[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017133035A - トリアジン環含有重合体 - Google Patents

トリアジン環含有重合体 Download PDF

Info

Publication number
JP2017133035A
JP2017133035A JP2017082874A JP2017082874A JP2017133035A JP 2017133035 A JP2017133035 A JP 2017133035A JP 2017082874 A JP2017082874 A JP 2017082874A JP 2017082874 A JP2017082874 A JP 2017082874A JP 2017133035 A JP2017133035 A JP 2017133035A
Authority
JP
Japan
Prior art keywords
group
polymer
triazine ring
containing polymer
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017082874A
Other languages
English (en)
Inventor
圭 安井
Kei Yasui
圭 安井
直也 西村
Naoya Nishimura
直也 西村
小澤 雅昭
Masaaki Ozawa
雅昭 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2017082874A priority Critical patent/JP2017133035A/ja
Publication of JP2017133035A publication Critical patent/JP2017133035A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

【課題】 金属酸化物を添加しなくとも、ポリマー単独で高耐熱性、高屈折率を達成できるトリアジン環含有重合体を提供すること。
【解決手段】 下記式(16)で表されるような、トリアジン環を有する繰り返し単位構造を含む重合体は、非常に高い屈折率を有している。
Figure 2017133035

【選択図】 なし

Description

本発明は、トリアジン環含有重合体に関する。
これまで高分子化合物を高機能化する試みが種々行われてきている。例えば、高分子化合物を高屈折率化する方法として、芳香族環、ハロゲン原子、硫黄原子を導入することがなされている。中でも、硫黄原子を導入したエピスルフィド高分子化合物およびチオウレタン高分子化合物は、眼鏡用高屈折率レンズとして実用化されている。
また、高分子化合物のさらなる高屈折率化を達成し得る最も有力な方法として、無機の金属酸化物を用いる方法が知られている。
例えば、シロキサンポリマーと、ジルコニアまたはチタニアなどを分散させた微粒子分散材料とを混合してなるハイブリッド材料を用いて屈折率を高める手法(特許文献1)が報告されている。
さらに、シロキサンポリマーの一部に高屈折率な縮合環状骨格を導入する手法(特許文献2)なども報告されている。
また、高分子化合物に耐熱性を付与するための試みも数多くなされており、具体的には、芳香族環を導入することで、高分子化合物の耐熱性を向上し得ることがよく知られている。例えば、置換アリーレン繰り返し単位を主鎖に有するポリアリーレンコポリマーが報告され(特許文献3)、この高分子化合物は主として耐熱性プラスチックへの応用が期待されている。
一方、メラミン樹脂は、トリアジン系の樹脂としてよく知られているが、黒鉛などの耐熱性材料に比べて遥かに分解温度が低い。
これまで炭素および窒素からなる耐熱性有機材料としては、芳香族ポリイミドや芳香族ポリアミドが主として用いられているが、これらの材料は直鎖構造を有しているため耐熱温度はそれほど高くない。
また、耐熱性を有する含窒素高分子材料としてトリアジン系縮合材料も報告されている(特許文献4)。
ところで、近年、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、および有機薄膜トランジスタ(TFT)等の電子デバイスを開発する際に、高機能な高分子材料が要求されるようになってきた。
求められる具体的な特性としては、1)耐熱性、2)透明性、3)高屈折率、4)耐光性、5)高溶解性、6)低体積収縮率がある。
特開2007−246877号公報 特開2008−24832号公報 米国特許第5886130号明細書 特開2000−53659号公報
本発明は、このような事情に鑑みてなされたものであり、金属酸化物を添加しなくとも、ポリマー単独で高屈折率を達成できるトリアジン環含有重合体を提供することを目的とする。
本発明者らは、トリアジン環および芳香環を有する繰り返し単位を含む重合体が、ポリマー単独で高耐熱性、高透明性、高屈折率、高溶解性、低体積収縮を達成でき、電子デバイスを作製する際の膜形成用組成物として好適であることを既に見出している(PCT/JP2010/057761)。
この知見を基に本発明者らは鋭意検討を重ねた結果、トリアジン環および芳香環を有する繰り返し単位を含む所定の線状重合体が、非常に高屈折率を示し、電子デバイスを作製する際の膜形成用組成物として好適であることを見出し、本発明を完成した。
すなわち、本発明は、
1. 下記式(1’)で表され、550nmの屈折率が1.75超であるトリアジン環含有重合体、
Figure 2017133035
{式中、RおよびR′は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表し、Ar1は、アリール基を示し、Ar2は、式(2)で示される基を表す。
Figure 2017133035
〔式中、R1〜R4は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホン基、炭素数1〜10の分岐構造を有していてもよいアルキル基、または炭素数1〜10の分岐構造を有していてもよいアルコキシ基を表す。〕}
2. 前記Ar1が、式(15)で表される1のトリアジン環含有重合体、
Figure 2017133035
(式中、R102〜R106は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホン基、炭素数1〜10の分岐構造を有していてもよいアルキル基、または炭素数1〜10の分岐構造を有していてもよいアルコキシ基を表す。)
3. 前記Ar2が、下記式で表される1または2のトリアジン環含有重合体、
Figure 2017133035
4. 式(16)で表される1〜3のいずれかのトリアジン環含有重合体、
Figure 2017133035
5. 重量平均分子量が、500〜100,000である1〜4のいずれかのトリアジン環含有重合体
を提供する。
本発明によれば、金属酸化物を用いることなく、単独で高耐熱性、高透明性、高屈折率、高溶解性、低体積収縮を達成し得るトリアジン環含有重合体を提供できる。
本発明の重合体骨格とすることで、2級アミンをポリマーのスペーサーとして用いる場合においても高耐熱性、高透明性を維持でき、これまで、耐熱性および透明性が損なわれると考えられていたモノマーユニットを用いた場合でも、ポリマー骨格を本発明のポリマーに変更するのみで物性をコントロールできる可能性がある。
そして、金属酸化物を含まず、ポリマー単独で高屈折率を発現できることから、エッチングやアッシングなどのドライプロセスを経る場合でも、エッチレートが一定となり、均一な膜厚の被膜を得ることができ、デバイスを作製する際のプロセスマージンが拡大する。
また、本発明のトリアジン環含有重合体は、合成時の出発原料であるモノマーの種類を変更することで、これが有する諸物性をコントロールできる。
さらに、本発明のトリアジン環含有重合体は、高耐熱性絶縁材料として使用できる。
以上のような特性を有する本発明のトリアジン環含有重合体を用いて作製した膜は、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)などの電子デバイスを作製する際の一部材として好適に利用できる。
特に高屈折率が求められている固体撮像素子の部材である、フォトダイオード上の埋め込み膜および平坦化膜、カラーフィルター前後の平坦化膜、マイクロレンズ、マイクロレンズ上の平坦化膜およびコンフォーマル膜として好適に利用できる。
実施例1で得られた高分子化合物[1]の1H−NMRスペクトルを示す図である。 参考例2で得られた高分子化合物[2]の1H−NMRスペクトルを示す図である。
以下、本発明についてさらに詳しく説明する。
本発明に係るトリアジン環含有重合体は下記式(1)で表される繰り返し単位構造を含むものである。
Figure 2017133035
上記式中、RおよびR′は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表す。
本発明において、アルキル基の炭素数としては特に限定されるものではないが、1〜20が好ましく、ポリマーの耐熱性をより高めることを考慮すると、炭素数1〜10がより好ましく、1〜3がより一層好ましい。また、その構造は、鎖状、分岐状、環状のいずれでもよい。
アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、シクロプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、シクロブチル基、1−メチル−シクロプロピル基、2−メチル−シクロプロピル基、n−ペンチル基、1−メチル−n−ブチル基、2−メチル−n−ブチル基、3−メチル−n−ブチル基、1,1−ジメチル−n−プロピル基、1,2−ジメチル−n−プロピル基、2,2−ジメチル−n−プロピル基、1−エチル−n−プロピル基、シクロペンチル基、1−メチル−シクロブチル基、2−メチル−シクロブチル基、3−メチル−シクロブチル基、1,2−ジメチル−シクロプロピル基、2,3−ジメチル−シクロプロピル基、1−エチル−シクロプロピル基、2−エチル−シクロプロピル基、n−ヘキシル基、1−メチル−n−ペンチル基、2−メチル−n−ペンチル基、3−メチル−n−ペンチル基、4−メチル−n−ペンチル基、1,1−ジメチル−n−ブチル基、1,2−ジメチル−n−ブチル基、1,3−ジメチル−n−ブチル基、2,2−ジメチル−n−ブチル基、2,3−ジメチル−n−ブチル基、3,3−ジメチル−n−ブチル基、1−エチル−n−ブチル基、2−エチル−n−ブチル基、1,1,2−トリメチル−n−プロピル基、1,2,2−トリメチル−n−プロピル基、1−エチル−1−メチル−n−プロピル基、1−エチル−2−メチル−n−プロピル基、シクロヘキシル基、1−メチル−シクロペンチル基、2−メチル−シクロペンチル基、3−メチル−シクロペンチル基、1−エチル−シクロブチル基、2−エチル−シクロブチル基、3−エチル−シクロブチル基、1,2−ジメチル−シクロブチル基、1,3−ジメチル−シクロブチル基、2,2−ジメチル−シクロブチル基、2,3−ジメチル−シクロブチル基、2,4−ジメチル−シクロブチル基、3,3−ジメチル−シクロブチル基、1−n−プロピル−シクロプロピル基、2−n−プロピル−シクロプロピル基、1−イソプロピル−シクロプロピル基、2−イソプロピル−シクロプロピル基、1,2,2−トリメチル−シクロプロピル基、1,2,3−トリメチル−シクロプロピル基、2,2,3−トリメチル−シクロプロピル基、1−エチル−2−メチル−シクロプロピル基、2−エチル−1−メチル−シクロプロピル基、2−エチル−2−メチル−シクロプロピル基、2−エチル−3−メチル−シクロプロピル基等が挙げられる。
上記アルコキシ基の炭素数としては特に限定されるものではないが、1〜20が好ましく、ポリマーの耐熱性をより高めることを考慮すると、炭素数1〜10がより好ましく、1〜3がより一層好ましい。また、そのアルキル部分の構造は、鎖状、分岐状、環状のいずれでもよい。
アルコキシ基の具体例としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、n−ペントキシ基、1−メチル−n−ブトキシ基、2−メチル−n−ブトキシ基、3−メチル−n−ブトキシ基、1,1−ジメチル−n−プロポキシ基、1,2−ジメチル−n−プロポキシ基、2,2−ジメチル−n−プロポキシ基、1−エチル−n−プロポキシ基、n−ヘキシルオキシ基、1−メチル−n−ペンチルオキシ基、2−メチル−n−ペンチルオキシ基、3−メチル−n−ペンチルオキシ基、4−メチル−n−ペンチルオキシ基、1,1−ジメチル−n−ブトキシ基、1,2−ジメチル−n−ブトキシ基、1,3−ジメチル−n−ブトキシ基、2,2−ジメチル−n−ブトキシ基、2,3−ジメチル−n−ブトキシ基、3,3−ジメチル−n−ブトキシ基、1−エチル−n−ブトキシ基、2−エチル−n−ブトキシ基、1,1,2−トリメチル−n−プロポキシ基、1,2,2−トリメチル−n−プロポキシ基、1−エチル−1−メチル−n−プロポキシ基、1−エチル−2−メチル−n−プロポキシ基等が挙げられる。
上記アリール基の炭素数としては特に限定されるものではないが、6〜40が好ましく、ポリマーの耐熱性をより高めることを考慮すると、炭素数6〜16がより好ましく、6〜13がより一層好ましい。
アリール基の具体例としては、フェニル基、o−クロルフェニル基、m−クロルフェニル基、p−クロルフェニル基、o−フルオロフェニル基、p−フルオロフェニル基、o−メトキシフェニル基、p−メトキシフェニル基、p−ニトロフェニル基、p−シアノフェニル基、α−ナフチル基、β−ナフチル基、o−ビフェニリル基、m−ビフェニリル基、p−ビフェニリル基、1−アントリル基、2−アントリル基、9−アントリル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、4−フェナントリル基、9−フェナントリル基等が挙げられる。
アラルキル基の炭素数としては特に限定されるものではないが、炭素数7〜20が好ましく、そのアルキル部分は、直鎖、分岐、環状のいずれでもよい。
その具体例としては、ベンジル基、p−メチルフェニルメチル基、m−メチルフェニルメチル基、o−エチルフェニルメチル基、m−エチルフェニルメチル基、p−エチルフェニルメチル基、2−プロピルフェニルメチル基、4−イソプロピルフェニルメチル基、4−イソブチルフェニルメチル基、α−ナフチルメチル基等が挙げられる。
上記Ar2は、式(2)〜(13)で示される群から選ばれる少なくとも1種を表すが、特に、式(2)、(12)および(13)から選ばれる少なくとも1種が好ましい。
Figure 2017133035
上記R1〜R92は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホン基、炭素数1〜10の分岐構造を有していてもよいアルキル基、または炭素数1〜10の分岐構造を有していてもよいアルコキシ基を表し、R93およびR94は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表し、W1およびW2は、互いに独立して、単結合、CR9596(R95およびR96は、互いに独立して、水素原子または炭素数1〜10の分岐構造を有していてもよいアルキル基(ただし、これらは一緒になって環を形成していてもよい。)を表す。)、C=O、O、S、SO、SO2、またはNR97(R97は、水素原子または炭素数1〜10の分岐構造を有していてもよいアルキル基を表す。)を表す。
これらアルキル基、アルコキシ基、アリール基、アラルキル基としては上記と同様のものが挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
また、X1およびX2は、互いに独立して、単結合、炭素数1〜10の分岐構造を有していてもよいアルキレン基、または式(14)で示される基を表す。
Figure 2017133035
上記R98〜R101は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホン基、炭素数1〜10の分岐構造を有していてもよいアルキル基、または炭素数1〜10の分岐構造を有していてもよいアルコキシ基を表し、Y1およびY2は、互いに独立して、単結合または炭素数1〜10の分岐構造を有していてもよいアルキレン基を表す。
これらハロゲン原子、アルキル基、アルコキシ基としては上記と同様のものが挙げられる。
炭素数1〜10の分岐構造を有していてもよいアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基等が挙げられる。
上記Ar2の具体例としては、下記式で示されるものが挙げられるが、これらに限定されるものではない。
Figure 2017133035
上記Ar1は、アリール基であり、その具体例としては、上述したアリール基と同様のものが挙げられるが、本発明においては、式(15)で示される基が好適である。
Figure 2017133035
上記R102〜R106は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホン基、炭素数1〜10の分岐構造を有していてもよいアルキル基、または炭素数1〜10の分岐構造を有していてもよいアルコキシ基を表す。
これらハロゲン原子、アルキル基、アルコキシ基としては上記と同様のものが挙げられる。
102〜R106としては、好ましくは水素原子である。
好適な繰り返し単位構造としては、下記式(16)または(17)で示されるものが挙げられるが、これらに限定されるものではない。
Figure 2017133035
本発明におけるトリアジン環含有重合体の重量平均分子量は、特に限定されるものではないが、500〜100,000が好ましく、より耐熱性を向上させるとともに、収縮率を低くするという点から、2,000以上が好ましく、より溶解性を高め、得られた溶液の粘度を低下させるという点から、10,000以下が好ましい。
なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCという)分析による標準ポリスチレン換算で得られる平均分子量である。
本発明のトリアジン環含有重合体の製造法について一例を挙げて説明する。
本発明のトリアジン環含有重合体は、アリールアミノ基を有するジハロゲン化トリアジン化合物と、ジアミノアリール化合物とを反応させて得ることができる。
例えば、下記スキーム1に示されるように、繰り返し構造(16’)を有する線状重合体は、フェニルアミノ基を有するジハロゲン化トリアジン(18)およびm−フェニレンジアミン化合物(19)を適当な有機溶媒中で反応させて得ることができる。
これらの式(18)および式(19)で表される化合物は、例えば、Aldrich社製または東京化成工業(株)製の市販品として入手することができ、また有機合成化学の定法に従って容易に製造することができる。
この方法を用いることで、本発明の重合体を、安価に、しかも簡便かつ安全に製造することができる。この製造方法は、一般的なポリマーを合成する際の反応時間よりも著しく短いことから、近年の環境への配慮に適合した製造方法であり、CO2排出量を低減できる。また、製造スケールを大幅に増加させても安定製造することが可能であり、工業化レベルでの安定供給体制を損なわない。
Figure 2017133035
(式中、Xは、互いに独立してハロゲン原子を表す。Rは上記と同じ意味を表す。)
上記有機溶媒としては、この種の反応において通常用いられる種々の溶媒を用いることができ、例えば、テトラヒドロフラン、ジオキサン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、テトラメチル尿素、ヘキサメチルホスホルアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピペリドン、N,N−ジメチルエチレン尿素、N,N,N’,N’−テトラメチルマロン酸アミド、N−メチルカプロラクタム、N−アセチルピロリジン、N,N−ジエチルアセトアミド、N−エチル−2−ピロリドン、N,N−ジメチルプロピオン酸アミド、N,N−ジメチルイソブチルアミド、N−メチルホルムアミド、N,N’−ジメチルプロピレン尿素等のアミド系溶媒、およびそれらの混合溶媒が挙げられる。
中でもN,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、およびそれらの混合系が好ましく、特に、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンが好適である。
上記反応において、反応温度は、用いる溶媒の融点から溶媒の沸点までの範囲で適宜設定すればよいが、特に、0〜150℃程度が好ましく、60〜100℃がより好ましい。
各成分の配合順序は任意である。
また、配合の際には、滴下等によって徐々に加えても、全量一括して加えてもよい。
また、上記反応では、重合時または重合後に通常用いられる種々の塩基を添加してもよい。
この塩基の具体例としては、炭酸カリウム、水酸化カリウム、炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、ナトリウムエトキシド、酢酸ナトリウム、トリエチルアミン、炭酸リチウム、水酸化リチウム、酸化リチウム、酢酸カリウム、酸化マグネシウム、酸化カルシウム、水酸化バリウム、リン酸三リチウム、リン酸三ナトリウム、リン酸三カリウム、フッ化セシウム、酸化アルミニウム、アンモニア、トリメチルアミン、トリエチルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、N−メチルピペリジン、2,2,6,6−テトラメチル−N−メチルピペリジン、ピリジン、4−ジメチルアミノピリジン、N−メチルモルホリン等が挙げられる。
塩基の添加量は、トリアジン化合物(18)1当量に対して1〜100当量が好ましく、1〜10当量がより好ましい。なお、これらの塩基は水溶液にして用いてもよい。
得られる重合体には、原料成分が残存していないことが好ましいが、本発明の効果を損なわなければ一部の原料が残存していてもよい。
反応終了後、生成物は再沈法等によって容易に精製できる。
上述した本発明のトリアジン環含有重合体は、他の化合物と混合した組成物として用いることができ、例えば、レベリング剤、界面活性剤、架橋剤、樹脂等との組成物が挙げられる。
これらの組成物は、膜形成用組成物として用いることができ、各種の溶剤に溶かした膜形成用組成物(ポリマーワニスともいう)として好適に使用できる。
重合体を溶解するのに用いる溶剤は、重合時に用いた溶媒と同じものでも別のものでもよい。この溶剤は、重合体との相溶性を損なわなければ特に限定されず、1種でも複数種でも任意に選択して用いることができる。
このような溶剤の具体例としては、トルエン、p−キシレン、o−キシレン、m−キシレン、エチルベンゼン、スチレン、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコ−ルモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコール、1−オクタノール、エチレングリコール、ヘキシレングリコール、トリメチレングリコール、1−メトキシ−2−ブタノール、シクロヘキサノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、プロピレングリコール、ベンジルアルコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、γ−ブチロラクトン、アセトン、メチルエチルケトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチルノーマルブチルケトン、シクロヘキサノン、酢酸エチル、酢酸イソプロピル、酢酸ノーマルプロピル、酢酸イソブチル、酢酸ノーマルブチル、乳酸エチル、メタノール、エタノール、イソプロパノール、tert−ブタノール、アリルアルコール、ノーマルプロパノール、2−メチル−2−ブタノール、イソブタノール、ノーマルブタノール、2−メチル−1−ブタノール、1−ペンタノール、2−メチル−1−ペンタノール、2−エチルヘキサノール、1−メトキシ−2−プロパノール、テトラヒドロフラン、1,4−ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド、N−シクロヘキシル−2−ピロリジノン等が挙げられ、これらは単独で用いても、2種以上混合して用いてもよい。
この際、膜形成用組成物中の固形分濃度は、保存安定性に影響を与えない範囲であれば特に限定されず、目的とする膜の厚みに応じて適宜設定すればよい。具体的には、溶解性および保存安定性の観点から、固形分濃度0.1〜50質量%が好ましく、より好ましくは0.1〜20質量%である。
本発明の膜形成用組成物では、本発明の効果を損なわない限りにおいて、トリアジン環含有重合体および溶剤以外のその他の成分、例えば、レベリング剤、界面活性剤、架橋剤等が含まれていてもよい。
界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類;ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類;ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップEF301、EF303、EF352(三菱マテリアル電子化成(株)製(旧(株)ジェムコ製)、商品名メガファックF171、F173、R−08、R−30、F−553、F−554(DIC(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、商品名アサヒガードAG710,サーフロンS−382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、BYK−302、BYK−307、BYK−322、BYK−323、BYK−330、BYK−333、BYK−370、BYK−375、BYK−378(ビックケミー・ジャパン(株)製)等が挙げられる。
これらの界面活性剤は、単独で使用しても、2種以上組み合わせて使用してもよい。界面活性剤の使用量は、トリアジン環含有重合体100質量部に対して0.0001〜5質量部が好ましく、0.001〜1質量部がより好ましく、0.01〜0.5質量部がより一層好ましい。
架橋剤としては、本発明のトリアジン環含有重合体と反応し得る置換基を有する化合物であれば特に限定されるものではない。
そのような化合物としては、メチロール基、メトキシメチル基などの架橋形成置換基を有するメラミン系化合物、置換尿素系化合物、エポキシ基またはオキセタン基などの架橋形成置換基を含有する化合物、ブロック化イソシアナートを含有する化合物、酸無水物を有する化合物、(メタ)アクリル基を有する化合物、フェノプラスト化合物等が挙げられるが、耐熱性や保存安定性の観点からエポキシ基、ブロックイソシアネート基、(メタ)アクリル基を含有する化合物が好ましい。
また、ブロックイソシアネート基は、尿素結合で架橋し、カルボニル基を有するため屈折率が低下しないという点からも好ましい。
なお、これらの化合物は、ポリマーの末端処理に用いる場合は少なくとも1個の架橋形成置換基を有していればよく、ポリマー同士の架橋処理に用いる場合は少なくとも2個の架橋形成置換基を有する必要がある。
エポキシ化合物としては、エポキシ基を一分子中2個以上有し、熱硬化時の高温に曝されると、エポキシが開環し、本発明のトリアジン環含有重合体との間で付加反応により架橋反応が進行するものである。
架橋剤の具体例としては、トリス(2,3−エポキシプロピル)イソシアヌレート、1,4−ブタンジオールジグリシジルエーテル、1,2−エポキシ−4−(エポキシエチル)シクロヘキサン、グリセロールトリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、2,6−ジグリシジルフェニルグリシジルエーテル、1,1,3−トリス[p−(2,3−エポキシプロポキシ)フェニル]プロパン、1,2−シクロヘキサンジカルボン酸ジグリシジルエステル、4,4’−メチレンビス(N,N−ジグリシジルアニリン)、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、トリメチロールエタントリグリシジルエーテル、ビスフェノール−A−ジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等が挙げられる。
また、市販品として、少なくとも2個のエポキシ基を有するエポキシ樹脂である、YH−434、YH434L(東都化成(株)製)、シクロヘキセンオキサイド構造を有するエポキシ樹脂である、エポリードGT−401、同GT−403、同GT−301、同GT−302、セロキサイド2021、同3000(ダイセル化学工業(株)製)、ビスフェノールA型エポキシ樹脂である、エピコート(現、jER)1001、同1002、同1003、同1004、同1007、同1009、同1010、同828(以上、ジャパンエポキシレジン(株)製)、ビスフェノールF型エポキシ樹脂である、エピコート(現、jER)807(ジャパンエポキシレジン(株)製)、フェノールノボラック型エポキシ樹脂である、エピコート(現、jER)152、同154(以上、ジャパンエポキシレジン(株)製)、EPPN201、同202(以上、日本化薬(株)製)、クレゾールノボラック型エポキシ樹脂である、EOCN−102、同103S、同104S、同1020、同1025、同1027(以上、日本化薬(株)製)、エピコート(現、jER)180S75(ジャパンエポキシレジン(株)製)、脂環式エポキシ樹脂である、デナコールEX−252(ナガセケムテックス(株)製)、CY175、CY177、CY179(以上、CIBA−GEIGY A.G製)、アラルダイトCY−182、同CY−192、同CY−184(以上、CIBA−GEIGY A.G製)、エピクロン200、同400(以上、DIC(株)製)、エピコート(現、jER)871、同872(以上、ジャパンエポキシレジン(株)製)、ED−5661、ED−5662(以上、セラニーズコーティング(株)製)、脂肪族ポリグリシジルエーテルである、デナコールEX−611、同EX−612、同EX−614、同EX−622、同EX−411、同EX−512、同EX−522、同EX−421、同EX−313、同EX−314、同EX−321(ナガセケムテックス(株)製)等を用いることもできる。
酸無水物化合物としては、2分子のカルボン酸を脱水縮合させたカルボン酸無水物であり、熱硬化の際の高温に曝されると、無水物環が開環し、本発明のトリアジン環含有重合体との間で付加反応により架橋反応が進行するものである。
また、酸無水物化合物の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、無水マレイン酸、無水コハク酸、オクチル無水コハク酸、ドデセニル無水コハク酸等の分子内に1個の酸無水物基を有するもの;1,2,3,4−シクロブタンテトラカルボン酸二無水物、ピロメリット酸無水物、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸二無水物、ビシクロ[3.3.0]オクタン−2,4,6,8−テトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロ−3−フラニル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物等の分子内に2個の酸無水物基を有するもの等が挙げられる。
(メタ)アクリル化合物としては、(メタ)アクリル基を一分子中2個以上有し、そして熱硬化時の高温に曝されると、本発明のトリアジン環含有重合体との間で付加反応により架橋反応が進行するものである。
(メタ)アクリル基を有する化合物としては、例えば、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジメタクリレート、エトキシ化トリメチロールプロパントリアクリレート、エトキシ化トリメチロールプロパントリメタクリレート、エトキシ化グリセリントリアクリレート、エトキシ化グリセリントリメタクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、エトキシ化ペンタエリスリトールテトラメタクリレート、エトキシ化ジペンタエリスリトールヘキサアクリレート、ポリグリセリンモノエチレンオキサイドポリアクリレート、ポリグリセリンポリエチレングリコールポリアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、トリシクロデカンジメタノールジアクリレート、トリシクロデカンジメタノールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート等が挙げられる。
上記(メタ)アクリル基を有する化合物は、市販品として入手が可能であり、その具体例としては、NKエステルA−200、同A−400、同A−600、同A−1000、同A−TMPT、同UA−53H、同1G、同2G、同3G、同4G、同9G、同14G、同23G、同ABE−300、同A−BPE−4、同A−BPE−6、同A−BPE−10、同A−BPE−20、同A−BPE−30、同BPE−80N、同BPE−100N、同BPE−200、同BPE−500、同BPE−900、同BPE−1300N、同A−GLY−3E、同A−GLY−9E、同A−GLY−20E、同A−TMPT−3EO、同A−TMPT−9EO、同ATM−4E、同ATM−35E(以上、新中村化学工業(株)製)、KAYARAD(登録商標)DPEA−12、同PEG400DA、同THE−330、同RP−1040(以上、日本化薬(株)製)、M−210、M−350(以上、東亞合成(株)製)、KAYARAD(登録商標)DPHA、同NPGDA、同PET30(以上、日本化薬(株)製)、NKエステル A−DPH、同A−TMPT、同A−DCP、同A−HD−N、同TMPT、同DCP、同NPG、同HD−N(以上、新中村化学工業(株)製)等が挙げられる。
ブロック化イソシアネートを含有する化合物としては、イソシアネート基(−NCO)が適当な保護基によりブロックされたブロック化イソシアネート基を一分子中2個以上有し、熱硬化時の高温に曝されると、保護基(ブロック部分)が熱解離して外れ、生じたイソシアネート基が樹脂との間で架橋反応を起こすものであり、例えば、下記式で示される基を一分子中2個以上(なお、これらの基は同一のものでも、また各々異なっているものでもよい)有する化合物が挙げられる。
Figure 2017133035
(式中、Rbはブロック部の有機基を表す。)
このような化合物は、例えば、一分子中2個以上のイソシアネート基を有する化合物に対して適当なブロック剤を反応させて得ることができる。
一分子中2個以上のイソシアネート基を有する化合物としては、例えば、イソホロンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、メチレンビス(4−シクロヘキシルイソシアネート)、トリメチルヘキサメチレンジイソシアネートのポリイソシアネートや、これらの二量体、三量体、および、これらとジオール類、トリオール類、ジアミン類、またはトリアミン類との反応物などが挙げられる。
ブロック剤としては、例えば、メタノール、エタノール、イソプロパノール、n−ブタノール、2−エトキシヘキサノール、2−N,N−ジメチルアミノエタノール、2−エトキシエタノール、シクロヘキサノール等のアルコール類;フェノール、o−ニトロフェノール、p−クロロフェノール、o−、m−またはp−クレゾール等のフェノール類;ε−カプロラクタム等のラクタム類、アセトンオキシム、メチルエチルケトンオキシム、メチルイソブチルケトンオキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム等のオキシム類;ピラゾール、3,5−ジメチルピラゾール、3−メチルピラゾール等のピラゾール類;ドデカンチオール、ベンゼンチオール等のチオール類などが挙げられる。
ブロック化イソシアネートを含有する化合物は、市販品としても入手が可能であり、その具体例としては、B−830、B−815N、B−842N、B−870N、B−874N、B−882N、B−7005、B−7030、B−7075、B−5010(以上、三井化学ポリウレタン(株)製)、デュラネート(登録商標)17B−60PX、同TPA−B80E、同MF−B60X、同MF−K60X、同E402−B80T(以上、旭化成ケミカルズ(株)製)、カレンズMOI−BM(登録商標)(以上、昭和電工(株)製)等が挙げられる。
アミノプラスト化合物としては、メトキシメチレン基を一分子中2個以上有し、そして熱硬化時の高温に曝されると、本発明のトリアジン環含有重合体との間で脱メタノール縮合反応により架橋反応が進行するものである。
メラミン系化合物としては、例えば、ヘキサメトキシメチルメラミン CYMEL(登録商標)303、テトラブトキシメチルグリコールウリル 同1170、テトラメトキシメチルベンゾグアナミン 同1123(以上、日本サイテックインダストリーズ(株)製)等のサイメルシリーズ、メチル化メラミン樹脂であるニカラック(登録商標)MW−30HM、同MW−390、同MW−100LM、同MX−750LM、メチル化尿素樹脂である同MX−270、同MX−280、同MX−290(以上、(株)三和ケミカル製)等のニカラックシリーズ等が挙げられる。
オキセタン化合物としては、オキセタニル基を一分子中2個以上有し、そして熱硬化時の高温に曝されると、本発明のトリアジン環含有重合体との間で付加反応により架橋反応が進行するものである。
オキセタン基を有する化合物としては、例えば、オキセタン基を含有するOXT−221、OX−SQ−H、OX−SC(以上、東亜合成(株)製)等が挙げられる。
フェノプラスト化合物としては、ヒドロキシメチレン基を一分子中2個以上有し、そして熱硬化時の高温に曝されると、本発明のトリアジン環含有重合体との間で脱水縮合反応により架橋反応が進行するものである。
フェノプラスト化合物としては、例えば、2,6−ジヒドロキシメチル−4−メチルフェノール、2,4−ジヒドロキシメチル−6−メチルフェノール、ビス(2−ヒドロキシ−3−ヒドロキシメチル−5−メチルフェニル)メタン、ビス(4−ヒドロキシ−3−ヒドロキシメチル−5−メチルフェニル)メタン、2,2−ビス(4−ヒドロキシ−3,5−ジヒドロキシメチルフェニル)プロパン、ビス(3−ホルミル−4−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−2,5−ジメチルフェニル)ホルミルメタン、α,α−ビス(4−ヒドロキシ−2,5−ジメチルフェニル)−4−ホルミルトルエン等が挙げられる。
フェノプラスト化合物は、市販品としても入手が可能であり、その具体例としては、26DMPC、46DMOC、DM−BIPC−F、DM−BIOC−F、TM−BIP−A、BISA−F、BI25X−DF、BI25X−TPA(以上、旭有機材工業(株)製)等が挙げられる。
これらの架橋剤は単独で使用しても、2種以上組み合わせて使用してもよい。架橋剤の使用量は、トリアジン環含有重合体100質量部に対して、1〜100質量部が好ましいが、溶剤耐性を考慮すると、その下限は、好ましくは10質量部、より好ましくは20質量部であり、さらには、屈折率をコントロールすることを考慮すると、その上限は好ましくは50質量部、より好ましくは30質量部である。
架橋剤を用いることで、架橋剤とトリアジン環含有重合体が有する反応性の末端置換基とが反応し、膜密度の向上、耐熱性の向上、熱緩和能力の向上などの効果を発現できる場合がある。
なお、上記その他の成分は、本発明の組成物を調製する際の任意の工程で添加することができる。
本発明の膜形成用組成物は、基材に塗布し、その後、必要に応じて加熱することで所望の膜を形成することができる。
組成物の塗布方法は任意であり、例えば、スピンコート法、ディップ法、フローコート法、インクジェット法、スプレー法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等の方法を採用できる。
また、基材としては、シリコン、インジウム錫酸化物(ITO)が成膜されたガラス、インジウム亜鉛酸化物(IZO)が成膜されたガラス、ポリエチレンテレフタレート(PET)、プラスチック、ガラス、石英、セラミックス等からなる基材等が挙げられ、可撓性を有するフレキシブル基材を用いることもできる。
焼成温度は、溶媒を蒸発させる目的では特に限定されず、例えば40〜400℃で行うことができる。これらの場合、より高い均一製膜性を発現させたり、基材上で反応を進行させたりする目的で2段階以上の温度変化をつけてもよい。
焼成方法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、大気、窒素等の不活性ガス、真空中等の適切な雰囲気下で蒸発させればよい。
焼成温度および焼成時間は、目的とする電子デバイスのプロセス工程に適合した条件を選択すればよく、得られる膜の物性値が電子デバイスの要求特性に適合するような焼成条件を選択すればよい。
このようにして得られた本発明の組成物からなる膜は、高耐熱性、高透明性、高屈折率、高溶解性、および低体積収縮を達成できるため、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、有機薄膜トランジスタ(TFT)などの電子デバイスを作製する際の一部材として好適に利用できる。
なお、本発明の組成物には、必要に応じてその他の樹脂(熱可塑性樹脂または熱硬化性樹脂)を配合してもよい。
樹脂の具体例としては、特に限定されるものではない。熱可塑性樹脂としては、例えば、PE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン−酢酸ビニル共重合体)、EEA(エチレン−アクリル酸エチル共重合体)等のポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル−スチレン共重合体)、ABS(アクリロニトリル−ブタジエン−スチレン共重合体)、MS(メタクリル酸メチル−スチレン共重合体)等のポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;PMMA(ポリメチルメタクリレート)等の(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ−3−ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペート等のポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、三酢酸セルロース;キチン、キトサン;リグニンなどが挙げられ、熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂などが挙げられる。
これらの樹脂は、単独で用いても、2種以上組み合わせて用いてもよく、その使用量は、上記トリアジン環含有重合体100質量部に対して、1〜10,000質量部が好ましく、より好ましくは1〜1,000質量部である。
例えば、(メタ)アクリル樹脂との組成物は、(メタ)アクリレート化合物を組成物に配合し、(メタ)アクリレート化合物を重合させて得ることができる。
(メタ)アクリレート化合物の例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリシクロデカニルジ(メタ)アクリレート、トリメチロールプロパントリオキシプロピル(メタ)アクリレート、トリス−2−ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、トリス−2−ヒドロキシエチルイソシアヌレートジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、グリセリンメタクリレートアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。
これらの(メタ)アクリレート化合物の重合は、光ラジカル開始剤や熱ラジカル開始剤の存在下、光照射または加熱して行うことができる。
光ラジカル重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーのベンゾイルベンゾエート、アミロキシムエステル、テトラメチルチウラムモノサルファイドおよびチオキサントン類等が挙げられる。
特に、光開裂型の光ラジカル重合開始剤が好ましい。光開裂型の光ラジカル重合開始剤については、最新UV硬化技術(159頁、発行人:高薄一弘、発行所:(株)技術情報協会、1991年発行)に記載されている。
市販の光ラジカル重合開始剤としては、例えば、チバ・ジャパン(株)製 商品名: イルガキュア 184、369、651、500、819、907、784、2959、CGI1700、CGI1750、CGI1850、CG24−61、ダロキュア 1116、1173、BASF社製 商品名:ルシリン TPO、UCB社製 商品名:ユベクリル P36、フラテツリ・ランベルティ社製 商品名:エザキュアー KIP150、KIP65LT、KIP100F、KT37、KT55、KTO46、KIP75/B等が挙げられる。
光重合開始剤は、(メタ)アクリレート化合物100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
重合に用いる溶剤は、上記膜形成用組成物で例示した溶剤と同様のものが挙げられる。
以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例で用いた各測定装置は以下のとおりである。
1H−NMR]
装置:Varian NMR System 400NB(400MHz)
JEOL−ECA700(700MHz)
測定溶媒:DMSO−d6
基準物質:テトラメチルシラン(TMS)(δ0.0ppm)
[GPC]
装置:東ソー(株)製 HLC−8200 GPC
カラム:Shodex KF−804L+KF−805L
カラム温度:40℃
溶媒:テトラヒドロフラン(以下、THF)
検出器:UV(254nm)
検量線:標準ポリスチレン
[エリプソメーター]
装置:ジェー・エー・ウーラム・ジャパン製 多入射角分光エリプソメーターVASE
[示差熱天秤(TG−DTA)]
装置:(株)リガク製 TG−8120
昇温速度:10℃/分
測定温度:25℃−750℃
[合成例1]モノマー化合物の合成
Figure 2017133035
500mL四口フラスコに、THF190mLに溶解した2,4,6−トリクロロ−1,3,5−トリアジン(25.0g、138mmol、東京化成工業(株)製)を入れ、系内を窒素置換した。これを0℃まで冷却し、撹拌を行いながらTHF190mLに溶解したアニリン(12.8g、138mmol、純正化学(株)製)を30分かけて滴下した。滴下後、2時間撹拌を続けた。反応液を分液漏斗に移し、イオン交換水171mLに溶解した炭酸カリウム(19.04g、138mmol)水溶液を加えて、THF層を洗浄した。水層を除去した後、THFを減圧により留去して、得られた固体をイオン交換水によって洗浄し、目的とするモノマー化合物27.8gを得た。
[実施例1]高分子化合物[1]の合成
Figure 2017133035
100mL四口フラスコに、m−フェニレンジアミン(1.35g、12.44mmol、東京化成工業(株)製)を入れ、ジメチルアセトアミド(以下、DMAc)17mLに溶解して、オイルバスで100℃に加熱した。その後、DMAc26mLに溶解した、合成例1で得られたモノマー化合物(3.00g、12.44mmol)を加えて重合を開始した。2時間反応を行い、室温まで放冷後、28%アンモニア水溶液(2.27g)を水160mLおよびメタノール54mLに溶解した混合溶液中に再沈殿させた。沈殿物をろ過し、ジメチルホルムアミド(以下、DMF)35mLに再溶解させ、イオン交換水170mLに再沈殿した。得られた沈殿物をろ過し、減圧乾燥機で120℃、6時間乾燥し、目的とする高分子化合物[1]2.25gを得た。1H−NMRスペクトルの測定結果を図1に示す。得られた高分子化合物[1]は式(1)で表される構造単位を有する化合物である。高分子化合物[1]のGPCによるポリスチレン換算で測定される重量平均分子量Mwは3,100、多分散度Mw/Mnは1.60であった。また、TG−DTAによる5%重量減少温度は、340℃であった。
〈被膜の作製と屈折率測定〉
実施例1で得られた高分子化合物[1]を10質量%となるようにシクロヘキサノン/イオン交換水(96/4(質量部/質量部))に溶解させ、ガラス基板上にスピンコーターを用いてスピンコートし、150℃のホットプレートで2分間の仮焼成を行い、次いで、大気下、250℃のホットプレートで5分間の本焼成を行い、被膜を得た。得られた被膜の屈折率および膜厚を測定したところ、550nmにおける屈折率は1.7507、633nmにおける屈折率は1.7330、膜厚は260nmであった。
[参考例2]高分子化合物[2]の合成
Figure 2017133035
100mL四口フラスコに、4,4’−ジアミノベンズアニリド(2.27g、10.0mmol、東京化成工業(株)製)を入れ、DMAc17mLに溶解して、オイルバスで100℃に加熱した。その後、DMAc30mLに溶解した、合成例1で得られたモノマー化合物(2.40g、10.0mmol)を加えて重合を開始した。3時間反応を行い、室温まで放冷後、28%アンモニア水溶液(1.27g)を水276mLおよびメタノール94mLに溶解した混合溶液中に再沈殿させた。沈殿物をろ過し、DMF47mLに再溶解させ、イオン交換水276mLに再沈殿した。得られた沈殿物をろ過し、減圧乾燥機で120℃、6時間乾燥し、目的とする高分子化合物[2]3.23gを得た。1H−NMRスペクトルの測定結果を図2に示す。得られた高分子化合物[2]は式(2)で表される構造単位を有する化合物である。高分子化合物[2]のGPCによるポリスチレン換算で測定される重量平均分子量Mwは5,000、多分散度Mw/Mnは3.97であった。また、TG−DTAによる5%重量減少温度は、346℃であった。
〈被膜の作製と屈折率測定〉
参考例2で得られた高分子化合物[2]を5質量%となるようにN−メチルピロリドン/ブチルセルロース(98/2(質量部/質量部))に溶解させ、ガラス基板上にスピンコーターを用いてスピンコートし、150℃のホットプレートで2分間の仮焼成を行い、次いで、大気下、250℃のホットプレートで5分間の本焼成を行い、被膜を得た。得られた被膜の屈折率および膜厚を測定したところ、550nmにおける屈折率は1.8532、633nmにおける屈折率は1.8233、膜厚は46nmであった。
以上のように、得られた高分子化合物[1],[2]は、550nmで1.75を超える非常に高い屈折率を有していることがわかる。

Claims (5)

  1. 下記式(1’)で表され、550nmの屈折率が1.75超であるトリアジン環含有重合体。
    Figure 2017133035
    {式中、RおよびR′は、互いに独立して、水素原子、アルキル基、アルコキシ基、アリール基、またはアラルキル基を表し、
    Ar1は、アリール基を示し、
    Ar2は、式(2)で示される基を表す。
    Figure 2017133035
    〔式中、R1〜R4は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホン基、炭素数1〜10の分岐構造を有していてもよいアルキル基、または炭素数1〜10の分岐構造を有していてもよいアルコキシ基を表す。〕}
  2. 前記Ar1が、式(15)で表される請求項1記載のトリアジン環含有重合体。
    Figure 2017133035
    (式中、R102〜R106は、互いに独立して、水素原子、ハロゲン原子、カルボキシル基、スルホン基、炭素数1〜10の分岐構造を有していてもよいアルキル基、または炭素数1〜10の分岐構造を有していてもよいアルコキシ基を表す。)
  3. 前記Ar2が、下記式で表される請求項1または2記載のトリアジン環含有重合体。
    Figure 2017133035
  4. 式(16)で表される請求項1〜3のいずれか1項記載のトリアジン環含有重合体。
    Figure 2017133035
  5. 重量平均分子量が、500〜100,000である請求項1〜4のいずれか1項記載のトリアジン環含有重合体。
JP2017082874A 2017-04-19 2017-04-19 トリアジン環含有重合体 Pending JP2017133035A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017082874A JP2017133035A (ja) 2017-04-19 2017-04-19 トリアジン環含有重合体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082874A JP2017133035A (ja) 2017-04-19 2017-04-19 トリアジン環含有重合体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015140981A Division JP2015227462A (ja) 2015-07-15 2015-07-15 トリアジン環含有重合体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018142271A Division JP6669206B2 (ja) 2018-07-30 2018-07-30 トリアジン環含有重合体を含む高屈折率膜形成用組成物

Publications (1)

Publication Number Publication Date
JP2017133035A true JP2017133035A (ja) 2017-08-03

Family

ID=59502285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082874A Pending JP2017133035A (ja) 2017-04-19 2017-04-19 トリアジン環含有重合体

Country Status (1)

Country Link
JP (1) JP2017133035A (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113009A (ja) * 1993-10-18 1995-05-02 Alps Electric Co Ltd 溶媒可溶性芳香族ポリアミンおよびその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113009A (ja) * 1993-10-18 1995-05-02 Alps Electric Co Ltd 溶媒可溶性芳香族ポリアミンおよびその製造方法

Similar Documents

Publication Publication Date Title
JP5598258B2 (ja) トリアジン環含有重合体含有高屈折率膜を備える電子デバイス
JP5742852B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP6003952B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP5857963B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP5842822B2 (ja) 膜形成用組成物
JP5691408B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP6011968B2 (ja) トリアジン環含有ハイパーブランチポリマーの製造方法
JP6085975B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP6061015B2 (ja) トリアジン環含有重合体からなる高屈折率材料を含む高屈折率膜
JP6020469B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP5842959B2 (ja) トリアジン環含有重合体からなる高屈折率材料およびそれを含む高屈折率膜形成用組成物
JP5794235B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP6699067B2 (ja) 蛍光材料およびその利用
JP2015227462A (ja) トリアジン環含有重合体
JP6052378B2 (ja) トリアジン環含有重合体を含む膜形成用組成物
JP5880630B2 (ja) トリアジン環含有重合体
JP2014169452A (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP6669206B2 (ja) トリアジン環含有重合体を含む高屈折率膜形成用組成物
JP6112296B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP5573603B2 (ja) トリアジン環含有重合体およびそれを含む膜形成用組成物
JP2019214733A (ja) トリアジン環含有重合体
JP2017133035A (ja) トリアジン環含有重合体

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204