[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2018041896A - Processing method of laminated wafer - Google Patents

Processing method of laminated wafer Download PDF

Info

Publication number
JP2018041896A
JP2018041896A JP2016176373A JP2016176373A JP2018041896A JP 2018041896 A JP2018041896 A JP 2018041896A JP 2016176373 A JP2016176373 A JP 2016176373A JP 2016176373 A JP2016176373 A JP 2016176373A JP 2018041896 A JP2018041896 A JP 2018041896A
Authority
JP
Japan
Prior art keywords
silicon substrate
cutting
laminated wafer
glass substrate
cutting blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016176373A
Other languages
Japanese (ja)
Other versions
JP6716403B2 (en
Inventor
巻子 大前
Makiko Omae
巻子 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2016176373A priority Critical patent/JP6716403B2/en
Priority to TW106126224A priority patent/TWI729180B/en
Priority to CN201710769441.1A priority patent/CN107808821B/en
Priority to KR1020170111223A priority patent/KR102333519B1/en
Publication of JP2018041896A publication Critical patent/JP2018041896A/en
Application granted granted Critical
Publication of JP6716403B2 publication Critical patent/JP6716403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dicing (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To preferably divide a laminated wafer to which a non-permeating layer is formed.SOLUTION: A processing method of a laminated wafer (W) to which a glass substrate (W2) is adhered on a surface side of a silicon substrate (W1), comprises steps of: exposing the silicon substrate by cutting a peripheral residual region in which a device is not formed from a back surface side of the silicon substrate in which a non-transmitting layer (14) hardly transmitting an infrared is formed; performing an alignment by positioning an infrared camera at an upper device of the silicon substrate exposed in the peripheral residual region and detecting a division scheduled line of the surface side of the silicon substrate; dividing the silicon substrate by cutting the region with a first cutting blade for the silicon substrate along the division scheduled line; and dividing the glass substrate by cutting the region along with a groove obtained by dividing the silicon substrate with a second cutting blade for the glass substrate.SELECTED DRAWING: Figure 7

Description

本発明は、積層ウェーハを分割予定ラインに沿って分割する積層ウェーハの加工方法に関する。   The present invention relates to a laminated wafer processing method for dividing a laminated wafer along a division line.

従来、積層ウェーハとしてはシリコン基板の表面にガラス基板を樹脂で接着したものが知られており、この種の積層ウェーハの加工方法として超音波ブレードで切削する方法が提案されている(例えば、特許文献1参照)。特許文献1に記載の加工方法では、シリコン基板の裏面に保護テープが貼着され、ガラス基板を上方に向けた状態でチャックテーブルに保護テープ側が保持される。そして、撮像手段でガラス基板を透過してシリコン基板の表面の分割予定ラインが検出されてアライメントされ、分割予定ラインに沿って超音波ブレードでガラス基板及びシリコン基板が切削される。   Conventionally, a laminated wafer in which a glass substrate is bonded to the surface of a silicon substrate with a resin is known, and a method of cutting with an ultrasonic blade has been proposed as a processing method of this type of laminated wafer (for example, a patent) Reference 1). In the processing method described in Patent Document 1, a protective tape is attached to the back surface of the silicon substrate, and the protective tape side is held on the chuck table with the glass substrate facing upward. Then, the dividing line on the surface of the silicon substrate is detected and aligned through the glass substrate by the imaging means, and the glass substrate and the silicon substrate are cut by an ultrasonic blade along the dividing line.

特開2007−081264号公報JP 2007-081264 A

ところで、積層ウェーハのシリコン基板の裏面側に金属膜や梨地面等が形成されたものが存在している。金属膜や梨地面は赤外線を通し難い不透過層であるため、シリコン基板を上方に向けた状態では赤外線カメラを用いたアライメントができず、特許文献1の加工方法のように積層ウェーハをガラス基板側から切削する必要がある。しかしながら、シリコン基板の裏面に金属膜が形成されていると金属バリが発生し、シリコン基板の裏面に梨地面が形成されていると裏面チッピングが悪化したりして、分割後のチップに不良が発生し易くなるという不具合が生じていた。   By the way, there is a laminated wafer in which a metal film, a textured surface, or the like is formed on the back side of the silicon substrate. Since the metal film and the satin surface are impermeable layers that do not easily transmit infrared light, alignment using an infrared camera cannot be performed with the silicon substrate facing upward, and the laminated wafer is not a glass substrate as in the processing method of Patent Document 1. It is necessary to cut from the side. However, if a metal film is formed on the back surface of the silicon substrate, metal burrs are generated, and if a matte surface is formed on the back surface of the silicon substrate, the back surface chipping deteriorates, and the chip after division is defective. There was a problem that it was likely to occur.

本発明はかかる点に鑑みてなされたものであり、不透過層が形成された積層ウェーハを良好に分割することができる積層ウェーハの加工方法を提供することを目的の1つとする。   This invention is made | formed in view of this point, and makes it one of the objectives to provide the processing method of the laminated wafer which can divide | segment the laminated wafer in which the impermeable layer was formed favorably.

