuring device, a tape measure, or the like. The operator may manually input the measurement results into the controller.
 ステップS1~S5の処理では、バケット8の刃先8aを地面に接触させたが、水糸をバケット8の刃先8aに取り付けて垂らすことにより、刃先8aを地面に接触させずにX方向を設定することも可能である。 In the processing of steps S1 to S5, the cutting edge 8a of the bucket 8 is brought into contact with the ground, but by attaching a water thread to the cutting edge 8a of the bucket 8 and hanging it, the X direction is set without contacting the cutting edge 8a with the ground. is also possible.
 ステップS7において、バケット8の刃先8aを測定点A3に合わせる。図6は、バケット8の刃先8aを測定点A3に合わせる動作を示す側面模式図である。作業機2を動かすことで、バケット8の刃先8aを、測定点A1,A2よりも上方へ移動させる。その姿勢で、作業機2を停止させる。そのときの刃先8aの位置を、測定点A3とする。ステップS7で、測定ターゲットである刃先8aを、測定点A1,A2を含む平面における測定点A1,A2とは異なる測定点A3へと移動させる。図6に示される例では、ブーム6を上げるとともにアーム7とバケット8とを後方向に移動させている。 In step S7, the cutting edge 8a of the bucket 8 is aligned with the measurement point A3. FIG. 6 is a schematic side view showing the operation of aligning the cutting edge 8a of the bucket 8 with the measurement point A3. By moving the working machine 2, the cutting edge 8a of the bucket 8 is moved above the measurement points A1 and A2. The working machine 2 is stopped in that posture. The position of the cutting edge 8a at that time is defined as a measurement point A3. In step S7, the cutting edge 8a, which is the measurement target, is moved to a measurement point A3 different from the measurement points A1 and A2 on the plane containing the measurement points A1 and A2. In the example shown in FIG. 6, the boom 6 is raised and the arm 7 and bucket 8 are moved backward.
 図1に示される動作平面P上に、少なくとも3点の相異なる測定点が設定される。平面である動作平面P上に、測定点A1,A2,A3が設定される。測定点A1,A2,A3は、各点を頂点とする三角形を形成する。図6では、前後方向(図中の左右方向)において測定点A3が測定点A1と測定点A2との間にある例が示されるが、測定点A3は、測定点A1よりも車体に近くてもよく、測定点A2よりも車体から離れていてもよい。 At least three different measurement points are set on the operation plane P shown in FIG. Measurement points A1, A2, and A3 are set on an operation plane P, which is a plane. The measurement points A1, A2, A3 form a triangle with each point as the vertex. FIG. 6 shows an example in which the measurement point A3 is between the measurement points A1 and A2 in the front-rear direction (horizontal direction in the drawing). , or may be further away from the vehicle body than the measurement point A2.
 ステップS8において、Z方向を設定する。図6に示されるように、測定点A3から、測定点A1と測定点A2とを結ぶ直線におろした垂線の方向を、動作平面P上のZ軸として設定する。X方向が水平方向である場合、Z方向は上下方向である。測定点A1を原点に設定し、測定点A1と測定点A2とを結ぶ方向をX軸として設定し、X軸に直交する方向をZ軸として設定する。これにより、動作平面P上に計測座標系が規定される。 In step S8, the Z direction is set. As shown in FIG. 6, the direction of the perpendicular drawn from the measuring point A3 to the straight line connecting the measuring points A1 and A2 is set as the Z-axis on the operating plane P. As shown in FIG. If the X direction is horizontal, the Z direction is up and down. The measurement point A1 is set as the origin, the direction connecting the measurement points A1 and A2 is set as the X axis, and the direction perpendicular to the X axis is set as the Z axis. Thereby, a measurement coordinate system is defined on the operation plane P. FIG.
 ステップS9において、バケット8の刃先8aを測定点A3に停止させた状態で、各角度センサで検出される作業機2の各リンク部材の角度を取得する。バケット8の刃先8aが測定点A3の位置にあるときの、ブーム6の角度がブームIMU32により検出され、アーム7の角度がアームIMU33により検出され、バケット8の角度がバケットIMU34により検出される。これにより、刃先8aを測定点A3に停止させた状態での、旋回体3に対する作業機2の姿勢が計測される。 In step S9, with the cutting edge 8a of the bucket 8 stopped at the measurement point A3, the angle of each link member of the working machine 2 detected by each angle sensor is acquired. The angle of the boom 6 is detected by the boom IMU 32, the angle of the arm 7 is detected by the arm IMU 33, and the angle of the bucket 8 is detected by the bucket IMU 34 when the cutting edge 8a of the bucket 8 is at the measurement point A3. As a result, the posture of the working machine 2 with respect to the revolving body 3 is measured while the cutting edge 8a is stopped at the measuring point A3.
