JP2018087581A - Wind lock mechanism - Google Patents
Wind lock mechanism Download PDFInfo
- Publication number
- JP2018087581A JP2018087581A JP2016229942A JP2016229942A JP2018087581A JP 2018087581 A JP2018087581 A JP 2018087581A JP 2016229942 A JP2016229942 A JP 2016229942A JP 2016229942 A JP2016229942 A JP 2016229942A JP 2018087581 A JP2018087581 A JP 2018087581A
- Authority
- JP
- Japan
- Prior art keywords
- lock mechanism
- wind
- shaft
- wind lock
- spring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
本発明は、例えば、建物の免震層に免震装置とともに設けられ、風荷重の作用時に免震装置を不動制御するための風ロック機構に関する。 The present invention relates to, for example, a wind lock mechanism that is provided in a seismic isolation layer of a building together with a seismic isolation device and immobilizes the seismic isolation device when a wind load is applied.
例えば中高層建物が巨大地震を受けると、建物の最弱層に損傷が生じて耐力が低下し始め、この層に地震エネルギー(振動エネルギー)が集中して層崩壊が生じ、他の層は健全性が確保されているにもかかわらず、層崩壊モードによって建物が崩壊に至るという現象が発生する。また、崩壊に至らない場合においても、最弱層の被害が甚大となり、補修による復旧が困難になる。 For example, if a middle- and high-rise building is subjected to a huge earthquake, the weakest layer of the building will be damaged and the proof stress will begin to decline, seismic energy (vibration energy) will concentrate on this layer, causing layer collapse, and the other layers will be healthy However, the phenomenon that the building collapses due to the layer collapse mode occurs. Even if it does not collapse, the damage of the weakest layer will be enormous, making it difficult to recover by repair.
これに対し、周知の通り、例えばオフィスビルや公共施設、集合住宅などの建物には、建物本体と基礎の間など、上部構造体と下部構造体の間の免震層に積層ゴムなどの免震装置を介設し、地震時に、上部構造体の固有周期を地震動の卓越周期帯域から長周期側にずらし、応答加速度を小さくして揺れを抑えるようにしたものがある。 On the other hand, as is well known, for example, in buildings such as office buildings, public facilities, and apartment buildings, there is no need to use rubber such as laminated rubber in the seismic isolation layer between the upper structure and the lower structure, such as between the building body and the foundation. In some cases, a seismic device is installed to shift the natural period of the superstructure from the dominant period band of seismic motion to the long period side during earthquakes, reducing the response acceleration and suppressing shaking.
一方、免震層を備えた免震建物は、免震層の剛性を限りなく小さくして長周期化するほど、大きな地震時応答低減効果を得られるが、免震層の剛性が小さすぎると(免震層が柔らかすぎると)、強風時など、風荷重によって建物が揺れ易くなってしまう。 On the other hand, the seismic isolation building with the seismic isolation layer has a greater effect of reducing the response during an earthquake as the rigidity of the seismic isolation layer is reduced as much as possible and the period is longer. (If the seismic isolation layer is too soft), the building will be easily shaken by wind loads, such as during strong winds.
このため、通常の免震建物/免震設計では、鉛プラグ入り積層ゴムの免震装置を用いたり、鉛ダンパーや鋼材系ダンパーなどを天然ゴム系積層ゴムの免震装置と併用するなどし、その降伏耐力を免震層に作用する風荷重よりも大きくすることによって、強風時の揺れを回避するようにしている。 For this reason, in normal base-isolated buildings / base-isolated designs, use of lead-plug laminated rubber seismic isolation devices or use of lead dampers and steel dampers together with natural rubber-based laminated rubber seismic isolation devices, By making the yield strength larger than the wind load acting on the seismic isolation layer, the sway during strong winds is avoided.
しかしながら、鉛プラグ入り積層ゴムを用いたり、ダンパーを免震装置と併用することにより免震層の降伏耐力を大きくする対策は、当然、その等価剛性を大きくすることを意味し、免震建物の長周期化に相反するため、地震時応答低減効果の低減を招く。 However, measures to increase the yield strength of the base isolation layer by using laminated rubber with lead plugs or using a damper in combination with the base isolation device naturally means increasing the equivalent rigidity of the base isolation building. This conflicts with the longer period, leading to a reduction in the response reduction effect during earthquakes.
これに対し、強風(または中小地震)時に免震層を変形させないようにし、且つ、等価剛性を大きくし過ぎず、長周期化による大地震時の応答低減効果を阻害しないようにするための風ロック機構が提案、実用化されている(例えば、特許文献1参照)。 On the other hand, it is a wind to prevent the seismic isolation layer from being deformed in strong winds (or small and medium earthquakes), and to prevent the equivalent rigidity from becoming too large and to prevent the response reduction effect during a large earthquake due to a long period. A lock mechanism has been proposed and put to practical use (see, for example, Patent Document 1).
具体的に、風荷重よりも大きな設定荷重が作用すると、せん断力で破断するシアピンによって免震建物の下部構造と上部構造を締結し、風荷重作用時に上部構造の移動を拘束する機構(シアピンによる風ロック機構)や、風や地震などの外力をセンサーで検知し、外力の大きさに応じてオイルダンパーの減衰係数をアクティブ制御するもの(アクティブ制御型風ロック機構付きオイルダンパー)、台風の接近/通過等に応じて手動で抜き差しするシアピン(ロックピン)をオイルダンパーに設けたもの(パッシブ型風ロック機構付きオイルダンパー)などが提案、実用化されている。 Specifically, when a set load larger than the wind load is applied, a mechanism that tightens the lower structure and the upper structure of the base-isolated building with shear pins that break by shearing force and restrains the movement of the upper structure when wind loads are applied (by shear pins) Wind-lock mechanism), sensors that detect external forces such as wind and earthquake, and actively controlling the damping coefficient of the oil damper according to the magnitude of the external force (oil damper with active-control wind-lock mechanism), approaching typhoons / Proposed and put to practical use are oil dampers with a shear pin (lock pin) that is manually inserted and removed according to passage, etc. (oil damper with passive wind lock mechanism).
しかしながら、シアピンによる風ロック機構(及びパッシブ型風ロック機構付きオイルダンパー)においては、シアピンのせん断破壊によるロック解除時に、瞬間的に荷重が解放されることから、その荷重が建物の上部構造側に衝撃荷重として伝わり、応答加速度が瞬間的に大きくなるという問題がある。また、シアピンが非常に高価であるという問題がある。 However, in the wind lock mechanism with shear pin (and oil damper with passive wind lock mechanism), the load is released momentarily when the lock is released due to shear failure of the shear pin. There is a problem that it is transmitted as an impact load and the response acceleration increases momentarily. There is also a problem that shear pins are very expensive.
また、パッシブ型風ロック機構付きオイルダンパーにおいては、風が問題になる前にシアピン(ロックピン)を設置したり、解除したりする作業が必要で、この作業を必ず行えるかという点で疑問が残る。 In addition, in an oil damper with a passive wind lock mechanism, it is necessary to install or release a shear pin (lock pin) before the wind becomes a problem. Remain.
アクティブ制御型風ロック機構付きオイルダンパーにおいては、万が一故障した場合に風ロック機能が全く発揮されない。このため、電気部品の長期耐久性や信頼性等の観点から万が一故障した場合を想定し、それが作動しないフェールセーフ状態で設計することが必要になる。 In the oil damper with the active control type wind lock mechanism, the wind lock function is not exhibited at all in case of failure. For this reason, from the viewpoint of long-term durability, reliability, etc. of the electrical component, it is necessary to design in a fail-safe state in which the failure occurs by assuming a failure.
上記事情に鑑み、本発明は、外部電力を使わずに拘束や解除を自動的に行うことができ、風荷重時には下部構造と上部構造とを移動拘束し、地震時には拘束を解除して免震効果を確実に発揮させることを可能にする風ロック機構を提供することを目的とする。 In view of the above circumstances, the present invention can automatically perform restraint and release without using external electric power, moves and restrains the lower structure and upper structure during wind loads, and releases the restraint during earthquakes by releasing the restraint. It aims at providing the wind lock mechanism which makes it possible to exhibit an effect reliably.
上記の目的を達するために、この発明は以下の手段を提供している。 In order to achieve the above object, the present invention provides the following means.
本発明の風ロック機構は、上部構造と下部構造の間の免震層に免震装置と並列に設けられる風ロック機構であって、上下方向に伸縮するバネを有する軸バネ装置と、軸線方向を上下方向に配し、下端部側を前記軸バネ装置を介して前記下部構造に接続しつつ前記軸バネ装置によって上方に付勢して配設される軸材と、下端部が前記軸材の上端部にピン結合され、前記軸バネ装置の圧縮状態とされたバネの付勢力が前記軸材を通じて作用することで上端部を前記上部構造に押圧して配設される束材とを備えて構成されていることを特徴とする。 The wind lock mechanism of the present invention is a wind lock mechanism provided in parallel to the seismic isolation device in the seismic isolation layer between the upper structure and the lower structure, and an axial spring device having a spring that expands and contracts in the vertical direction, and the axial direction Are arranged in the vertical direction, and the lower end side is connected to the lower structure via the axial spring device and is urged upward by the axial spring device, and the lower end portion is the shaft material. A bundle member which is pin-coupled to the upper end portion of the shaft spring and is arranged by pressing the upper end portion against the upper structure when the biasing force of the spring which is in a compressed state of the shaft spring device acts through the shaft member. It is characterized by being configured.
また、本発明の風ロック機構においては、前記上部構造に前記束材の上端部が嵌合する嵌合凹部が設けられ、前記下部構造に対して前記上部構造が相対変位し、前記上部構造に従動して前記束材が前記軸材に対して所定の角度で傾動するとともに前記束材の上端部の嵌合状態が解除されるように構成されていることが望ましい。 In the wind lock mechanism of the present invention, the upper structure is provided with a fitting recess into which the upper end portion of the bundle is fitted, and the upper structure is displaced relative to the lower structure. It is desirable that the bundle member is tilted at a predetermined angle with respect to the shaft member, and the fitting state of the upper end portion of the bundle member is released.
本発明の風ロック機構によれば、上部構造と下部構造の間の免震層に設けることにより、外部電力を使わずに上部構造の拘束や解除を自動的に行うことができ、風荷重時には上部構造と下部構造を移動拘束し、地震時には拘束を解除して上部構造に対する免震効果を確実に発揮させることが可能になる。 According to the wind lock mechanism of the present invention, by providing the base isolation layer between the upper structure and the lower structure, the upper structure can be automatically restrained or released without using external power. It is possible to move and restrain the upper structure and the lower structure, and to release the restraint in the event of an earthquake, so that the seismic isolation effect on the upper structure can be exhibited reliably.
以下、図1から図14を参照し、本発明の一実施形態に係る風ロック機構について説明する。 A wind lock mechanism according to an embodiment of the present invention will be described below with reference to FIGS.
本実施形態の風ロック機構(風ロック装置)Aは、図1に示すように、建物本体と基礎の間など、上部構造1と下部構造2の間の免震層3に積層ゴムなどの免震装置(不図示)と並列に設けられている。
As shown in FIG. 1, the wind lock mechanism (wind lock device) A according to the present embodiment has an
そして、この風ロック機構Aは、強風時または中小地震時に、免震層3を変形させないようにし、すなわち、強風時または中小地震時に下部構造2に対して上部構造1を相対変位させないように移動拘束し、大地震時に、移動拘束を解除して免震装置による上部構造1の免震性能を発揮させるように、すなわち、大地震時に長周期化による上部構造1の応答低減効果を発揮させるように構成されている。
The wind lock mechanism A moves so as not to deform the
具体的に、本実施形態の風ロック機構Aは、上下方向に伸縮するバネ5aを備えた軸バネ装置5と、軸線方向を上下方向に配し、下端部側を軸バネ装置5を介して下部構造2に接続しつつ軸バネ装置5によって上方に付勢して配設される軸材6と、下端部が軸材6の上端部にピン結合部7を介してピン結合され、軸バネ装置5の圧縮状態とされたバネ5aの付勢力が軸材6を通じて作用することで上端部を上部構造1に圧接/押圧して配設される束材8とが主な構成要素とされている。
Specifically, the wind lock mechanism A of the present embodiment includes an
本実施形態では、軸材6及び束材8がそれぞれ鋼製の柱状部材とされ、ピン結合部7がボールジョイント(球面軸受及び球面座)によって構成されている。なお、ピン結合部7は、軸材6の上下方向に延びる軸線に対して束材8の軸線が所定の角度(本実施形態では45°程度)で自在に回動/傾斜可能に軸材6と束材8を接続できれば、特にその構成を限定する必要はない。例えば、ボールジョイントに替えて、図3に示すような自在継手をピン結合部7に採用してもよい。
In this embodiment, the
また、図2に示すように、上部構造1の下面には、束材8がその軸線を軸材6の軸線と同軸上に配した状態、すなわち、束材8が傾斜せずに軸材6の上方に軸線方向を上下方向に配して設けられている状態で、軸バネ装置5の付勢力によって上部構造1の下面に押圧される束材8の上端部8aが嵌合し、束材8を保持する嵌合凹部9が設けられている。
In addition, as shown in FIG. 2, on the lower surface of the
この嵌合凹部9は、図4及び図5に示すように、下部構造2に対して上部構造1が相対変位し、上部構造1に従動して束材8が軸材6に対して所定の角度で傾動するとともに束材8の上端部8aの嵌合状態が解除されるように形成されている。
As shown in FIGS. 4 and 5, the
また、嵌合凹部9は、下部構造2に対する上部構造1の相対変位量が所定の量以下の範囲にある場合に、軸バネ装置5の付勢力によって束材8の上端部8aが嵌合凹部9を押圧することで、下部構造2に対して上部構造1を元の位置に戻し、原点復帰させることができるように形成されている。
Further, when the relative displacement amount of the
すなわち、本実施形態の風ロック機構Aにおいては、束材8に圧縮軸力を導入し傾斜復元力(ロッキング抵抗)を生じさせ、この傾斜復元力をロック荷重として利用する。例えば、束材8が直径200mmの円柱状に形成されている場合に、下部構造2に対する上部構造1の相対変位量(免震層3の変形量)が束材8の半径の100mm以下であると、束材8の傾斜復元力で上部構造1を原点復帰させることができるように構成されている。
That is, in the wind lock mechanism A of the present embodiment, a compression axial force is introduced into the
そして、下部構造2に対する上部構造1の相対変位量(免震層3の変形量)が束材8の半径を超えると、完全に束材8の傾斜復元力が失われ、この段階で風ロック機構Aの作用が解除されるように構成されている。
When the relative displacement amount of the
これにより、本実施形態の風ロック機構Aは、免震層3の変形に依存したパッシブ型のロック解除機構を備えたものとなり、免震層3の変形が束材8の半径を超えない範囲においては常に復元力が生じる非線形弾性としての復元力特性を有し、それ以下の変形では必ず原位置に戻り残留変形は生じないことが特徴となる。
As a result, the wind lock mechanism A of the present embodiment includes a passive type unlock mechanism that depends on the deformation of the
より具体的に、図4は本実施形態の風ロック機構Aの作動原理を示している。また、図6、図7は本実施形態の風ロック機構Aの復元力特性を示している。 More specifically, FIG. 4 shows the operating principle of the wind lock mechanism A of this embodiment. 6 and 7 show the restoring force characteristics of the wind lock mechanism A of the present embodiment.
なお、図7は、本実施形態の風ロック機構Aを設置した免震層3の復元力特性に加え、比較として、従来の風ロック機構であるシアピンを用いた場合、鉛プラグ入り積層ゴムを用いた場合の復元力をそれぞれ示している。
In addition to the restoring force characteristic of the
束材8に生じる傾斜復元力(ロック荷重FL)は、下記の式(1)の通り、束材8の半径bと長さh、及び束材8に生じている圧縮軸力Pに依存する。ここで、束材直径を200mm、束材長を300mmとし、圧縮軸力を1500kNとすると、ロック荷重は500kN(=1500×100/300)となる。さらに、装置そのものの外形はおよそ1000mm×500φであり、コンパクトな形状である。
The inclination restoring force (lock load FL) generated in the
そして、上記構成からなる本実施形態の風ロック機構Aにおいては、傾斜復元力を利用することで、図7に示すように、従来のシアピンやパッシブ型風ロック機構付きオイルダンパーなどと異なり、風ロックの解除に伴う免震層3の瞬間的な復元力荷重の変化が緩やかになる。
And in the wind lock mechanism A of this embodiment which consists of the said structure, as shown in FIG. 7, unlike the conventional shear pin, the oil damper with a passive type wind lock mechanism, etc., using a wind restoring force, The momentary change in the restoring force load of the
すなわち、地震時のロック解除時に応答加速度が瞬間的に増加するといった問題が発生しない。 That is, there is no problem that the response acceleration instantaneously increases when the lock is released during an earthquake.
ここで、本発明に係る風ロック機構Aの優位性を確認するために行った「1質点系の応答解析」、「多質点系の応答解析」の結果について説明する。 Here, the results of “1 mass point system response analysis” and “multi mass system response analysis” performed to confirm the superiority of the wind lock mechanism A according to the present invention will be described.
<1質点系の応答解析>
1質点系について、極めて稀に発生する地震(El Centro NS,y”max=5.11m/s2)に対する時刻歴応答解析を行い、本発明に係る風ロック機構の応答性状を確認した。
<Response analysis of one mass system>
For one mass system, time history response analysis was performed for an extremely rare earthquake (El Centro NS, y ″ max = 5.11 m / s 2 ), and the response characteristics of the wind lock mechanism according to the present invention were confirmed.
質点質量は500ton、バネ剛性は789.56kN/mとし、固有周期約4秒となるように設定した。また、風ロック機構Aのロック荷重は剛体仮定値として490kNとした。 The mass point mass was 500 ton, the spring stiffness was 789.56 kN / m, and the natural period was set to about 4 seconds. Further, the lock load of the wind lock mechanism A was 490 kN as a rigid assumed value.
応答解析によって得られた風ロック機構Aの荷重変形関係を図8に示す。また、質点の加速度波形を図9(a)に、変位波形を図9(b)にそれぞれ示す。また、風ロック機構反力の波形を図9(c)に示す。 FIG. 8 shows the load deformation relationship of the wind lock mechanism A obtained by the response analysis. The acceleration waveform of the mass point is shown in FIG. 9A, and the displacement waveform is shown in FIG. 9B. Moreover, the waveform of the wind lock mechanism reaction force is shown in FIG.
時刻歴波形を比較することにより、本発明に係る風ロック機構Aを設置した場合(風ロックあり)と、設置しない場合(風ロックなし)とで風ロックが作用している4秒以下の応答に差が生じるが、応答最大値には大きな差が生じないことが確認された。また、瞬間的に加速度が増大するような現象も認められず、滑らかなロック解除特性が実現できる(好適なロック解除性能が発揮される)ことが確認された。 By comparing the time history waveforms, a response of 4 seconds or less in which the wind lock is acting when the wind lock mechanism A according to the present invention is installed (with the wind lock) and when not installed (without the wind lock). However, it was confirmed that there was no significant difference in the maximum response value. In addition, it was confirmed that a phenomenon in which acceleration instantaneously increases was not observed, and smooth unlocking characteristics can be realized (preferable unlocking performance is exhibited).
<多質点系の応答解析>
14層の等価せん断型の質点系としてモデル化した免震建物について本発明に係る風ロック機構(傾斜復元風ロック)Aの効果を確認する。質点系の諸元を表1に示し、風荷重の層分布を図10に示す。
<Response analysis of multi-mass system>
The effect of the wind lock mechanism (tilt restoration wind lock) A according to the present invention will be confirmed for a base-isolated building modeled as a 14-layer equivalent shear type mass system. The specifications of the mass point system are shown in Table 1, and the layer distribution of the wind load is shown in FIG.
風ロック機構Aのロック荷重は、稀に発生する風荷重(Lv1)及び極めて稀に発生する風荷重(Lv2)に対して免震層3の変形を抑制しロック解除しない荷重に設定し、それについて極めて稀に発生する地震(Lv2:震度6強程度)、並びに稀に発生する地震(Lv1:震度5弱程度)に対して時刻歴応答解析を行った。
The lock load of the wind lock mechanism A is set to a load that suppresses the deformation of the
また、ロック荷重10000kNの「シアピン」、「弾性ロック機構」、「鉛プラグ入り積層ゴム」を用いたケースの応答と比較した。 In addition, the response of the case using “shear pin”, “elastic lock mechanism” and “laminated rubber with lead plug” with a lock load of 10,000 kN was compared.
なお、入力地震動の位相は告示関東EW(図11(a)、(b))とした。免震層固定時の上部構造の1次周期は約2.0秒であり、免震層を考慮した1次周期は約5.2秒である。稀に発生する風荷重(Lv1)に対して免震層を変形させないように、本発明の風ロック機構Aの風ロック荷重を6000kN(500kN 風ロック機構12台)に設定した。また、100mm変形時の免震層3の復元力は10000kN(=6000+40000×0.1)であり、極稀風荷重(Lv2)に対しても風ロックは解除されない。
The phase of the input seismic ground motion was the notification Kanto EW (FIGS. 11A and 11B). The primary period of the superstructure when the seismic isolation layer is fixed is about 2.0 seconds, and the primary period considering the base isolation layer is about 5.2 seconds. The wind lock load of the wind lock mechanism A of the present invention was set to 6000 kN (12 500 kN wind lock mechanisms) so as not to deform the seismic isolation layer against the rarely generated wind load (Lv1). Moreover, the restoring force of the
図12(a)に示す解析結果の通り、稀地震(Lv1)の応答結果より、本発明に係る風ロック機構(傾斜復元力ロック)Aは通常の免震装置に用いられる「鉛プラグ入り積層ゴム」と比較して、加速度、層せん断力、層間変形角ともに応答低減効果が高いことが確認された。 As shown in the analysis result shown in FIG. 12 (a), from the response result of rare earthquake (Lv1), the wind lock mechanism (tilt restoring force lock) A according to the present invention is a “lead plug-laminated laminate” used in a normal seismic isolation device. Compared to “rubber”, it was confirmed that the acceleration, laminar shear force, and interlaminar deformation angle are high in response reduction effect.
「弾性ロック」及び「シアピン」と比較しても効果は同程度であるが、「シアピン」と比較して加速度の低減効果が大きい。 The effect is comparable even when compared to “elastic lock” and “shear pin”, but the effect of reducing acceleration is greater than that of “shear pin”.
また、極稀地震(Lv2)の応答結果(図12(b))から、Lv1と同様に本発明に係る風ロック機構Aは、「鉛プラグ入り積層ゴム」と比較して応答を低減できることが確認された。一方、最下階の応答加速度が他の装置より増加する結果となったが、層せん断力及び層間変形角にはその影響がほぼないことも確認された。 Further, from the response result of extremely rare earthquake (Lv2) (FIG. 12 (b)), the wind lock mechanism A according to the present invention, like Lv1, can reduce the response compared to “laminated rubber with lead plug”. confirmed. On the other hand, although the response acceleration of the lowest floor increased as compared with other devices, it was confirmed that there was almost no influence on the laminar shear force and interlaminar deformation angle.
また、表2は各装置の性能とコストを示している。
この表2から、本発明に係る風ロック機構Aは安価でありながら、風荷重時のロック効果とLv1及びLv2における地震動の低減効果を有することが分かる。
Table 2 shows the performance and cost of each device.
From Table 2, it can be seen that the wind lock mechanism A according to the present invention is inexpensive and has a lock effect at the time of wind load and a seismic motion reduction effect at Lv1 and Lv2.
したがって、本実施形態の風ロック機構Aにおいては、上部構造1と下部構造2の間の免震層3に設けることにより、外部電力を使わずに上部構造1の拘束や解除を自動的に行うことができ、風荷重時には上部構造1と下部構造2を移動拘束し、地震時には拘束を解除して上部構造1に対する免震効果を確実に発揮させることが可能になる。
Therefore, in the wind lock mechanism A of this embodiment, by providing the
これにより、強風時の免震建物の居住性改善に加え、地震の最大応答層せん断力を低減し躯体数量削減することが可能になる(フェールセーフを考慮するとアクティブ系のものは必ずしも躯体数量削減にはならない)。 As a result, in addition to improving the habitability of base-isolated buildings during strong winds, it is possible to reduce the maximum response layer shear force of the earthquake and reduce the number of cases (reducing the number of cases for active systems, considering fail-safe) Not).
また、現在、実用化されているものに比べて安価な風ロック機構Aを実現することが可能になる。さらに、風、中小地震時でも一定の効果を確実に発揮させることができ、且つ、残留変形も生じない。 In addition, it is possible to realize a wind lock mechanism A that is less expensive than those currently in practical use. Furthermore, a certain effect can be reliably exerted even in the event of wind and small and medium earthquakes, and no residual deformation occurs.
さらに、コンパクト(例えば、h:1500mm×w:600mm×d:600mm以内)であり、占有スペースの省スペース化を図ることができる。 Furthermore, it is compact (for example, h: 1500 mm × w: 600 mm × d: within 600 mm), and the occupied space can be saved.
また、大地震時におけるロック解除状態の復旧を除き、メンテナンスフリーにすることができる。 In addition, it can be made maintenance-free except for restoration of the unlocked state in the event of a large earthquake.
なお、ロック解除時の軸バネ装置5のバネ5aの飛び出しを防ぐため、例えば図13に示すようなストッパー10を設けることが好ましい。より具体的に、本実施形態では、免震層3間に風ロック機構Aを設置後、ストッパー10で軸バネ装置5の伸びを制限する。ストッパー10は、4分割されたコの字形のプレート(ストッパー片)からなり、これらストッパー片を軸バネ装置5のストローク部分を覆うようにドーナツ型に組み合わせ、さらにリング状プレート11を外周にはめ込んでボルトで固定することで設置される。このように設置したストッパー10及びリング状プレート11によってロック解除時の軸バネ装置5のバネ5aの飛び出しを防ぐことができる。
In order to prevent the
また、ロック解除状態の復旧を行う手法としては、例えば、図14(a)に示すように、万力12で軸バネ装置5のフランジの対角を挟み、バネ5aを圧縮して風ロック機構Aを再セットする方法や、図14(b)に示すように、PC鋼棒13を油圧ジャッキ14で緊張し、所定のバネ変位でナットを固定することによって風ロック機構Aを再セットする方法、図2に示すように、風ロック機構Aの下部にジャッキスペース15を設け、センターホールジャッキで軸バネ装置5を伸縮させることによって風ロック機構Aを再セットする方法などが挙げられる。
Further, as a method for recovering the unlocked state, for example, as shown in FIG. 14A, the diagonal of the flange of the
以上、本発明に係る風ロック機構の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 While the embodiment of the wind lock mechanism according to the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the scope of the present invention.
1 上部構造
2 下部構造
3 免震層
5 軸バネ装置
5a バネ
6 軸材
7 ピン結合部
8 束材
8a 上端部
9 嵌合凹部
10 ストッパー
11 リング状プレート
12 万力
13 PC鋼棒
14 油圧ジャッキ
15 ジャッキスペース
A 風ロック機構
DESCRIPTION OF
Claims (2)
上下方向に伸縮するバネを有する軸バネ装置と、
軸線方向を上下方向に配し、下端部側を前記軸バネ装置を介して前記下部構造に接続しつつ前記軸バネ装置によって上方に付勢して配設される軸材と、
下端部が前記軸材の上端部にピン結合され、前記軸バネ装置の圧縮状態とされたバネの付勢力が前記軸材を通じて作用することで上端部を前記上部構造に押圧して配設される束材とを備えて構成されていることを特徴とする風ロック機構。 A wind lock mechanism provided in parallel with the seismic isolation device in the seismic isolation layer between the upper structure and the lower structure,
An axial spring device having a spring that expands and contracts in the vertical direction;
A shaft member arranged in an up-and-down direction in the axial direction and urged upward by the shaft spring device while being connected to the lower structure via the shaft spring device.
A lower end portion is pin-coupled to an upper end portion of the shaft member, and an urging force of a spring in a compressed state of the shaft spring device acts through the shaft member to press the upper end portion against the upper structure. The wind lock mechanism is characterized by comprising a bundle material.
前記上部構造に前記束材の上端部が嵌合する嵌合凹部が設けられ、
前記下部構造に対して前記上部構造が相対変位し、前記上部構造に従動して前記束材が前記軸材に対して所定の角度で傾動するとともに前記束材の上端部の嵌合状態が解除されるように構成されていることを特徴とする風ロック機構。 The wind lock mechanism according to claim 1,
A fitting recess into which the upper end of the bundle is fitted to the upper structure is provided,
The upper structure is displaced relative to the lower structure, and the bundle is tilted at a predetermined angle with respect to the shaft by following the upper structure, and the fitting state of the upper end of the bundle is released. It is comprised so that a wind lock mechanism characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016229942A JP6869015B2 (en) | 2016-11-28 | 2016-11-28 | Wind lock mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016229942A JP6869015B2 (en) | 2016-11-28 | 2016-11-28 | Wind lock mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018087581A true JP2018087581A (en) | 2018-06-07 |
JP6869015B2 JP6869015B2 (en) | 2021-05-12 |
Family
ID=62494353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016229942A Active JP6869015B2 (en) | 2016-11-28 | 2016-11-28 | Wind lock mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6869015B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7360590B1 (en) * | 2023-01-10 | 2023-10-13 | 同▲済▼大学 | Interlocking rigidity variable wind resistant seismic isolation support seat |
JP7563958B2 (en) | 2020-11-27 | 2024-10-08 | 清水建設株式会社 | Seismic isolation device and seismic isolation structure equipped with the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61237771A (en) * | 1985-04-15 | 1986-10-23 | 株式会社東芝 | Earthquake damping apparatus |
JPS6269555U (en) * | 1985-10-19 | 1987-05-01 | ||
JPS6450549U (en) * | 1987-09-24 | 1989-03-29 | ||
JP2005083003A (en) * | 2003-09-05 | 2005-03-31 | Shiro Yoshisaka | Locking device of vibration isolation structure |
JP2012172511A (en) * | 2011-02-22 | 2012-09-10 | Yutaka Abe | Seismic isolator using flanged spherical surface roller |
-
2016
- 2016-11-28 JP JP2016229942A patent/JP6869015B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61237771A (en) * | 1985-04-15 | 1986-10-23 | 株式会社東芝 | Earthquake damping apparatus |
JPS6269555U (en) * | 1985-10-19 | 1987-05-01 | ||
JPS6450549U (en) * | 1987-09-24 | 1989-03-29 | ||
JP2005083003A (en) * | 2003-09-05 | 2005-03-31 | Shiro Yoshisaka | Locking device of vibration isolation structure |
JP2012172511A (en) * | 2011-02-22 | 2012-09-10 | Yutaka Abe | Seismic isolator using flanged spherical surface roller |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7563958B2 (en) | 2020-11-27 | 2024-10-08 | 清水建設株式会社 | Seismic isolation device and seismic isolation structure equipped with the same |
JP7360590B1 (en) * | 2023-01-10 | 2023-10-13 | 同▲済▼大学 | Interlocking rigidity variable wind resistant seismic isolation support seat |
Also Published As
Publication number | Publication date |
---|---|
JP6869015B2 (en) | 2021-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021085182A (en) | Spring type vibration control damper | |
JP2020153106A (en) | Spring type seismic damper | |
JP4893061B2 (en) | Viscous vibration damping device and base-isolated building equipped with the same | |
KR20140034268A (en) | Aseismic damper | |
KR101402479B1 (en) | Aseismic Damper | |
JP2018087581A (en) | Wind lock mechanism | |
KR101028239B1 (en) | Hybrid vibration control apparatus using viscoelasticity and hysteresis | |
KR100731210B1 (en) | Earthquake Isolation Bearing for Bridges Using Shape Memory Alloy | |
JP2020045615A (en) | Wind resistant device | |
JP2006241934A (en) | Damper device | |
CN108561497B (en) | Nonlinear anti-seismic restraining device for nuclear process pipeline | |
JP4902330B2 (en) | Seismic isolation devices and seismic isolation structures | |
JP6752166B2 (en) | Seismic isolation device | |
CN112240057B (en) | Self-resetting friction energy dissipation steel frame node based on pre-pressing disc springs | |
JP6796817B2 (en) | Seismic isolation mechanism | |
JP6442934B2 (en) | Fail-safe device | |
JP4468212B2 (en) | Fall bridge prevention device | |
JP6853713B2 (en) | Wind lock mechanism | |
JP7455682B2 (en) | Buffer structure and buffer material | |
US11136778B1 (en) | Adaptive self-centering apparatus and method for seismic and wind protection of structures | |
JP6340278B2 (en) | Seismic isolation mechanism and method of forming seismic isolation mechanism | |
JP5721333B2 (en) | Sliding foundation structure | |
JP6862057B2 (en) | Building stigma displacement suppression structure | |
JP2020180547A (en) | Vibration control device | |
CN102797221A (en) | Slide bar type limit and vibration isolation support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181005 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210413 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6869015 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |