[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018048832A - 磁気センサ、磁気センサ装置、診断装置 - Google Patents

磁気センサ、磁気センサ装置、診断装置 Download PDF

Info

Publication number
JP2018048832A
JP2018048832A JP2016182935A JP2016182935A JP2018048832A JP 2018048832 A JP2018048832 A JP 2018048832A JP 2016182935 A JP2016182935 A JP 2016182935A JP 2016182935 A JP2016182935 A JP 2016182935A JP 2018048832 A JP2018048832 A JP 2018048832A
Authority
JP
Japan
Prior art keywords
magnetic
electrode
magnetic layer
current
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2016182935A
Other languages
English (en)
Inventor
岩崎 仁志
Hitoshi Iwasaki
仁志 岩崎
喜々津 哲
Satoru Kikitsu
哲 喜々津
聡志 白鳥
Satoshi Shiratori
聡志 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016182935A priority Critical patent/JP2018048832A/ja
Priority to US15/444,820 priority patent/US20180081001A1/en
Publication of JP2018048832A publication Critical patent/JP2018048832A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/243Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetocardiographic [MCG] signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0223Magnetic field sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/245Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetoencephalographic [MEG] signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/288Invasive for foetal cardiography, e.g. scalp electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/344Foetal cardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

【課題】検出感度の向上が可能な磁気センサ、磁気センサ装置、診断装置を提供する。【解決手段】実施形態によれば、磁気センサは第1電極と、第2電極と、第1方向に沿って第1磁性層と第2磁性層の間に中間層が設けられ、第2方向に沿って前記第1電極と前記第2電極の間に設けられた第1磁気効果素子と、前記第1電極および前記第2電極に接続し、交流電流を印加可能な電流印加部と、前記第1磁気効果素子から出力された交流信号を検出する検出部と、を備える。前記第1磁気効果素子の第2方向の長さは前記第1方向および前記第2方向に直交する第3方向の長さより長い。【選択図】図1

Description

本発明の実施形態は、磁気センサ、磁気センサ装置、診断装置に関する。
磁気抵抗効果型センサを応用した磁気センサが提案されている。磁気センサにおいて、検出感度の向上が望まれている。
特開2013−137301号公報
本発明の実施形態は、検出感度の向上が可能な磁気センサ、磁気センサ装置、診断装置を、提供する。
本発明の実施形態によれば、磁気センサは第1電極と、第2電極と、第1方向に沿って第1磁性層と第2磁性層の間に中間層が設けられ、第2方向に沿って前記第1電極と前記第2電極の間に設けられた第1磁気効果素子と、前記第1電極および前記第2電極に接続し、交流電流を印加可能な電流印加部と、前記第1磁気効果素子から出力された交流信号を検出する検出部と、を備える。前記第1磁気効果素子の第2方向の長さは前記第1方向および前記第2方向に直交する第3方向の長さより長い。
第1実施形態に係る磁気センサを示す図である。 第1実施形態に係る磁気センサに用いられる磁気抵抗効果素子の電流方向とフリー層の磁界方向の関係を示す図である。 第1実施形態に係る磁気センサにおける電流磁界Hと抵抗Rの関係を示す図である。 第1実施形態に係る磁気センサにおける交流電流周期と抵抗の関係を示す図である。 第1実施形態に係る磁気センサにおける正負の信号磁界に比例して発生する2次高調波信号を示す図である。 第1実施形態に係る磁気センサを用いて2次高調波を検出する回路ブロック図を示す図である。 第2実施形態に係る磁気センサを示す図である。 第2実施形態に係る磁気センサの構成を示す図である。 第3実施形態に係る磁気センサの構成を示す図である。 第3実施形態に係る磁気センサの他の構成を示す図である。 第4実施形態に係る磁気センサの構成を示す図である。 第4実施形態に係る磁気センサにおける電流磁界と抵抗の関係を示す図である。 第4実施形態に係る磁気センサにおける抵抗の時間変化を示す図である。 第5実施形態に係る磁気センサ装置および診断装置を示す図である。 実施形態に係る磁気センサ装置を用いた診断装置の応用例を示す図である。 実施形態に係る磁気センサ装置を用いた診断装置の他の応用例を示す図である。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1実施形態)
図1は第1実施形態に係る磁気センサを示す図である。
図1(a)は基板10上に配置された磁気センサ20を基板10の上方から見た上面図である。図に示すように、電極12a、電極12bの間に複数の磁気抵抗効果素子11が、ストライプ状に配置されている。図1において、x軸方向は磁気抵抗効果素子11の長手方向、y軸方向は磁気抵抗効果素子11の幅方向、z軸方向は磁気抵抗効果素子の膜面垂直方向を示す。この実施形態では磁気抵抗効果素子11はy軸方向(幅方向)の長さよりx軸方向(長手方向)の長さの方が長くなるように構成されている。
図1(b)は磁気抵抗効果素子11を図1(a)に示すa−bラインの断面から見た図を示す。長方形にパターニングされた複数の磁気抵抗効果素子11の紙面からみた左右長手方向のそれぞれの端(エッジ部)に上記のように一対の電極12a、12bを接合する。そして、磁気抵抗効果素子の長手方向(x軸方向)に交流電流iacを通電する(図1(a))。
磁気抵抗効果素子11は、磁性層111、中間層112、磁性層113の少なくとも3層を構成する。磁気抵抗効果素子11は、基板10上に構成されている。磁性層111は長手方向(x軸方向)に磁化を固定したピン層、磁性層113は外部からの信号磁界により磁化が回転するフリー層である。磁気抵抗効果素子11の長手方向の長さは、複数の磁気抵抗効果素子11の幅方向よりも十分長くすることにより(例えば、10倍以上)、フリー層113の磁化も長手方向に安定化する。また、このように上面から見てストライプ状の複数の磁性ラインを用いることが、磁気抵抗効果素子11の検出部体積を増大して、1/fノイズ、熱揺らぎ磁気ノイズ低減に望ましいが、磁気抵抗効果素子11は単一の磁性ラインを用いても良い。
ピン層111の十分な磁化固着は、IrMn等の反強磁性膜を非磁性層112との反対側に積層して、さらに磁性層111は、反強磁性的な層間結合を発生させるRu層等を間に挟んで積層化することで実現できることが知られている。磁性層111には磁気抵抗効果の発現に適したCoFe合金等を用いることが好ましい。反強磁性膜の基板側には結晶性改善(結晶粒径増大、膜面垂直方向への結晶配向)にTa,Ru,NiFeCr合金等の下地を設けることが好ましい。磁性層113には、CoFe合金、NiFe合金、CoFeNi合金、CoFeとNiFeの積層構成等を用いる。中間層112には、磁気抵抗効果発現に適したCu等を用いる。
磁気抵抗効果素子11を流れる交流電流iacにより発生する磁界Hcurは、素子幅方向(y軸方向)に加わり、磁気抵抗効果素子の上端部に存在するフリー層113で大きな値となる。例えば、磁気抵抗効果素子11の幅を1μm程度とすると、5mAの交流電流にて(電流密度: 50MA/cm程度)、フリー層113に50 Oe程度の電流磁界を加えることができる。素子幅方向(y軸方向)に加わるHcurはフリー層113磁化を幅方向(y軸方向)に回転させる役割を持つ。有効な電流磁界Hcurをフリー層に加えるには、素子幅は0.5~5mmが好ましい。なお、この実施形態においては上記のように交流通電を行う。このため、正負の電流方向が切り替わると逆方向のHcurが加わる。
図2は第1実施形態に係る磁気センサに用いられる磁気抵抗効果素子の電流方向とフリー層の磁界方向の関係を示す図である。
図2(a)は交流通電が正の電流方向(+x方向)、図2(b)は交流通電がゼロの電流方向、図2(c)は交流通電が負の電流方向(−x方向)を示す。
図2(a)と図2(c)では、ピン層111とフリー層113に加わる電流磁界方向が逆なので回転方向も逆となるが、電流磁界を増大させるとフリー層113の磁化が幅方向(y軸方向)に回転する。この実施形態では、線形応答範囲にフリー層113磁化を回転するような電流値に設定する(図2(a)と図2(c)では概略±45度回転)。発熱が僅かな弱めの電流を用いて、フリー層113の電流磁界磁化回転量を、線形応答となる範囲に設定する。
図2(b)は交流通電がゼロであり、フリー層113の磁性層磁化はピン層111の磁性層磁化と同方向になるので低抵抗状態となる。そして、ピン層111とフリー層113の間に、若干正の磁気結合が発生するような中間層112の厚みを用いて、111と113の磁化を同方向に安定化できる。
図3は第1実施形態に係る磁気センサにおける電流磁界Hと抵抗Rの関係を示す図である。
ここでは正信号磁荷(+Hsig)、ゼロ信号磁界(Hsig=0)、負信号磁界(−Hsig)における、電流磁界Hと抵抗Rの関係を示す。この実施形態の磁気センサ20は、素子幅方向(y軸方向)の磁界成分による抵抗変化を利用するので、図に示すように信号磁界は電流磁界と同様に素子幅方向(y軸方向)に加える。また、交流電流周期と抵抗変動周期の関係を同図に示す。ゼロ信号磁界(Hsig=0)では、正負電流に対して対称な抵抗増大特性を示し、正と負の同一電流の磁化回転角度は一致する。交流電流に対する抵抗変動は、正負電流で同じ値となる。正の信号磁界(+Hsig)が加わると、正負電流に対して対称な抵抗特性は、負電流側にシフトする。正側電流磁界では磁化回転量は大きくなり、抵抗が大きくなる。負側電流磁界では抵抗は小さくなる。負の信号磁界(−Hsig)が幅方向(Y軸方向)に加わると、正負電流に対して対称な抵抗特性は、正電流側にシフトする。正側電流磁界では磁化回転量は小さくなり、抵抗は小さくなる。負側電流磁界側では抵抗は大きくなる。その結果、抵抗変動は、信号磁界が加わると正負電流磁界に対して異なる値となる。その差分は、線形な磁界―抵抗特性範囲では、信号磁界に比例する。
図4は第1実施形態に係る磁気センサにおける交流電流周期と抵抗の関係を示す図である。
図4(a)は交流電流周期と抵抗の関係を、交流電流周期と電圧に変換した関係を示している。ゼロ信号磁界(Hsig=0)では電流周期に一致した電圧信号が得られる。正信号磁界が加わると、正電流側の電圧信号は増大、負電流側の信号電圧は減少する。負信号磁界が加わると、逆に負電流側の電圧信号が減少、正電流側の信号電圧が増大する。すなわち、図4(b)に示すように、信号磁界が加わると、電流周波数fの2倍、2fの2次高調波信号と電流周波数fを合せた波形が発生する。正負電流では、位相が180度異なる。すなわち、正負の信号磁界(−Hsig)に比例して発生する2次高調波信号を、必要に応じて位相を含めて検出することにより、正負信号磁界検出が可能になる。あるいは、位相検出を行わないで信号磁界と同方向に直流電流重畳によるバイアス磁界を加えても、正負信号磁界検出が可能になる。
図5は第1実施形態に係る磁気センサにおける正負の信号磁界に比例して発生する2次高調波信号を示す図である。
図5(a)に示すように、信号磁界よりも十分大きな正バイアス磁界が存在すると、信号磁界ゼロで発生する2次高調波を基準として、正信号磁界が加わると2次高調波は増大、負信号磁界が加わると2次高調波は減少する。たとえば、磁気抵抗効果素子に、交流電流に加えて微量の直流電流を重畳することで、バイアス磁界(Hb)を加えることができる。交流電流の周波数は、信号磁界の周波数よりは一桁以上大きな値に設定する。脳磁装置、心磁装置応用では、1kHz以上が、1kHz程度の神経細胞活動を検出するには数十kHzが望ましい。
この直流電流の調整で、信号磁界ゼロで、2次高調波ゼロの実現も可能であり、その場合には、図5(b)に示すように、位相を検出して負側の2次高調波の符号を反転して出力を得る。
図6は第1実施形態に係る磁気センサを用いて2次高調波を検出する回路ブロックの一例を示す図である。
図6(a)は、前述したバイアス磁界を用いた位相検出無の場合を示す。直流電流オフセット成分を含む交流電源61により磁気抵抗効果素子11に交流電流を通電する。その周波数fは検出磁界の最大周波数よりも十分大きな値(例えば一桁程度)に設定する。磁気抵抗効果素子11に発生する電圧出力は、バンドパスフィルター63にて2次高調波に対応する2f近傍に測定帯域を狭める。その2次高調波振幅電圧をアンプ62により増幅し、信号電圧検出部64で信号電圧として検出する。このように構成することで2f近傍に帯域が限定されるので、SN比が向上する。直流オフセット成分を調整して、バイアス磁界の大きさを制御することにより、安定したセンサー動作が可能となる。
この実施形態の2次高調波検出は、f近傍時間での正負電流磁界出力の差分検出と見なすことができるので、1/fのような長周期振幅揺らぎノイズの影響を除去または低減することができる。
図6(b)は、信号磁界ゼロで2次高調波出力ゼロの場合の、検出ブロック回路図を示す。周波数発生器71により周波数fの交流電流を生成して、さらに直流オフセット成分を加えて、磁気抵抗効果素子11に通電する。磁気抵抗効果素子11の抵抗変化に応じた電圧信号を、fの2倍近傍となるバンドバスフィルター63を通じて、信号電圧検出部64で2次高調波信号を検出する。直流オフセット成分を調整して、図5(b)のように信号磁界無での2次高調波発生を実質的にゼロにすることが出来る。この調整には負帰還回路を用いても良い。
周波数発生器の2fと参照した位相検出器72により、正側歪と負側歪起因の2次高調波信号の符号を分別する。さらに、ローパスフィルター(LPF)73により、位相器ノイズを除去してSN比を改善した2次高調波信号を取り出す。LPF73からの検出信号を負帰還回路74により磁気抵抗効果素子11にフィードバックすると、信号磁界に応じた2次高調波信号の線形応答性が改善できる。その結果、上記図5(b)に示すような、信号磁界と2次高調波の線形応答関係が得られる。
(第2実施形態:細胞応用)
図7(a)は第2実施形態に係る磁気センサを示す図である。
上記第1実施形態で示した磁気抵抗効果素子11の幅方向(Y軸方向)の両サイドに、ギャップgで近接させた磁界収束路131と132を形成する。131は、一般に、Magnetic Flux Concentrator(MFC)と呼ばれ、磁性層幅方向に加わる信号磁界を増幅する効果を有する。X軸方向(磁気抵抗効果素子11の長手方向)に磁化容易軸を持つNiFe等の軟磁性材料を用いる。磁界収束路の面内形状を示す図中のd(d〜L/2)、磁界収束路と磁気抵抗効果素子11のギャップをg、磁気抵抗効果素子11の幅をWとすると、増幅率Gは、式(1)で表現できる。
G ~ 0.6×d/(W+2g) (1)
gを数nmとして、W=0.5~2?mm, d=0.05~0.5mm、とすると、Gは10から1000の値が期待できる。100kHzの交流電流を用いると、L=100mm×w=1mmのフリー層形状では、熱雑音に近い〜10nV/Hz0.5にまで1/fノイズが低減できる。その結果、2d = 100〜1000mm級の素子サイズ(分解能)で、1〜100pT級の微小磁界の検出が可能となる。
図7(b)にブリッジ構成に本発明を適用した実施例を示す。磁気抵抗効果素子を4個用いて(11a~d)、11aと11bを直列に接続した電流ラインabと、11cと11dを直列に接続した電流ラインcdを,並列に接続して交流を通電する。11bの幅方向両側にはMFC12aと12bを、11cの幅方向両側にはMFC12bと12cを図7のように近接配置する。11aと11bの中間点14abと、11cと11dの中間点14cdとの2次高調波電位差を検出する。このような構成により、MFCにより増幅された信号磁束は11bと11cのみに加わり、11bと11c と比べて一桁以上小さな磁界が11aと11dに加わる。その結果、中間点14abと14cdの電位は、信号磁界ゼロは一致、信号磁界が加わると、それぞれ逆方向に変動する(14abが正なら14cdは負、14abが負なら14cdは正)。その結果、信号磁界応じて中間点11abと11cdの間に電位差が生じる。
図8は第2実施形態に係る磁気センサの構成を示す図である。
ここでは、心筋や神経の電気活動により発生する磁界を検出するセンサ例を示す。図8(a)に磁気センサの基板面直方向から見た配置を、図8(b)に第1センサ群の面内配置を、図8(c)に第2センサ群の面内配置を示す。
基板80に、第1センサ群811を構成し、その第1センサ群811上に、数mm程度の狭い間隔を隔てて第2センサ群812を配置する。第2センサ群812上には細胞培養に適したSiOx等の絶縁キャップ層82を設ける(厚み<1?mm)。さらにその上に、培養あるいは急性切片に作製した心筋や神経細胞(83)を形成する。第1センサ群811、第2センサ群812は、その面内に、複数のセンサユニットからなる。この実施形態においては例えば16個のセンサユニットを示している。
上記センサユニットは、図7に示したような磁束収束路121, 122を設けた磁気抵抗効果素子11からなり、0.1〜0.5mm角程度の面内形状である。磁気抵抗効果素子11の長手方向(X軸方向)は、第2センサ群812と第1センサ群811で互いに直交する。また、各センサの間に、ある程度の光が通過できる透明箇所を設けて、蛍光等のセンシングセンサと並列してもよい。
第1センサ群811では図8(b)のy軸方向、第2センサ群812では図8(c)のx軸方向の磁界成分を検出するので、両者の出力比から、細胞(83)から発生する磁界の面内方向を決めることが可能である。また、第1センサ群811、第2センサ群812を同一面に形成することも可能だが、センサを密に配置して分解能をアップすることに制限が生じる。最大64個のセンサ群を、図8のように配置して、細胞(83)の電気活動として電位を調べる装置(MED64)が実用化されている。心電図と心磁図の比較と同様に、磁界検出は、ベクトル情報が判る(2次元の電気信号の伝搬方向)、細胞電流の積分量が判るなどのメリットがある。なお、細胞をセンサーとは異なる基板上に設けて、細胞の上から上記センサーの最表面を細胞に近接させて、細胞からの磁界を検出しても良い。
図8(d)は、さらに他の実施形態を示す。
上述した図8(a)のセンサの下側に、細胞(83)とセンサ間隔(数?mm)の間隔よりも大幅に離して(例えば1mm程度)、図8(a)と同様な参照用センサ群811r, 812rを配置する。そして、参照用センサ811r, 812rと上部のセンサ群811、812の出力信号の差分を、出力として検出する。地磁気のような外部磁界はmmオーダー程度の領域では均一磁界と見なせるので、差分出力は略ゼロとなる。一方、細胞(83)からの磁界はmmオーダー程度離れたセンサでは検出されにくいため、細胞信号磁界は差分検出でも感度低下は僅かである。その結果、地磁気のような外乱磁界の影響を低減できて、SN比を向上させることができる。
(第3実施形態:直列接続MR素子)
図9は第3実施形態に係る磁気センサの構成を示す図である。
上記第1実施形態では、複数の磁気抵抗効果素子11を並列接続して通電する構成を示した。なお、並列接続においては、センサ抵抗が低下する場合があり、例えば、面内直流通電のGMRセンサでは、複数磁気抵抗効果素子11を直列接続する構成が考えられる。
例えば、従来磁気抵抗効果素子センサーで知られているような図9(d)に示した直列接続の隣接磁気抵抗効果子11では、隣接磁気抵抗効果素子11の電流は反対方向に流れるため、フリー層に加わる電流磁界は逆になる。その結果、信号磁界は同じ方向に加わるので、隣接素子の出力電圧の増減は反対となり、加算出力は相殺となってしまう。そこで、ここでは、直列に複数磁気抵抗効果素子11を接続する場合の実施形態を例示する。
図9は第3実施形態に係る磁気センサの構成を示す図である。図9(a)は膜面方向上(Z軸方向に沿って上)から見た図である。図9(b)は、図9(a)に示すa−bラインの断面方向(Y軸方向に沿う方向)から見た図を示す。また図9(c)は、図9(a)に示すc−dラインの断面方向から見た図を示す。
ここでは、磁気抵抗効果素子11は、第一実施形態と同様であるが、電極12の構成が異なっている。電極12は第1面配置の第1電極部分121と、第2面配置の第2電極部分122を構成する。第1電極部分121は磁気抵抗効果素子11の長手方向端部に接して、磁気抵抗効果素子11に交流電流を通電する端子である。第2電極部分122は、複数の磁気抵抗効果素子11の通電方向を同じ+x方向に揃えるために、リターンの電流パスとなる。図に示すように、第2電極部分122は、第1部分121上に形成する。これらの構成により、隣接する磁気抵抗効果素子11幅方向に+x、−x方向の逆方向電流が流れると、電流磁界の方向も反転して出力が相殺してしまうという現象を解決することができる。第2電極部分122のリターンパスは、磁気抵抗効果素子11長手方向から傾斜したラインでも良い。これらの電極はCuのような低抵抗材料を用いて厚めとすることで、抵抗の磁気抵抗効果素子よりも十分小さな値に保つことにより、磁気抵抗効果変化率の低下を抑制することができる。
図10は第3実施形態に係る磁気センサの他の構成を示す図である。
磁気抵抗効果素子11は、第1面に形成する第1素子部分11aと、第2面に形成する第2素子部分11bを構成する。第1素子部分11aと第2素子部分11bは、磁気抵抗効果素子11の長手方向(X軸方向)の端部において第1素子部分11aと第2素子部分11bの中間面に配置した電極12と接することにより、複数の磁気抵抗効果素子11が、つづらおり状に直列接続される。
第1素子部分11aでは交流電流が+x方向に流れ、第2素子部分11bでは交流電流が−x方向に流れる。第1素子部分11aでは、基板面側にピン磁性層111aを、その上にフリー層113aを配置する。また、第2素子部分11bでは、基板面側にフリー層113bを配置する。
このように第1素子部分11aと第2素子部分11bのフリー層の相対的な位置を反対にすることで、通電方向が異なった場合に、第1素子部分11aと第2素子部分11bにフリー層に加わる電流磁界を同方向に揃えることが可能となる。
また、第1素子部分11aと第2素子部分11bを形成後、平坦化処理を行い、第2素子部分11bのMR比など磁気抵抗効果素子11の特性劣化を防止する。一般には、同一面内で、磁気抵抗効果素子11のピン、フリーの順番を変更するには、2種のMR膜成膜を別に行う必要があり、微細化プロセスを行いにくいが、この実施形態のように、ある磁気抵抗効果素子11と他の磁気抵抗効果素子11を異なる面で形成することにより、微細化プロセスが行い易くなる。
(第4実施形態:2層のフリー層)
図11は第4実施形態に係る磁気センサの構成を示す図である。
図11では、磁気抵抗効果素子11の磁性層111と磁性層113が電流磁界により磁化回転するフリー層を用いた場合の実施形態を示す。
磁気膜厚Mstは磁性層の厚みtと飽和磁化Msの積を意味する。ここでは、磁性層111の厚みtと飽和磁化Msの積である磁気膜厚Mst(111)は、磁性層113の厚みtとMsの積であるMst(113)とは異なっている。ここでは、例えば、磁性層111にはCoFe(4nm厚)、磁性層113にはCoFe(3nm厚)を用いる。CoFeの換わりにNiFeを用いても良い。
磁性層111と磁性層113にはiac(正電流および負電流)により、図に示す破線矢印方向にそれぞれ逆の磁界が加わり、磁化が幅方向(±y方向)に回転する。
図11(a)に示す正電流方向と図11(b)に示す負電流方向では、電流磁界方向が反転するので、磁性層111と磁性層113の磁化は反対方向を向く。中間層112には、磁気抵抗効果が大きなCuを用いることが望ましい。またCuは磁性層111と磁性層113よりも低抵抗であり、電流が112に集中するので、磁性層111と磁性層113に逆方向の大きな電流磁界付与に適する。ここでは上記第1実施形態と異なり、磁性層111と磁性層113は、最大電流磁界にて概ね幅方向に飽和する大き目の交流電流を、磁気抵抗効果11に通電することが望ましい。
図12は第4実施形態に係る磁気センサにおける電流磁界と抵抗の関係を示す図である。
信号磁界無(Hsig=0)では、正負の電流磁界が増大するにつれて対称な抵抗増大特性を示し、抵抗飽和に要する電流磁界は正負の電流で一致する。正の信号磁界(+Hsig)が加わると、磁気膜厚が大きな磁性層113の磁化が正信号磁界方向に飽和容易となり、負電流方向では飽和しにくくなる。逆に、負の信号磁界(−Hsig)が加わると、磁性層113の磁化が負信号磁界方向で飽和し易くなる。その結果、飽和に要する電流磁界が、正信号磁界と負信号磁界では逆方向にシフトする。この例では第1実施形態と異なりピン層を用いない。このため、不飽和の弱い電流磁界では正負信号磁界による変化が小さく、飽和する大きめの電流磁界が好ましい。上記第1実施例と比較すると、飽和の交流磁界による磁区リセットにより磁気ノイズをより低減することが可能になる。
図13は第4実施形態に係る磁気センサにおける抵抗の時間変化を示す図である。
図13では抵抗の時間変化を、正、ゼロ、負信号磁界について示す。図13(a)は正信号磁界、図13(b)はゼロ信号磁界(信号磁界無)、図13(c)は負信号磁界である。
図13(b)の信号磁界無では、交流電流iacの周波数に対応した抵抗変動となり、2次高調波は発生しない。一方、正の信号磁界(+Hsig)が加わると、正側電流で容易に歪むので、正側電流が負側電流よりも大きな波形歪を生じる。また負の信号磁界(−Hsig)が加わると、逆に、正側電流によりも負側電流で大きな波形歪を生じる。すなわち、正負の信号磁界に応じて、2次高調波が発生する。この2次高調波を例えば、図6に示した回路により検出することが可能である。なお、飽和して抵抗が一定でも、交流電流のため電圧飽和は発生しないが、図7(b)のようなブリッジ構成では、抵抗一定での電圧変動は除去でき、2次高調波を精度よく検出できる。
(第5実施形態)
図14は第5実施形態に係る磁気センサ装置および診断装置を示す図である。
次に、上記第1乃至第4実施形態に示す磁気センサを、例えば、脳磁計に用いることができる。脳磁計は脳神経が発する磁界を検出する。なお、脳磁計への応用として、磁束収束路を含めて数mm角サイズの素子サイズを用いてもよい。
上記第1実施形態による磁気センサ装置について、図14を参照して説明する。ここでは磁気センサ装置100は脳磁計である。図14の左側の図は、この脳磁計100を人体の頭部に装着した状態を模式的に示す。この脳磁計100は、複数のセンサ部、例えば100個程度のセンサ部301が柔軟性のある基体302に設置された構成を有している。
このセンサ部301は、第1実施形態の磁気センサが1個配置されていても良いし、複数個配置されていても良い。また、複数の磁気センサが差動検出等の回路を構成していても良いし、また、電位端子や加速度センサなどの別のセンサが同時に設置されていても良い。第1実施形態の磁気センサは、従来のSQUID磁気センサに比べて非常に小さく作成できるので、このような複数のセンサ部の設置や回路の設置や他のセンサとの共存も容易である。柔軟性のある基体302は、例えばシリコーン樹脂などの弾性体からなり、帯状に各センサ部301をつないで頭部に密着できるように構成されている。
センサ部301の入出力コード303は、診断装置500のセンサ駆動部506および信号入出力部504とつながっている。センサ駆動部506からの電力と信号入出力部504からの制御信号に基づきセンサ部301は所定の磁界測定を行い、その結果は、並行して信号入出力部504へ入力される。信号入出力部504で得た信号はその後、信号処理部508へ送られ、この信号処理部508において、ノイズの除去、フィルタリング、増幅、信号演算などの処理が施される。その後、これらの信号は、脳磁計測のための特定の信号を抽出したり、信号位相を合わせたりする信号解析が信号解析部510において行われる。信号解析が終了したデータは、データ処理部512に送られる。データ処理部512では、MRI(Magnetic Resonance Imaging)などの画像データやEEG(Electroencephalogram)などの頭皮電位情報なども取り入れて、神経発火点解析や逆問題解析などの、データ解析を行う。その結果は画像化診断部516へ送られ、診断の助けとなるような画像化が行われる。これら一連の動作は制御機構502によって制御されており、一次信号データやデータ処理途中のメタデータなど、必要なデータは、データサーバに保存される。なお、後述する図15に示すようにデータサーバと制御機構が一体化していても良い。
図14に示す第3実施形態では、センサ部301が人体頭部に設置されているが、これを人体胸部に設置すれば、心磁測定が可能となる。また、妊婦の腹部に設置すれば、胎児の心拍検査に用いることもできる。被験者を含めた磁気センサ装置全体は、地磁気や磁気ノイズを防ぐためには、シールドルーム内に設置されるのが好ましい。あるいは、人体の測定部位やセンサ部301を局所的にシールドする機構を設けても良い。また、センサ部301にシールド機構を設けたり、信号解析やデータ処理で実効的なシールドを行ったりしても良い。
図14に示す磁気センサ100は、高感度磁気センサを備えたセンサ部301が柔軟性のある基体302に設置されているが、従来の脳磁計や心磁計のように、固定された基体に設置されていても構わない。その例を次に示す。
図15は実施形態に係る磁気センサ装置を用いた応用例を示す図である。
基体302は連続した膜を帽子状に加工したものでも良いが、図15に示すようなネット状のものが、装着性が良く、また人体への密着性が向上するので好ましい。図15は脳磁計の一例であるが、ヘルメット状の硬質の基体304上にセンサ部301が設置されている。
図16は実施形態に係る磁気センサ装置を用いた他の応用例を示す図である。
図16は心磁計の一例であるが、平板状の硬質の基体305上にセンサ部301が設置されている。図15および図16のいずれの場合も、センサ部301からの信号の入出力とその処理は図14と同様である。
以上、具体例を参照しつつ、本発明の実施形態について説明した。しかし、本発明の実施形態は、これらの具体例に限定されるものではない。例えば、第1電極、第2電極、第1磁気効果素子、検出部の各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することができる。また、本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施形態として上述した磁気センサを基にして、当業者が適宜設計変更して実施し得る全ての磁気センサ装置、診断装置も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例および修正例に想到し得るものであり、それら変更例および修正例についても本発明の範囲に属するものと了解される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…基板、11…磁気抵抗効果素子、11a…第1素子部分、11b…第2素子部分、12…電極、12a…電極、12b…電極、20…磁気センサ、61…交流電源、62…アンプ、63…バンドパスフィルター、64…信号電圧検出部、71…周波数発生器、72…位相検出器、73…ローパスフィルター(LPF)、80…基板、83…細胞、100…磁気センサ装置(脳磁計)、111…磁性層(ピン層)、112…中間層、113…磁性層(フリー層)、121…第1電極部分、122…第2電極部分、131…磁界収束路、132…磁界収束路、302…基体、301…センサ部、302…基体、303…入出力コード、304…基体、305…基体、500…診断装置、502…制御機構、504…信号入出力部、506…センサ駆動部、508…信号処理部、510…信号解析部、512…データ処理部、516…画像化診断部、811…第 センサ群、811r…参照用センサ、812…第2センサ群、812r…参照用センサ。

Claims (11)

  1. 第1電極と、
    第2電極と、
    第1方向に沿って第1磁性層と第2磁性層の間に中間層が設けられ、前記第1電極と前記第2電極の通電方向である第2方向に沿って前記第1電極と前記第2電極の間に設けられた第1磁気効果素子と、
    前記第1電極および前記第2電極に接続し、交流電流を印加可能な電流印加部と、
    前記第1磁気効果素子から出力された前記交流周波数の2次高調波成分
    を検出する検出部と、を備え、前記第1磁気効果素子の第2方向の長さは前記第1方向および前記第2方向と直交する第3方向の長さより長い磁気センサ。
  2. 前記第1電極と第2電極間には、前記第1方向に沿って第1磁性層と第2磁性層の間に中間層が設けられ、前記第2方向に沿って前記第1電極と前記第2電極の間に設けられた第2磁気効果素子をさらに前記第3方向に沿って備え、前記第2磁気効果素子の前記第2方向の長さは前記第3方向の長さより長い請求項1に記載の磁気センサ。
  3. 前記第1磁性層の磁化の方向は実質的に固定され、前記第2磁性層の磁化の方向は可変である請求項1または請求項2に記載の磁気センサ。
  4. 前記第1磁性層の磁化の方向および前記第2磁性層の磁化の方向は可変である請求項1または請求項2に記載の磁気センサ。
  5. 前記第1磁気効果素子から出力された交流信号を交流周波数の2倍近傍に制限して前記検出部に向けて出力するバンドパスフィルターをさらに備えた請求項1乃至請求項4のいずれか1つに記載の磁気センサ。
  6. 前記電流印加部は前記交流電流より電流値が小さい直流電流をさらに印加する請求項1乃至請求項5のいずれか1つに記載の磁気センサ。
  7. 第3磁性層と、
    第4磁性層と、
    を備え、前記第3方向に沿って前記第3磁性層と前記第4磁性層の間に前記第1磁気効果素子が設けられ、前記第3磁性層と前記第4磁性層の前記第1方向の膜厚は前記第1磁性層および前記第2磁性層の前記第1方向の膜厚より厚い請求項1乃至請求項6のいずれか1つに記載の磁気センサ。
  8. 前記第1および第2磁気抵抗効果素子が前記第3方向に沿って配列し、前記第1磁気抵抗効果素子と前記第2磁気抵抗効果素子の第2方向端を接続して直列接続した請求項1に記載の磁気センサ。
  9. 前記第1および第2磁気抵抗効果素子を備え、前記第1磁気抵抗効果素子と前記第2磁気抵抗効果素子は、第1磁性層と第2磁性層の積層順が異なり、異なる第1方向面に配置され、逆方向に通電する請求項1に記載の磁気センサ。
  10. 請求項1乃至請求項9のいずれか1つに記載の磁気センサから出力された情報を受信する受信部を備え、基板上に形成した生体細胞の電気活動を測定する磁気センサ装置。
  11. 請求項1乃至請求項9のいずれか1つに記載の磁気センサから出力された情報を受信する受信部を備え、前記情報を用いて受信診断を行う診断装置。
JP2016182935A 2016-09-20 2016-09-20 磁気センサ、磁気センサ装置、診断装置 Abandoned JP2018048832A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016182935A JP2018048832A (ja) 2016-09-20 2016-09-20 磁気センサ、磁気センサ装置、診断装置
US15/444,820 US20180081001A1 (en) 2016-09-20 2017-02-28 Magnetic Sensor, Magnetic Sensor Device, and Diagnostic Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182935A JP2018048832A (ja) 2016-09-20 2016-09-20 磁気センサ、磁気センサ装置、診断装置

Publications (1)

Publication Number Publication Date
JP2018048832A true JP2018048832A (ja) 2018-03-29

Family

ID=61620208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182935A Abandoned JP2018048832A (ja) 2016-09-20 2016-09-20 磁気センサ、磁気センサ装置、診断装置

Country Status (2)

Country Link
US (1) US20180081001A1 (ja)
JP (1) JP2018048832A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10809321B2 (en) 2018-05-29 2020-10-20 Kabushiki Kaisha Toshiba Magnetic sensor and testing device
US10849527B2 (en) 2017-03-21 2020-12-01 Kabushiki Kaisha Toshiba Magnetic sensor, biological cell sensing device, and diagnostic device
JP2022094034A (ja) * 2020-12-14 2022-06-24 株式会社東芝 磁気センサ及び検査装置
JP2022105354A (ja) * 2021-01-04 2022-07-14 株式会社東芝 磁気センサ及び検査装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6724459B2 (ja) * 2016-03-23 2020-07-15 Tdk株式会社 磁気センサ
US11740192B2 (en) 2019-12-13 2023-08-29 Sonera Magnetics, Inc. System and method for an acoustically driven ferromagnetic resonance sensor device
US11903715B1 (en) * 2020-01-28 2024-02-20 Sonera Magnetics, Inc. System and method for a wearable biological field sensing device using ferromagnetic resonance
JP7341926B2 (ja) * 2020-03-11 2023-09-11 株式会社東芝 磁気センサ
JP2023544017A (ja) 2020-09-30 2023-10-19 ソネラ マグネティックス,インコーポレイテッド 磁気センサアレイ回路のためのシステム及び方法
JP7426958B2 (ja) * 2021-01-26 2024-02-02 株式会社東芝 磁気センサ及び検査装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10849527B2 (en) 2017-03-21 2020-12-01 Kabushiki Kaisha Toshiba Magnetic sensor, biological cell sensing device, and diagnostic device
US11350840B2 (en) 2017-03-21 2022-06-07 Kabushiki Kaisha Toshiba Magnetic sensor, biological cell sensing device, and diagnostic device
US10809321B2 (en) 2018-05-29 2020-10-20 Kabushiki Kaisha Toshiba Magnetic sensor and testing device
JP2022094034A (ja) * 2020-12-14 2022-06-24 株式会社東芝 磁気センサ及び検査装置
JP2022105354A (ja) * 2021-01-04 2022-07-14 株式会社東芝 磁気センサ及び検査装置

Also Published As

Publication number Publication date
US20180081001A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP2018048832A (ja) 磁気センサ、磁気センサ装置、診断装置
US11350840B2 (en) Magnetic sensor, biological cell sensing device, and diagnostic device
US10809321B2 (en) Magnetic sensor and testing device
JP7284739B2 (ja) 磁気センサ及び検査装置
JP2018146314A (ja) 磁気センサ、磁気センサ装置
JP7293147B2 (ja) 磁気センサ、センサモジュール及び診断装置
JP2017133891A (ja) 磁気センサおよび磁気センサ装置
WO2005081007A1 (ja) 磁界検出器、これを用いた電流検出装置、位置検出装置および回転検出装置
WO2017115839A1 (ja) 磁気センサー、センサーユニット、磁気検出装置、及び磁気計測装置
JP7319683B2 (ja) 磁気センサ及び診断装置
JP2022031282A (ja) 磁気センサ、生体細胞検出装置及び診断装置
JP2017166921A (ja) 磁気センサおよび磁気センサ装置
US11119161B2 (en) Magnetic sensor and diagnostic device
US11946975B2 (en) Magnetic sensor and inspection device
US11432751B2 (en) Magnetic sensor and inspection device
JP7414703B2 (ja) 磁気センサ及び検査装置
US11726149B2 (en) Magnetic sensor and inspection device
JP7496089B2 (ja) 磁気センサ及び検査装置
JP7488136B2 (ja) 磁気センサ、センサモジュール及び診断装置
JP7422709B2 (ja) センサ及び検査装置
JP7426958B2 (ja) 磁気センサ及び検査装置
JP2022108344A (ja) 磁気センサ及び検査装置
JP2024034793A (ja) センサ及び検査装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190125

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20190128