本発明の一態様の積層ウェーハの加工方法は、シリコン基板の表面に複数の分割予定ラインによって区画されたデバイスが複数形成されたシリコン基板の該表面側に樹脂でガラス基板が接着された積層ウェーハの加工方法であって、シリコン基板の裏面には赤外線が透過しにくい不透過層が形成され、該ガラス基板側に保護テープが貼着された積層ウェーハの該保護テープを介して該ガラス基板側を切削装置のチャックテーブル上面に載置する載置ステップと、該載置ステップを実施した後に、該切削装置の切削ブレードで該複数のデバイスが形成されていない外周余剰領域の該不透過層を切削して除去しシリコン基板を露出させる外周余剰領域シリコン基板露出ステップと、該外周余剰領域シリコン基板露出ステップを実施した後に、該外周余剰領域の露出したシリコン基板上に赤外線カメラを位置づけて該シリコン基板を透過して該表面側の分割予定ラインを検出してアライメントを行うアライメントステップと、該アライメントステップを実施した後に、該積層ウェーハの該シリコン基板側から第1切削ブレードを該樹脂の途中まで切り込み、該シリコン基板を該分割予定ラインに沿って分割する第1切削ステップと、該第1切削ステップを実施した後に、該第1切削ステップで切削した溝に沿って、第2切削ブレードを該保護テープの途中まで切り込み、該ガラス基板を該分割予定ラインに沿って分割する第2切削ステップと、を備える。   According to another aspect of the present invention, there is provided a laminated wafer processing method in which a glass substrate is bonded with a resin to a surface of a silicon substrate in which a plurality of devices partitioned by a plurality of division lines are formed on the surface of the silicon substrate. And a glass substrate side through the protective tape of the laminated wafer in which a non-transparent layer that does not easily transmit infrared rays is formed on the back surface of the silicon substrate, and a protective tape is attached to the glass substrate side. Mounting on the upper surface of the chuck table of the cutting apparatus, and after performing the mounting step, the impermeable layer in the outer peripheral surplus area where the plurality of devices are not formed by the cutting blade of the cutting apparatus. After performing the outer peripheral surplus region silicon substrate exposing step to expose the silicon substrate by cutting and the outer peripheral surplus region silicon substrate exposing step, An alignment step in which an infrared camera is positioned on the silicon substrate where the surplus area is exposed, passes through the silicon substrate, detects the planned division lines on the surface side, and performs alignment, and after performing the alignment step, the laminated wafer The first cutting blade is cut from the silicon substrate side to the middle of the resin, the first cutting step for dividing the silicon substrate along the division line, and after the first cutting step, the first cutting step is performed. A second cutting step of cutting the second cutting blade halfway along the protective tape along the groove cut in the cutting step and dividing the glass substrate along the division line.

この構成によれば、積層ウェーハのシリコン基板の裏面を覆う不透過層のうち、デバイスが形成されていない外周余剰領域が除去されてシリコン基板が部分的に露出される。この露出したシリコン基板に赤外線カメラを位置づけることで、シリコン基板を透過した赤外線によってシリコン基板の表面側の分割予定ラインが検出されてアライメントが実施される。また、シリコン基板の裏面の不透過層側から切り込まれるため、バリが生じ難くなると共に裏面チッピングが生じ難くなっている。よって、不透過層が形成された積層ウェーハを分割予定ラインに沿って良好に分割することができる。   According to this structure, the outer peripheral surplus area | region in which the device is not formed is removed among the impervious layers which cover the back surface of the silicon substrate of a laminated wafer, and a silicon substrate is partially exposed. By positioning the infrared camera on the exposed silicon substrate, the division line on the surface side of the silicon substrate is detected by the infrared rays transmitted through the silicon substrate, and alignment is performed. Moreover, since it is cut from the non-transparent layer side of the back surface of the silicon substrate, burrs are hardly generated and back surface chipping is hardly generated. Therefore, the laminated wafer on which the impermeable layer is formed can be favorably divided along the planned division line.

本発明によれば、シリコン基板の裏面の不透過層のうち外周余剰領域を除去してアライメントを可能にし、シリコン基板の裏面の不透過層側から切り込むことで、不透過層に起因した不具合を解消しつつ積層ウェーハを良好に分割することができる。   According to the present invention, it is possible to perform alignment by removing the outer peripheral surplus region of the non-transparent layer on the back surface of the silicon substrate, and by cutting from the non-transparent layer side on the back surface of the silicon substrate, the problem caused by the non-transparent layer is eliminated. A laminated wafer can be divided | segmented favorably, eliminating.

本実施の形態の積層ウェーハの分解斜視図である。It is a disassembled perspective view of the laminated wafer of this Embodiment. 比較例の積層ウェーハの加工方法の説明図である。It is explanatory drawing of the processing method of the laminated wafer of a comparative example. 本実施の形態の載置ステップの一例を示す図である。It is a figure which shows an example of the mounting step of this Embodiment. 本実施の形態の外周余剰領域シリコン基板露出ステップの一例を示す図である。It is a figure which shows an example of the outer periphery excess area | region silicon substrate exposure step of this Embodiment. 本実施の形態のアライメントステップの一例を示す図である。It is a figure which shows an example of the alignment step of this Embodiment. 本実施の形態の第1切削ステップの一例を示す図である。It is a figure which shows an example of the 1st cutting step of this Embodiment. 本実施の形態の第2切削ステップの一例を示す図である。It is a figure which shows an example of the 2nd cutting step of this Embodiment.

以下、添付図面を参照して、本実施の形態の積層ウェーハの加工方法について説明する。先ず、加工対象となる積層ウェーハについて説明する。図1は、本実施の形態の積層ウェーハの分解斜視図である。図2は、比較例の積層ウェーハの加工方法の説明図である。   Hereinafter, a method for processing a laminated wafer according to the present embodiment will be described with reference to the accompanying drawings. First, the laminated wafer to be processed will be described. FIG. 1 is an exploded perspective view of the laminated wafer according to the present embodiment. FIG. 2 is an explanatory diagram of a method for processing a laminated wafer of a comparative example.

図1に示すように、積層ウェーハWは、シリコン基板W1の表面11側にガラス基板W2を透明な樹脂13(図3参照)で接着して形成されている。シリコン基板W1の表面11には、複数の分割予定ラインLが格子状に配置され、分割予定ラインLによって区画された複数のデバイスDが形成されている。シリコン基板W1の表面11は、デバイスDが形成されたデバイス領域A1と、デバイス領域A1の周囲でデバイスDが形成されていない外周余剰領域A2とに分かれている。また、シリコン基板W1の裏面12には、金属層や梨地面等のように赤外線を通し難い不透過層14が形成されている。   As shown in FIG. 1, the laminated wafer W is formed by bonding a glass substrate W2 to a surface 11 side of a silicon substrate W1 with a transparent resin 13 (see FIG. 3). On the surface 11 of the silicon substrate W1, a plurality of division lines L are arranged in a lattice pattern, and a plurality of devices D partitioned by the division lines L are formed. The surface 11 of the silicon substrate W1 is divided into a device region A1 where the device D is formed and an outer peripheral surplus region A2 where the device D is not formed around the device region A1. Further, on the back surface 12 of the silicon substrate W1, an impermeable layer 14 that is difficult to transmit infrared rays, such as a metal layer or a satin surface, is formed.

図2Aの比較例に示すように、通常、このように構成された積層ウェーハWは、シリコン基板W1の裏面12が不透過層14で覆われているため、ガラス基板W2側から分割予定ラインL(図1参照)に沿って加工される。この方法では、積層ウェーハWのガラス基板W2側を上方に向けた状態で、リングフレームFに貼着された保護テープTに積層ウェーハWのシリコン基板W1側が貼着される。また、ガラス基板W2用の切削ブレード39が超音波振動されることで、ガラス基板W2とシリコン基板W1が切削ブレード39で分割予定ラインLに沿って一緒に超音波切削される。   As shown in the comparative example of FIG. 2A, normally, the laminated wafer W configured in this way has the rear surface 12 of the silicon substrate W1 covered with the impermeable layer 14, and therefore the line L to be divided from the glass substrate W2 side. (See FIG. 1). In this method, the silicon substrate W1 side of the laminated wafer W is attached to the protective tape T attached to the ring frame F with the glass substrate W2 side of the laminated wafer W facing upward. Further, the cutting blade 39 for the glass substrate W2 is ultrasonically vibrated, so that the glass substrate W2 and the silicon substrate W1 are ultrasonically cut along the planned division line L by the cutting blade 39.

ところで、積層ウェーハWは切削ブレード39によってダウンカットされているため、シリコン基板W1の裏面12の不透過層14が悪化し易くなっている。このため、超音波切削によって切削ブレード39に対するシリコン基板W1の切削抵抗が低下されているが、シリコン基板W1の不透過層14のバリやチッピング等を抑えることができない。超音波切削でガラス基板W2とシリコン基板W1を一度に加工する代わりに、ガラス基板W2とシリコン基板W1とを個別に加工することも考えられるが、このように2段階に分けたステップカットであっても不透過層14の悪化を防止できない。   By the way, since the laminated wafer W is cut down by the cutting blade 39, the impermeable layer 14 on the back surface 12 of the silicon substrate W1 is likely to deteriorate. For this reason, although the cutting resistance of the silicon substrate W1 with respect to the cutting blade 39 is reduced by ultrasonic cutting, burrs, chipping, and the like of the impermeable layer 14 of the silicon substrate W1 cannot be suppressed. Instead of processing the glass substrate W2 and the silicon substrate W1 at a time by ultrasonic cutting, it is possible to process the glass substrate W2 and the silicon substrate W1 individually, but in this way, the step cut is divided into two stages. However, the deterioration of the impermeable layer 14 cannot be prevented.

例えば、図2Bの図示左側に示すように、シリコン基板W1の裏面12に不透過層14として金属膜15が形成されていると、シリコン基板W1の金属膜15の切削によって分割後のチップに金属バリ16が発生する。金属バリ16によってチップが不良になると共に、金属バリ16が保護テープTに食い込んでチップが剥離できなくなる。また、図2Bの図示右側に示すように、シリコン基板W1の裏面12に不透過層14として梨地面17が形成されていると、シリコン基板W1の梨地面17と保護テープTの貼着面積が減少して貼着力が弱くなり、シリコン基板W1の裏面チッピングが悪化してしまう。   For example, as shown on the left side of FIG. 2B, when the metal film 15 is formed as the non-permeable layer 14 on the back surface 12 of the silicon substrate W1, metal is formed on the divided chips by cutting the metal film 15 on the silicon substrate W1. A burr 16 is generated. The chip becomes defective due to the metal burr 16, and the metal burr 16 bites into the protective tape T and the chip cannot be peeled off. Further, as shown on the right side of FIG. 2B, when the matte ground 17 is formed as the opaque layer 14 on the back surface 12 of the silicon substrate W1, the pasting surface 17 of the silicon substrate W1 and the protective tape T are attached to each other. It decreases and the sticking force becomes weak, and the back surface chipping of the silicon substrate W1 becomes worse.

また、特にシリコン基板W1が薄く(数十μm)形成されている場合には、シリコン基板W1に裏面チッピングが生じると共にクラックが伸長して、分割後のチップが破損してしまっていた。このように、シリコン基板W1の裏面12に不透過層14が形成される場合には、積層ウェーハWをガラス基板W2側から切削すると分割後のチップが不良になり易くなる。一方で、積層ウェーハWを表裏反転させてシリコン基板W1側から切削しようとすると、赤外線カメラによる撮像が不透過層14によって遮られるため、分割予定ラインLを検出することができず、アライメントを実施することができない。   In particular, when the silicon substrate W1 is formed thin (several tens of μm), backside chipping occurs in the silicon substrate W1 and cracks extend, and the divided chips are damaged. Thus, when the impermeable layer 14 is formed on the back surface 12 of the silicon substrate W1, if the laminated wafer W is cut from the glass substrate W2 side, the chips after the division are likely to be defective. On the other hand, if the laminated wafer W is turned upside down and cut from the silicon substrate W1 side, the imaging by the infrared camera is blocked by the opaque layer 14, so the division line L cannot be detected and alignment is performed. Can not do it.

そこで、本実施の形態の積層ウェーハWの加工方法では、シリコン基板W1の裏面12の不透過層14のうち外周余剰領域A2に相当する箇所を除去してアライメントを可能にし(図5参照)、シリコン基板W1の裏面12側から分割予定ラインLに沿って切削するようにしている(図6及び図7参照)。これにより、バリや裏面チッピングの発生を抑えて、積層ウェーハWを分割予定ラインLに沿って良好に分割することが可能になっている。なお、本実施の形態では、不透過層14として金属膜15や梨地面17が形成された積層ウェーハWを加工する構成にしたが、この構成に限定されない。本実施の形態の積層ウェーハWの加工方法は、金属膜15や梨地面17以外の不透過層14、すなわちシリコン基板W1の裏面12で赤外線の透過量を減少させる不透過層14が形成された積層ウェーハWに対しても有効である。   Therefore, in the processing method of the laminated wafer W of the present embodiment, the portion corresponding to the outer peripheral surplus region A2 is removed from the non-permeable layer 14 on the back surface 12 of the silicon substrate W1 to enable alignment (see FIG. 5). Cutting is performed along the planned division line L from the back surface 12 side of the silicon substrate W1 (see FIGS. 6 and 7). Thereby, generation | occurrence | production of a burr | flash and a back surface chipping is suppressed, and it becomes possible to divide the laminated wafer W along the division | segmentation planned line L favorably. In the present embodiment, the laminated wafer W on which the metal film 15 and the matte ground 17 are formed as the impermeable layer 14 is processed. However, the present invention is not limited to this configuration. In the processing method of the laminated wafer W according to the present embodiment, the opaque layer 14 other than the metal film 15 and the matte surface 17, that is, the opaque layer 14 that reduces the amount of infrared transmission is formed on the back surface 12 of the silicon substrate W <b> 1. This is also effective for the laminated wafer W.

以下、図3から図7を参照して、積層ウェーハの加工方法について詳細に説明する。図3は本実施の形態の載置ステップ、図4は本実施の形態の外周余剰領域シリコン基板露出ステップ、図5は本実施の形態のアライメントステップ、図6は本実施の形態の第1切削ステップ、図7は本実施の形態の第2切削ステップのそれぞれ一例を示す図である。   Hereinafter, a method for processing a laminated wafer will be described in detail with reference to FIGS. 3 is a placement step of the present embodiment, FIG. 4 is an outer peripheral surplus region silicon substrate exposure step of the present embodiment, FIG. 5 is an alignment step of the present embodiment, and FIG. 6 is a first cutting of the present embodiment. FIG. 7 is a diagram showing an example of each of the second cutting steps of the present embodiment.

図3に示すように、切削装置の稼働前に載置ステップが実施される。載置ステップでは、リングフレームFに支持された積層ウェーハWがトリミング用の切削装置(不図示)に搬入される。積層ウェーハWは、リングフレームFに貼着された保護テープTが積層ウェーハWのガラス基板W2に貼着され、保護テープTを介してガラス基板W2側が切削装置のチャックテーブル31の上面に載置される。このとき、積層ウェーハWの中心がチャックテーブル31の回転軸に一致するようにして、積層ウェーハWが保護テープTを介してチャックテーブル31に吸引保持される。   As shown in FIG. 3, the placing step is performed before the cutting apparatus is operated. In the mounting step, the laminated wafer W supported by the ring frame F is carried into a trimming cutting device (not shown). In the laminated wafer W, the protective tape T attached to the ring frame F is attached to the glass substrate W2 of the laminated wafer W, and the glass substrate W2 side is placed on the upper surface of the chuck table 31 of the cutting device via the protective tape T. Is done. At this time, the laminated wafer W is sucked and held on the chuck table 31 via the protective tape T so that the center of the laminated wafer W coincides with the rotation axis of the chuck table 31.

図4に示すように、載置ステップが実施された後に外周余剰領域シリコン基板露出ステップが実施される。外周余剰領域シリコン基板露出ステップでは、複数のデバイスD(図1参照)が形成されていない外周余剰領域A2にトリミング用の切削ブレード32が位置付けられ、切削ブレード32によって不透過層14が切り込まれる。続いて、切削ブレード32に対してチャックテーブル31が回転することで、外周余剰領域A2から不透過層14が除去されて積層ウェーハWの外周に沿って段部21が形成される。不透過層14が部分的に除去されることでシリコン基板W1が部分的に露出される。   As shown in FIG. 4, after the placing step is performed, the outer peripheral surplus region silicon substrate exposing step is performed. In the outer peripheral surplus region silicon substrate exposing step, the cutting blade 32 for trimming is positioned in the outer peripheral surplus region A2 where a plurality of devices D (see FIG. 1) are not formed, and the impermeable layer 14 is cut by the cutting blade 32. . Subsequently, the chuck table 31 is rotated with respect to the cutting blade 32, whereby the impermeable layer 14 is removed from the outer peripheral surplus region A <b> 2 and the stepped portion 21 is formed along the outer periphery of the laminated wafer W. By partially removing the opaque layer 14, the silicon substrate W1 is partially exposed.

この場合、トリミング用の切削ブレード32としては、金属層等の不透過層14で目詰まりせず、段部21の表面粗さを出来る限り滑らかすることができるものが好ましい。また、トリミング用の切削ブレード32の先端形状が平坦であるため、不透過層14を除去した段部底面22が平坦に形成されている。このように、シリコン基板W1の裏面12側からデバイス領域A1の不透過層14を残して、外周余剰領域A2の不透過層14が全周に亘って除去されて、アライメントステップにおける赤外線カメラ36(図5参照)による赤外線の透過領域が形成されている。   In this case, it is preferable that the trimming cutting blade 32 is not clogged with the impermeable layer 14 such as a metal layer and can smooth the surface roughness of the stepped portion 21 as much as possible. Further, since the tip shape of the cutting blade 32 for trimming is flat, the step bottom surface 22 from which the impermeable layer 14 is removed is formed flat. In this way, the opaque layer 14 in the outer peripheral surplus region A2 is removed from the back surface 12 side of the silicon substrate W1 while leaving the opaque layer 14 in the outer peripheral surplus region A2, and the infrared camera 36 ( An infrared transmission region is formed according to FIG.

図5Aに示すように、外周余剰領域シリコン基板露出ステップが実施された後にアライメントステップが実施される。アライメントステップでは、トリミング用の切削装置から分割用の切削装置(不図示)に積層ウェーハWが搬入されて、シリコン基板W1側を上方に向けた状態で保護テープTを介してガラス基板W2側がチャックテーブル35の上面に保持される。外周余剰領域A2の露出したシリコン基板W1の上方に赤外線カメラ36が位置付けられて、シリコン基板W1の段部21が撮像される。このとき、赤外線カメラ36からシリコン基板W1の段部21に向けて赤外線が照射され、シリコン基板W1を透過して表面11で反射した反射光が赤外線カメラ36に取り込まれることで撮像画像が生成される。   As shown in FIG. 5A, the alignment step is performed after the outer peripheral surplus region silicon substrate exposure step is performed. In the alignment step, the laminated wafer W is carried from the trimming cutting device to the dividing cutting device (not shown), and the glass substrate W2 side is chucked via the protective tape T with the silicon substrate W1 side facing upward. It is held on the upper surface of the table 35. The infrared camera 36 is positioned above the exposed silicon substrate W1 in the outer peripheral surplus area A2, and the stepped portion 21 of the silicon substrate W1 is imaged. At this time, infrared rays are irradiated from the infrared camera 36 toward the stepped portion 21 of the silicon substrate W1, and reflected light that has been transmitted through the silicon substrate W1 and reflected by the surface 11 is taken into the infrared camera 36 to generate a captured image. The

図5Bに示すように、分割予定ラインLはシリコン基板W1の表面全体を横切るように延在しているため、不透過層14が除去された段部21の真下の分割予定ラインLが撮像される。このとき、段部底面22が平坦かつ滑らかに形成されているため、段部底面22での赤外線の散乱が抑えられた状態でシリコン基板W1を透過して表面11(図5A参照)側の分割予定ラインLが検出される。この分割予定ラインLの撮像画像に基づいて、シリコン基板W1用の第1切削ブレード37の幅方向の中心位置が分割予定ラインLの幅方向の中心位置に位置づけられるようにアライメントが実施される。   As shown in FIG. 5B, the planned division line L extends across the entire surface of the silicon substrate W1, so that the planned division line L just below the stepped portion 21 from which the opaque layer 14 has been removed is imaged. The At this time, since the step bottom surface 22 is flat and smoothly formed, the silicon substrate W1 is transmitted through the silicon substrate W1 while scattering of infrared rays on the step bottom surface 22 is suppressed. A planned line L is detected. Based on the captured image of the scheduled division line L, alignment is performed such that the center position in the width direction of the first cutting blade 37 for the silicon substrate W1 is positioned at the center position in the width direction of the scheduled division line L.

図6に示すように、アライメントステップが実施された後に第1切削ステップが実施される。第1切削ステップでは、シリコン基板W1用の第1切削ブレード37によって積層ウェーハWの上段のシリコン基板W1が分割される。第1切削ブレード37としては、シリコン切削に適したブレードが選択され、例えば、砥粒の粒径が細かい電鋳ブレードが使用される。積層ウェーハWの径方向外側で第1切削ブレード37が分割予定ラインL(図1参照)に位置けられると、シリコン基板W1の下方の樹脂13の途中まで切り込み可能な深さに第1切削ブレード37が降ろされ、この第1切削ブレード37に対してチャックテーブル35が切削送りされる。   As shown in FIG. 6, the first cutting step is performed after the alignment step is performed. In the first cutting step, the upper silicon substrate W1 of the laminated wafer W is divided by the first cutting blade 37 for the silicon substrate W1. As the first cutting blade 37, a blade suitable for silicon cutting is selected. For example, an electroformed blade having a small abrasive grain size is used. When the first cutting blade 37 is positioned on the division line L (see FIG. 1) on the outer side in the radial direction of the laminated wafer W, the first cutting blade has a depth capable of cutting halfway through the resin 13 below the silicon substrate W1. 37 is lowered, and the chuck table 35 is cut and fed to the first cutting blade 37.

これにより、第1切削ブレード37で積層ウェーハWのシリコン基板W1側から樹脂13の途中まで切り込まれ、分割予定ラインL(図5B参照)に沿ってシリコン基板W1が分割される。この切削送りが繰り返されることで、シリコン基板W1が全ての分割予定ラインLに沿って切削され、積層ウェーハWの上段のシリコン基板W1に格子状の溝23が形成される。また、第1切削ブレード37がガラス基板W2を切り込まずにシリコン基板W1だけを分割するため、第1切削ブレード37に目潰れ等が生じ難くなってシリコン基板W1に対する切削性能の低下が抑えられている。   Thus, the first cutting blade 37 cuts the laminated wafer W from the silicon substrate W1 side to the middle of the resin 13, and the silicon substrate W1 is divided along the division line L (see FIG. 5B). By repeating this cutting feed, the silicon substrate W1 is cut along all the division lines L, and lattice-like grooves 23 are formed in the upper silicon substrate W1 of the laminated wafer W. In addition, since the first cutting blade 37 divides only the silicon substrate W1 without cutting the glass substrate W2, the first cutting blade 37 is less likely to be crushed and the like, and a reduction in cutting performance with respect to the silicon substrate W1 is suppressed. ing.

また、積層ウェーハWが第1切削ブレード37で不透過層14側からダウンカットで切り込まれるため、不透過層14を切削することに起因した不具合を抑えることができる。すなわち、不透過層14が金属膜であっても、不透過層14の真下のシリコン基板W1によって金属膜の変形が抑えられて金属バリが生じ難くなっている。また、不透過層14が梨地面であっても、梨地面が積層ウェーハWの上面に位置しているため、積層ウェーハWの下面に梨地面が位置する場合のようにチッピングが悪化することがない。このように、シリコン基板W1に不透過層14が形成されていても、金属バリやチッピング等の不良要因が抑えられる。   Further, since the laminated wafer W is cut by the first cutting blade 37 from the impermeable layer 14 side by down-cutting, it is possible to suppress problems caused by cutting the impermeable layer 14. That is, even if the impermeable layer 14 is a metal film, deformation of the metal film is suppressed by the silicon substrate W1 immediately below the impermeable layer 14, and metal burrs are less likely to occur. Further, even if the impermeable layer 14 is a satin surface, since the satin surface is located on the upper surface of the laminated wafer W, chipping may deteriorate as in the case where the satin surface is located on the lower surface of the laminated wafer W. Absent. Thus, even if the opaque layer 14 is formed on the silicon substrate W1, defective factors such as metal burrs and chipping can be suppressed.

図7に示すように、第1切削ステップが実施された後に第2切削ステップが実施される。第2切削ステップでは、ガラス基板W2用の第2切削ブレード38によって積層ウェーハWの下段のガラス基板W2が分割される。第2切削ブレード38としては、ガラス切削に適したブレードが選択され、例えば、第1切削ブレード37(図6参照)よりも砥粒の粒径が粗く、且つ幅が狭いレジンブレードが使用される。積層ウェーハWの径方向外側で第2切削ブレード38がシリコン基板W1上の溝23に位置付けられると、ガラス基板W2の下方の保護テープTの途中まで切り込み可能な深さに第2切削ブレード38が降ろされ、この第2切削ブレード38に対してチャックテーブル35が切削送りされる。   As shown in FIG. 7, the second cutting step is performed after the first cutting step is performed. In the second cutting step, the lower glass substrate W2 of the laminated wafer W is divided by the second cutting blade 38 for the glass substrate W2. As the second cutting blade 38, a blade suitable for glass cutting is selected. For example, a resin blade having a coarser grain size and a narrower width than the first cutting blade 37 (see FIG. 6) is used. . When the second cutting blade 38 is positioned in the groove 23 on the silicon substrate W1 on the outer side in the radial direction of the laminated wafer W, the second cutting blade 38 has a depth capable of being cut halfway through the protective tape T below the glass substrate W2. The chuck table 35 is cut and fed to the second cutting blade 38.

これにより、第2切削ブレード38で積層ウェーハWが保護テープTの途中まで切り込まれ、シリコン基板W1の溝23(分割予定ラインL)に沿ってガラス基板W2が分割される。この切削送りが繰り返されることで、ガラス基板W2が全ての分割予定ラインLに沿って切削され、積層ウェーハWが個々のチップに分割される。また、第2切削ブレード38が第1切削ブレード37よりも幅狭に形成されているため、シリコン基板W1を粒径の粗い第2切削ブレード38で傷付けることなくガラス基板W2だけを良好に切削することが可能になっている。   Thereby, the laminated wafer W is cut to the middle of the protective tape T by the second cutting blade 38, and the glass substrate W2 is divided along the groove 23 (division planned line L) of the silicon substrate W1. By repeating this cutting feed, the glass substrate W2 is cut along all the division lines L, and the laminated wafer W is divided into individual chips. Further, since the second cutting blade 38 is formed to be narrower than the first cutting blade 37, only the glass substrate W2 is favorably cut without damaging the silicon substrate W1 with the second cutting blade 38 having a coarse particle size. It is possible.

以上のように、本実施の形態の積層ウェーハWの加工方法によれば、積層ウェーハWのシリコン基板W1の裏面12を覆う不透過層14のうち、デバイスDが形成されていない外周余剰領域A2が除去されてシリコン基板W1が部分的に露出される。この露出したシリコン基板W1に赤外線カメラ36を位置づけることで、シリコン基板W1を透過した赤外線によってシリコン基板W1の表面11側の分割予定ラインLが検出されてアライメントが実施される。また、シリコン基板W1の裏面12の不透過層14側から切り込まれるため、バリが生じ難くなると共に裏面チッピングが生じ難くなっている。よって、不透過層14が形成された積層ウェーハWを分割予定ラインLに沿って良好に分割することができる。   As described above, according to the method for processing the laminated wafer W according to the present embodiment, the outer peripheral surplus area A2 in which the device D is not formed in the impermeable layer 14 covering the back surface 12 of the silicon substrate W1 of the laminated wafer W. Is removed and the silicon substrate W1 is partially exposed. By positioning the infrared camera 36 on the exposed silicon substrate W1, the division line L on the surface 11 side of the silicon substrate W1 is detected by the infrared rays transmitted through the silicon substrate W1, and alignment is performed. Further, since the back surface 12 of the silicon substrate W1 is cut from the non-transparent layer 14 side, burrs are hardly generated and back surface chipping is difficult to occur. Therefore, the laminated wafer W on which the opaque layer 14 is formed can be divided well along the division line L.

なお、本実施の形態では、載置ステップ、外周余剰領域シリコン基板露出ステップをトリミング用の切削装置で実施し、アライメントステップ、第1切削ステップ、第2切削ステップを分割用の切削装置で実施する構成にしたが、この構成に限定されない。載置ステップ、外周余剰領域シリコン基板露出ステップ、アライメントステップ、第1切削ステップ、第2切削ステップを全て同じ切削装置で実施してもよい。   In this embodiment, the placing step and the outer peripheral surplus region silicon substrate exposing step are performed by a trimming cutting device, and the alignment step, the first cutting step, and the second cutting step are performed by a dividing cutting device. Although configured, it is not limited to this configuration. The mounting step, the outer peripheral surplus region silicon substrate exposure step, the alignment step, the first cutting step, and the second cutting step may all be performed by the same cutting device.

また、本実施の形態及び変形例を説明したが、本発明の他の実施の形態として、上記実施の形態及び変形例を全体的又は部分的に組み合わせたものでもよい。   Moreover, although this Embodiment and the modified example were demonstrated, what combined the said embodiment and modified example entirely or partially as another embodiment of this invention may be sufficient.

また、本発明の実施の形態は上記の実施の形態及び変形例に限定されるものではなく、本発明の技術的思想の趣旨を逸脱しない範囲において様々に変更、置換、変形されてもよい。さらには、技術の進歩又は派生する別技術によって、本発明の技術的思想を別の仕方で実現することができれば、その方法を用いて実施されてもよい。したがって、特許請求の範囲は、本発明の技術的思想の範囲内に含まれ得る全ての実施形態をカバーしている。   The embodiments of the present invention are not limited to the above-described embodiments and modifications, and various changes, substitutions, and modifications may be made without departing from the spirit of the technical idea of the present invention. Furthermore, if the technical idea of the present invention can be realized in another way by technological advancement or another derived technique, the method may be used. Accordingly, the claims cover all embodiments that can be included within the scope of the technical idea of the present invention.

また、本実施の形態では、シリコン基板にガラス基板を積層した積層ウェーハを加工する構成について説明したが、不透過層に起因した不具合を解消しつつ積層ウェーハを良好に分割することができる他の積層ウェーハの加工方法に適用することも可能である。   Further, in the present embodiment, the configuration for processing a laminated wafer in which a glass substrate is laminated on a silicon substrate has been described. However, the laminated wafer can be favorably divided while solving the problems caused by the opaque layer. It is also possible to apply to the processing method of a laminated wafer.

以上説明したように、本発明は、不透過層が形成された積層ウェーハを良好に分割することができるという効果を有し、特に、薄い厚みのシリコン基板にガラス基板を貼着した積層ウェーハを切削する積層ウェーハの加工方法に有用である。   As described above, the present invention has an effect that a laminated wafer in which an impermeable layer is formed can be favorably divided, and in particular, a laminated wafer in which a glass substrate is bonded to a thin silicon substrate. This is useful for a method of processing a laminated wafer to be cut.

11 シリコン基板の表面
12 シリコン基板の裏面
13 樹脂
14 不透過層
15 金属膜(不透過層)
17 梨地面(不透過層)
23 シリコン基板の溝
32 トリミング用の切削ブレード
36 赤外線カメラ
37 シリコン基板用の第1切削ブレード
38 ガラス基板用の第2切削ブレード
A1 デバイス領域
A2 外周余剰領域
D デバイス
L 分割予定ライン
T 保護テープ
W 積層ウェーハ
W1 シリコン基板
W2 ガラス基板
11 Front surface of silicon substrate 12 Back surface of silicon substrate 13 Resin 14 Impervious layer 15 Metal film (impermeable layer)
17 pear ground (impermeable layer)
23 Silicon substrate groove 32 Trimming cutting blade 36 Infrared camera 37 First cutting blade for silicon substrate 38 Second cutting blade for glass substrate A1 Device region A2 Peripheral surplus region D Device L Divided line T Protection tape W Lamination Wafer W1 Silicon substrate W2 Glass substrate

Claims (1)

シリコン基板の表面に複数の分割予定ラインによって区画されたデバイスが複数形成されたシリコン基板の該表面側に樹脂でガラス基板が接着された積層ウェーハの加工方法であって、
シリコン基板の裏面には赤外線が透過しにくい不透過層が形成され、
該ガラス基板側に保護テープが貼着された積層ウェーハの該保護テープを介して該ガラス基板側を切削装置のチャックテーブル上面に載置する載置ステップと、
該載置ステップを実施した後に、該切削装置の切削ブレードで該複数のデバイスが形成されていない外周余剰領域の該不透過層を切削して除去しシリコン基板を露出させる外周余剰領域シリコン基板露出ステップと、
該外周余剰領域シリコン基板露出ステップを実施した後に、該外周余剰領域の露出したシリコン基板上に赤外線カメラを位置づけて該シリコン基板を透過して該表面側の分割予定ラインを検出してアライメントを行うアライメントステップと、
該アライメントステップを実施した後に、該積層ウェーハの該シリコン基板側から第1切削ブレードを該樹脂の途中まで切り込み、該シリコン基板を該分割予定ラインに沿って分割する第1切削ステップと、
該第1切削ステップを実施した後に、該第1切削ステップで切削した溝に沿って、第2切削ブレードを該保護テープの途中まで切り込み、該ガラス基板を該分割予定ラインに沿って分割する第2切削ステップと、
を備える積層ウェーハの加工方法。
A method for processing a laminated wafer in which a glass substrate is bonded with a resin to the surface side of a silicon substrate in which a plurality of devices partitioned by a plurality of division lines are formed on the surface of the silicon substrate,
An opaque layer that does not easily transmit infrared rays is formed on the back surface of the silicon substrate.
A placing step of placing the glass substrate side on the chuck table upper surface of the cutting device via the protective tape of the laminated wafer having the protective tape attached to the glass substrate side;
After performing the mounting step, the outer peripheral surplus region silicon substrate exposed to expose the silicon substrate by cutting and removing the impermeable layer in the outer peripheral surplus region where the plurality of devices are not formed with the cutting blade of the cutting apparatus Steps,
After performing the outer peripheral surplus region silicon substrate exposure step, an infrared camera is positioned on the silicon substrate where the outer peripheral surplus region is exposed, and the alignment is performed by detecting the planned division line on the surface side through the silicon substrate. An alignment step;
After performing the alignment step, the first cutting step of cutting the first cutting blade from the silicon substrate side of the laminated wafer to the middle of the resin, and dividing the silicon substrate along the division line,
After performing the first cutting step, a second cutting blade is cut halfway along the protective tape along the groove cut in the first cutting step, and the glass substrate is divided along the division line. Two cutting steps;
A method for processing a laminated wafer comprising:
JP2016176373A 2016-09-09 2016-09-09 Laminated wafer processing method Active JP6716403B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016176373A JP6716403B2 (en) 2016-09-09 2016-09-09 Laminated wafer processing method
TW106126224A TWI729180B (en) 2016-09-09 2017-08-03 Laminated wafer processing method
CN201710769441.1A CN107808821B (en) 2016-09-09 2017-08-31 Method for processing laminated wafer
KR1020170111223A KR102333519B1 (en) 2016-09-09 2017-08-31 Method for processing a stacked wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016176373A JP6716403B2 (en) 2016-09-09 2016-09-09 Laminated wafer processing method

Publications (2)

Publication Number Publication Date
JP2018041896A true JP2018041896A (en) 2018-03-15
JP6716403B2 JP6716403B2 (en) 2020-07-01

Family

ID=61569799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016176373A Active JP6716403B2 (en) 2016-09-09 2016-09-09 Laminated wafer processing method

Country Status (4)

Country Link
JP (1) JP6716403B2 (en)
KR (1) KR102333519B1 (en)
CN (1) CN107808821B (en)
TW (1) TWI729180B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113614A (en) * 2019-01-10 2020-07-27 株式会社ディスコ Wafer processing method
KR20240003712A (en) 2022-07-01 2024-01-09 가부시기가이샤 디스코 Machining method
JP7584309B2 (en) 2021-01-18 2024-11-15 株式会社ディスコ Wafer division method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7313805B2 (en) * 2018-08-15 2023-07-25 株式会社ディスコ cutting equipment
DE102019204457B4 (en) * 2019-03-29 2024-01-25 Disco Corporation Substrate processing methods
JP7325911B2 (en) * 2019-10-16 2023-08-15 株式会社ディスコ Workpiece processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081264A (en) * 2005-09-16 2007-03-29 Disco Abrasive Syst Ltd Cutting method and cutting apparatus
JP2012227251A (en) * 2011-04-18 2012-11-15 Disco Abrasive Syst Ltd Method of processing wafer
JP2015159241A (en) * 2014-02-25 2015-09-03 株式会社ディスコ Wafer processing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173986A (en) * 2001-12-04 2003-06-20 Disco Abrasive Syst Ltd Cutting method in 2-spindle cutter
JP2005129830A (en) * 2003-10-27 2005-05-19 Tokyo Seimitsu Co Ltd Dicing method
JP2009021476A (en) * 2007-07-13 2009-01-29 Disco Abrasive Syst Ltd Wafer dividing method
JP5091066B2 (en) * 2008-09-11 2012-12-05 富士フイルム株式会社 Method for manufacturing solid-state imaging device
JP5259336B2 (en) * 2008-10-23 2013-08-07 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2011187659A (en) * 2010-03-08 2011-09-22 Renesas Electronics Corp Semiconductor device and method of manufacturing semiconductor device
JP5495876B2 (en) * 2010-03-23 2014-05-21 株式会社ディスコ Processing method of optical device wafer
JP2014070191A (en) * 2012-09-28 2014-04-21 Fujifilm Corp Temporary adhesive for producing semiconductor device, as well as adhesive substrate using the same, and production method of semiconductor device
JP6325279B2 (en) * 2014-02-21 2018-05-16 株式会社ディスコ Wafer processing method
JP2015170675A (en) * 2014-03-06 2015-09-28 株式会社ディスコ Processing method of plate-like object
TWI667311B (en) * 2014-06-13 2019-08-01 日商富士軟片股份有限公司 Temporary fixing of the adhesive, adhesive film, adhesive support, laminate and adhesive kit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081264A (en) * 2005-09-16 2007-03-29 Disco Abrasive Syst Ltd Cutting method and cutting apparatus
JP2012227251A (en) * 2011-04-18 2012-11-15 Disco Abrasive Syst Ltd Method of processing wafer
JP2015159241A (en) * 2014-02-25 2015-09-03 株式会社ディスコ Wafer processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113614A (en) * 2019-01-10 2020-07-27 株式会社ディスコ Wafer processing method
JP7584309B2 (en) 2021-01-18 2024-11-15 株式会社ディスコ Wafer division method
KR20240003712A (en) 2022-07-01 2024-01-09 가부시기가이샤 디스코 Machining method

Also Published As

Publication number Publication date
KR102333519B1 (en) 2021-12-01
JP6716403B2 (en) 2020-07-01
KR20180028923A (en) 2018-03-19
TW201826358A (en) 2018-07-16
CN107808821A (en) 2018-03-16
CN107808821B (en) 2023-04-18
TWI729180B (en) 2021-06-01

Similar Documents

Publication Publication Date Title
TWI653678B (en) Wafer processing method
JP6716403B2 (en) Laminated wafer processing method
CN106997867B (en) Method for processing wafer
CN104733385B (en) Method for processing device wafer
CN106992151B (en) Method for processing wafer
JP2010225976A (en) Method of dividing laminated wafer
JP2005032903A (en) Semiconductor device and its manufacturing method
KR20180050225A (en) Method for processing wafer
JP2015176950A (en) Wafer processing method
JP2020088068A (en) Processing method of workpiece
JP2009224454A (en) Method of manufacturing optical device
JP6283531B2 (en) Wafer processing method
CN104979183A (en) Processing method for laminate substrates
TWI841795B (en) Processing method of the workpiece
JP5486865B2 (en) Manufacturing method of chip with metal layer
JP5508108B2 (en) Manufacturing method of semiconductor device
JP7037422B2 (en) Processing method of work piece
JP6401009B2 (en) Wafer processing method
JP4553878B2 (en) Manufacturing method of semiconductor device
TWI538040B (en) Processing method of optical element wafers
JP2018014451A (en) Wafer processing method
JP2007227726A (en) Aggregate substrate processing method
JP2016111293A (en) Wafer dividing method and wafer dividing apparatus
JP2011035111A (en) Method of manufacturing chip with metal layer
JP2016025116A (en) Wafer processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6716403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250