JP2018141184A - Carbon steel plate - Google Patents
Carbon steel plate Download PDFInfo
- Publication number
- JP2018141184A JP2018141184A JP2017034244A JP2017034244A JP2018141184A JP 2018141184 A JP2018141184 A JP 2018141184A JP 2017034244 A JP2017034244 A JP 2017034244A JP 2017034244 A JP2017034244 A JP 2017034244A JP 2018141184 A JP2018141184 A JP 2018141184A
- Authority
- JP
- Japan
- Prior art keywords
- less
- carbide
- carbides
- steel sheet
- observation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、ランクフォード値の異方性に特徴を有する炭素鋼板に関するものである。 The present invention relates to a carbon steel sheet characterized by the anisotropy of the Rankford value.
鋼中のC含有量が概ね0.1〜2.0質量%の炭素鋼板は、焼入れ強化が可能であるとともに焼鈍状態ではある程度の加工性も有しているため、自動車部品をはじめ各種機械部品や軸受け部品の素材として広く使用されている。部品の製造にあたっては、一般的には打抜加工や曲げ成形が施され、さらに比較的軽度な絞り加工,伸びフランジ成形が施されることもある。また、部品形状が複雑な場合は、二ないし三部品を溶接して製造される場合も多い。そしてこれらの加工部品は熱処理を経て各種用途の部品に仕上げられていく。 Carbon steel sheets with a C content of approximately 0.1 to 2.0% by mass in steel can be hardened and have a certain degree of workability in the annealed state. Widely used as a material for bearing parts. In manufacturing parts, generally, punching and bending are performed, and relatively mild drawing and stretch flange molding may be performed. Further, when the part shape is complicated, it is often produced by welding two or three parts. These processed parts are finished into parts for various uses through heat treatment.
ところが近年、部品の製造コストを低減すべく、部品の一体成形や、部品加工の工程簡略化が進められている。このことは素材側から見ればより加工率の高い(=塑性変形量の大きい)加工に耐えなくてはならないことを意味する。つまり、加工技術の高度化に伴い、素材である炭素鋼板自体にもより高い加工性が要求されるようになってきた。特に昨今では、打抜加工や曲げ加工のみならず、高度な深絞り加工にも耐え得る鋼板素材のニーズが高まりつつある。 However, in recent years, in order to reduce the manufacturing cost of parts, the integral molding of parts and the simplification of parts processing have been promoted. This means that it must withstand processing with a higher processing rate (= a large amount of plastic deformation) when viewed from the material side. In other words, with the advancement of processing technology, higher workability has been required for the carbon steel sheet itself. Particularly in recent years, there is an increasing need for steel plate materials that can withstand not only punching and bending, but also advanced deep drawing.
特公平4−56088号公報には、絞り性の良好な高炭素冷延鋼板の製造法が開示されている。この製造法では、化学成分を特定範囲に規制した鋼に、冷間圧延と焼鈍処理を施して鋼中のセメンタイトを黒鉛化し、その後さらに冷間圧延と再結晶焼鈍を施している。セメンタイトを黒鉛化した鋼板に冷間圧延と焼鈍を施すことにより、従来得られていなかった高いr値を持ち、軟鋼板並みの深絞り性を有する高炭素鋼板が得られると記載されている。しかし、この方法は黒鉛化させるために特定の元素の添加が必要であることに加えて製造工程が長く、結果的にコスト高となる。
また、特開平11−61272号公報には、特定組成のベイナイト組織を持つ高炭素熱延鋼板に焼鈍および冷延を施すことにより、フェライト+セメンタイトを主体組織とする高炭素鋼のr値を向上させる方法が開示されている。この方法では、特定の元素の添加が必要であることに加えて、熱延においてベイナイト組織とするために低温での巻取りが必要であり、製造性に劣る。いずれの場合も、特定の添加元素を必要とするため、これらの技術は、一般的な中・高炭素鋼種の製造に広く適用できるものではない。
Japanese Examined Patent Publication No. 4-56088 discloses a method for producing a high carbon cold-rolled steel sheet having good drawability. In this manufacturing method, cold rolling and annealing treatment are performed on steel whose chemical components are regulated within a specific range to graphite cementite in the steel, and then cold rolling and recrystallization annealing are further performed. It is described that, by subjecting a steel sheet graphitized with cementite to cold rolling and annealing, a high carbon steel sheet having a high r value that has not been obtained in the past and having deep drawability comparable to that of a mild steel sheet can be obtained. However, this method requires the addition of a specific element for graphitization, and in addition, the manufacturing process is long, resulting in high costs.
Japanese Patent Laid-Open No. 11-61272 improves the r value of high carbon steel mainly composed of ferrite + cementite by annealing and cold rolling a high carbon hot rolled steel sheet having a bainite structure having a specific composition. Is disclosed. In this method, in addition to the addition of a specific element, in order to obtain a bainite structure in hot rolling, winding at a low temperature is necessary, and the productivity is poor. In any case, since specific additive elements are required, these techniques are not widely applicable to the production of general medium and high carbon steel types.
また、深絞り加工を行った際には、鋼板の圧延方向や圧延方向に対して鉛直方向となる板幅方向、圧延方向に対して45°方向のランクフォード値(r値)の差(異方性)が大きいと絞り加工後に加工品縦壁部の高さが異なり、その高さを均一にするために縦壁部を切削する必要があるため、より大きな寸法の素材が必要となることから素材費および工程費が増加する課題がある。 Further, when deep drawing is performed, the difference (rank difference) in the Rankford value (r value) in the 45 ° direction with respect to the rolling direction of the steel sheet, the sheet width direction perpendicular to the rolling direction, and the rolling direction is different. If the directionality is large, the height of the workpiece vertical wall differs after drawing, and it is necessary to cut the vertical wall to make the height uniform. Therefore, there is a problem that the material cost and the process cost increase.
本発明は、このような問題を解消すべく案出されたものであり、特殊な元素を添加することなく、一般的な炭素鋼板においても発現可能な優れた異方性を得ることを目的とするものである。 The present invention has been devised to solve such problems, and aims to obtain excellent anisotropy that can be expressed even in general carbon steel sheets without adding special elements. To do.
そこで本発明は、優れた異方性を有する炭素鋼板として、質量%において、C:0.15〜2.0%、Si:0.40%以下、Mn:0.5%以下、P:0.03%以下、S:0.03%以下、Cr:2.0%以下を含有し、残部がFeおよび不可避的不純物からなり、下記(a)で定義される炭化物球状化率が90%以上、かつ下記(b)で定義される平均炭化物粒径が0.4μm以上であるように炭化物がフェライト中に分散しているとともに、下記(c)で定義される異方性Δrが−1.0〜1.0であることを特徴としている。
(a)炭化物球状化率:鋼板断面の金属組織観察において、観察視野内の炭化物総数に占める、炭化物の最大長さpとその直角方向の最大長さqの比(p/q)が3未満である炭化物の数の割合(%)をいう。ただし、観察視野は炭化物総数が300個以上となる領域とする。
(b)平均炭化物粒径:鋼板断面の金属組織観察において観察視野内の個々の炭化物について測定した円相当径を全測定炭化物について平均した値をいう。ただし、観察視野は炭化物総数が300個以上となる領域とする。
(c)ランクフォード値(r値)に関して、鋼板の圧延方向(r0)、圧延方向に対して鉛直方向の板幅方向(r90)、圧延方向に対して45°方向(r45)とするとき、((r0+r90)/2)−r45からなる関係式から算出される。
Therefore, the present invention provides a carbon steel sheet having excellent anisotropy in terms of mass%, C: 0.15 to 2.0%, Si: 0.40% or less, Mn: 0.5% or less, P: 0. 0.03% or less, S: 0.03% or less, Cr: 2.0% or less, with the balance being Fe and inevitable impurities, and a carbide spheroidization rate defined by (a) below is 90% or more In addition, the carbides are dispersed in the ferrite so that the average carbide particle size defined in the following (b) is 0.4 μm or more, and the anisotropy Δr defined in the following (c) is -1. It is characterized by being 0-1.0.
(A) Carbide spheroidization ratio: In the observation of the metal structure of the cross section of the steel sheet, the ratio (p / q) of the maximum length p of carbide to the maximum length q in the direction perpendicular to the total number of carbides in the observation field is less than 3. The ratio (%) of the number of carbides. However, the observation visual field is a region where the total number of carbides is 300 or more.