 ステップS10において、測定点A1と測定点A3との間の距離を計測し、測定点A2と測定点A3との間の距離を計測する。この距離の計測は、ステップS6と同様に、安価な測長機器を使用して行なわれてもよく、手作業で行なわれてもよい。 In step S10, the distance between measurement points A1 and A3 is measured, and the distance between measurement points A2 and A3 is measured. This distance measurement may be performed using an inexpensive length-measuring device, or may be performed manually, as in step S6.
 ステップS11において、測定点A3の計測座標を設定する。測定点A3からX軸におろした垂線とX軸とが交わる点から測定点A1(原点)までの距離を、測定点A3のX座標とする。測定点A3を始点として、X軸におろした垂線がX軸と交わる点を終点とした2点間の長さを、測定点A3のZ座標とする。ステップS6で計測した測定点A1と測定点A2との間の距離と、ステップS10で計測した測定点A1と測定点A3との間の距離および測定点A2と測定点A3との間の距離とを用いて、測定点A1,A3を結ぶ直線とX軸とのなす角度の余弦を余弦定理により演算し、この余弦と、測定点A1と測定点A3との間の距離とから、測定点A3のX座標を求めてもよい。測定点A1,A3を結ぶ直線とX軸とのなす角度の正弦を、三角比の公式により演算し、この正弦と、測定点A1と測定点A3との間の距離とから、測定点A3のZ座標を求めてもよい。なお、求めたい座標(パラメータ)の数に応じて、作業機2を操作して測定点A1,A2,A3以外の位置に刃先8aを移動させ、本実施形態に示す情報較正方法により各座標の算出を行えばよい。 In step S11, the measurement coordinates of the measurement point A3 are set. Let the X coordinate of the measurement point A3 be the distance from the point where the X axis intersects with the perpendicular drawn from the measurement point A3 to the measurement point A1 (origin). The Z coordinate of the measurement point A3 is defined as the length between two points, starting from the measurement point A3 and ending at the point at which the perpendicular to the X axis intersects the X axis. The distance between the measurement points A1 and A2 measured in step S6, the distance between the measurement points A1 and A3 measured in step S10, and the distance between the measurement points A2 and A3 is used to calculate the cosine of the angle between the straight line connecting the measurement points A1 and A3 and the X-axis by the cosine theorem, and from this cosine and the distance between the measurement points A1 and A3, the measurement point A3 may be obtained. The sine of the angle between the straight line connecting the measurement points A1 and A3 and the X-axis is calculated by the trigonometric ratio formula, and the distance between the measurement points A1 and A3 is used to calculate the angle of the measurement point A3. A Z coordinate may be determined. According to the number of coordinates (parameters) to be obtained, the work machine 2 is operated to move the cutting edge 8a to a position other than the measurement points A1, A2, and A3, and the information calibration method shown in this embodiment is used to determine each coordinate. Calculation should be performed.
 ステップS12において、測定点の計算座標の算出に用いる情報の初期値を入力する。測定点の計算座標の算出に用いる情報は、ブームピン13のX座標Xbf、ブームピン13のZ座標Zbf、ブーム6のリンク長bm、アーム7のリンク長am、バケット8のリンク長cm、アーム7の角度を検出するアームIMU33の出力値αに対するオフセット値αof、ブーム6の角度を検出するブームIMU32の出力値βに対するオフセット値βof、および、バケット8の角度を検出するバケットIMU34の出力値Cに対するオフセット値Cofである。 In step S12, the initial values of the information used to calculate the calculated coordinates of the measurement points are entered. The information used to calculate the calculated coordinates of the measurement points is the X coordinate Xbf of the boom pin 13, the Z coordinate Zbf of the boom pin 13, the link length bm of the boom 6, the link length am of the arm 7, the link length cm of the bucket 8, the link length cm of the arm 7, The offset value αof for the output value α of the arm IMU 33 that detects the angle, the offset value βof for the output value β of the boom IMU 32 that detects the angle of the boom 6, and the offset value βof for the output value C of the bucket IMU 34 that detects the angle of the bucket 8. value Cof.
 図7は、ブームピン13の座標を示す側面模式図である。上述した手法で、測定点A1を原点として、X軸およびZ軸が設定される。ブームピン13のX座標Xbfは、ブームピン13と測定点A1との間のX方向(たとえば、水平方向)の距離であり、たとえば巻き尺などで計測した値を初期値とすることができる。ブームピン13のZ座標Zbfは、ブームピン13とX軸(たとえば、地面)との間のZ方向(たとえば、上下方向)の距離であり、たとえば巻き尺などで計測した値を初期値としてもよく、ブームピン13から履帯5Crの下面までの寸法の設計値を初期値とすることもできる。設計値とは、油圧ショベル100を製造するために定めた各部位の寸法である。 FIG. 7 is a schematic side view showing the coordinates of the boom pin 13. FIG. With the method described above, the X-axis and Z-axis are set with the measurement point A1 as the origin. The X coordinate Xbf of the boom pin 13 is the distance in the X direction (horizontal direction, for example) between the boom pin 13 and the measurement point A1. The Z coordinate Zbf of the boom pin 13 is the distance in the Z direction (for example, vertical direction) between the boom pin 13 and the X axis (for example, the ground). The design value of the dimension from 13 to the lower surface of crawler belt 5Cr may be used as the initial value. A design value is a dimension of each part determined for manufacturing the hydraulic excavator 100 .
 ブーム6のリンク長bm、アーム7のリンク長amおよびバケット8のリンク長cmの初期値は、設計値を用いることができる。角度センサのオフセット値αof,βof,Cofの初期値をゼロとしてもよい。油圧ショベル100に関する情報を較正する処理を実行するコントローラに、これらの初期値を入力する。測長機器からコントローラへの自動入力がなされてもよく、コントローラへの手入力が行なわれてもよい。コントローラが情報を記憶する情報記憶部を有していてもよく、一部または全部の情報、たとえばリンク長の設計値、が予め情報記憶部に記憶されていてもよい。 Design values can be used for the initial values of the link length bm of the boom 6, the link length am of the arm 7, and the link length cm of the bucket 8. The initial values of the angle sensor offset values αof, βof, and Cof may be zero. These initial values are input to a controller that executes processing for calibrating information about the excavator 100 . An automatic input from the length measuring device to the controller may be performed, or a manual input to the controller may be performed. The controller may have an information storage section for storing information, and part or all of the information, such as the design value of the link length, may be stored in advance in the information storage section.
 アームIMU33の出力値αと、ブームIMU32の出力値βと、測定点の計算座標の算出に用いられる各情報の初期値とを用いて、アームピン14のX座標Xatを、以下の式(1)で計算する。 Using the output value α of the arm IMU 33, the output value β of the boom IMU 32, and the initial values of each information used to calculate the calculated coordinates of the measurement point, the X coordinate Xat of the arm pin 14 is expressed by the following equation (1): Calculate with
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 アームピン14のZ座標Zatを、以下の式(2)で計算する。 The Z coordinate Zat of the arm pin 14 is calculated by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)で計算されたXatと、バケットIMU34の出力値Cと、各情報の初期値とを用いて、測定ターゲットであるバケット8の刃先8aのX座標Xttを、以下の式(3)で計算する。 Using the Xat calculated by Equation (1), the output value C of the bucket IMU 34, and the initial values of each information, the X coordinate Xtt of the cutting edge 8a of the bucket 8, which is the measurement target, is calculated by the following Equation (3): Calculate with
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(2)で計算されたZatと、バケットIMU34の出力値Cと、各情報の初期値とを用いて、バケット8の刃先8aのZ座標Zttを、以下の式(4)で計算する。 The Z coordinate Ztt of the cutting edge 8a of the bucket 8 is calculated by the following formula (4) using the Zat calculated by the formula (2), the output value C of the bucket IMU 34, and the initial values of each information.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 本実施形態の説明では測定点が3点ある場合について説明するが、後述するように測定点は3点以上あってもよい。したがって、測定点をn点として以下数式を用いて説明する。n点の測定点について計測座標を求め、それらの測定点に対応する測定ターゲットの計算座標を計算する。n個の計算座標を、式(5)のように、行列を用いて表すことができる。 In the description of this embodiment, the case where there are three measurement points will be described, but as will be described later, there may be three or more measurement points. Therefore, the number of measurement points is n, and the following description will be made using mathematical formulas. Measurement coordinates are obtained for n measurement points, and calculated coordinates of the measurement target corresponding to those measurement points are calculated. The n calculated coordinates can be expressed using a matrix, as in Equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、n点の測定点についての計測座標を、式(6)のように行列を用いて表すことができる。 Also, the measurement coordinates for the n measurement points can be expressed using a matrix as shown in Equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ステップS13において、最小二乗法により、作業機2に関する各情報を導出する。導出される情報は、上述した通り、ブームピン13のX座標Xbf、ブームピン13のZ座標Zbf、ブーム6のリンク長bm、アーム7のリンク長am、バケット8のリンク長cm、アーム7の角度を検出するアームIMU33の出力値αに対するオフセット値αof、ブーム6の角度を検出するブームIMU32の出力値βに対するオフセット値βof、および、バケット8の角度を検出するバケットIMU34の出力値Cに対するオフセット値Cofである。 In step S13, each piece of information about the working machine 2 is derived by the method of least squares. As described above, the derived information includes the X coordinate Xbf of the boom pin 13, the Z coordinate Zbf of the boom pin 13, the link length bm of the boom 6, the link length am of the arm 7, the link length cm of the bucket 8, and the angle of the arm 7. The offset value αof for the output value α of the arm IMU 33 to be detected, the offset value βof for the output value β of the boom IMU 32 for detecting the angle of the boom 6, and the offset value Cof for the output value C of the bucket IMU 34 for detecting the angle of the bucket 8. is.
 式(6)で示される測定点の計測座標Pttと、式(5)で示される測定点の計算座標Pttと、の差を最小化するような、作業機2に関する情報を導出する。たとえば参考文献(茨木創一著、「工作機械の空間精度 3次元運動誤差の幾何学モデル・補正・測定」、森北出版、2017年4月)に記載されているように、Newton法を用いた非線形最小二乗法を適用することにより、作業機2のリンク部材の長さ、角度センサのオフセット値を含む各情報を、同時に導出することができる。 Information related to the work implement 2 is derived so as to minimize the difference between the measured coordinates Ptt of the measurement point given by Equation (6) and the calculated coordinates P * tt of the measurement point given by Equation (5). For example, as described in the reference (Soichi Ibaraki, "Spatial Accuracy of Machine Tools, Geometric Model, Correction, and Measurement of 3D Motion Error", Morikita Publishing, April 2017), the Newton method was used. By applying the nonlinear least-squares method, it is possible to simultaneously derive each piece of information including the length of the link member of the working machine 2 and the offset value of the angle sensor.
 最後に、ステップS14において、情報を更新する。コントローラの情報記憶部に記憶されていた作業機2に関する情報の初期値を、ステップS13で導出された値で上書きして、作業機2に関する情報を更新する。このようにして、油圧ショベル100に関する情報を較正する一連の処理を終了する(図3の「エンド」)。なお、本実施形態においては、ステップS4やステップS8において計測座標系を規定したが、計測座標系を規定せずとも、各測定点の距離に基づく計測点の計測座標を求めてもよい。 Finally, in step S14, the information is updated. The initial value of the information about the work machine 2 stored in the information storage unit of the controller is overwritten with the value derived in step S13 to update the information about the work machine 2 . In this way, a series of processes for calibrating the information on the hydraulic excavator 100 is completed (“END” in FIG. 3). In this embodiment, the measurement coordinate system is specified in steps S4 and S8, but the measurement coordinates of the measurement points may be obtained based on the distances of the measurement points without specifying the measurement coordinate system.
 上述した説明と一部重複する記載もあるが、本実施形態の特徴的な構成および作用効果についてまとめて記載すると、以下の通りである。 Although there are some descriptions that overlap with the above description, the characteristic configuration and effects of this embodiment are summarized below.
 実施形態における情報較正方法では、図3に示されるステップS1,S3,S7において、測定点A1,A2,A3に、測定ターゲットである刃先8aを順次停止させる。ステップS2,S5,S9において、刃先8aを各々の測定点A1,A2,A3に停止させた状態で、車体に対する作業機2の姿勢を計測する。ステップS6,S10において、各々の測定点A1,A2,A3間の距離を計測する。ステップS13において、測定点間の距離に基づく測定点の計測座標と、作業機2の姿勢と作業機械に関する情報とを用いて計算される測定点の計算座標と、の差を最小化する情報を導出する。ステップS14において、情報を更新する。 In the information calibration method according to the embodiment, in steps S1, S3, and S7 shown in FIG. 3, the cutting edge 8a, which is the measurement target, is sequentially stopped at the measurement points A1, A2, and A3. In steps S2, S5, and S9, the posture of the work implement 2 with respect to the vehicle body is measured while the cutting edge 8a is stopped at each of the measurement points A1, A2, and A3. In steps S6 and S10, the distances between the measurement points A1, A2 and A3 are measured. In step S13, information for minimizing the difference between the measurement coordinates of the measurement points based on the distance between the measurement points and the calculated coordinates of the measurement points calculated using the attitude of the work machine 2 and the information on the work machine is obtained. derive In step S14, information is updated.
 測定点A1,A2,A3間の距離を計測するために、高価な自動追尾型の測長機器を用いる必要がない。手作業で距離を計測してもよく、長さを計測する任意の道具さえあれば安価でどこでも計測ができる。この測定点間の距離を用いて、作業機械に関する情報を較正することができる。したがって、実施形態の情報較正方法によれば、作業機械に関する情報を安価で容易に較正することができる。工事現場において較正をやり直すことも可能になる。この較正された情報に基づいて、バケット8の刃先8aの位置を正確に導出することができるので、情報化施工における作業機2の位置の演算の精度を向上することができる。  In order to measure the distance between the measurement points A1, A2, and A3, there is no need to use an expensive automatic tracking type length measuring device. Distances may be measured manually, and can be done inexpensively anywhere with any tool for measuring length. The distance between these measurement points can be used to calibrate information about the work machine. Therefore, according to the information calibrating method of the embodiment, it is possible to calibrate the information about the working machine easily at low cost. It is also possible to redo the calibration at the construction site. Based on this calibrated information, the position of the cutting edge 8a of the bucket 8 can be accurately derived, so the accuracy of calculating the position of the working machine 2 in information-aided construction can be improved.
 図1,2に示されるように、作業機2は、旋回体3とブーム6とがブームピン13を介して接続され、ブーム6とアーム7とがアームピン14を介して接続され、アーム7とバケット8とがバケットピン15を介して接続された、リンク機構を有している。実施形態の情報較正方法によって較正される情報は、ブームピン13とアームピン14との間の距離と、アームピン14とバケットピン15との間の距離とを含む。この距離の情報から、図2に示されるブーム6のリンク長bmおよびアーム7のリンク長amを適切に較正することができる。作業機2の寸法を算出するために各ピンの位置に測量ターゲットを取り付けて各ピンの位置を直接計測しなくてもよいため、短時間の簡便な作業で、油圧ショベル100の作業機2の寸法の情報を正確に得ることができる。 As shown in FIGS. 1 and 2, the work machine 2 has a revolving structure 3 and a boom 6 connected via a boom pin 13, a boom 6 and an arm 7 connected via an arm pin 14, and an arm 7 and a bucket. 8 are connected via a bucket pin 15. Information calibrated by the information calibration method of the embodiment includes the distance between boom pin 13 and arm pin 14 and the distance between arm pin 14 and bucket pin 15 . From this distance information, the link length bm of the boom 6 and the link length am of the arm 7 shown in FIG. 2 can be calibrated appropriately. Since it is not necessary to directly measure the position of each pin by attaching a survey target to the position of each pin in order to calculate the dimensions of the working machine 2, it is possible to measure the working machine 2 of the hydraulic excavator 100 by a short and simple work. Dimensional information can be obtained accurately.
 図4に示されるように、測定ターゲットは、複数のリンク部材のうちの先端のリンク部材である、バケット8に設定される。実施形態の情報較正方法によって較正される情報は、測定ターゲットである刃先8aの位置とバケットピン15との間の距離とを含む。この距離の情報から、図2に示されるバケット8のリンク長cmを適切に較正することができる。 As shown in FIG. 4, the measurement target is set on the bucket 8, which is the tip link member of the plurality of link members. Information calibrated by the information calibrating method of the embodiment includes the position of the cutting edge 8a, which is the measurement target, and the distance between the bucket pin 15. FIG. From this distance information, the link length cm of the bucket 8 shown in FIG. 2 can be calibrated appropriately.
 図2に示されるように、油圧ショベル100は、ブームIMU32、アームIMU33、およびバケットIMU34をさらに有している。ブームIMU32、アームIMU33、およびバケットIMU34は、作業機2の姿勢を計測する角度センサとしての機能を有している。実施形態の情報較正方法によって較正される情報は、ブームIMU32、アームIMU33、およびバケットIMU34の出力値に対するオフセット値を含んでいる。これにより、角度センサを適切に較正することができる。 As shown in FIG. 2, the hydraulic excavator 100 further has a boom IMU 32, an arm IMU 33, and a bucket IMU 34. Boom IMU 32 , arm IMU 33 , and bucket IMU 34 function as angle sensors that measure the attitude of work implement 2 . Information calibrated by the information calibration method of the embodiment includes offset values for output values of boom IMU 32 , arm IMU 33 and bucket IMU 34 . This allows the angle sensor to be properly calibrated.
 図1,2に示されるように、油圧ショベル100の旋回体3に、旋回体3に対する作業機2の相対移動の基準点となるブームピン13が設けられる。実施形態の情報較正方法によって較正される情報は、動作平面P上に規定される座標系におけるブームピン13のX座標Xbfおよびブームピン13のZ座標Zbfを含んでいる。これにより、ブームピン13の位置を適切に較正することができる。 As shown in FIGS. 1 and 2, the revolving body 3 of the hydraulic excavator 100 is provided with a boom pin 13 that serves as a reference point for relative movement of the work implement 2 with respect to the revolving body 3 . Information calibrated by the information calibrating method of the embodiment includes the X coordinate Xbf of the boom pin 13 and the Z coordinate Zbf of the boom pin 13 in the coordinate system defined on the operation plane P. This allows the position of the boom pin 13 to be properly calibrated.
 図3に示されるように、実施形態の情報較正方法は、平面である動作平面P上にX軸を設定するステップS4と、動作平面P上にZ軸を設定するステップS8とをさらに備えている。図5,6に示されるように、測定点A1,A2,A3に基づいて座標系を設定し、その座標系における測定点の計測座標と計算座標とに対して最小二乗法を適用することによって、作業機械に関する情報を較正することができる。 As shown in FIG. 3, the information calibration method of the embodiment further comprises a step S4 of setting the X-axis on the motion plane P, which is a plane, and a step S8 of setting the Z-axis on the motion plane P. there is By setting a coordinate system based on the measurement points A1, A2, and A3 as shown in FIGS. , information about the work machine can be calibrated.
 図4,5に示されるように、測定点A1を動作平面P上の原点に設定し、測定点A1と測定点A2とを結ぶ方向を動作平面P上のX軸として設定する。これにより、X軸を簡便に設定することができる。図6に示されるように、X軸に直交する方向をZ軸として設定することができ、これにより、XZ直交座標系を簡便に設定することができる。 As shown in FIGS. 4 and 5, the measurement point A1 is set as the origin on the operation plane P, and the direction connecting the measurement points A1 and A2 is set as the X axis on the operation plane P. This makes it possible to easily set the X axis. As shown in FIG. 6, the direction orthogonal to the X-axis can be set as the Z-axis, thereby easily setting the XZ orthogonal coordinate system.
 上記の実施形態の説明では、平面である動作平面P上に3点の測定点A1,A2,A3を設定する例について説明した。同一の平面上に、より多数の測定点を設定してもよい。たとえば、バケット8の刃先8aを、測定点A1と測定点A2との間の1つ以上の位置において地面などに接触させて、そのときの刃先8aの位置を測定点としてもよい。バケット8の刃先8aを、測定点A1,A2よりも上方の位置であって測定点A3とは異なる1つ以上の位置に移動させて、そのときの刃先8aの位置を測定点としてもよい。測定点の数を増加させることで、測定点の計測座標と計算座標との差を最小化するような油圧ショベル100に関する情報の導出を、より精度よく実行することができる。 In the above description of the embodiment, an example was described in which three measurement points A1, A2, and A3 are set on the motion plane P, which is a plane. A larger number of measurement points may be set on the same plane. For example, the blade edge 8a of the bucket 8 may be brought into contact with the ground or the like at one or more positions between the measurement points A1 and A2, and the position of the blade edge 8a at that time may be used as the measurement point. The blade edge 8a of the bucket 8 may be moved to one or more positions above the measurement points A1 and A2 and different from the measurement point A3, and the position of the blade edge 8a at that time may be used as the measurement point. By increasing the number of measurement points, derivation of information about the hydraulic excavator 100 that minimizes the difference between the measured coordinates and the calculated coordinates of the measurement points can be performed more accurately.
 バケット8の刃先8aを各測定点に停止させた状態で、角度センサの値を複数回取得してもよい。作業機2の各リンク部材のガタによるずれ、油圧装置に特有の微小なリークなどにより、作業機2の先端の刃先8aが自然落下している場合がある。たとえば、ステップS6で距離を計測する前にステップS5で角度センサの値を取得し、距離を計測した後に、角度センサの値を再度取得して、角度センサの値に差がないことを確認する機能を備えてもよい。 The value of the angle sensor may be obtained multiple times while the cutting edge 8a of the bucket 8 is stopped at each measurement point. The cutting edge 8a at the tip of the working machine 2 may drop naturally due to deviation due to backlash of each link member of the working machine 2, minute leakage peculiar to the hydraulic system, or the like. For example, before measuring the distance in step S6, the angle sensor value is acquired in step S5, and after the distance is measured, the angle sensor value is acquired again to confirm that there is no difference in the angle sensor value. It may have functions.
 上記の実施形態の説明では、作業機械の一例として油圧ショベル100を挙げているが、油圧ショベル100に限らず、ローディングショベル、機械式のロープショベル、電動ショベル、バケットクレーンなどの他の種類の作業機械にも適用可能である。 In the description of the above embodiments, the hydraulic excavator 100 is given as an example of a working machine, but the excavator is not limited to the hydraulic excavator 100, and other types of work such as loading excavators, mechanical rope excavators, electric excavators, bucket cranes, etc. It is also applicable to machines.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.
 1 本体、2 作業機、3 旋回体、5 走行体、6 ブーム、7 アーム、8 バケット、8a 刃先、10 ブームシリンダ、11 アームシリンダ、12 バケットシリンダ、13 ブームフートピン、14 アーム連結ピン、15 バケット連結ピン、26 コントローラ、32 ブームIMU、33 アームIMU、34 バケットIMU、100 油圧ショベル、A1,A2,A3 位置、P 動作平面、RX 旋回軸。 1 Main body, 2 Work machine, 3 Rotating body, 5 Running body, 6 Boom, 7 Arm, 8 Bucket, 8a Cutting edge, 10 Boom cylinder, 11 Arm cylinder, 12 Bucket cylinder, 13 Boom foot pin, 14 Arm connecting pin, 15 Bucket connecting pin, 26 Controller, 32 Boom IMU, 33 Arm IMU, 34 Bucket IMU, 100 Hydraulic excavator, A1, A2, A3 Position, P Motion plane, RX Pivot axis.

Claims (7)

  1.  車体と、前記車体に対して相対移動可能な作業機とを有し、前記作業機に測定ターゲットが設定される、作業機械に関する情報を較正する情報較正方法であって、
     平面上の少なくとも3点の相異なる測定点に、前記測定ターゲットを順次停止させることと、
     前記測定ターゲットを各々の前記測定点に停止させた状態で、前記車体に対する前記作業機の姿勢を計測することと、
     各々の前記測定点間の距離を計測することと、
     前記平面上に規定される座標系における、前記距離に基づく前記測定点の計測座標と、前記姿勢と前記情報とを用いて計算される前記測定点の計算座標と、の差を最小化する前記情報を導出して、前記情報を更新することと、を備える、情報較正方法。
    An information calibrating method for calibrating information about a working machine, comprising a vehicle body and a working machine that is relatively movable with respect to the vehicle body, wherein a measurement target is set on the working machine, the method comprising:
    sequentially stopping the measurement target at at least three different measurement points on a plane;
    measuring the posture of the working machine with respect to the vehicle body while the measurement target is stopped at each of the measurement points;
    measuring the distance between each of the measurement points;
    minimizing the difference between the measured coordinates of the measurement point based on the distance and the calculated coordinates of the measurement point calculated using the orientation and the information in a coordinate system defined on the plane; deriving information and updating said information.
  2.  前記作業機は、複数のリンク部材が関節を介して接続されたリンク機構を有し、
     前記情報は、複数の前記関節間の距離を含む、請求項1に記載の情報較正方法。
    The work machine has a link mechanism in which a plurality of link members are connected via joints,
    2. The information calibration method according to claim 1, wherein said information includes distances between a plurality of said joints.
  3.  前記測定ターゲットは、先端の前記リンク部材に設定され、
     前記情報は、前記測定ターゲットの位置と前記関節との距離を含む、請求項2に記載の情報較正方法。
    The measurement target is set on the link member at the tip,
    3. The method of calibrating information according to claim 2, wherein the information includes the distance between the position of the measurement target and the joint.
  4.  前記作業機械は、前記姿勢を計測する角度センサをさらに有し、
     前記情報は、前記角度センサのオフセット値を含む、請求項1から請求項3のいずれか1項に記載の情報較正方法。
    The working machine further has an angle sensor that measures the attitude,
    4. The information calibration method according to any one of claims 1 to 3, wherein said information includes an offset value of said angle sensor.
  5.  前記車体に、前記車体に対する前記作業機の相対移動の基準となる基準点が設けられ、
     前記情報は、前記座標系における前記基準点の座標を含む、請求項1から請求項4のいずれか1項に記載の情報較正方法。
    The vehicle body is provided with a reference point that serves as a reference for relative movement of the working machine with respect to the vehicle body,
    5. The information calibration method according to any one of claims 1 to 4, wherein said information includes coordinates of said reference point in said coordinate system.
  6.  前記平面上に、前記座標系を設定することをさらに備える、請求項1から請求項5のいずれか1項に記載の情報較正方法。 The information calibration method according to any one of claims 1 to 5, further comprising setting the coordinate system on the plane.
  7.  前記測定点は、第1の測定点と、第2の測定点とを含み、
     前記座標系を設定することは、前記第1の測定点を原点に設定することと、前記第1の測定点と前記第2の測定点とを結ぶ方向を座標軸として設定することと、を含む、請求項6に記載の情報較正方法。
    The measurement points include a first measurement point and a second measurement point,
    Setting the coordinate system includes setting the first measurement point as an origin and setting a direction connecting the first measurement point and the second measurement point as a coordinate axis. The information calibration method according to claim 6.
PCT/JP2023/002169 2022-03-04 2023-01-25 Information calibration method WO2023166885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022033522A JP2023128874A (en) 2022-03-04 2022-03-04 Information calibration method
JP2022-033522 2022-03-04

Publications (1)

Publication Number Publication Date
WO2023166885A1 true WO2023166885A1 (en) 2023-09-07

Family

ID=87883285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002169 WO2023166885A1 (en) 2022-03-04 2023-01-25 Information calibration method

Country Status (2)

Country Link
JP (1) JP2023128874A (en)
WO (1) WO2023166885A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056259A1 (en) * 2014-10-07 2016-04-14 株式会社ログバー Gesture input system data processing method
JP2019132038A (en) * 2018-01-31 2019-08-08 住友重機械工業株式会社 Shovel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056259A1 (en) * 2014-10-07 2016-04-14 株式会社ログバー Gesture input system data processing method
JP2016076104A (en) * 2014-10-07 2016-05-12 株式会社ログバー Method for processing data of gesture input system
JP2019132038A (en) * 2018-01-31 2019-08-08 住友重機械工業株式会社 Shovel

Also Published As

Publication number Publication date
JP2023128874A (en) 2023-09-14

Similar Documents

Publication Publication Date Title
KR101733963B1 (en) Device for calibrating work machine and method for calibrating work machine parameters of work machine
JP5823046B1 (en) Hydraulic excavator calibration system and calibration method
KR101833603B1 (en) Control system of work machine and work machine
JP5841300B1 (en) Work machine calibration apparatus and work machine parameter calibration method
JP6068730B2 (en) Work machine and work machine parameter correction method for work machine
JP5237408B2 (en) Hydraulic excavator calibration system and calibration method
US9663917B2 (en) Work vehicle, bucket device, and method for obtaining tilt angle
CN111441401B (en) Excavator
KR102479701B1 (en) work machine
US9404745B2 (en) Measurement jig
CN113494104B (en) Positioning correction method for construction work machine and positioning correction controller therefor
US9689145B1 (en) Work vehicle and method for obtaining tilt angle
JP2016224038A (en) Control system for work machine and work machine
WO2018164079A1 (en) Method for acquiring tilt sensor correction amount in construction work machinery
JP7424960B2 (en) Information acquisition system and information acquisition method
JP2020002708A (en) Work machine
WO2023166885A1 (en) Information calibration method
US20240352702A1 (en) System and method for controlling working machine
WO2023157744A1 (en) Information acquisition system and information acquisition method
JP7229109B2 (en) Work machine and work machine control method
JP7349956B2 (en) Construction method and construction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE