[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6853713B2 - Wind lock mechanism - Google Patents

Wind lock mechanism Download PDF

Info

Publication number
JP6853713B2
JP6853713B2 JP2017065430A JP2017065430A JP6853713B2 JP 6853713 B2 JP6853713 B2 JP 6853713B2 JP 2017065430 A JP2017065430 A JP 2017065430A JP 2017065430 A JP2017065430 A JP 2017065430A JP 6853713 B2 JP6853713 B2 JP 6853713B2
Authority
JP
Japan
Prior art keywords
lock mechanism
wind
seismic isolation
spring
wind lock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017065430A
Other languages
Japanese (ja)
Other versions
JP2018168897A (en
Inventor
伸也 牛坂
伸也 牛坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2017065430A priority Critical patent/JP6853713B2/en
Publication of JP2018168897A publication Critical patent/JP2018168897A/en
Application granted granted Critical
Publication of JP6853713B2 publication Critical patent/JP6853713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、例えば、建物の免震層に免震装置とともに設けられ、風荷重の作用時に免震装置を不動制御するための風ロック機構に関する。 The present invention relates to, for example, a wind lock mechanism provided in the seismic isolation layer of a building together with a seismic isolation device for immovably controlling the seismic isolation device when a wind load is applied.

例えば中高層建物が巨大地震を受けると、建物の最弱層に損傷が生じて耐力が低下し始め、この層に地震エネルギー(振動エネルギー)が集中して層崩壊が生じ、他の層は健全性が確保されているにもかかわらず、層崩壊モードによって建物が崩壊に至るという現象が発生する。また、崩壊に至らない場合においても、最弱層の被害が甚大となり、補修による復旧が困難になる。 For example, when a medium-to-high-rise building receives a huge earthquake, the weakest layer of the building is damaged and its yield strength begins to decrease, seismic energy (vibration energy) concentrates on this layer, causing layer collapse, and the other layers are sound. Even though the energy is secured, the phenomenon that the building collapses due to the layer collapse mode occurs. Moreover, even if the collapse does not occur, the damage to the weakest layer will be enormous, and it will be difficult to recover by repair.

これに対し、周知の通り、オフィスビルや公共施設、集合住宅などの建物には、建物本体と基礎の間など、上部構造体と下部構造体の間の免震層に積層ゴムなどの免震装置を介設し、地震時に、上部構造体の固有周期を地震動の卓越周期帯域から長周期側にずらし、応答加速度を小さくして揺れを抑えるようにしたものがある。 On the other hand, as is well known, in buildings such as office buildings, public facilities, and apartment buildings, seismic isolation such as laminated rubber is used for the seismic isolation layer between the upper structure and the lower structure, such as between the building body and the foundation. In the event of an earthquake, the natural period of the superstructure is shifted from the predominant period zone of the seismic motion to the long period side, and the response acceleration is reduced to suppress the shaking.

一方、免震層を備えた免震建物は、免震層の剛性を限りなく小さくして長周期化するほど、大きな地震時応答低減効果を得られるが、免震層の剛性が小さすぎると(免震層が柔らかすぎると)、強風時など、風荷重によって建物が揺れ易くなってしまう。 On the other hand, in a seismic isolated building equipped with a seismic isolation layer, the greater the rigidity of the seismic isolation layer and the longer the period, the greater the effect of reducing the response during an earthquake. (If the seismic isolation layer is too soft), the building tends to shake due to the wind load, such as in strong winds.

このため、通常の免震建物/免震設計では、鉛プラグ入り積層ゴムの免震装置を用いたり、鉛ダンパーや鋼材系ダンパーなどを天然ゴム系積層ゴムの免震装置と併用するなどし、その降伏耐力を免震層に作用する風荷重よりも大きくすることによって、強風時の揺れを回避するようにしている。 For this reason, in a normal seismic isolation building / seismic isolation design, a seismic isolation device made of laminated rubber with a lead plug is used, or a lead damper or steel damper is used in combination with a seismic isolation device made of natural rubber laminated rubber. By making the yield strength larger than the wind load acting on the seismic isolation layer, shaking during strong winds is avoided.

しかしながら、鉛プラグ入り積層ゴムを用いたり、ダンパーを免震装置と併用することにより免震層の降伏耐力を大きくする対策は、当然、その等価剛性を大きくすることを意味し、免震建物の長周期化に相反するため、地震時応答低減効果の低減を招く。 However, measures to increase the yield strength of the seismic isolation layer by using laminated rubber with lead plugs or by using a damper together with the seismic isolation device naturally means increasing the equivalent rigidity of the seismic isolation building. Since it contradicts the lengthening of the period, the effect of reducing the response during an earthquake is reduced.

これに対し、強風(または中小地震)時に免震層を変形させないようにし、且つ、等価剛性を大きくし過ぎず、長周期化による大地震時の応答低減効果を阻害しないようにするための風ロック機構が提案、実用化されている(例えば、特許文献1参照)。 On the other hand, the wind is designed so that the seismic isolation layer is not deformed during strong winds (or small and medium-sized earthquakes), the equivalent rigidity is not increased too much, and the response reduction effect during large earthquakes due to the long period is not impaired. A locking mechanism has been proposed and put into practical use (see, for example, Patent Document 1).

具体的に、風荷重よりも大きな設定荷重が作用すると、せん断力で破断するシアピンによって免震建物の下部構造と上部構造を締結し、風荷重作用時に上部構造の移動を拘束する機構(シアピンによる風ロック機構)や、風や地震などの外力をセンサーで検知し、外力の大きさに応じてオイルダンパーの減衰係数をアクティブ制御するもの(アクティブ制御型風ロック機構付きオイルダンパー)、台風の接近/通過等に応じて手動で抜き差しするシアピン(ロックピン)をオイルダンパーに設けたもの(パッシブ型風ロック機構付きオイルダンパー)などが提案、実用化されている。 Specifically, when a set load larger than the wind load acts, the shear pin that breaks due to the shearing force concludes the substructure and the superstructure of the seismic isolation building, and a mechanism that restrains the movement of the superstructure when the wind load acts (by the shear pin). Wind lock mechanism), a sensor that detects external forces such as wind and earthquakes, and actively controls the damping coefficient of the oil damper according to the magnitude of the external force (active control type oil damper with wind lock mechanism), approaching a typhoon / A shear pin (lock pin) that is manually inserted and removed according to passage, etc. is provided on the oil damper (oil damper with a passive wind lock mechanism), and the like has been proposed and put into practical use.

特開2004−176525号公報Japanese Unexamined Patent Publication No. 2004-176525

しかしながら、シアピンによる風ロック機構(及びパッシブ型風ロック機構付きオイルダンパー)においては、ロック荷重に達するまでは極めて剛に近い初期剛性を有している。 However, the wind lock mechanism by shear pin (and the oil damper with a passive wind lock mechanism) has an initial rigidity that is extremely close to rigidity until the lock load is reached.

このため、ロック荷重以下、すなわちロックが解除されない範囲で作用する中小地震などの地動入力加速度については、機構を介して上部建物側へ加速度が直接伝わってしまい、風ロック機構が無い場合と比べて応答を増加させてしまうケースがあった。また、大地震においてもロックが解除されるまでの間は同様に加速度を直接伝えてしまうため、特に装置を設置した直上階及びその上部数層では応答が増加する傾向にあった。 For this reason, for ground motion input accelerations such as small and medium-sized earthquakes that act below the lock load, that is, within the range where the lock is not released, the acceleration is directly transmitted to the upper building side via the mechanism, compared to the case without the wind lock mechanism. In some cases, the response was increased. In addition, even in the case of a large earthquake, the acceleration is directly transmitted until the lock is released, so that the response tends to increase especially on the floor directly above where the device is installed and several layers above it.

さらに、シアピンによる風ロック機構においては、シアピンのせん断破壊によるロック解除時に、瞬間的に荷重が解放されることから、その荷重が建物の上部構造側に衝撃荷重として伝わり、応答加速度が瞬間的に大きくなるという問題がある。 Furthermore, in the wind lock mechanism using shear pins, the load is momentarily released when the lock is released due to shear failure of the shear pins, so that load is transmitted as an impact load to the upper structure side of the building, and the response acceleration is instantaneously transmitted. There is a problem of getting bigger.

また、パッシブ型風ロック機構付きオイルダンパーにおいても同様に、手動でロック機能のオン・オフ切替が必要であり、この作業を状況に応じて必ず行えるかという点で疑問が残る。 Similarly, in the case of an oil damper with a passive wind lock mechanism, it is necessary to manually switch the lock function on and off, and there remains a question as to whether this work can always be performed depending on the situation.

アクティブ制御型風ロック機構付きオイルダンパーにおいては、万が一故障した場合に風ロック機能が全く発揮されない。このため、電気部品の長期耐久性や信頼性等の観点から万が一故障した場合を想定し、それが作動しないフェールセーフ状態で設計することが必要になる。 In the case of an oil damper with an active control type wind lock mechanism, the wind lock function is not exhibited at all in the unlikely event of failure. Therefore, from the viewpoint of long-term durability and reliability of electrical parts, it is necessary to design in a fail-safe state in which it does not operate in case of failure.

上記事情に鑑み、本発明は、風荷重時には下部構造と上部構造とを移動を好適に制御し、地震時には移動制御状態を解除して免震効果を、従来より確実且つ効果的に発揮させることを可能にする風ロック機構を提供することを目的とする。 In view of the above circumstances, the present invention preferably controls the movement of the lower structure and the upper structure under a wind load, and releases the movement control state at the time of an earthquake to exert the seismic isolation effect more reliably and effectively than before. It is an object of the present invention to provide a wind locking mechanism that enables.

上記の目的を達するために、この発明は以下の手段を提供している。 To achieve the above object, the present invention provides the following means.

本発明の風ロック機構は、上部構造と下部構造の間の免震層に免震装置と並列に設けられる風ロック機構であって、前記上部構造と前記下部構造の間に直列配置される風ロック機構本体部と弾性バネ部を備えて構成されるとともに、前記風ロック機構本体部が、上下方向に伸縮するバネを有する軸バネ装置と、軸線方向を上下方向に配し、下端部側を前記軸バネ装置を介して前記下部構造に接続しつつ前記軸バネ装置によって上方に付勢して配設される軸材と、下端部が前記軸材の上端部にピン結合され、前記軸バネ装置の圧縮状態とされたバネの付勢力が前記軸材を通じて作用することで上端部を前記弾性バネ部を介して前記上部構造に押圧して配設される束材とを備えて構成され、前記弾性バネ部に前記束材の上端部が嵌合する嵌合凹部が設けられ、前記下部構造に対して前記上部構造が相対変位し、前記上部構造に従動して前記束材が前記軸材に対して所定の角度で傾動するとともに前記束材の上端部の嵌合状態が解除されるように構成されていることを特徴とする。 The wind lock mechanism of the present invention is a wind lock mechanism provided in parallel with the seismic isolation device in the seismic isolation layer between the upper structure and the lower structure, and the wind is arranged in series between the upper structure and the lower structure. The wind lock mechanism main body is provided with a lock mechanism main body and an elastic spring, and the wind lock mechanism main body has a shaft spring device having a spring that expands and contracts in the vertical direction, and an axial direction is arranged in the vertical direction so that the lower end side is located. A shaft member that is connected to the lower structure via the shaft spring device and is urged upward by the shaft spring device, and a lower end portion are pin-coupled to the upper end portion of the shaft member to form the shaft spring. It is configured to include a bundle member which is arranged by pressing the upper end portion against the upper structure via the elastic spring portion by the urging force of the spring in the compressed state of the device acting through the shaft member. The elastic spring portion is provided with a fitting recess in which the upper end portion of the bundle member is fitted, the upper structure is displaced relative to the lower structure, and the bundle member is driven by the upper structure to form the shaft member. It is characterized in that it is configured to tilt at a predetermined angle with respect to the bundle member and to release the fitted state of the upper end portion of the bundle member.

本発明の風ロック機構によれば、上部構造と下部構造の間の免震層に設けることにより、外部電力を使わずに上部構造の拘束や解除を自動的に行うことができ、風荷重時には上部構造と下部構造を移動を好適に制御し、地震時には移動制御状態を好適に解除して上部構造に対する免震効果を、従来より確実且つ効果的に発揮させることが可能になる。 According to the wind lock mechanism of the present invention, by providing the seismic isolation layer between the superstructure and the substructure, the superstructure can be automatically restrained or released without using external power, and when a wind load is applied, the superstructure can be automatically restrained or released. It is possible to appropriately control the movement of the superstructure and the lower structure, appropriately release the movement control state in the event of an earthquake, and exert the seismic isolation effect on the superstructure more reliably and effectively than before.

本発明の一実施形態に係る風ロック機構を示す図である。It is a figure which shows the wind lock mechanism which concerns on one Embodiment of this invention. 本発明の一実施形態に係る風ロック機構の動作の説明で用いた図である。It is a figure used in the description of the operation of the wind lock mechanism which concerns on one Embodiment of this invention. 本発明の一実施形態に係る風ロック機構の要素モデルを示す図である。It is a figure which shows the element model of the wind lock mechanism which concerns on one Embodiment of this invention. 各要素モデルの荷重変形関係を示す図である。It is a figure which shows the load deformation relation of each element model. 各風揺れ抑制要素を含む免震層の荷重変形関係を示す図である。It is a figure which shows the load deformation relation of the seismic isolation layer including each wind sway suppression element. 各風ロック機構の荷重変形関係を示す図である。It is a figure which shows the load deformation relation of each wind lock mechanism. 各風ロック機構を備えた場合の絶対加速度応答値を示す図である。It is a figure which shows the absolute acceleration response value when each wind lock mechanism is provided. 各風ロック機構を備えた場合の免震層直上階加速度時刻歴波形を示す図である。It is a figure which shows the acceleration time history waveform of the floor just above the seismic isolation layer when each wind lock mechanism is provided. 各風ロック機構を備えた場合の免震層の層間変形時刻歴波形を示す図である。It is a figure which shows the interlayer deformation time history waveform of the seismic isolation layer when each wind lock mechanism is provided.

以下、図1から図9を参照し、本発明の一実施形態に係る風ロック機構について説明する。 Hereinafter, the wind lock mechanism according to the embodiment of the present invention will be described with reference to FIGS. 1 to 9.

本実施形態の風ロック機構(風ロック装置)Aは、図1に示すように、建物本体と基礎の間など、上部構造1と下部構造2の間の免震層3に積層ゴムなどの免震装置(不図示)と並列に設けられている。 As shown in FIG. 1, the wind locking mechanism (wind locking device) A of the present embodiment exempts the seismic isolation layer 3 between the superstructure 1 and the substructure 2 from laminated rubber or the like, such as between the building body and the foundation. It is installed in parallel with the seismic isolation device (not shown).

そして、この風ロック機構Aは、強風時または中小地震時に、免震層3を変形させないようにし、すなわち、強風時または中小地震時に下部構造2に対して上部構造1を相対変位させないように移動拘束し、大地震時に、移動拘束を解除して免震装置による上部構造1の免震性能を発揮させるように、すなわち、大地震時に長周期化による上部構造1の応答低減効果を発揮させるように構成されている。 Then, the wind lock mechanism A moves so as not to deform the seismic isolation layer 3 during a strong wind or a small and medium-sized earthquake, that is, to prevent the superstructure 1 from being displaced relative to the substructure 2 during a strong wind or a small and medium-sized earthquake. To restrain and release the movement restraint in the event of a large earthquake to exert the seismic isolation performance of the superstructure 1 by the seismic isolation device, that is, to exert the response reduction effect of the superstructure 1 by lengthening the period in the event of a large earthquake. It is configured in.

具体的に、本実施形態の風ロック機構Aは、風ロック機構本体部4と弾性バネ部5とを直列に連結して構成されている。また、本実施形態の弾性バネ部4は、免震装置などとして多用される積層ゴム体が採用されている。なお、弾性バネ部4は後述の作用効果を得ることが可能であれば、必ずしも積層ゴム体でなくてもよい。 Specifically, the wind lock mechanism A of the present embodiment is configured by connecting the wind lock mechanism main body 4 and the elastic spring 5 in series. Further, the elastic spring portion 4 of the present embodiment employs a laminated rubber body that is often used as a seismic isolation device or the like. The elastic spring portion 4 does not necessarily have to be a laminated rubber body as long as it is possible to obtain the effects described later.

そして、本実施形態の風ロック機構Aは、上端部を上部構造1の下面に強固に固着して弾性バネ部5が配設され、この弾性バネ部5の下面と下部構造2の上面の間に風ロック機構本体部4を配設して構成されている。 Then, in the wind lock mechanism A of the present embodiment, the upper end portion is firmly fixed to the lower surface of the upper structure 1 and the elastic spring portion 5 is arranged, and between the lower surface of the elastic spring portion 5 and the upper surface of the lower structure 2. The wind lock mechanism main body 4 is arranged in the wind lock mechanism.

風ロック機構本体部4は、上下方向に伸縮するバネ6aを備えた軸バネ装置6と、軸線方向を上下方向に配し、下端部側を軸バネ装置6を介して下部構造2に接続しつつ軸バネ装置6によって上方に付勢して配設される軸材7、下端部が軸材7の上端部にピン結合部8を介してピン結合され、軸バネ装置6の圧縮状態とされたバネ6aの付勢力が軸材7を通じて作用することで上端部を弾性バネ部5を介して上部構造1に接続するように配設される束材9とが主な構成要素とされている。 The wind lock mechanism main body 4 has a shaft spring device 6 provided with a spring 6a that expands and contracts in the vertical direction, and the axial direction is arranged in the vertical direction, and the lower end side is connected to the lower structure 2 via the shaft spring device 6. The shaft member 7 and the lower end portion of the shaft member 7 which is urged upward by the shaft spring device 6 are pin-coupled to the upper end portion of the shaft member 7 via the pin coupling portion 8 to bring the shaft spring device 6 into a compressed state. The main component is a bundle member 9 arranged so as to connect the upper end portion to the upper structure 1 via the elastic spring portion 5 by the urging force of the spring 6a acting through the shaft member 7. ..

本実施形態では、軸材7及び束材9がそれぞれ鋼製の柱状部材とされ、ピン結合部8がボールジョイント(球面軸受及び球面座)によって構成されている。なお、ピン結合部8は、軸材7の上下方向に延びる軸線に対して束材9の軸線が所定の角度(本実施形態では45°程度)で自在に回動/傾斜可能に軸材7と束材9を接続できれば、特にその構成を限定する必要はない。例えば、ボールジョイントに替えて、自在継手をピン結合部8に採用してもよい。 In the present embodiment, the shaft member 7 and the bundle member 9 are each made of steel columnar members, and the pin coupling portion 8 is composed of a ball joint (spherical bearing and spherical seat). The pin coupling portion 8 allows the axis of the bundle member 9 to freely rotate / tilt at a predetermined angle (about 45 ° in the present embodiment) with respect to the axis extending in the vertical direction of the shaft member 7. As long as the bundle member 9 can be connected to the bundle member 9, it is not necessary to limit the configuration in particular. For example, instead of the ball joint, a universal joint may be used for the pin joint 8.

また、弾性バネ部5の積層ゴム体の下面には、図1及び図2に示すように、束材9がその軸線を軸材7の軸線と同軸上に配した状態、すなわち、束材9が傾斜せずに軸材7の上方に軸線方向を上下方向に配して設けられている状態で、軸バネ装置6の付勢力によって弾性バネ部5の下面側に押圧される束材9の上端部9aが嵌合し、束材9を保持する嵌合凹部10が設けられている。 Further, as shown in FIGS. 1 and 2, on the lower surface of the laminated rubber body of the elastic spring portion 5, the bundle member 9 has its axis arranged coaxially with the axis of the shaft member 7, that is, the bundle member 9 The bundle member 9 is pressed toward the lower surface side of the elastic spring portion 5 by the urging force of the shaft spring device 6 in a state where the shaft member 7 is provided above the shaft member 7 in the vertical direction without being tilted. A fitting recess 10 is provided in which the upper end portion 9a is fitted and the bundle member 9 is held.

この嵌合凹部10は、下部構造2に対して上部構造1が相対変位し、束材9が軸材7に対して所定の角度で傾動するとともに束材9の上端部9aの嵌合状態が解除されるように形成されている。 In the fitting recess 10, the upper structure 1 is displaced relative to the lower structure 2, the bundle member 9 is tilted at a predetermined angle with respect to the shaft member 7, and the upper end portion 9a of the bundle member 9 is in a fitted state. It is formed to be released.

また、嵌合凹部10は、下部構造2に対する上部構造1の相対変位量が所定の量以下の範囲にある場合に、軸バネ装置6の付勢力によって束材9の上端部9aが嵌合凹部10を、弾性バネ部5の積層ゴム体の変形を制御しつつ下部構造2に対して上部構造1を元の位置に戻す方向に押圧するように(言い換えれば、原点復帰させるように)形成されている。 Further, in the fitting recess 10, when the relative displacement amount of the superstructure 1 with respect to the lower structure 2 is within a range of a predetermined amount or less, the upper end portion 9a of the bundle member 9 is fitted into the fitting recess by the urging force of the shaft spring device 6. 10 is formed so as to press the superstructure 1 against the lower structure 2 in the direction of returning the upper structure 1 to the original position (in other words, to return to the origin) while controlling the deformation of the laminated rubber body of the elastic spring portion 5. ing.

そして、下部構造2に対する上部構造1の相対変位量(免震層3の変形量)が、束材の径と積層ゴム体の変形量から決まる所定量を超えると、完全に束材8の傾斜復元力が失われ、この段階で風ロック機構Aの作用が解除されるように構成されている。 Then, when the relative displacement amount of the upper structure 1 with respect to the lower structure 2 (deformation amount of the seismic isolation layer 3) exceeds a predetermined amount determined by the diameter of the bundle material and the deformation amount of the laminated rubber body, the bundle member 8 is completely inclined. The restoring force is lost, and the action of the wind lock mechanism A is released at this stage.

これにより、本実施形態の風ロック機構Aは、免震層3の変形に依存したパッシブ型のロック解除機構を備えたものとなり、免震層3の変形が上記の所定量を超えない範囲においては常に復元力が生じる非線形弾性としての復元力特性を有し、それ以下の変形では原位置に戻るように押圧され、残留変形が生じないように構成されることになる。 As a result, the wind lock mechanism A of the present embodiment is provided with a passive type unlocking mechanism that depends on the deformation of the seismic isolation layer 3, and the deformation of the seismic isolation layer 3 does not exceed the above-mentioned predetermined amount. Has a restoring force characteristic as a non-linear elasticity that always produces a restoring force, and if the deformation is less than that, it is pressed to return to the original position, and is configured so that no residual deformation occurs.

より具体的に、まず、図2(a)から図2(d)は本実施形態の風ロック機構Aの作動原理を示している。図2(a)は初期状態、図2(b)は小変形の状態(積層ゴム体5のみが変形した状態)、図2(c)は中変形の状態(積層ゴム体5の変形と束材9の傾斜変形が生じた状態)、図2(d)は大変形の状態(ロック解除に至った状態)を示している。 More specifically, first, FIGS. 2 (a) to 2 (d) show the operating principle of the wind lock mechanism A of the present embodiment. FIG. 2A is an initial state, FIG. 2B is a state of small deformation (a state in which only the laminated rubber body 5 is deformed), and FIG. 2C is a state of medium deformation (deformation and bundle of the laminated rubber body 5). A state in which the material 9 is tilted and deformed), and FIG. 2D shows a state in which the material 9 is largely deformed (a state in which the lock is released).

ここで、弾性バネ部(積層ゴム体)5がない傾斜復元風ロック機構の初期状態におけるロック荷重PはP=P×b/hで表すことができる。なお、Pはロック荷重、bは束材9の半径(1/2幅)、hは束材9の高さ、Pは束材9の鉛直方向の押圧力である。 Here, the locking load P h in the initial state of the elastic spring part (laminated rubber body) 5 is not inclined restored air lock mechanism can be expressed by P h = P v × b / h. Incidentally, P h is locked load, b is the radius of Tabazai 9 (1/2 width), h is the height of Tabazai 9, P v is the pressing force of the vertical Tabazai 9.

図3は、本実施形態の弾性バネ付き傾斜復元風ロック機構Aの簡易要素モデルを示している。ここで、Kは弾性バネ部(積層ゴム体)5の剛性、Kは束材9に押圧力を与えるバネ6a(皿バネ)剛性を表している。 FIG. 3 shows a simple element model of the tilt restoration wind locking mechanism A with an elastic spring of the present embodiment. Here, K g represents the rigidity of the elastic spring portion (laminated rubber body) 5, and K v represents the rigidity of the spring 6a (belleville spring) that applies a pressing force to the bundle member 9.

このモデル及び表1のパラメータを用いて風ロック機構Aの荷重変形関係を求めた結果が図4である。
このとき、バネ6aは線形バネとしている(線形皿バネ6a+積層ゴム体5)。また、比較として、弾性バネ部5がない傾斜復元風ロック機構において、非線形領域で皿バネを使用することにより軸力を一定とした場合(軸力一定皿バネ)、及び線形領域で皿バネを使用した場合(線形皿バネ)の荷重変形関係についても併せて示している。
FIG. 4 shows the results of obtaining the load deformation relationship of the wind lock mechanism A using this model and the parameters in Table 1.
At this time, the spring 6a is a linear spring (linear disc spring 6a + laminated rubber body 5). For comparison, in the tilt restoration wind locking mechanism without the elastic spring portion 5, when the axial force is constant by using the disc spring in the non-linear region (constant axial force disc spring), and in the linear region, the disc spring is used. The load deformation relationship when used (linear disc spring) is also shown.

Figure 0006853713
Figure 0006853713

さらに、この例での弾性バネ部5として作用する積層ゴム体の剛性は、免震層3の他の天然ゴム系積層ゴム支承よりも高剛性となるよう、ゴム径φ500、せん断弾性率G8(0.8N/mm)で、ゴム層厚15mm程度を想定した。 Further, the rigidity of the laminated rubber body acting as the elastic spring portion 5 in this example is higher than that of the other natural rubber-based laminated rubber supports of the seismic isolation layer 3, so that the rubber diameter is φ500 and the shear elasticity G8 (shear elasticity G8). It was assumed that the rubber layer thickness was about 15 mm at 0.8 N / mm 2).

表1、図2、図4に示すように、軸力一定皿バネ、及び線形皿バネを使用した傾斜復元風ロック機構の荷重変形関係が初期状態から最大の水平抵抗力(390kN)を発揮するのに対して、本実施形態の弾性バネ付き傾斜復元力風ロック機構Aの荷重変形は、図2(a)の初期状態からロック荷重に達するまでは図2(b)の積層ゴム体5の弾性変形が先行する。そこから図2(c)のように束材9が傾斜することで水平抵抗力が減少して行く。このとき、線形皿バネを使用している場合は弧を描くように減少する。最終的に図2(d)でロック解除となり水平抵抗力(復元力)を失う。 As shown in Tables 1, 2 and 4, the load deformation relationship of the tilt restoration wind lock mechanism using the constant axial force disc spring and the linear disc spring exerts the maximum horizontal resistance force (390 kN) from the initial state. On the other hand, the load deformation of the tilt restoring force wind locking mechanism A with an elastic spring of the present embodiment is the load deformation of the laminated rubber body 5 of FIG. 2 (b) from the initial state of FIG. 2 (a) until the lock load is reached. Elastic deformation precedes. As shown in FIG. 2C, the bundle member 9 inclines from there, and the horizontal resistance decreases. At this time, if a linear disc spring is used, it decreases in an arc. Finally, as shown in FIG. 2D, the lock is released and the horizontal resistance (restoring force) is lost.

ここで、図5は、天然ゴム系積層ゴムからなる免震層3に風揺れを抑制する目的で4種(鉛プラグ、シアピン、傾斜復元風ロック機構、本実施形態の弾性バネ付傾斜復元風ロック機構A)の要素を付加した各ケースの免震層3の荷重変形関係を示している。なお、鉛プラグ及びシアピンの降伏荷重は4000kNとし、傾斜復元風ロック機構及び弾性バネ付傾斜復元風ロックAのロック解除荷重は3900kN(表1の10台分)としている。 Here, FIG. 5 shows four types (lead plug, shear pin, inclined restoration wind locking mechanism, inclined restoration wind with elastic spring of the present embodiment) for the purpose of suppressing wind sway in the seismic isolation layer 3 made of natural rubber-based laminated rubber. The load deformation relationship of the seismic isolation layer 3 of each case to which the element of the lock mechanism A) is added is shown. The yield load of the lead plug and shear pin is 4000 kN, and the unlocking load of the tilt restoration wind lock mechanism and the tilt restoration wind lock A with elastic spring is 3900 kN (for 10 units in Table 1).

天然ゴムのみからなる免震層剛性K(=40kN/mm)に対する本発明の弾性ゴム付傾斜復元風ロック機構Aを付加したケースの免震層初期剛性K(=140kN/mm)は3.5倍である。 Natural rubber consisting only of the base isolation layer stiffness K e (= 40kN / mm) for the case of adding an elastic rubber with the inclined restore air lock mechanism A of the present invention isolation layer initial stiffness K b (= 140kN / mm) is 3 It is 5.5 times.

すなわち、ロック荷重の範囲内であれば、同一の風荷重に対して免震層3の変形(揺れ幅)を1/3.5に低減できることになる。なお、勿論、弾性バネ部5の剛性の選定によって任意の初期剛性Kを得ることが可能である。設計者がより風荷重による変形を抑制したい場合にはこれを硬く設定し、風変形抑制は程々で地震力をより低減したい場合は柔らかく設定することで対応できる。 That is, if it is within the range of the lock load, the deformation (sway width) of the seismic isolation layer 3 can be reduced to 1 / 3.5 with respect to the same wind load. Of course, it is possible to obtain an arbitrary initial rigidity K b by selecting the rigidity of the elastic spring portion 5. If the designer wants to suppress the deformation due to the wind load, set this hard, and if the designer wants to reduce the seismic force more moderately, set it softly.

次に、本実施形態の風ロック機構Aの優位性を検証するために、ケース1:風ロック機構なし、ケース2:傾斜復元風ロック(軸力一定皿バネ)、ケース3:本発明に係る積層ゴム付き傾斜復元風ロック機構(軸力一定皿バネ)Aの3ケースについて多質点系の等価せん断バネモデル(表2)を対象に地震応答解析を行い、応答加速度及び免震層変形を比較した。 Next, in order to verify the superiority of the wind lock mechanism A of the present embodiment, Case 1: No wind lock mechanism, Case 2: Tilt restoration wind lock (constant axial force disc spring), Case 3: The present invention. Seismic response analysis was performed for the three cases of the tilt restoration wind lock mechanism with laminated rubber (constant axial force disc spring) A using the equivalent shear spring model (Table 2) of the multi-sided system, and the response acceleration and seismic isolation layer deformation were compared. ..

Figure 0006853713
Figure 0006853713

図6は、応答解析結果であり、ケース2及びケース3の風ロック機構の荷重変形関係を示している。これにより、本発明の風ロック機構Aであるケース3の初期剛性はケース2と比較して低くなることが確認された。 FIG. 6 is a response analysis result and shows the load deformation relationship of the wind lock mechanism of the case 2 and the case 3. As a result, it was confirmed that the initial rigidity of the case 3 which is the wind lock mechanism A of the present invention is lower than that of the case 2.

次に、図7は、最大の絶対加速度応答値を示している。
ケース1の風ロック機構なしと比較し、ケース2の傾斜復元風ロック機構は免震層3の直上より数層で加速度が2.0m/sを超えており、全層にわたってケース1よりも応答加速度が大きく、概ね1.5倍に応答が増加している。これに対し、ケース3の積層ゴム付き傾斜復元風ロック機構(本発明)Aにおいては、数パーセントの応答増加はあるものの風ロック機構が無い状態とほぼ同等の応答加速度となることが確認された。
Next, FIG. 7 shows the maximum absolute acceleration response value.
Compared with the case 1 without the wind lock mechanism, the tilt restoration wind lock mechanism of the case 2 has an acceleration of more than 2.0 m / s 2 in several layers directly above the seismic isolation layer 3, and is higher than the case 1 in all layers. The response acceleration is large, and the response increases approximately 1.5 times. On the other hand, in the case 3 tilt restoration wind locking mechanism with laminated rubber (invention) A, it was confirmed that the response acceleration was almost the same as that in the state without the wind locking mechanism, although the response increased by several percent. ..

次に、図8は、免震層3の直上(頂部)の加速度時刻歴波形を示している。
この図8から、本発明に係るケース3はロック解除までに応答の増加が無いことが確認された。
Next, FIG. 8 shows an acceleration time history waveform directly above (top) the seismic isolation layer 3.
From FIG. 8, it was confirmed that in Case 3 according to the present invention, there was no increase in response until the lock was released.

次に、図9は免震層3の層間変形時刻歴波形を示している。
ケース1の風ロック機構なしと比べ、ケース2及びケース3はロック解除まで変形が抑制されることが確認された。特に、2〜6秒の間で顕著な変形抑制効果が確認された。
Next, FIG. 9 shows the inter-story deformation time history waveform of the seismic isolation layer 3.
It was confirmed that the deformation of the case 2 and the case 3 was suppressed until the lock was released, as compared with the case 1 without the wind lock mechanism. In particular, a remarkable deformation suppressing effect was confirmed within 2 to 6 seconds.

また、ケース2と本発明のケース3を比較すると、弾性バネ部5を直列に接続した場合でも優れた変形抑制効果が得られることが確認された。 Further, when the case 2 and the case 3 of the present invention were compared, it was confirmed that an excellent deformation suppressing effect could be obtained even when the elastic spring portions 5 were connected in series.

これにより、弾性バネ部5を傾斜復元風ロック機構本体部4に直列接続することにより、応答加速度の増加抑制に効果的であることに加え、免震層3の変形抑制にも効果を発揮することが実証された。 As a result, by connecting the elastic spring portion 5 in series with the tilt restoration wind lock mechanism main body portion 4, it is effective in suppressing the increase in the response acceleration and also in suppressing the deformation of the seismic isolation layer 3. It was proved that.

したがって、本実施形態の風ロック機構Aにおいては、風荷重などの外力に対して免震層3の変形抑制効果を保持しながら、中小地震ならびに大地震時の応答加速度の増加を、従来より効果的に抑制することが可能になる。 Therefore, in the wind lock mechanism A of the present embodiment, the effect of suppressing the deformation of the seismic isolation layer 3 against an external force such as a wind load is maintained, and the increase in response acceleration during small and medium-sized earthquakes and large earthquakes is more effective than before. It becomes possible to suppress it.

よって、本実施形態の風ロック機構Aによれば、上部構造1と下部構造2の間の免震層3に設けることにより、外部電力を使わずに上部構造1の拘束や解除を自動的に行うことができ、風荷重時には上部構造1と下部構造2を移動好適に制御し、地震時には移動制御状態を解除し上部構造に対する免震効果を、従来より確実且つ効果的に発揮させることが可能になる。 Therefore, according to the wind lock mechanism A of the present embodiment, by providing the seismic isolation layer 3 between the superstructure 1 and the substructure 2, the superstructure 1 is automatically restrained or released without using external power. It is possible to control the movement of the superstructure 1 and the substructure 2 appropriately at the time of wind load, release the movement control state at the time of an earthquake, and exert the seismic isolation effect on the superstructure more reliably and effectively than before. become.

以上、本発明に係る風ロック機構の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although one embodiment of the wind lock mechanism according to the present invention has been described above, the present invention is not limited to the above one embodiment and can be appropriately modified without departing from the spirit of the present invention.

1 上部構造
2 下部構造
3 免震層
4 風ロック機構本体部
5 弾性バネ部(積層ゴム体)
6 軸バネ装置
6a バネ
7 軸材
8 ピン結合部
9 束材
9a 上端部
10 嵌合凹部
A 風ロック機構
1 Upper structure 2 Lower structure 3 Seismic isolation layer 4 Wind lock mechanism main body 5 Elastic spring part (laminated rubber body)
6 Shaft spring device 6a Spring 7 Shaft member 8 Pin coupling part 9 Bundle material 9a Upper end part 10 Fitting recess A Wind lock mechanism

Claims (1)

上部構造と下部構造の間の免震層に免震装置と並列に設けられる風ロック機構であって、
前記上部構造と前記下部構造の間に直列配置される風ロック機構本体部と弾性バネ部を備えて構成されるとともに、
前記風ロック機構本体部が、上下方向に伸縮するバネを有する軸バネ装置と、
軸線方向を上下方向に配し、下端部側を前記軸バネ装置を介して前記下部構造に接続しつつ前記軸バネ装置によって上方に付勢して配設される軸材と、
下端部が前記軸材の上端部にピン結合され、前記軸バネ装置の圧縮状態とされたバネの付勢力が前記軸材を通じて作用することで上端部を前記弾性バネ部を介して前記上部構造に押圧して配設される束材とを備えて構成され
前記弾性バネ部に前記束材の上端部が嵌合する嵌合凹部が設けられ、
前記下部構造に対して前記上部構造が相対変位し、前記上部構造に従動して前記束材が前記軸材に対して所定の角度で傾動するとともに前記束材の上端部の嵌合状態が解除されるように構成されていることを特徴とする風ロック機構。
A wind lock mechanism installed in parallel with the seismic isolation device in the seismic isolation layer between the superstructure and the substructure.
It is configured to include a wind lock mechanism main body and an elastic spring that are arranged in series between the superstructure and the lower structure.
A shaft spring device in which the wind lock mechanism main body has a spring that expands and contracts in the vertical direction, and
A shaft member whose axial direction is arranged in the vertical direction and whose lower end side is connected to the lower structure via the shaft spring device and is urged upward by the shaft spring device.
The lower end portion is pin-coupled to the upper end portion of the shaft member, and the urging force of the spring in the compressed state of the shaft spring device acts through the shaft member, so that the upper end portion is connected to the upper end portion via the elastic spring portion. It is configured with a bundle that is arranged by pressing against .
The elastic spring portion is provided with a fitting recess in which the upper end portion of the bundle member is fitted.
The upper structure is displaced relative to the lower structure, the bundle member is tilted at a predetermined angle with respect to the shaft member in accordance with the upper structure, and the fitting state of the upper end portion of the bundle member is released. A wind lock mechanism characterized by being configured to be.
JP2017065430A 2017-03-29 2017-03-29 Wind lock mechanism Active JP6853713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065430A JP6853713B2 (en) 2017-03-29 2017-03-29 Wind lock mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065430A JP6853713B2 (en) 2017-03-29 2017-03-29 Wind lock mechanism

Publications (2)

Publication Number Publication Date
JP2018168897A JP2018168897A (en) 2018-11-01
JP6853713B2 true JP6853713B2 (en) 2021-03-31

Family

ID=64020221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065430A Active JP6853713B2 (en) 2017-03-29 2017-03-29 Wind lock mechanism

Country Status (1)

Country Link
JP (1) JP6853713B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199995B2 (en) * 2019-02-19 2023-01-06 清水建設株式会社 locking mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237771A (en) * 1985-04-15 1986-10-23 株式会社東芝 Earthquake damping apparatus
JPS6450549U (en) * 1987-09-24 1989-03-29
JP2004068453A (en) * 2002-08-07 2004-03-04 Japan Atom Power Co Ltd:The 3D seismic isolation device
JP2012172511A (en) * 2011-02-22 2012-09-10 Yutaka Abe Seismic isolator using flanged spherical surface roller

Also Published As

Publication number Publication date
JP2018168897A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US8857110B2 (en) Negative stiffness device and method
JP2021085182A (en) Spring type vibration control damper
JP2018009442A (en) Base-isolated structure
JP6853713B2 (en) Wind lock mechanism
JP6869015B2 (en) Wind lock mechanism
JP2010190409A (en) Seismic isolation device and building
JP2018184791A (en) Wind resistant device
JP3736285B2 (en) Isolation device
JP6835492B2 (en) Seismic isolation structure
JP5911743B2 (en) Damping damper and damping structure
JP2007332688A (en) Pile head structure
JP2008144860A (en) Seismic isolator and seismic isolation structure
JP6590201B2 (en) Multi-layer seismic isolation structure
JP6442934B2 (en) Fail-safe device
JP4468212B2 (en) Fall bridge prevention device
KR20120136132A (en) Elastic device and mechanism to control horizontal displacement utilizing a horizontal component of elastic force and bridge bearing using the same
JP6531479B2 (en) Seismic isolation structure
JP2020109246A (en) Bridge aseismatic device
JP2017145839A (en) Seismic isolation mechanism
JP4706958B2 (en) Seismic isolation structure
JP2000192686A (en) Seismic base isolator
JP3742952B2 (en) Seismic isolation structure with wide response
JP6340278B2 (en) Seismic isolation mechanism and method of forming seismic isolation mechanism
CN210712532U (en) Two-way post-earthquake self-resetting seismic mitigation and isolation support
JPH08326155A (en) Overturn control device for structures

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210312

R150 Certificate of patent or registration of utility model

Ref document number: 6853713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150