(B) Average carbide particle size: A value obtained by averaging the equivalent circle diameters measured for individual carbides in the observation field in the observation of the metal structure of the cross section of the steel sheet for all the measured carbides. However, the observation visual field is a region where the total number of carbides is 300 or more.
(C) Regarding the Rankford value (r value), the rolling direction (r 0 ) of the steel sheet, the sheet width direction (r 90 ) perpendicular to the rolling direction, and the 45 ° direction (r 45 ) with respect to the rolling direction Is calculated from the relational expression consisting of ((r 0 + r 90 ) / 2) −r 45 .
さらに、質量%において、Ni:0.3%以下、Cu:0.3%以下、Mo:1.0%以下を含有する成分組成を有することも特徴である。 Furthermore, it is also characterized by having a component composition containing Ni: 0.3% or less, Cu: 0.3% or less, and Mo: 1.0% or less in mass%.
本発明によれば、深絞り加工品の縦壁部の高さバラツキを抑制できるという効果を奏する。 According to the present invention, there is an effect that variation in height of the vertical wall portion of the deep-drawn product can be suppressed.
本発明者らは、一般的な炭素鋼種における鋼板の異方性を改善する手段について詳細に検討してきた。その結果、(1)炭化物を単に球状化させるだけでは異方性の改善を図ることはできないこと、(2)異方性は、鋼板中における炭化物の分散形態が影響していることが分かった。具体的には炭化物のより一層の球状化と、一定以上の平均粒径の炭化物をフェライト中に分散させることで改善し得ることを知見した。 The present inventors have studied in detail the means for improving the anisotropy of a steel sheet in a general carbon steel type. As a result, it was found that (1) it was not possible to improve the anisotropy by simply spheroidizing the carbide, and (2) the anisotropy was influenced by the dispersion form of the carbide in the steel sheet. . Specifically, it has been found that improvement can be achieved by further spheroidizing carbides and dispersing carbides having a certain average particle size or more in ferrite.
以下、本発明を特定するための事項について説明する。 Hereinafter, matters for specifying the present invention will be described.
本発明では、C:0.15〜2.0質量%を含有する炭素鋼を対象とする。Cは炭素鋼においては最も基本となる合金元素であり、その含有量によって焼入れ硬さおよび炭化物量が大きく変動する。C含有量が0.15質量%未満の鋼では、各種機械構造用部品に適用するうえで十分な焼入れ硬さが得られない。一方、C含有量が2.0質量%を超えると、熱間圧延後の靭性が低下して鋼帯の製造性・取扱い性が悪くなるとともに、焼鈍後においても十分な延性が得られないため、加工度の高い部品への適用が困難になる。したがって、本発明では適度な焼入れ硬さと加工性を兼ね備えた素材鋼板を提供する観点から、C含有量が0.15〜2.0質量%の範囲の鋼を対象とする。 In this invention, C: Carbon steel containing 0.15-2.0 mass% is made into object. C is an alloy element which is the most basic in carbon steel, and the quenching hardness and the amount of carbide vary greatly depending on its content. Steel with a C content of less than 0.15% by mass cannot provide sufficient quenching hardness when applied to various machine structural parts. On the other hand, if the C content exceeds 2.0% by mass, the toughness after hot rolling is lowered and the manufacturability and handleability of the steel strip are deteriorated, and sufficient ductility cannot be obtained even after annealing. This makes it difficult to apply to parts with a high degree of processing. Therefore, in the present invention, steel with a C content in the range of 0.15 to 2.0% by mass is targeted from the viewpoint of providing a raw steel plate having appropriate quenching hardness and workability.
Siは、過剰に添加すると固溶強化作用によりフェライトが硬化し、成形加工時に割れ発生の原因となる。またSi含有量が増加すると製造過程で鋼板表面にスケール疵が発生する傾向を示し、表面品質の低下を招く。そこでSiを添加するに際しては0.4質量%以下の含有量となるようにする。
Mnは、鋼板の焼入れ性を高め、強靭化にも有効な添加元素であり、0.10質量%以上の含有量とすることが好ましい。十分な焼入れ性とフェライト硬化による加工性の劣化を防ぐために0.5質量%以下の含有量とする。
When Si is added excessively, the ferrite is hardened by the solid solution strengthening action, which causes cracks during molding. Further, when the Si content is increased, scale flaws tend to be generated on the surface of the steel sheet during the production process, leading to a reduction in surface quality. Therefore, when adding Si, the content is made 0.4% by mass or less.
Mn is an additive element that enhances the hardenability of the steel sheet and is effective for toughening, and it is preferable to have a content of 0.10% by mass or more. In order to prevent sufficient hardenability and deterioration of workability due to ferrite hardening, the content is 0.5% by mass or less.
Pは、延性や靭性を劣化させるので、0.03質量%以下の含有量とする。
Sは、MnS系介在物を形成する元素である。この介在物の量が多くなると深絞り性が劣化するので、鋼中のS含有量はできるだけ低減することが望ましい。本発明で規定する炭化物分散形態を実現させれば、S含有量を特別に低減していない一般的な市販鋼に対しても深絞り性の向上効果は得られる。しかし、C含有量が0.40質量%近くまで高くなった場合でも、高い深絞り性を確保するためS含有量を0.03質量%以下とした。
Since P deteriorates ductility and toughness, the content is set to 0.03% by mass or less.
S is an element that forms MnS inclusions. Since deep drawability deteriorates when the amount of inclusions increases, it is desirable to reduce the S content in the steel as much as possible. If the carbide dispersion form prescribed | regulated by this invention is implement | achieved, the improvement effect of deep drawability will be acquired also with respect to the general commercial steel which has not reduced especially S content. However, even when the C content increases to nearly 0.40 mass%, the S content is set to 0.03 mass% or less in order to ensure high deep drawability.
Crは、焼入れ性を改善するとともに焼戻し軟化抵抗を大きくする元素である。しかし、2.0質量%を超える多量のCrが含まれると3段階焼鈍を施しても軟質化しにくく焼入れ前のプレス成形性や加工性が劣化するようになる。したがってCrを添加する場合は2.0質量%以下の範囲とする。 Cr is an element that improves hardenability and increases temper softening resistance. However, if a large amount of Cr exceeding 2.0% by mass is contained, it is difficult to soften even if three-stage annealing is performed, and press formability and workability before quenching deteriorate. Therefore, when adding Cr, it is made into the range of 2.0 mass% or less.
Moは、少量の添加でCrと同様に焼入れ性・焼戻し軟化抵抗の改善に寄与する。しかし、1.0質量%を超える多量のMoが含まれると3段階焼鈍を施しても軟質化しにくく、焼入れ前のプレス成形性や加工性が劣化するようになる。したがって、Moを添加する場合は1.0質量%以下の範囲とする。
Cuは、熱間圧延中に生成する酸化スケールの剥離性を向上させるので、鋼板の表面性状の改善に有効である。しかし、0.3質量%を超えて含有させると溶融金属脆化により鋼板表面に微細なクラックが生じ易くなるので、Cuを含有させる場合は0.3質量%以下の範囲とする。
Niは、焼入れ性を改善するとともに、低温脆性を防止する合金成分である。また、NiはCu添加によって問題となる溶融金属脆化の悪影響を打ち消す作用を有するので、特にCuを約0.2質量%以上添加する場合にはCu添加量と同程度のNiを添加することが極めて有効である。しかし、0.3質量%を超える多量のNiが含まれると3段階焼鈍を施しても軟質化しにくく、焼き入れ前のプレス成形性や加工性が劣化するようになる。したがって、Niを添加する場合は0.3質量%以下の範囲とする。
Mo contributes to the improvement of hardenability and temper softening resistance in the same manner as Cr when added in a small amount. However, if a large amount of Mo exceeding 1.0% by mass is contained, it is difficult to soften even if three-stage annealing is performed, and press formability and workability before quenching deteriorate. Therefore, when adding Mo, it is set as 1.0 mass% or less.
Cu improves the surface properties of the steel sheet because it improves the peelability of the oxide scale produced during hot rolling. However, if the content exceeds 0.3% by mass, fine cracks are likely to occur on the surface of the steel sheet due to the embrittlement of the molten metal. Therefore, when Cu is contained, the range is 0.3% by mass or less.
Ni is an alloy component that improves hardenability and prevents low temperature brittleness. In addition, since Ni has an action to counteract the adverse effect of molten metal embrittlement which is a problem due to the addition of Cu, when adding about 0.2 mass% or more of Cu, the same amount of Ni as the amount of added Cu should be added. Is extremely effective. However, if a large amount of Ni exceeding 0.3% by mass is contained, it is difficult to soften even if three-stage annealing is performed, and press formability and workability before quenching deteriorate. Therefore, when adding Ni, it is set as the range of 0.3 mass% or less.
次に、本発明鋼板の金属組織を特定するための事項について説明する。 Next, the matter for specifying the metal structure of the steel sheet of the present invention will be described.
〔炭化物球状化率〕
炭化物球状化率は先に定義したとおりであるが、これは、全炭化物のうち「球状化した炭化物」とみなされるものがどの程度を占めているかを表している。ここで、ある炭化物が「球状化した炭化物」とみなされるための条件として、鋼板断面の金属組織観察平面内において、その炭化物の最大長さpとそれに直角方向の最大長さqの比(p/q)が3未満であることを要件とした。例えば、再生パーライトにおける炭化物では、そのほとんどは上記の比(p/q)が3以上である。一方、AC1点以上の加熱で残留した未溶解炭化物を起点として成長した炭化物では、上記の比(p/q)が3未満となる。
[Carbide spheroidization rate]
The carbide spheroidization rate is as defined above, which represents how much of all carbides are considered to be “spheroidized carbides”. Here, as a condition for a certain carbide to be regarded as “spheroidized carbide”, the ratio of the maximum length p of the carbide to the maximum length q in the direction perpendicular thereto in the metallographic observation plane of the cross section of the steel sheet (p / Q) was less than 3. For example, most of the carbides in recycled perlite have the above ratio (p / q) of 3 or more. On the other hand, in the carbide grown starting from the undissolved carbide remaining after heating at the A C1 point or higher, the ratio (p / q) is less than 3.
炭化物の形状を立体的に正確に捉えて規定することは難しく、また製品鋼板の適否を判定するうえでも煩雑である。これに対し、鋼板断面の平面的な金属組織を観察することは容易である。本発明者らは、鋼板断面の金属組織の中で観察される炭化物形状について上記のようなpとqの比(p/q)を用いて球状化の程度を捉えたとき、炭化物形状の影響を適切に評価できることを確認した。そして、種々の実験の結果、上記の比(p/q)が3未満であるような「球状化した炭化物」の数が全体の炭化物数の90%以上を占めており、かつ後述の平均炭化物距離が特定範囲となるときに、その鋼板は高い異方性を示すことを見出した。なお、数値の信頼性を高めるために、観察視野は炭化物総数が300個以上となる領域とする。 It is difficult to accurately determine and define the shape of the carbide three-dimensionally, and it is complicated to determine the suitability of the product steel plate. On the other hand, it is easy to observe the planar metal structure of the cross section of the steel plate. When the present inventors grasped the degree of spheroidization using the ratio of p and q (p / q) as described above for the carbide shape observed in the metal structure of the steel sheet cross section, the influence of the carbide shape. It was confirmed that can be evaluated appropriately. As a result of various experiments, the number of “spheroidized carbides” having the above ratio (p / q) of less than 3 accounts for 90% or more of the total number of carbides, and an average carbide described later. It was found that the steel sheet exhibits high anisotropy when the distance falls within a specific range. In order to increase the reliability of the numerical value, the observation field of view is a region where the total number of carbides is 300 or more.
〔平均炭化物粒径〕
平均炭化物粒径は、鋼板断面の金属組織観察において、観察視野内の個々の炭化物について測定した円相当径を全測定炭化物について平均した値をいう。具体的には個々の炭化物について面積を測定し、その面積から円相当径を算出する。面積の測定は画像処理装置を用いて行うことができる。そして測定した全ての炭化物の円相当径の総和を求め、その総和を測定炭化物の総数で除した値を平均炭化物粒径とする。数値の信頼性を高めるために、観察視野は測定炭化物総数が300個以上となる領域とする。
[Average carbide particle size]
The average carbide particle size is a value obtained by averaging the equivalent circle diameters measured for individual carbides within the observation field for all the measured carbides in the observation of the metal structure of the cross section of the steel sheet. Specifically, the area of each carbide is measured, and the equivalent circle diameter is calculated from the area. The area can be measured using an image processing apparatus. And the sum total of the circle equivalent diameter of all the measured carbide | carbonized_materials is calculated | required, and the value which remove | divided the sum total with the total number of measurement carbide | carbonized_materials is made into an average carbide particle diameter. In order to increase the reliability of the numerical value, the observation visual field is an area where the total number of measured carbides is 300 or more.
本発明者らの実験の結果、異方性の観点からは、先述の炭化物球状化率を90%以上とした上で、平均炭化物粒径を0.4μm以上とする必要があることがわかった。これによって、異方性(Δr)を−1.0〜1.0の範囲にすることができる。 As a result of experiments by the present inventors, it was found that, from the viewpoint of anisotropy, the above-mentioned carbide spheroidization ratio should be 90% or more, and the average carbide particle size should be 0.4 μm or more. . Thereby, anisotropy ((DELTA) r) can be made into the range of -1.0-1.0.
以上のような金属組織を有する鋼板は、焼鈍方法を工夫することによって得ることができる。例えば、鋼板のA1変態点直下および直上の特定温度範囲における加熱を適切に組み合わせた焼鈍によって実現できる。具体的には例えば、熱延鋼板または冷延鋼板に対して、AC1−50℃〜AC1未満の温度範囲で0.5時間以上保持する1段目の加熱を行った後、AC1〜AC1+100℃の温度範囲で0.5〜20時間保持する2段目の加熱およびAr1−80℃〜Ar1の温度範囲で2〜60時間保持する3段目の加熱を連続して行い、かつ、2段目の保持温度から3段目の保持温度への冷却速度を5〜30℃/時間とする3段階焼鈍を施すことによって、本発明で規定する適正な金属組織を有する鋼板を好適に製造することができる。 A steel sheet having the above metal structure can be obtained by devising an annealing method. For example, it can be realized by annealing appropriately combining heating in a specific temperature range immediately below and immediately above the A 1 transformation point of the steel sheet. Specifically, for example, with respect to hot-rolled steel sheet or cold-rolled steel sheet, after the heat of the first stage which holds more than 0.5 hours at a temperature range of less than A C1 -50 ℃ ~A C1, A C1 ~ The second stage heating is maintained for 0.5 to 20 hours in the temperature range of A C1 + 100 ° C., and the third stage heating is maintained for 2 to 60 hours in the temperature range of A r1 −80 ° C. to A r1. And the steel plate which has the appropriate metal structure prescribed | regulated by this invention by giving the 3 stage annealing which makes the cooling rate from the 2nd stage holding temperature to the 3rd stage holding temperature 5-30 degrees C / hour. It can manufacture suitably.
表1に示す化学組成の鋼を溶製した。表中の焼入れ硬さは、供試材をそのまま900℃で5分間保持した後、水焼入れした場合の硬さを示した。
表1の内、鋼種Aは、C含有量が0.07質量%と低いので、焼入れ後の硬さが低く、機械部品として必要な硬度が得られないものであった。鋼種Aを除く鋼板について、熱延コイル巻取り温度を種々変化させた熱間圧延を行い熱延組織を変化させた。得られた熱延鋼板は、酸洗後、種々の条件で冷間圧延や焼鈍を施し、鋼板の炭化物のフェライト粒界存在率、集合組織を変化させた。その後、引張り試験に供し、Δr値を測定した。
Steels having chemical compositions shown in Table 1 were melted. The quenching hardness in the table indicates the hardness when the test material is kept as it is at 900 ° C. for 5 minutes and then water-quenched.
In Table 1, steel type A had a low C content of 0.07% by mass, so the hardness after quenching was low, and the hardness required for machine parts could not be obtained. About the steel plate except steel grade A, hot rolling which changed various hot rolling coil winding temperature was performed, and the hot rolling structure was changed. The obtained hot-rolled steel sheet was subjected to cold rolling and annealing under various conditions after pickling, thereby changing the ferrite grain boundary presence rate and texture of the carbide of the steel sheet. Then, it used for the tension test and measured (DELTA) r value.
炭化物球状化率は、走査電子顕微鏡により鋼板断面の一定領域内を観察し、炭化物の最大長さpとその直角方向の最大長さqの比(p/q)が3未満となるものを「球状化した炭化物」としてカウントし、測定炭化物総数に占める当該「球状化した炭化物」の数の割合を算出して求めた。その際、測定炭化物総数は300〜1000個の範囲であった。
また、上記の炭化物球状化率を測定した領域について画像処理装置(ニレコ社製、LUZEX III U)を利用して平均炭化物粒径Dを求めた。
The carbide spheroidization rate is determined by observing the inside of a certain area of the cross section of the steel sheet with a scanning electron microscope, and the ratio (p / q) between the maximum length p of carbide and the maximum length q in the perpendicular direction is less than 3. Counting as “spheroidized carbide”, the ratio of the number of “spheroidized carbides” in the total number of measured carbides was calculated. At that time, the total number of measured carbides was in the range of 300 to 1000.
Further, an average carbide particle size D was determined for the region where the carbide spheroidization ratio was measured using an image processing apparatus (manufactured by Nireco Corporation, LUZEX III U).
引張り試験は、L(圧延方向)、D(圧延方向に対して45度)およびT(圧延方向に対して90度)の3方向のJIS5号引張り試験片を作成し、平行部の標点間距離50mmとして、板厚は1.0mmで実施した。引張り試験にあたっては、15%の引張り伸びを与え、その時の標点間内の板幅を測定し、次の式によりr値を算出した。
r=ln(Wo/Wx)/ln(LxWx/LoWo)
ここで、WoおよびLoは試験前の板幅および標点間距離であり、WxおよびLxは15%引張り伸び付与後の板幅および標点間距離を示している。
The tensile test was performed by creating three JIS No. 5 tensile test pieces of L (rolling direction), D (45 degrees with respect to the rolling direction), and T (90 degrees with respect to the rolling direction) between the parallel part marks. The distance was 50 mm and the plate thickness was 1.0 mm. In the tensile test, a tensile elongation of 15% was given, the plate width between the gauge points at that time was measured, and the r value was calculated by the following formula.
r = ln (Wo / Wx) / ln (LxWx / LoWo)
Here, Wo and Lo are the plate width and the distance between the gauge points before the test, and Wx and Lx indicate the sheet width and the distance between the gauge points after giving 15% tensile elongation.
これらの試験結果を表2に示す。 These test results are shown in Table 2.
表2において、比較例の鋼板は、平均炭化物が0.4μm未満なので鋼板の異方性(Δr)が大きくなった。これに対して、実施例での平均炭化物粒径が0.4μm以上となり、異方性(Δr)も−1〜1の範囲となった。 In Table 2, since the steel plate of the comparative example had an average carbide of less than 0.4 μm, the anisotropy (Δr) of the steel plate was increased. In contrast, the average carbide particle size in the examples was 0.4 μm or more, and the anisotropy (Δr) was also in the range of −1 to 1.
本発明では、炭化物球状化率や平均炭化物粒径、炭化物に分散状態を制御することにより、異方性に優れた炭素鋼板を実現した。この鋼板は、部品形状が複雑な自動車部品等、各種機械部品の素材として好適に用いることができる。
In this invention, the carbon steel plate excellent in anisotropy was implement | achieved by controlling a carbide | carbonized_material spheroidization rate, an average carbide | carbonized_material particle size, and a dispersion state to carbide | carbonized_material. This steel sheet can be suitably used as a material for various machine parts such as automobile parts having a complicated part shape.
Claims (2)
(a)炭化物球状化率:鋼板断面の金属組織観察において、観察視野内の炭化物総数に占める、炭化物の最大長さpとその直角方向の最大長さqの比(p/q)が3未満である炭化物の数の割合(%)をいう。ただし、観察視野は炭化物総数が300個以上となる領域とする。
(b)平均炭化物粒径:鋼板断面の金属組織観察において観察視野内の個々の炭化物について測定した円相当径を全測定炭化物について平均した値をいう。ただし、観察視野は炭化物総数が300個以上となる領域とする。
(c)ランクフォード値(r値)に関して、鋼板の圧延方向(r0)、圧延方向に対して鉛直方向の板幅方向(r90)、圧延方向に対して45°方向(r45)とするとき、((r0+r90)/2)−r45からなる関係式から算出される。 In mass%, C: 0.15-2.0%, Si: 0.40% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.03% or less, Carbide so that the balance is Fe and inevitable impurities, the carbide spheroidization rate defined by (a) below is 90% or more, and the average carbide particle size defined by (b) is 0.4 μm or more Is dispersed in ferrite, and the anisotropic Δr defined by (c) below is −1.0 to 1.0.
(A) Carbide spheroidization ratio: In the observation of the metal structure of the cross section of the steel sheet, the ratio (p / q) of the maximum length p of carbide to the maximum length q in the direction perpendicular to the total number of carbides in the observation field is less than 3. The ratio (%) of the number of carbides. However, the observation visual field is a region where the total number of carbides is 300 or more.
(B) Average carbide particle size: A value obtained by averaging the equivalent circle diameters measured for individual carbides in the observation field in the observation of the metal structure of the cross section of the steel sheet for all the measured carbides. However, the observation visual field is a region where the total number of carbides is 300 or more.
(C) Regarding the Rankford value (r value), the rolling direction (r 0 ) of the steel sheet, the sheet width direction (r 90 ) perpendicular to the rolling direction, and the 45 ° direction (r 45 ) with respect to the rolling direction Is calculated from the relational expression consisting of ((r 0 + r 90 ) / 2) −r 45 .
Furthermore, in mass%, a component composition containing one or more selected from Cr: 2.0% or less, Mo: 1.0% or less, Ni: 0.3% or less, and Cu: 0.3% or less The carbon steel plate according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017034244A JP2018141184A (en) | 2017-02-27 | 2017-02-27 | Carbon steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017034244A JP2018141184A (en) | 2017-02-27 | 2017-02-27 | Carbon steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018141184A true JP2018141184A (en) | 2018-09-13 |
Family
ID=63526491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017034244A Pending JP2018141184A (en) | 2017-02-27 | 2017-02-27 | Carbon steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018141184A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210132704A (en) | 2019-03-29 | 2021-11-04 | 닛폰세이테츠 가부시키가이샤 | High carbon steel sheet and manufacturing method thereof |
-
2017
- 2017-02-27 JP JP2017034244A patent/JP2018141184A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210132704A (en) | 2019-03-29 | 2021-11-04 | 닛폰세이테츠 가부시키가이샤 | High carbon steel sheet and manufacturing method thereof |
KR20230151052A (en) | 2019-03-29 | 2023-10-31 | 닛폰세이테츠 가부시키가이샤 | High-carbon steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5030280B2 (en) | High carbon steel sheet with excellent hardenability, fatigue characteristics, and toughness and method for producing the same | |
JP5812048B2 (en) | High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same | |
JP5407178B2 (en) | Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof | |
TWI591187B (en) | High-carbon cold-rolled steel sheet and its manufacturing method | |
JP5126844B2 (en) | Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member | |
JP5280324B2 (en) | High carbon steel sheet for precision punching | |
JP3848444B2 (en) | Medium and high carbon steel plates with excellent local ductility and hardenability | |
JP4465057B2 (en) | High carbon steel sheet for precision punching | |
JP5913214B2 (en) | Bolt steel and bolts, and methods for producing the same | |
JPWO2021090472A1 (en) | High carbon cold rolled steel sheet and its manufacturing method and high carbon steel machine parts | |
JP2013057114A (en) | Medium carbon steel plate having excellent workability and hardenability and method for producing the same | |
JP4425368B2 (en) | Manufacturing method of high carbon steel sheet with excellent local ductility | |
JP5630523B2 (en) | Steel sheet for nitriding treatment and method for producing the same | |
JPWO2015146174A1 (en) | High carbon hot rolled steel sheet and manufacturing method thereof | |
JP2003147485A (en) | High toughness high carbon steel sheet having excellent workability, and production method therefor | |
CN107557663B (en) | Wire rod excellent in stretch processability and method for producing same | |
JPWO2019151048A1 (en) | High carbon hot rolled steel sheet and manufacturing method thereof | |
JP5739689B2 (en) | Mechanical structural member | |
JP4377973B2 (en) | Steel sheet with excellent local ductility and heat treatment | |
JP4471486B2 (en) | Medium and high carbon steel plates with excellent deep drawability | |
JP2005240135A (en) | Method for manufacturing wear-resistant steel having excellent bendability, and wear-resistant steel | |
JP5489497B2 (en) | Method for producing boron steel sheet with excellent hardenability | |
JP3909939B2 (en) | Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability | |
JP5601861B2 (en) | Manufacturing method of boron steel rolled annealed steel sheet | |
JP4161090B2 (en) | High carbon steel plate with excellent punchability |