JP2017132875A - Lubricant composition - Google Patents
Lubricant composition Download PDFInfo
- Publication number
- JP2017132875A JP2017132875A JP2016013271A JP2016013271A JP2017132875A JP 2017132875 A JP2017132875 A JP 2017132875A JP 2016013271 A JP2016013271 A JP 2016013271A JP 2016013271 A JP2016013271 A JP 2016013271A JP 2017132875 A JP2017132875 A JP 2017132875A
- Authority
- JP
- Japan
- Prior art keywords
- lubricating oil
- sulfur
- mass
- extreme pressure
- oil composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M107/00—Lubricating compositions characterised by the base-material being a macromolecular compound
- C10M107/02—Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/02—Sulfurised compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/02—Sulfurised compounds
- C10M135/04—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M151/00—Lubricating compositions characterised by the additive being a macromolecular compound containing sulfur, selenium or tellurium
- C10M151/04—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/17—Fisher Tropsch reaction products
- C10M2205/173—Fisher Tropsch reaction products used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/023—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/022—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2221/04—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2221/041—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds involving sulfurisation of macromolecular compounds, e.g. polyolefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/043—Ammonium or amine salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/047—Thioderivatives not containing metallic elements
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/04—Molecular weight; Molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
本発明は潤滑油組成物に関する。特には、ディファレンシャルギヤに適用できる、低粘度化した自動車用潤滑油組成物に関する。 The present invention relates to a lubricating oil composition. In particular, the present invention relates to a lubricating oil composition for automobiles having a reduced viscosity that can be applied to a differential gear.
潤滑油組成物は自動車用及び機械用など多岐の用途に使用されている。近年、自動車用潤滑油組成物の低粘度化が、省燃費化の観点から求められている。しかし潤滑油組成物の低粘度化は、油膜形成能に影響を及ぼす。特に自動車用ギヤ油の分野、さらに特にはディファレンシャルギヤに用いられる潤滑油においては、潤滑油を低粘度化することによってベアリング等における摩耗の発生やギヤ歯面等におけるスコーリングの発生という問題が生じ、低粘度化への対応は困難であった。そのため、低粘度油であっても、高温下で油膜の形成が困難な条件下でベアリング等における摩耗を抑制することができる自動車用ギヤ油組成物、特にはディファレンシャルギヤ油組成物の開発が望まれている。 Lubricating oil compositions are used in a wide variety of applications such as automobiles and machines. In recent years, lowering the viscosity of automotive lubricating oil compositions has been demanded from the viewpoint of fuel efficiency. However, lowering the viscosity of the lubricating oil composition affects the oil film forming ability. In particular, in the field of automotive gear oils, and more particularly in lubricating oils used for differential gears, reducing the viscosity of the lubricating oil causes problems such as the occurrence of wear on bearings and the occurrence of scoring on gear tooth surfaces. Therefore, it was difficult to cope with the low viscosity. Therefore, it is hoped to develop a gear oil composition for automobiles, particularly a differential gear oil composition, which can suppress wear on bearings and the like under conditions where oil film formation is difficult at high temperatures even with low viscosity oil. It is rare.
本発明者らは、先に、低粘度基油と高粘度基油の併用によって、潤滑油の低粘度化を図り、特に油膜形成能が影響するベアリング疲労寿命特性と省燃費性を同時に達成できることを見出し、特許文献1に記載する発明を成した。しかし特許文献1に記載の潤滑油組成物はベアリング等における摩耗防止性及びギヤ歯面等におけるスコーリング特性が不十分であった。 The inventors of the present invention can reduce the viscosity of a lubricating oil by using a low-viscosity base oil and a high-viscosity base oil in advance, and at the same time, can achieve bearing fatigue life characteristics and fuel economy that are particularly affected by oil film forming ability. The invention described in Patent Document 1 was made. However, the lubricating oil composition described in Patent Document 1 has insufficient wear prevention properties for bearings and the like and scoring properties for gear tooth surfaces and the like.
特許文献2には、特定の酸性リン酸アルキルエステル類、ジアルキルアミン類及び又はトリアルキルアミン類、-S-S-S-以上の多硫結合を含まない特定の硫黄化合物、そして場合により特定のチオリン酸トリヒドロカルビルエステル類からなる潤滑油組成物が開示されている。しかし、特許文献2に記載の潤滑油組成物は耐焼付性及び耐疲労性が必要とされる風力発電用増速機油組成物に関するものであり、スコーリングに関する記載は一切ない。 Patent Document 2 discloses specific acidic phosphoric acid alkyl esters, dialkylamines and / or trialkylamines, specific sulfur compounds containing no -S-S-S- or higher polysulfur bond, and optionally A lubricating oil composition comprising thiophosphoric acid trihydrocarbyl esters is disclosed. However, the lubricating oil composition described in Patent Document 2 relates to a wind speed gearbox oil composition that requires seizure resistance and fatigue resistance, and there is no description regarding scoring.
そこで本発明らは、低粘度化した場合であっても、ベアリング等における摩耗及びギヤ歯面等におけるスコーリングの発生を抑制できる潤滑油組成物を提供することを目的とする。 Accordingly, the present invention has an object to provide a lubricating oil composition that can suppress the occurrence of wear on bearings and the like and scoring on gear tooth surfaces and the like even when the viscosity is lowered.
本発明者らは、潤滑油組成物に特定の活性硫黄量の極圧剤を特定量配合することにより、上記課題を達成できることを見出し、本発明を成すに至った。 The present inventors have found that the above problems can be achieved by blending a specific amount of an extreme pressure agent having a specific active sulfur amount into the lubricating oil composition, and have achieved the present invention.
即ち、本発明は、潤滑油基油と硫黄系極圧剤とを含有する潤滑油組成物において、前記極圧剤の活性硫黄量が5〜30質量%であり、前記極圧剤が潤滑油組成物全体の質量に対し5〜15質量%の量で組成物に含有されていることを特徴とする、前記潤滑油組成物を提供する。 That is, the present invention provides a lubricating oil composition containing a lubricating base oil and a sulfur-based extreme pressure agent, wherein the active sulfur amount of the extreme pressure agent is 5 to 30% by mass, and the extreme pressure agent is a lubricating oil. The lubricating oil composition is provided, wherein the lubricating oil composition is contained in the composition in an amount of 5 to 15% by mass based on the total mass of the composition.
本発明の好ましい実施態様は、以下に示す(1)〜(7)の少なくとも1の特徴をさらに有する。
(1)前記硫黄系極圧剤が、硫化オレフィンである。
(2)前記潤滑油組成物が100℃における動粘度5〜15mm2/sを有する。
(3)前記潤滑油基油の少なくとも1部がフィッシャー・トロプシュ由来基油である。
(4)前記潤滑油基油の少なくとも1部がポリ−α−オレフィン(PAO)基油である。
(5)前記潤滑油基油が100℃における動粘度5〜15mm2/sを有する。
(6)前記潤滑油組成物は、変速機用である潤滑油組成物である。
(7)前記潤滑油組成物は、ディファレンシャルギヤ用の潤滑油組成物である。
Preferred embodiments of the present invention further have at least one of the following features (1) to (7).
(1) The sulfur-based extreme pressure agent is a sulfurized olefin.
(2) The lubricating oil composition has a kinematic viscosity at 100 ° C. of 5 to 15 mm 2 / s.
(3) At least one part of the lubricating base oil is a Fischer-Tropsch derived base oil.
(4) At least one part of the lubricating base oil is a poly-α-olefin (PAO) base oil.
(5) The lubricating base oil has a kinematic viscosity at 100 ° C. of 5 to 15 mm 2 / s.
(6) The lubricating oil composition is a lubricating oil composition for a transmission.
(7) The lubricating oil composition is a differential gear lubricating oil composition.
本発明の潤滑油組成物は、低粘度化した場合においてもベアリング等における摩耗及びギヤ歯面等におけるスコーリングの発生を抑制することができる。本発明の潤滑油組成物は、自動車用潤滑油として好適に使用でき、さらには変速機用ギヤ油及びディファレンシャルギヤ油として好適である。 The lubricating oil composition of the present invention can suppress the occurrence of wear on bearings and the like and scoring on gear tooth surfaces even when the viscosity is lowered. The lubricating oil composition of the present invention can be suitably used as a lubricating oil for automobiles, and further suitable as a transmission gear oil and a differential gear oil.
以下、本発明についてさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
(A)潤滑油基油
本発明における潤滑油基油は特に限定されることはなく、潤滑油基油として従来公知のものが使用できる。潤滑油基油としては、鉱油系基油、合成系基油、及びこれらの混合基油が挙げられる。
(A) Lubricating oil base oil The lubricating oil base oil in the present invention is not particularly limited, and conventionally known lubricating oil base oils can be used. Examples of the lubricating base oil include mineral base oils, synthetic base oils, and mixed base oils thereof.
鉱油系基油の製法は限定されるものではない。鉱油系基油としては、水素化精製油、触媒異性化油などに溶剤脱蝋または水素化脱蝋などの処理を施した高度に精製されたパラフィン系鉱油(高粘度指数鉱油系潤滑油基油)が好ましい。また、上記以外の鉱油系基油としては、例えば、潤滑油原料をフェノール、フルフラールなどの芳香族抽出溶剤を用いた溶剤精製により得られるラフィネート、シリカ−アルミナを担体とするコバルト、モリブデンなどの水素化処理触媒を用いた水素化処理により得られる水素化処理油などが挙げられる。例えば、100ニュートラル油、150ニュートラル油、500ニュートラル油などを挙げることができる。 The method for producing the mineral oil base oil is not limited. Mineral oil base oils include highly refined paraffinic mineral oils (high viscosity index mineral oil base oils obtained by subjecting hydrorefined oil, catalytic isomerized oil, etc. to solvent dewaxing or hydrodewaxing, etc. ) Is preferred. Examples of mineral base oils other than those described above include, for example, raffinates obtained by solvent refining using lube oil as an aromatic extraction solvent such as phenol and furfural, hydrogen such as cobalt and molybdenum using silica-alumina as a carrier. And hydrotreated oil obtained by hydrotreating using a hydrotreating catalyst. For example, 100 neutral oil, 150 neutral oil, 500 neutral oil, etc. can be mentioned.
合成系基油としては、例えば、メタン等の天然ガスからフィッシャー・トロプシュ合成で得られたワックス等の原料を水素化分解処理及び水素化異性化処理して得られる基油(いわゆるフィッシャー・トロプシュ由来基油)、ポリ−α−オレフィン基油(PAO)、ポリブテン、アルキルベンゼン、ポリオールエステル、ポリグリコールエステル、二塩基酸エステル、リン酸エステル、及び、シリコン油などを挙げることができる。なかでも、フィッシャー・トロプシュ由来基油及びポリ−α−オレフィン(PAO)基油が好ましい。 Examples of synthetic base oils include base oils obtained from hydrocracking and hydroisomerization of raw materials such as waxes obtained from Fischer-Tropsch synthesis from natural gas such as methane (so-called Fischer-Tropsch derived) Base oil), poly-α-olefin base oil (PAO), polybutene, alkylbenzene, polyol ester, polyglycol ester, dibasic acid ester, phosphate ester, and silicon oil. Of these, Fischer-Tropsch derived base oil and poly-α-olefin (PAO) base oil are preferred.
潤滑油基油は、上記の鉱油系基油、上記の合成系基油、又はそれらの組合せから選択される限り、1種単独でも良いし、2種以上の併用であってもよい。2種以上の潤滑油基油を併用する場合は、鉱油系基油同士、合成系基油同士、または鉱油系基油と合成系基油の組合せであってよく、その態様は限定されない。特には鉱油系基油と合成系基油の組合せが好適である。 As long as the lubricating base oil is selected from the above mineral base oil, the above synthetic base oil, or a combination thereof, one kind may be used alone, or two or more kinds may be used in combination. When two or more kinds of lubricating base oils are used in combination, they may be mineral base oils, synthetic base oils, or a combination of mineral oil base oils and synthetic base oils, and the mode is not limited. In particular, a combination of a mineral base oil and a synthetic base oil is suitable.
鉱油系基油と合成系基油とを併用する場合は、合成系基油として、フィッシャー・トロプシュ由来基油及びポリ−α−オレフィン(PAO)基油から選ばれる少なくとも1種を使用するのがよい。併用の好適な態様は、
(1)鉱油系基油とフィッシャー・トロプシュ由来基油との組み合わせ、
(2)鉱油系基油とポリ−α−オレフィン(PAO)基油との組み合わせ、
(3)鉱油系基油と、フィッシャー・トロプシュ由来基油と、ポリ−α−オレフィン(PAO)基油との組み合わせ、又は
(4)フィッシャー・トロプシュ由来基油と、ポリ−α−オレフィン(PAO)基油との組み合わせ
である。
その中でも特に(3)鉱油系基油と、フィッシャー・トロプシュ由来基油と、ポリ−α−オレフィン(PAO)基油との組み合わせが好ましい。
When a mineral base oil and a synthetic base oil are used in combination, at least one selected from a Fischer-Tropsch derived base oil and a poly-α-olefin (PAO) base oil is used as the synthetic base oil. Good. The preferred mode of combined use is
(1) A combination of mineral oil base oil and Fischer-Tropsch derived base oil,
(2) A combination of a mineral oil base oil and a poly-α-olefin (PAO) base oil,
(3) A combination of mineral oil base oil, Fischer-Tropsch derived base oil, and poly-α-olefin (PAO) base oil, or (4) Fischer-Tropsch derived base oil, and poly-α-olefin (PAO). ) Combination with base oil.
Among them, a combination of (3) mineral oil base oil, Fischer-Tropsch derived base oil, and poly-α-olefin (PAO) base oil is particularly preferable.
鉱油系基油は上記製造方法によって製造されたものに制限されるものではないが、100℃における動粘度2〜35mm2/sを有することが好ましく、さらに好ましくは2〜20mm2/sであり、一層好ましくは3〜10mm2/sであるのがよい。 The mineral oil base oil is not limited to those produced by the above production method, but preferably has a kinematic viscosity of 2 to 35 mm 2 / s at 100 ° C., more preferably 2 to 20 mm 2 / s. More preferably, the thickness is 3 to 10 mm 2 / s.
フィッシャー・トロプシュ由来基油は、特に制限されるものではないが、100℃における動粘度2〜40mm2/sを有することが好ましく、さらに好ましくは2〜20mm2/sであり、一層好ましくは2〜10mm2/sであるのがよい。 The Fischer-Tropsch derived base oil is not particularly limited, but preferably has a kinematic viscosity of 2 to 40 mm 2 / s at 100 ° C., more preferably 2 to 20 mm 2 / s, and even more preferably 2 It may be 10 mm 2 / s.
ポリ−α−オレフィン(PAO)基油は、特に制限されるものではないが、例えば1−オクテンオリゴマー、1−デセンオリゴマー、エチレン−α-オレフィンオリゴマー、エチレン‐プロピレンオリゴマー、イソブテンオリゴマー並びにこれらの水素化物を使用できる。ポリ−α−オレフィン(PAO)基油は100℃における動粘度2〜100mm2/sを有することが好ましく、さらに好ましくは2〜50mm2/sであり、一層好ましくは10〜50mm2/sであるのがよい。 The poly-α-olefin (PAO) base oil is not particularly limited, and examples thereof include 1-octene oligomer, 1-decene oligomer, ethylene-α-olefin oligomer, ethylene-propylene oligomer, isobutene oligomer and hydrogen thereof. Can be used. The poly-α-olefin (PAO) base oil preferably has a kinematic viscosity at 100 ° C. of 2 to 100 mm 2 / s, more preferably 2 to 50 mm 2 / s, and even more preferably 10 to 50 mm 2 / s. There should be.
潤滑油基油の動粘度は、本発明の要旨を損なわない限り制限されることはない。特には、低粘度の潤滑油組成物を得るためには、潤滑油基油全体が100℃における動粘度3〜40mm2/sを有することが好ましく、さらに好ましくは4〜20mm2/s、一層好ましくは5〜15mm2/s、特に好ましくは8〜15mm2/sを有するのがよい。潤滑油基油の100℃における動粘度が前記上限値超であると、潤滑油組成物の低粘度化を図ることが困難となり、省燃費性を達成することが困難となる可能性がある。また100℃における動粘度が前記下限値未満であると、省燃費性は達成できるが、摩耗防止性やスコーリング防止性の確保が困難となる可能性がある。 The kinematic viscosity of the lubricating base oil is not limited as long as the gist of the present invention is not impaired. In particular, in order to obtain a low-viscosity lubricating oil composition, the entire lubricating base oil preferably has a kinematic viscosity at 100 ° C. of 3 to 40 mm 2 / s, more preferably 4 to 20 mm 2 / s. preferably 5 to 15 mm 2 / s, particularly preferably may have a 8 to 15 mm 2 / s. If the kinematic viscosity at 100 ° C. of the lubricating base oil exceeds the upper limit, it may be difficult to lower the viscosity of the lubricating oil composition, and it may be difficult to achieve fuel economy. Further, if the kinematic viscosity at 100 ° C. is less than the lower limit, fuel saving can be achieved, but it may be difficult to ensure wear prevention and scoring prevention.
(B)硫黄系極圧剤
本発明の潤滑油組成物は硫黄系極圧剤を必須として含有する。本発明で使用する硫黄系極圧剤は、活性硫黄量が5〜30質量%であることが必要であり、好ましくは5〜20質量%、さらに好ましくは5〜18質量%、一層好ましくは5〜15質量%、特に好ましくは8〜12質量%である。活性硫黄量が上記上限値超であると、金属腐食を起こすだけでなく、摩耗防止性やスコーリング防止性の確保が困難となる。なお、活性硫黄量の下限は特に限定されることはないが、極圧性確保のためには、上記下限値が好ましい。
(B) Sulfur-based extreme pressure agent The lubricating oil composition of the present invention contains a sulfur-based extreme pressure agent as an essential component. The sulfur-based extreme pressure agent used in the present invention is required to have an active sulfur amount of 5 to 30% by mass, preferably 5 to 20% by mass, more preferably 5 to 18% by mass, and still more preferably 5%. -15% by mass, particularly preferably 8-12% by mass. If the amount of active sulfur exceeds the above upper limit, not only metal corrosion will occur, but it will be difficult to ensure wear prevention and scoring prevention. The lower limit of the amount of active sulfur is not particularly limited, but the above lower limit is preferable for ensuring extreme pressure.
ここで、活性硫黄量とはASTM D1662に規定される方法により測定されるものである。ASTM D1662に基づく活性硫黄量は、より詳細には以下の手順により測定することができる。
1.200mlのビーカーに試料50gと銅粉(純度99%以上、粒径75μm以下)5gを入れ、スターラ(500rpm)で攪拌しながら150℃まで加熱する。
2.150℃に達したら、更に銅粉を5g加え、30分間攪拌する。
3.攪拌を止め、ASTM D130準拠の銅板をビーカーへ入れ10分間浸漬させる。このとき、銅板に変色が見られたら、さらに銅粉を5g加えて30分間攪拌する(この操作を銅板の変色が認められなくなるまで続ける)。
4.銅板変色が認められなくなったら、試料中の銅粉をろ別し、ろ液に含まれる硫黄量を測定する。
活性硫黄量は以下のように算出される。
活性硫黄量(質量%)=銅粉と反応前の硫黄量(質量%)−銅粉と反応後の硫黄量(質量%)
Here, the amount of active sulfur is measured by the method prescribed in ASTM D1662. More specifically, the amount of active sulfur based on ASTM D1662 can be measured by the following procedure.
1. In a 200 ml beaker, put 50 g of a sample and 5 g of copper powder (purity 99% or more, particle size 75 μm or less), and heat to 150 ° C. while stirring with a stirrer (500 rpm).
2. When the temperature reaches 150 ° C., add 5 g of copper powder and stir for 30 minutes.
3. Stirring is stopped, and an ASTM D130-compliant copper plate is placed in a beaker and immersed for 10 minutes. At this time, if discoloration is observed on the copper plate, 5 g of copper powder is further added and stirred for 30 minutes (this operation is continued until no discoloration of the copper plate is observed).
4). When copper plate discoloration is no longer observed, the copper powder in the sample is filtered and the amount of sulfur contained in the filtrate is measured.
The amount of active sulfur is calculated as follows.
Active sulfur content (mass%) = copper powder and sulfur content before reaction (mass%)-copper powder and sulfur content after reaction (mass%)
本発明における硫黄系極圧剤は上述した特定の活性硫黄量を有するものであればよく、公知の硫黄系極圧剤から選択することができる。好ましくは、硫化オレフィンに代表されるスルフィド化合物、硫化油脂に代表される硫化エステルから選ばれる少なくとも1種であり、特には硫化オレフィンが好ましい。 The sulfur type extreme pressure agent in this invention should just have the specific active sulfur amount mentioned above, and can be selected from a well-known sulfur type extreme pressure agent. Preferably, it is at least one selected from sulfide compounds typified by sulfurized olefins and sulfurized esters typified by sulfurized fats and oils, and sulfurized olefins are particularly preferable.
本発明で用いられる硫黄系極圧剤は、例えば下記一般式(1)で表されるものである。
R1−(-S-)x−R2 (1)
The sulfur-based extreme pressure agent used in the present invention is represented by, for example, the following general formula (1).
R 1 -(-S-) x -R 2 (1)
上記式(1)中、R1及びR2は互いに独立に、一価の置換基であり、炭素、水素、酸素、硫黄のうち少なくとも1つの元素を含む。具体的には、例えば炭素数1〜40の直鎖構造または分岐構造を有する、飽和または不飽和の炭化水素基を挙げることができ、脂肪族、芳香族、あるいは芳香脂肪族であって良い。また、その中に酸素及びあるいは硫黄原子を含んでも良い。R1とR2が結合していても良く、結合が1つの場合には、例えば下記一般式(2)で表される。
In the above formula (1), R 1 and R 2 are each independently a monovalent substituent and contain at least one element of carbon, hydrogen, oxygen, and sulfur. Specific examples include saturated or unsaturated hydrocarbon groups having a linear or branched structure having 1 to 40 carbon atoms, and may be aliphatic, aromatic, or araliphatic. Further, it may contain oxygen and / or sulfur atoms. R 1 and R 2 may be bonded. When there is one bond, for example, it is represented by the following general formula (2).
上記式(1)及び(2)中、xは1以上の整数であり、好ましくは1〜12の整数である。xが小さいと極圧性が低下し、xが大きすぎると熱酸化安定性が低下する傾向にある。極圧性及び熱酸化安定性を共に得るためには、xが1〜10の整数であることが好ましく、より好ましくは1〜8の整数であり、特に好ましくは2〜5の整数である。一般式(1)及び(2)で表される硫黄系極圧剤は通常はxが単一のものではなく、種々の硫黄数の混合物であり、その中で特定の硫黄数の化合物が活性硫黄として機能するものと考えられる。 In said formula (1) and (2), x is an integer greater than or equal to 1, Preferably it is an integer of 1-12. When x is small, the extreme pressure property is lowered, and when x is too large, the thermal oxidation stability tends to be lowered. In order to obtain both extreme pressure properties and thermal oxidation stability, x is preferably an integer of 1 to 10, more preferably an integer of 1 to 8, and particularly preferably an integer of 2 to 5. The sulfur-based extreme pressure agents represented by the general formulas (1) and (2) are usually not a single x, but a mixture of various sulfur numbers, in which compounds having specific sulfur numbers are active. It is thought to function as sulfur.
硫黄系極圧剤の例を以下でさらに説明する。 Examples of sulfur-based extreme pressure agents are further described below.
硫化オレフィンはオレフィン類を硫化して得られるものであり、オレフィン類以外の炭化水素系原料を硫化して得られるものを含めてスルフィド化合物と総称する。
硫化オレフィンとしては、例えば、ポリイソブチレン類及びテルペン類などのオレフィン類を、硫黄または他の硫化剤で硫化して得られるものが挙げられる。
Sulfurized olefins are obtained by sulfiding olefins, and are collectively referred to as sulfide compounds including those obtained by sulfiding hydrocarbon-based raw materials other than olefins.
Examples of the sulfurized olefin include those obtained by sulfurizing olefins such as polyisobutylenes and terpenes with sulfur or other sulfurizing agents.
硫化オレフィン以外のスルフィド化合物としては、例えば、ジイソブチルジスルフィド、ジオクチルポリスルフィド、ジ−tert−ブチルポリスルフィド、ジイソブチルポリスルフィド、ジヘキシルポリスルフィド、ジ−tert−ノニルポリスルフィド、ジデシルポリスルフィド、ジドデシルポリスルフィド、ジイソブチレンポリスルフィド、ジオクテニルポリスルフィド、及びジベンジルポリスルフィドなどが挙げられる。 Examples of sulfide compounds other than sulfurized olefins include diisobutyl disulfide, dioctyl polysulfide, di-tert-butyl polysulfide, diisobutyl polysulfide, dihexyl polysulfide, di-tert-nonyl polysulfide, didecyl polysulfide, didodecyl polysulfide, diisobutylene polysulfide, Examples thereof include octenyl polysulfide and dibenzyl polysulfide.
硫化油脂は、油脂と硫黄との反応生成物であり、油脂としてラード、牛脂、鯨油、パーム油、 ヤシ油、ナタネ油などの動植物油脂を使用し、これを硫化反応して得られるものである。この反応生成物は、単一物質種のものではなく、種々の物質の混合物であり、化学構造そのものは必ずしも明確でない。 Sulfurized fats and oils are reaction products of fats and sulfur, and are obtained by sulfidizing animal and vegetable fats and oils such as lard, beef tallow, whale oil, palm oil, coconut oil and rapeseed oil as fats and oils. . This reaction product is not a single substance species but a mixture of various substances, and the chemical structure itself is not necessarily clear.
硫化エステルは、上記硫化油脂の他に、各種有機酸(飽和脂肪酸、不飽和脂肪酸、ジカルボン酸、芳香族カルボン酸など)と各種アルコールとの反応により得られるエステル化合物を硫黄その他の硫化剤で硫化して得られるものが挙げられる。硫化油脂と同様、化学構造そのものは必ずしも明確でない。 In addition to the above sulfurized fats and oils, sulfurized esters are obtained by sulfurizing ester compounds obtained by reaction of various organic acids (saturated fatty acids, unsaturated fatty acids, dicarboxylic acids, aromatic carboxylic acids, etc.) with various alcohols with sulfur or other sulfurizing agents. Can be obtained. Like sulfurized fats and oils, the chemical structure itself is not always clear.
本発明の潤滑油組成物において上記硫黄系極圧剤の含有量は、潤滑油組成物全体の質量に対して5質量%〜15質量%、好ましくは6質量%〜12質量%であり、従来の潤滑油組成物に比較して硫黄系極圧剤の含有量が多いことも本発明の特徴である。含有量が上記上限値を超えると熱酸化安定性が低下しスラッジが発生しやすくなり、加えて金属腐食も発生しやすくなるため好ましくない。また、含有量が上記下限値未満では、スコーリング防止性が低下するため好ましくない。 In the lubricating oil composition of the present invention, the content of the sulfur-based extreme pressure agent is 5% by mass to 15% by mass, preferably 6% by mass to 12% by mass, based on the total mass of the lubricating oil composition. It is also a feature of the present invention that the content of the sulfur-based extreme pressure agent is larger than that of the lubricating oil composition. If the content exceeds the above upper limit value, thermal oxidation stability is lowered and sludge is likely to be generated, and in addition, metal corrosion is likely to occur, which is not preferable. Moreover, when content is less than the said lower limit, since scoring prevention property falls, it is unpreferable.
(C)リン系極圧剤、含硫黄リン系極圧剤
本発明の潤滑油組成物は、任意成分として、リン系極圧剤、及び又は含硫黄リン系極圧剤をさらに含有することができる。尚、ここでいう含硫黄リン系極圧剤に含まれる硫黄元素はASTM D1662で測定される硫黄(活性硫黄)ではなく、該極圧剤は上述した硫黄系極圧剤とは区別されるものである。
(C) Phosphorus extreme pressure agent, sulfur-containing phosphorous extreme pressure agent The lubricating oil composition of the present invention may further contain a phosphorous extreme pressure agent and / or a sulfur-containing phosphorous extreme pressure agent as optional components. it can. The sulfur element contained in the sulfur-containing phosphorus-based extreme pressure agent here is not sulfur (active sulfur) measured by ASTM D1662, and the extreme-pressure agent is distinguished from the above-described sulfur-based extreme pressure agent. It is.
リン系極圧剤及び含硫黄リン系極圧剤は、特に限定されることはなく、従来公知のものであってよい。例えば、リン酸エステル、酸性リン酸エステル、亜リン酸エステル、酸性亜リン酸エステル、チオリン酸エステル、酸性チオリン酸エステル、チオ亜リン酸エステル、酸性チオ亜リン酸エステル、酸性リン酸エステルのアミン塩、酸性亜リン酸エステルのアミン塩、酸性チオリン酸エステルのアミン塩、及び酸性チオ亜リン酸エステルのアミン塩、リン酸、および亜リン酸の中から選ばれる少なくとも1種であるのがよい。 The phosphorus extreme pressure agent and the sulfur-containing phosphorus extreme pressure agent are not particularly limited and may be conventionally known ones. For example, phosphate ester, acid phosphate ester, phosphite ester, acid phosphite ester, thiophosphate ester, acid thiophosphate ester, thiophosphite ester, acid thiophosphite ester, amine of acid phosphate ester And at least one selected from a salt, an amine salt of acidic phosphite, an amine salt of acidic thiophosphite, and an amine salt of acidic thiophosphite, phosphoric acid, and phosphorous acid .
リン酸エステル及び酸性リン酸エステルは(R1O)aP(=O)(OH)3−aで表される。aは0、1、2、又は3である。R1は互いに独立に、炭素数4〜30の一価炭化水素基である。ここで、a=0の場合がリン酸、a=1又は2の場合が酸性リン酸エステルとなる。 The phosphoric acid ester and the acidic phosphoric acid ester are represented by (R 1 O) a P (═O) (OH) 3-a . a is 0, 1, 2, or 3; R 1 is independently a monovalent hydrocarbon group having 4 to 30 carbon atoms. Here, the case where a = 0 is phosphoric acid, and the case where a = 1 or 2 is an acidic phosphate ester.
亜リン酸エステル及び酸性亜リン酸エステルは(R2O)bP(=O)(OH)2−bHで表される。bは0、1、又は2である。R2は互いに独立に、炭素数4〜30の一価炭化水素基である。ここで、b=0の場合が亜リン酸、b=1の場合が酸性亜リン酸エステルとなる。 The phosphite ester and the acid phosphite ester are represented by (R 2 O) b P (═O) (OH) 2 -b H. b is 0, 1 or 2; R 2 is independently a monovalent hydrocarbon group having 4 to 30 carbon atoms. Here, the case of b = 0 is phosphorous acid, and the case of b = 1 is acidic phosphite.
チオリン酸エステル及び酸性チオリン酸エステルは(R3X1)(R4X2)(R5X3)P(=X4)で表される。R3、R4及びR5は、水素原子又は炭素数4〜30の一価炭化水素基である。ここで、R3、R4及びR5のうち1つまたは2つが水素原子の場合が酸性チオリン酸エステルとなる。X1、X2、X3及びX4は、互いに独立に、酸素原子または硫黄原子である。但しX1、X2、X3及びX4のうち少なくとも1つは硫黄原子である。 The thiophosphate ester and the acidic thiophosphate ester are represented by (R 3 X 1 ) (R 4 X 2 ) (R 5 X 3 ) P (= X 4 ). R 3 , R 4 and R 5 are a hydrogen atom or a monovalent hydrocarbon group having 4 to 30 carbon atoms. Here, when one or two of R 3 , R 4 and R 5 are hydrogen atoms, an acidic thiophosphate is formed. X 1 , X 2 , X 3 and X 4 are each independently an oxygen atom or a sulfur atom. However, at least one of X 1 , X 2 , X 3 and X 4 is a sulfur atom.
チオ亜リン酸エステルは(R6X5)(R7X6)P(=X7)Hで表される。R6及びR7は、互いに独立に、水素原子又は炭素数4〜30の一価炭化水素基である。ここで、R6及びR7のうち1つが水素原子の場合が酸性チオリン酸エステルとなる。X5、X6及びX7は、互いに独立に、酸素原子または硫黄原子である。但し、X5、X6及びX7のうち少なくとも1つは硫黄原子である。 The thiophosphite is represented by (R 6 X 5 ) (R 7 X 6 ) P (= X 7 ) H. R 6 and R 7 are each independently a hydrogen atom or a monovalent hydrocarbon group having 4 to 30 carbon atoms. Here, when one of R 6 and R 7 is a hydrogen atom, it is an acidic thiophosphate. X 5 , X 6 and X 7 are each independently an oxygen atom or a sulfur atom. However, at least one of X 5 , X 6 and X 7 is a sulfur atom.
リン酸エステル及び酸性リン酸エステルは、好ましくはリン酸モノアルキルエステル、リン酸ジアルキルエステル、及びリン酸トリアルキルエステルであるのがよいが、これに限定されるものではない。 The phosphoric acid ester and acidic phosphoric acid ester are preferably phosphoric acid monoalkyl ester, phosphoric acid dialkyl ester, and phosphoric acid trialkyl ester, but are not limited thereto.
亜リン酸エステル及び酸性亜リン酸エステルは、好ましくは亜リン酸モノアルキルエステル及び亜リン酸ジアルキルエステルであるのがよいが、これに限定されるものではない。 The phosphite and acidic phosphite are preferably a monoalkyl phosphite and a dialkyl phosphite, but are not limited thereto.
チオリン酸エステル、及び酸性チオリン酸エステルは、好ましくはチオリン酸モノアルキルエステル、チオリン酸ジアルキルエステル、及びチオリン酸トリアルキルエステルであるのがよいが、これに限定されるものではない。 The thiophosphate ester and acidic thiophosphate ester are preferably thiophosphate monoalkyl ester, thiophosphate dialkyl ester, and thiophosphate trialkyl ester, but are not limited thereto.
チオ亜リン酸エステルは、好ましくはチオ亜リン酸モノアルキルエステル及びチオ亜リン酸ジアルキルエステルであるのがよいが、これに限定されるものではない。 The thiophosphite is preferably a thiophosphite monoalkyl ester and a thiophosphite dialkyl ester, but is not limited thereto.
リン酸エステル、亜リン酸エステル、チオリン酸エステル、及びチオ亜リン酸エステルとして、さらに詳細には、リン酸モノオクチル、リン酸ジオクチル、リン酸トリオクチル、亜リン酸モノオクチル、亜リン酸ジオクチル、チオリン酸モノオクチル、チオリン酸ジオクチル、チオリン酸トリオクチル、チオ亜リン酸モノオクチル、チオ亜リン酸ジオクチル、リン酸モノドデシル、リン酸ジドデシル、リン酸トリドデシル、亜リン酸モノドデシル、亜リン酸ジドデシル、チオリン酸モノドデシル、チオリン酸ジドデシル、チオリン酸トリドデシル、チオ亜リン酸モノドデシル、チオ亜リン酸ジドデシル、リン酸モノオクタデセニル、リン酸ジオクタデセニル、リン酸トリオクタデセニル、亜リン酸モノオクタデセニル、亜リン酸ジオクタデセニル、チオリン酸モノオクタデセニル、チオリン酸ジオクタデセニル、チオリン酸トリオクタデセニル、チオ亜リン酸モノオクタデセニル、及びチオ亜リン酸ジオクタデセニルなどが挙げられるが、これらに限定されるものではない。 As phosphate ester, phosphite ester, thiophosphate ester, and thiophosphite ester, more specifically, monooctyl phosphate, dioctyl phosphate, trioctyl phosphate, monooctyl phosphite, dioctyl phosphite, Monooctyl thiophosphate, dioctyl thiophosphate, trioctyl thiophosphate, monooctyl thiophosphite, dioctyl thiophosphite, monododecyl phosphate, dododecyl phosphate, tridodecyl phosphate, monododecyl phosphite, didodecyl phosphite, Monododecyl thiophosphate, didodecyl thiophosphate, tridodecyl thiophosphate, monododecyl thiophosphite, didodecyl thiophosphite, monooctadecenyl phosphate, dioctadecenyl phosphate, trioctadecenyl phosphate, monophosphite phosphate Octadecenyl, dioctadece phosphite , Monooctadecenyl thiophosphate, dioctadecenyl thiophosphate, trioctadecenyl thiophosphate, monooctadecenyl thiophosphite, dioctadecenyl thiophosphite, etc. is not.
更に、上記化合物のうち部分エステルになっているもののアルキルアミン塩及びアルケニルアミン塩も好適に使用することができる。すなわち、酸性リン酸エステルのアミン塩、酸性亜リン酸エステルのアミン塩、酸性チオリン酸エステルのアミン塩、酸性チオ亜リン酸エステルのアミン塩を使用することができるが、これらに限定されるものではない。 Further, alkylamine salts and alkenylamine salts of the above compounds which are partial esters can also be used suitably. That is, an amine salt of an acidic phosphate ester, an amine salt of an acidic phosphite ester, an amine salt of an acidic thiophosphate ester, or an amine salt of an acidic thiophosphite ester can be used, but is not limited thereto. is not.
より詳細には、リン酸モノオクチルのアミン塩、リン酸ジオクチルのアミン塩、亜リン酸モノオクチルのアミン塩、チオリン酸モノオクチルのアミン塩、チオリン酸ジオクチルのアミン塩、チオ亜リン酸モノオクチルのアミン塩、リン酸モノドデシルのアミン塩、リン酸ジドデシルのアミン塩、亜リン酸モノドデシルのアミン塩、チオリン酸モノドデシルのアミン塩、チオリン酸ジドデシルのアミン塩、リン酸モノオクタデセニルのアミン塩、リン酸ジオクタデセニルのアミン塩、亜リン酸モノオクタデセニルのアミン塩、チオリン酸モノオクタデセニルのアミン塩、チオリン酸ジオクタデセニルのアミン塩、及びチオ亜リン酸モノオクタデセニルのアミン塩などが挙げられる。
なお、アミン塩のアミンはR8R9R10Nで表され、R8、R9及びR10はそれぞれ独立に水素又は炭素数1〜20の直鎖構造または分岐鎖を有する、飽和または不飽和の脂肪族炭化水素基であり、より詳細には、メチル基、エチル基、プロピル基、ブチル基、ノニル基、ドデシル基、プロペニル基、ブテニル基、オレイル基、などが挙げられる。
More particularly, the amine salt of monooctyl phosphate, the amine salt of dioctyl phosphate, the amine salt of monooctyl phosphite, the amine salt of monooctyl thiophosphate, the amine salt of dioctyl thiophosphate, the monooctyl thiophosphite Amine salt, monododecyl phosphate amine salt, didodecyl phosphate amine salt, monododecyl phosphite amine salt, monothiodecyl thiophosphate amine salt, dodecyl thiophosphate amine salt, monooctadecenyl phosphate Amine salt of dioctadecenyl phosphate, amine salt of monooctadecenyl phosphite, amine salt of monooctadecenyl thiophosphate, amine salt of dioctadecenyl thiophosphate, and monooctadecene thiophosphite Nyl amine salt and the like.
The amine of the amine salt is represented by R 8 R 9 R 10 N, and R 8 , R 9 and R 10 are each independently hydrogen or a linear or branched chain having 1 to 20 carbon atoms, saturated or unsaturated. A saturated aliphatic hydrocarbon group, and more specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a nonyl group, a dodecyl group, a propenyl group, a butenyl group, an oleyl group, and the like.
上記リン系極圧剤および含硫黄リン系極圧剤は、単独で用いることも、2種以上を組み合わせて用いることもできる。組合せる場合には、例えば以下のような態様が挙げられるが、これらに限定されることはない。
(1)チオリン酸エステルアミン塩とリン酸エステルアミン塩
特に、アルキル基を有するチオリン酸エステルアミン塩とアルキル基を有するリン酸エステルアミン塩との組み合わせ、
(2)チオリン酸エステルアミン塩とリン酸エステル
特に、アルキル基を有するチオリン酸エステルアミン塩とアルキル基を有するリン酸エステルとの組み合わせ、
(3)リン酸エステルアミン塩とチオリン酸エステル
特に、アルキル基を有するリン酸エステルアミン塩とアルキル基を有するチオリン酸エステルとの組み合わせ、
(4)チオリン酸エステルとリン酸エステル
特に、アルキル基を有するチオリン酸エステルとアルキル基を有するリン酸エステルとの組み合わせ。
The phosphorus extreme pressure agent and sulfur-containing phosphorus extreme pressure agent can be used alone or in combination of two or more. In the case of combination, for example, the following embodiments are exemplified, but the invention is not limited thereto.
(1) Thiophosphate amine salt and phosphate ester amine salt In particular, a combination of a thiophosphate ester amine salt having an alkyl group and a phosphate ester amine salt having an alkyl group,
(2) Thiophosphate ester amine salt and phosphate ester In particular, a combination of a thiophosphate ester amine salt having an alkyl group and a phosphate ester having an alkyl group,
(3) Phosphate ester amine salt and thiophosphate ester In particular, a combination of a phosphate ester amine salt having an alkyl group and a thiophosphate ester having an alkyl group,
(4) Thiophosphate ester and phosphate ester In particular, a combination of a thiophosphate ester having an alkyl group and a phosphate ester having an alkyl group.
上記リン系極圧剤および含硫黄リン系極圧剤の添加量は限定されるものではなく、適宜調整されればよい。例えば、潤滑油組成物全体の質量に対して10質量%以下が好ましく、さらに好ましくは1〜8質量%であり、一層好ましくは2〜6質量%である。含有量が上記上限値を超えると、歯面等におけるスコーリング防止性を悪化させる可能性があり、好ましくない。前記含有量が潤滑油組成物全体の質量に対して上記下限値以上であることにより、摩耗防止性能により一層寄与する。 The addition amounts of the phosphorus-based extreme pressure agent and the sulfur-containing phosphorus-based extreme pressure agent are not limited and may be adjusted as appropriate. For example, 10 mass% or less is preferable with respect to the mass of the whole lubricating oil composition, More preferably, it is 1-8 mass%, More preferably, it is 2-6 mass%. If the content exceeds the above upper limit value, scoring prevention property on the tooth surface or the like may be deteriorated, which is not preferable. When the content is equal to or more than the lower limit value relative to the mass of the entire lubricating oil composition, it further contributes to wear prevention performance.
(D)無灰分散剤 本発明の潤滑剤組成物はさらに無灰分散剤を含有することができる。無灰分散剤は従来公知のものを使用すればよく、特に制限されるものでない。例えば、炭素数40〜400の、直鎖構造又は分枝構造を有するアルキル基又はアルケニル基を分子中に少なくとも1個有する含窒素化合物又はその誘導体、あるいはアルケニルコハク酸イミドの変性品等が挙げられる。無灰分散剤は1種類を単独で使用しても、2種類以上を併用してもよい。また、ホウ素化無灰分散剤を使用することもできる。ホウ素化無灰分散剤は潤滑油に用いられている任意の無灰分散剤をホウ素化したものである。ホウ素化は一般に、イミド化合物にホウ酸を作用させて、残存するアミノ基及び/又はイミノ基の一部又は全部を中和することにより行われる。 (D) Ashless Dispersant The lubricant composition of the present invention can further contain an ashless dispersant. A conventionally known ashless dispersant may be used and is not particularly limited. For example, a nitrogen-containing compound or derivative thereof having at least one alkyl group or alkenyl group having a straight chain structure or a branched structure having 40 to 400 carbon atoms in the molecule, or a modified product of alkenyl succinimide can be mentioned. . Ashless dispersants may be used alone or in combination of two or more. A borated ashless dispersant can also be used. The boronated ashless dispersant is a borated version of any ashless dispersant used in lubricating oils. Boronation is generally performed by allowing boric acid to act on an imide compound to neutralize part or all of the remaining amino group and / or imino group.
上記アルキル基又はアルケニル基の炭素数は、好ましくは40〜400であり、より好ましくは60〜350である。アルキル基及びアルケニル基の炭素数が前記下限値未満であると、化合物の潤滑油基油に対する溶解性が低下する傾向にある。また、アルキル基及びアルケニル基の炭素数が上記上限値を超えると、潤滑油組成物の低温流動性が悪化する傾向にある。上記アルキル基及びアルケニル基は、直鎖構造を有していても分枝構造を有していてもよい。好ましい態様としては、例えば、プロピレン、1−ブテン、イソブチレン等のオレフィンのオリゴマー、エチレンとプロピレンのコオリゴマーから誘導される分枝状アルキル基又は分枝状アルケニル基等が挙げられる。 Carbon number of the said alkyl group or alkenyl group becomes like this. Preferably it is 40-400, More preferably, it is 60-350. When the carbon number of the alkyl group and the alkenyl group is less than the lower limit, the solubility of the compound in the lubricating base oil tends to decrease. Moreover, when the carbon number of an alkyl group and an alkenyl group exceeds the said upper limit, it exists in the tendency for the low-temperature fluidity | liquidity of a lubricating oil composition to deteriorate. The alkyl group and alkenyl group may have a straight chain structure or a branched structure. Preferable embodiments include, for example, oligomers of olefins such as propylene, 1-butene and isobutylene, branched alkyl groups or branched alkenyl groups derived from ethylene and propylene co-oligomers.
アルケニルコハク酸イミドには、ポリアミンの一端と無水コハク酸との反応生成物である、いわゆるモノタイプのコハク酸イミドと、ポリアミンの両端と無水コハク酸との反応生成物である、いわゆるビスタイプのコハク酸イミドとがある。本発明の潤滑油組成物は、モノタイプ及びビスタイプのうちいずれか一方を含有してもよいし、あるいは双方を含有してもよい。 The alkenyl succinimide is a reaction product of one end of a polyamine and succinic anhydride, a so-called monotype succinimide, and a reaction product of both ends of the polyamine and succinic anhydride, so-called bis-type. And succinimide. The lubricating oil composition of the present invention may contain one of monotype and bistype, or may contain both.
上記アルケニルコハク酸イミドの変性品とは、例えば、アルケニルコハク酸イミドをホウ素化合物で変性したものである(以下、ホウ素化コハク酸イミドということがある)。ホウ素化合物で変性するとは、ホウ素化することを意味する。ホウ素化コハク酸イミドは1種を単独で使用しても、2種以上を併用してもよい。併用する場合は、ホウ素化コハク酸イミドの2種以上の組合わせであってもよい。また、モノタイプ及びビスタイプの両方を含んでもよいし、モノタイプ同士の併用、又はビスタイプ同士の併用であってもよい。ホウ素化コハク酸イミドと非ホウ素化コハク酸イミドとを併用してもよい。 The modified product of the alkenyl succinimide is, for example, a product obtained by modifying an alkenyl succinimide with a boron compound (hereinafter sometimes referred to as a boronated succinimide). Modifying with a boron compound means boronation. A boronated succinimide may be used individually by 1 type, or may use 2 or more types together. When used in combination, it may be a combination of two or more of boronated succinimides. Moreover, both a monotype and a bis type may be included, the combined use of monotypes, or the combined use of bistypes may be sufficient. A boronated succinimide and a non-borated succinimide may be used in combination.
例えば、ホウ素化コハク酸イミドの製造方法としては、特公昭42−8013号公報及び同42−8014号公報、特開昭51−52381号公報、及び特開昭51−130408号公報等に開示されている方法等が挙げられる。具体的には例えば、アルコール類やヘキサン、キシレン等の有機溶媒、軽質潤滑油基油等にポリアミンとポリアルケニルコハク酸(無水物)にホウ酸、ホウ酸エステル、又はホウ酸塩等のホウ素化合物を混合し、適当な条件で加熱処理することにより得ることができる。この様にして得られるホウ素化コハク酸イミドに含まれるホウ素含有量は通常0.1〜4質量%とすることができる。本発明においては、特に、アルケニルコハク酸イミド化合物のホウ素変性化合物(ホウ素化コハク酸イミド)は耐熱性、酸化防止性及び摩耗防止性に優れるため好ましい。 For example, methods for producing a boronated succinimide are disclosed in JP-B-42-8013 and JP-A-42-8014, JP-A-51-52381, JP-A-51-130408, and the like. And the like. Specifically, for example, organic compounds such as alcohols, hexane, xylene, etc., light lubricating oil base oil, polyamine and polyalkenyl succinic acid (anhydride), boric acid, boric acid ester, or boron compounds such as borate Can be obtained by mixing and heat-treating under appropriate conditions. The boron content contained in the boronated succinimide thus obtained can usually be 0.1 to 4% by mass. In the present invention, a boron-modified compound of an alkenyl succinimide compound (boronated succinimide) is particularly preferable because of excellent heat resistance, antioxidant properties, and antiwear properties.
ホウ素化無灰分散剤中に含まれるホウ素含有量は特に制限はない。通常無灰分散剤の質量に対して0.1〜3質量%である。本発明の1つの態様としては、無灰分散剤中のホウ素含有量は、好ましくは0.2質量%以上、より好ましくは0.4質量%以上であり、また好ましくは2.5質量%以下、より好ましくは2.3質量%以下、さらに好ましくは2.0質量%以下であるのがよい。ホウ素化無灰分散剤として好ましくはホウ素化コハク酸イミドであり、特にはホウ素化ビスコハク酸イミドが好ましい。 The boron content contained in the borated ashless dispersant is not particularly limited. Usually, it is 0.1 to 3% by mass relative to the mass of the ashless dispersant. As one aspect of the present invention, the boron content in the ashless dispersant is preferably 0.2% by mass or more, more preferably 0.4% by mass or more, and preferably 2.5% by mass or less. More preferably, it is 2.3 mass% or less, More preferably, it is 2.0 mass% or less. The boronated ashless dispersant is preferably a boronated succinimide, and particularly preferably a boronated bissuccinimide.
ホウ素化無灰分散剤は、ホウ素/窒素質量比(B/N比)0.1以上、好ましくは0.2以上を有するものであり、好ましくは1.0未満、より好ましくは0.8以下を有するものが好ましい。 The borated ashless dispersant has a boron / nitrogen mass ratio (B / N ratio) of 0.1 or more, preferably 0.2 or more, preferably less than 1.0, more preferably 0.8 or less. What has is preferable.
組成物中の無灰分散剤の含有量は適宜調整されればよいが、例えば潤滑油組成物全体の質量に対して、0.01〜20質量%であるのが好ましく、より好ましくは0.1〜10質量%である。無灰分散剤の含有量が上記下限値未満であると、スラッジ分散性が不十分となるおそれがある。また含有量が上記上限値を超えると、特定のゴム材料を劣化させたり、低温流動性を悪化させるおそれがある。 The content of the ashless dispersant in the composition may be appropriately adjusted. For example, the content of the ashless dispersant is preferably 0.01 to 20% by mass, more preferably 0.1%, based on the mass of the entire lubricating oil composition. -10 mass%. If the content of the ashless dispersant is less than the above lower limit, the sludge dispersibility may be insufficient. Moreover, when content exceeds the said upper limit, there exists a possibility of deteriorating a specific rubber material or making low temperature fluidity worse.
(E)その他の添加剤
本発明の潤滑油組成物は、上記(A)〜(D)成分以外のその他の添加剤として、粘度指数向上剤、酸化防止剤、金属系清浄剤、摩擦調整剤、腐食防止剤、防錆剤、抗乳化剤、金属不活性化剤、消泡剤、及び流動点降下剤を含有することができる。但し、本発明の潤滑油組成物はグリースではないため、増ちょう剤は含有しない。該増ちょう剤とは、例えば金属石けんや金属塩等である。
(E) Other additives The lubricating oil composition of the present invention is a viscosity index improver, an antioxidant, a metal detergent, and a friction modifier as additives other than the above components (A) to (D). , Corrosion inhibitors, rust inhibitors, demulsifiers, metal deactivators, antifoaming agents, and pour point depressants. However, since the lubricating oil composition of the present invention is not grease, it does not contain a thickener. Examples of the thickener include metal soap and metal salt.
粘度指数向上剤としては、例えば、各種メタクリル酸エステルから選ばれる1種又は2種以上のモノマーの重合体又は共重合体、若しくはその水素化物などの、いわゆる非分散型粘度指数向上剤、又は、窒素化合物を含む各種メタクリル酸エステルを共重合させたいわゆる分散型粘度指数向上剤、非分散型又は分散型エチレン−α−オレフィン共重合体(α−オレフィンとしてはプロピレン、1−ブテン、1−ペンテン等が例示できる)、若しくはその水素化物、ポリイソブチレン若しくはその水素化物、スチレン−ジエン共重合体の水素化物、スチレン−無水マレイン酸エステル共重合体、及びポリアルキルスチレン等が挙げられる。 As the viscosity index improver, for example, a polymer or copolymer of one or more monomers selected from various methacrylic acid esters, or a hydride thereof, a so-called non-dispersed viscosity index improver, or So-called dispersion type viscosity index improver copolymerized with various methacrylic acid esters containing nitrogen compounds, non-dispersion type or dispersion type ethylene-α-olefin copolymer (as α-olefin, propylene, 1-butene, 1-pentene Or a hydride thereof, polyisobutylene or a hydride thereof, a hydride of a styrene-diene copolymer, a styrene-maleic anhydride ester copolymer, and a polyalkylstyrene.
粘度指数向上剤の分子量は、潤滑油組成物のせん断安定性を考慮して選定することが必要である。例えば、粘度指数向上剤の重量平均分子量は、分散型及び非分散型ポリメタクリレートの場合には、通常5,000〜1,000,000、好ましくは100,000〜900,000のものが、ポリイソブチレン又はその水素化物の場合は通常800〜5,000、好ましくは1,000〜4,000のものが、エチレン−α−オレフィン共重合体又はその水素化物の場合は通常800〜500,000、好ましくは3,000〜200,000のものが用いられる。 The molecular weight of the viscosity index improver needs to be selected in consideration of the shear stability of the lubricating oil composition. For example, the weight average molecular weight of the viscosity index improver is usually 5,000 to 1,000,000, preferably 100,000 to 900,000 in the case of dispersed and non-dispersed polymethacrylates. In the case of isobutylene or a hydride thereof, usually 800 to 5,000, preferably 1,000 to 4,000, and in the case of an ethylene-α-olefin copolymer or a hydride thereof, usually 800 to 500,000, Preferably, 3,000 to 200,000 is used.
粘度指数向上剤の中でもエチレン−α−オレフィン共重合体又はその水素化物を用いた場合には、特にせん断安定性に優れた潤滑油組成物を得ることができる。上記粘度指数向上剤の中から任意に選ばれた1種類あるいは2種類以上の化合物を任意の量で含有させることができる。潤滑油組成物中の粘度指数向上剤の含有量は、組成物全量基準で、0.01〜20質量%、好ましくは0.02〜10質量%、より好ましくは0.05〜5質量%である。 Among the viscosity index improvers, when an ethylene-α-olefin copolymer or a hydride thereof is used, a lubricating oil composition particularly excellent in shear stability can be obtained. One or two or more compounds arbitrarily selected from the above viscosity index improvers can be contained in any amount. The content of the viscosity index improver in the lubricating oil composition is 0.01 to 20% by mass, preferably 0.02 to 10% by mass, more preferably 0.05 to 5% by mass, based on the total amount of the composition. is there.
酸化防止剤は潤滑油に一般的に使用されているものであればよく、例えば、フェノール系酸化防止剤及びアミン系酸化防止剤等の無灰系酸化防止剤及び有機金属系酸化防止剤等が挙げられる。酸化防止剤の添加により、潤滑油組成物の酸化安定性をより高めることができる。 Antioxidants may be those commonly used in lubricating oils, for example, ashless antioxidants such as phenolic antioxidants and amine antioxidants and organometallic antioxidants. Can be mentioned. By adding an antioxidant, the oxidation stability of the lubricating oil composition can be further enhanced.
金属系清浄剤としては、例えば、カルシウム、マグネシウム、バリウム等のスルホネート、フェネート、サリシレート、カルボキシレートから選択される化合物を含むものが挙げられ、過塩基性塩、塩基性塩、中性塩等の塩基価の異なるものを任意に選択して用いることができる。金属系清浄剤は、通常潤滑油組成物中に、金属量として0.01〜1質量%で配合される。 Examples of the metal detergent include those containing a compound selected from sulfonates such as calcium, magnesium and barium, phenates, salicylates, and carboxylates, such as overbased salts, basic salts, and neutral salts. Those having different base numbers can be arbitrarily selected and used. A metallic detergent is normally mix | blended with 0.01-1 mass% as a metal amount in a lubricating oil composition.
摩擦調整剤としては、例えば、有機モリブデン系化合物、脂肪酸、脂肪酸エステル、油脂類、アルコール、アミン、アミド等が挙げられる。摩擦調整剤は、通常潤滑油組成物中に0.01〜5質量%で配合される。 Examples of the friction modifier include organic molybdenum compounds, fatty acids, fatty acid esters, fats and oils, alcohols, amines, amides, and the like. A friction modifier is normally mix | blended with a lubricating oil composition at 0.01-5 mass%.
腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、及びイミダゾール系化合物等が挙げられる。酸化防止剤は、通常潤滑油組成物中に0.1〜5質量%で配合される。 Examples of the corrosion inhibitor include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds. The antioxidant is usually blended at 0.1 to 5% by mass in the lubricating oil composition.
防錆剤としては、例えば、石油スルホネート、アルキルスルホン酸塩、脂肪酸、脂肪酸セッケン、脂肪酸アミン、アルキルポリオキシアルキレン、アルケニルコハク酸エステル、及び多価アルコール脂肪酸エステル等が挙げられる。防錆剤は、通常潤滑油組成物中に0.01〜5質量%で配合される。 Examples of the rust inhibitor include petroleum sulfonates, alkyl sulfonates, fatty acids, fatty acid soaps, fatty acid amines, alkyl polyoxyalkylenes, alkenyl succinic acid esters, and polyhydric alcohol fatty acid esters. A rust preventive agent is normally mix | blended with a lubricating oil composition at 0.01-5 mass%.
抗乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、及びポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤等が挙げられる。抗乳化剤は、通常潤滑油組成物中に0.01〜5質量%で配合される。 Examples of the demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether. A demulsifier is normally mix | blended with a lubricating oil composition at 0.01-5 mass%.
金属不活性化剤としては、例えば、ピロール類、イミダゾール類、ピラゾール類、ピラジン類、ピリミジン類、ピリダジン類、トリアジン類、トリアゾール類、チアゾール類、チアジアゾール類等が挙げられる。金属不活性化剤は、通常潤滑油組成物中に0.01〜3質量%で配合される。 Examples of the metal deactivator include pyrroles, imidazoles, pyrazoles, pyrazines, pyrimidines, pyridazines, triazines, triazoles, thiazoles, thiadiazoles and the like. A metal deactivator is normally mix | blended with a lubricating oil composition at 0.01-3 mass%.
消泡剤としては、例えば、ジメチルポリシロキサン類及びそれらのフッ素化誘導体、ポリアクリレート類及びそれらのフッ素化誘導体、パーフルオロポリエーテル類等が挙げられる。消泡剤は、通常潤滑油組成物中に0.001〜1質量%で配合される。 Examples of antifoaming agents include dimethylpolysiloxanes and their fluorinated derivatives, polyacrylates and their fluorinated derivatives, and perfluoropolyethers. An antifoamer is normally mix | blended with 0.001-1 mass% in lubricating oil composition.
流動点降下剤としては、例えば、使用する潤滑油基油に適合するポリメタクリレート系のポリマー等が使用できる。流動点降下剤は、通常潤滑油組成物中に0.01〜3質量%で配合される。 As the pour point depressant, for example, a polymethacrylate polymer compatible with the lubricating base oil to be used can be used. The pour point depressant is usually blended in the lubricating oil composition at 0.01 to 3% by mass.
本発明の潤滑油組成物の40℃における動粘度は20〜120mm2/sが好ましく、40〜100mm2/sがより好ましい。更に好ましくは50〜80mm2/sである。 Kinematic viscosity at 40 ° C. of the lubricating oil composition of the present invention is preferably 20~120mm 2 / s, 40~100mm 2 / s is more preferable. More preferably, it is 50-80 mm < 2 > / s.
本発明の潤滑油組成物の100℃における動粘度は3〜40mm2/sが好ましく、より好ましくは4〜20mm2/s、一層好ましくは5〜15mm2/s、特に好ましくは8〜15mm2/sである。 Kinematic viscosity at 100 ° C. of the lubricating oil composition of the present invention is preferably 3~40mm 2 / s, more preferably 4 to 20 mm 2 / s, more preferably 5 to 15 mm 2 / s, particularly preferably 8 to 15 mm 2 / S.
以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例により制限されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not restrict | limited by the following Example.
実施例及び比較例にて使用した各成分は以下の通りである。下記に示す各成分を表1に示す組成にて混合して潤滑油組成物を調製した。下記においてKV40は40℃での動粘度を、KV100は100℃での動粘度を、VIは粘度指数を意味する。
(A)潤滑油基油
・鉱油系基油1:KV40=19.0mm2/s、KV100=4mm2/s
・合成系基油1:フィッシャー・トロプシュ由来基油、KV100=8mm2/s
・合成系基油2:エチレン−α−オレフィン基油、KV100=40mm2/s
Each component used in the examples and comparative examples is as follows. Each component shown below was mixed with the composition shown in Table 1 to prepare a lubricating oil composition. In the following, KV40 means the kinematic viscosity at 40 ° C., KV100 means the kinematic viscosity at 100 ° C., and VI means the viscosity index.
(A) Lubricating base oil / mineral oil base oil 1: KV40 = 19.0 mm 2 / s, KV100 = 4 mm 2 / s
Synthetic base oil 1: Fischer-Tropsch derived base oil, KV100 = 8 mm 2 / s
Synthetic base oil 2: ethylene-α-olefin base oil, KV100 = 40 mm 2 / s
(B)硫黄系極圧剤
下記における活性硫黄量は、ASTM D1662に準拠する方法により測定された値であり、
硫黄系極圧剤に占める活性硫黄量である。
・硫黄系極圧剤1:硫化オレフィン(活性硫黄量=11質量%)
・硫黄系極圧剤2:硫化オレフィン(活性硫黄量=32質量%)
(B) Sulfur-based extreme pressure agent The amount of active sulfur in the following is a value measured by a method based on ASTM D1662,
The amount of active sulfur in the sulfur-based extreme pressure agent.
・ Sulfur-based extreme pressure agent 1: Sulfurized olefin (active sulfur content = 11% by mass)
・ Sulfur-based extreme pressure agent 2: Sulfurized olefin (active sulfur content = 32 mass%)
(C)リン系極圧剤
・リン系極圧剤1:酸性リン酸エステルアミン塩(C8〜C18アルキル)
・リン系極圧剤2:酸性チオリン酸エステルアミン塩(C8〜C18アルキル)
(C) Phosphorus extreme pressure agent / phosphorus extreme pressure agent 1: Acid phosphate ester amine salt (C8-C18 alkyl)
Phosphorus extreme pressure agent 2: acidic thiophosphate ester amine salt (C8-C18 alkyl)
(D)無灰分散剤
・ホウ素化ポリブテニルコハク酸イミド(ビスイミドタイプ)
ポリブテニル基分子量=1,400、 ホウ素=1.8質量%, 窒素=2.4質量%
(D) Ashless dispersant, boronated polybutenyl succinimide (bisimide type)
Polybutenyl group molecular weight = 1,400, boron = 1.8% by mass, nitrogen = 2.4% by mass
(E)その他の添加剤
消泡剤、流動点降下剤、防錆剤
(E) Other additives Antifoaming agent, pour point depressant, rust inhibitor
各潤滑油組成物について下記方法に従い各種性状を測定した。結果を表2に示す。
(1)40℃における動粘度(KV40)
ASTM D445に準拠して測定した。
(2)100℃における動粘度(KV100)
ASTM D445に準拠して測定した。
(3)粘度指数
ASTM D2270に準拠して測定した。
(4)摩耗性評価
ASTM D2714に準拠し、以下の条件で試験を行い、試験後のブロック試験片に出来た摩耗幅を評価した。油温:120℃、荷重:20lbf、回転数:1000rpm、時間:1h。摩耗幅(mm)が0.5以下の場合を合格とした。
(5)スコーリング性評価
ASTM D4172で規定される四球摩耗試験機を用い、以下の条件で試験を行い、焼付きが発生した時の回転数を記録した。油温:室温、荷重:100kgf、回転数:30秒ごとに100rpmずつ増加。回転数(rpm)が1000を超えた場合を合格とした。
(6)酸化安定性
JIS K2514−1に準拠し、以下の条件で試験を行い、試験後の試料油についてASTM D893(B法)に準拠してペンタン不溶解分を測定した。油温:135℃、時間:96h。ペンタン不溶解分(質量%)が2.0以下の場合を合格とした。
Various properties of each lubricating oil composition were measured according to the following method. The results are shown in Table 2.
(1) Kinematic viscosity at 40 ° C. (KV40)
Measured according to ASTM D445.
(2) Kinematic viscosity at 100 ° C. (KV100)
Measured according to ASTM D445.
(3) Viscosity index Measured according to ASTM D2270.
(4) Abrasion Evaluation Based on ASTM D2714, a test was conducted under the following conditions to evaluate the wear width formed on the block test piece after the test. Oil temperature: 120 ° C., load: 20 lbf, rotation speed: 1000 rpm, time: 1 h. A case where the wear width (mm) was 0.5 or less was regarded as acceptable.
(5) Evaluation of scoring property Using a four-ball wear tester defined by ASTM D4172, the test was conducted under the following conditions, and the number of revolutions when seizure occurred was recorded. Oil temperature: room temperature, load: 100 kgf, rotation speed: increase by 100 rpm every 30 seconds. A case where the rotational speed (rpm) exceeded 1000 was regarded as acceptable.
(6) Oxidation stability Based on JIS K2514-1, it tested on the following conditions, The pentane insoluble content was measured about the sample oil after a test based on ASTM D893 (B method). Oil temperature: 135 ° C., time: 96 h. The case where the pentane insoluble matter (% by mass) was 2.0 or less was regarded as acceptable.
表2から明らかなように、本発明の潤滑油組成物は、摩耗防止性、スコーリング防止性、酸化安定性に優れていることが分かる。
一方、硫黄系極圧剤の含有量が少ない比較例1はスコーリング防止性が十分ではなく、硫黄系極圧剤の含有量が多すぎる比較例2は酸化安定性が悪い。活性硫黄量が高い硫黄系極圧剤を用いた比較例3は摩耗防止性が十分ではない。
As is apparent from Table 2, it can be seen that the lubricating oil composition of the present invention is excellent in wear prevention, scoring prevention and oxidation stability.
On the other hand, Comparative Example 1 with a low content of sulfur-based extreme pressure agent has insufficient scoring prevention properties, and Comparative Example 2 with a too high content of sulfur-based extreme pressure agent has poor oxidation stability. In Comparative Example 3 using a sulfur-based extreme pressure agent having a high amount of active sulfur, the wear resistance is not sufficient.
本発明の潤滑油組成物は、低粘度化した場合においてもベアリング等における摩耗及びギヤ歯面等におけるスコーリングの発生を抑制することができる。本発明の潤滑油組成物は、自動車用潤滑油として好適に使用でき、特には変速機用ギヤ油及びディファレンシャルギヤ油として好適である。 The lubricating oil composition of the present invention can suppress the occurrence of wear on bearings and the like and scoring on gear tooth surfaces even when the viscosity is lowered. The lubricating oil composition of the present invention can be suitably used as an automotive lubricating oil, and is particularly suitable as a transmission gear oil and a differential gear oil.
Claims (8)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016013271A JP2017132875A (en) | 2016-01-27 | 2016-01-27 | Lubricant composition |
EP17744351.2A EP3409751B1 (en) | 2016-01-27 | 2017-01-26 | Lubricant composition |
PCT/JP2017/002825 WO2017131121A1 (en) | 2016-01-27 | 2017-01-26 | Lubricant composition |
SG11201806375XA SG11201806375XA (en) | 2016-01-27 | 2017-01-26 | Lubricant composition |
US16/073,213 US20190048284A1 (en) | 2016-01-27 | 2017-01-26 | Lubricant composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016013271A JP2017132875A (en) | 2016-01-27 | 2016-01-27 | Lubricant composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017132875A true JP2017132875A (en) | 2017-08-03 |
Family
ID=59398775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016013271A Pending JP2017132875A (en) | 2016-01-27 | 2016-01-27 | Lubricant composition |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190048284A1 (en) |
EP (1) | EP3409751B1 (en) |
JP (1) | JP2017132875A (en) |
SG (1) | SG11201806375XA (en) |
WO (1) | WO2017131121A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019123818A (en) * | 2018-01-18 | 2019-07-25 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2019123855A (en) * | 2018-01-18 | 2019-07-25 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2019151804A (en) * | 2018-03-06 | 2019-09-12 | Emgルブリカンツ合同会社 | Lubricant oil composition |
JP2020026488A (en) * | 2018-08-13 | 2020-02-20 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2020070404A (en) * | 2018-11-02 | 2020-05-07 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2020090557A (en) * | 2018-12-03 | 2020-06-11 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2020090558A (en) * | 2018-12-03 | 2020-06-11 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2020132712A (en) * | 2019-02-15 | 2020-08-31 | Emgルブリカンツ合同会社 | Lubricating oil composition |
JP2020532619A (en) * | 2017-08-29 | 2020-11-12 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Transmission lubricant composition |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6730122B2 (en) * | 2016-07-28 | 2020-07-29 | Emgルブリカンツ合同会社 | Lubricating oil composition |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1054641B (en) | 1974-08-05 | 1981-11-30 | Mobil Oil Corp | REACTION PRODUCTS CONSTITUTED BY AMINO-ALCOHOLS AND COMPOSITIONS CONTAINING THEM |
JPS51130408A (en) | 1975-05-10 | 1976-11-12 | Karonaito Kagaku Kk | Oil-soluble lubricant additives |
JPH0232195A (en) | 1988-07-20 | 1990-02-01 | Toyota Motor Corp | Lubricating oil composition for final speed reducer |
US4873006A (en) * | 1988-09-01 | 1989-10-10 | The Lubrizol Corporation | Compositions containing active sulfur |
JPH04255794A (en) | 1991-02-08 | 1992-09-10 | Showa Shell Sekiyu Kk | Lubricating oil composition for final reduction gear |
JPH06200270A (en) | 1992-12-29 | 1994-07-19 | Tonen Corp | Lubricant composition for final reduction gear |
US5840672A (en) * | 1997-07-17 | 1998-11-24 | Ethyl Corporation | Antioxidant system for lubrication base oils |
DE69820429T2 (en) | 1998-07-31 | 2004-10-14 | Chevron Oronite S.A. | Manual transmission lubricating oil additive containing borate resistant to hydrolysis to increase the durability of synchronous transmissions |
JP5025842B2 (en) | 1999-05-19 | 2012-09-12 | 昭和シェル石油株式会社 | Gear oil composition |
JP4467024B2 (en) * | 2000-06-26 | 2010-05-26 | 新日本製鐵株式会社 | Highly lubricated rust preventive oil composition |
JP2003253287A (en) * | 2002-02-27 | 2003-09-10 | Yushiro Chem Ind Co Ltd | Lubricating oil composition for blanking work |
JP2004217797A (en) * | 2003-01-15 | 2004-08-05 | Ethyl Japan Kk | Gear oil composition having long life and excellent thermal stability |
EP1618173A1 (en) | 2003-04-28 | 2006-01-25 | Great Lakes Chemical (Europe) GmbH | Lubricant compositions |
US7645727B2 (en) * | 2004-05-03 | 2010-01-12 | Gm Global Technology Operations, Inc. | Gear cutting oil |
JP5062650B2 (en) | 2005-07-29 | 2012-10-31 | 東燃ゼネラル石油株式会社 | Gear oil composition |
US20070111906A1 (en) * | 2005-11-12 | 2007-05-17 | Milner Jeffrey L | Relatively low viscosity transmission fluids |
JP2007326921A (en) * | 2006-06-07 | 2007-12-20 | Sugimura Kagaku Kogyo Kk | Metallic corrosion suppressing type lubricant oil, additive for suppressing metallic corrosion and for preparing the metallic corrosion suppressing type lubricant oil, and highly lubricating and metallic corrosion suppressing additive |
JP5373400B2 (en) | 2006-09-28 | 2013-12-18 | 出光興産株式会社 | Lubricating oil composition |
JP2008208240A (en) | 2007-02-27 | 2008-09-11 | Cosmo Sekiyu Lubricants Kk | Biodegradable grease composition |
FR2925520B1 (en) | 2007-12-21 | 2011-02-25 | Total France | LUBRICATING COMPOSITIONS FOR TRANSMISSIONS |
JP5544068B2 (en) * | 2008-03-06 | 2014-07-09 | 出光興産株式会社 | Lubricating oil composition for fine blanking |
JP5502356B2 (en) | 2009-03-27 | 2014-05-28 | 出光興産株式会社 | Gear oil composition |
RU2013149399A (en) * | 2011-04-07 | 2015-05-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | LUBRICANT COMPOSITION AND METHOD FOR USING THE LUBRICANT COMPOSITION |
FR2984349B1 (en) | 2011-12-16 | 2015-02-27 | Total Raffinage Marketing | FAT COMPOSITION |
US20140038864A1 (en) * | 2012-08-06 | 2014-02-06 | Exxonmobil Research And Engineering Company | Method for improving nitrile seal compatibility with lubricating oils |
WO2014188948A1 (en) | 2013-05-20 | 2014-11-27 | Dic株式会社 | Dialkyl polysulfide, process for preparing dialkyl polysulfide, extreme-pressure additive and lubricating fluid composition |
US10487285B2 (en) * | 2013-09-24 | 2019-11-26 | Dic Corporation | Method for producing dialkyl polysulfide, dialkyl polysulfide, extreme-pressure additive and lubricating fluid composition |
JP6130309B2 (en) | 2014-01-14 | 2017-05-17 | Jxtgエネルギー株式会社 | Lubricating oil composition for differential gear device |
US9879201B2 (en) | 2014-02-28 | 2018-01-30 | Cosmo Oil Lubricants Co., Ltd. | Engine oil composition |
JP6678647B2 (en) * | 2014-08-06 | 2020-04-08 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Additive package for industrial gear lubricants with biodegradable sulfur components |
JP6533666B2 (en) | 2015-02-10 | 2019-06-19 | 日本電子材料株式会社 | Probe unit |
CN108431189A (en) * | 2015-11-06 | 2018-08-21 | 路博润公司 | Low viscosity gear lubricant |
JP6730122B2 (en) | 2016-07-28 | 2020-07-29 | Emgルブリカンツ合同会社 | Lubricating oil composition |
-
2016
- 2016-01-27 JP JP2016013271A patent/JP2017132875A/en active Pending
-
2017
- 2017-01-26 WO PCT/JP2017/002825 patent/WO2017131121A1/en active Application Filing
- 2017-01-26 SG SG11201806375XA patent/SG11201806375XA/en unknown
- 2017-01-26 US US16/073,213 patent/US20190048284A1/en not_active Abandoned
- 2017-01-26 EP EP17744351.2A patent/EP3409751B1/en not_active Revoked
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020532619A (en) * | 2017-08-29 | 2020-11-12 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Transmission lubricant composition |
JP7247171B2 (en) | 2017-08-29 | 2023-03-28 | ビーエーエスエフ ソシエタス・ヨーロピア | Transmission lubricant composition |
JP2019123818A (en) * | 2018-01-18 | 2019-07-25 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2019123855A (en) * | 2018-01-18 | 2019-07-25 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2019151804A (en) * | 2018-03-06 | 2019-09-12 | Emgルブリカンツ合同会社 | Lubricant oil composition |
JP2020026488A (en) * | 2018-08-13 | 2020-02-20 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2020070404A (en) * | 2018-11-02 | 2020-05-07 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2020090557A (en) * | 2018-12-03 | 2020-06-11 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2020090558A (en) * | 2018-12-03 | 2020-06-11 | Emgルブリカンツ合同会社 | Lubricant composition |
JP2020132712A (en) * | 2019-02-15 | 2020-08-31 | Emgルブリカンツ合同会社 | Lubricating oil composition |
JP7261528B2 (en) | 2019-02-15 | 2023-04-20 | エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー | lubricating oil composition |
Also Published As
Publication number | Publication date |
---|---|
EP3409751A4 (en) | 2019-07-24 |
WO2017131121A1 (en) | 2017-08-03 |
EP3409751B1 (en) | 2021-12-15 |
US20190048284A1 (en) | 2019-02-14 |
EP3409751A1 (en) | 2018-12-05 |
SG11201806375XA (en) | 2018-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3409751B1 (en) | Lubricant composition | |
JP5988891B2 (en) | Lubricating oil composition for transmission | |
JP5779376B2 (en) | Lubricating oil composition | |
JP6016692B2 (en) | Lubricating oil composition for automatic transmission | |
JP5941316B2 (en) | Lubricating oil composition | |
WO2015194236A1 (en) | Lubricating oil composition for transmission | |
KR20130001245A (en) | Lubricant composition for continuously variable transmission | |
JP6730122B2 (en) | Lubricating oil composition | |
WO2016158999A1 (en) | Lubricant composition | |
JP2016190918A (en) | Lubricant composition | |
JP5961097B2 (en) | Lubricating oil composition | |
JP2019151804A (en) | Lubricant oil composition | |
JP2016020454A (en) | Lubricant composition for speed exchanger | |
JP2019038961A (en) | Lubricating oil composition for manual transmissions | |
JP2018070721A (en) | Lubricant composition | |
JP2020026488A (en) | Lubricant composition | |
JP2019123818A (en) | Lubricant composition | |
JP2016190919A (en) | Lubricant composition | |
JP2015178632A (en) | Lubricant composition | |
JP2019123855A (en) | Lubricant composition | |
JP2019172729A (en) | Lubricant composition | |
JP2020070404A (en) | Lubricant composition | |
JP5952115B2 (en) | Lubricating oil composition | |
WO2019139152A1 (en) | Lubricating oil composition | |
JP5373568B2 (en) | Lubricating oil composition for ball screw |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20171201 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20180404 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191009 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191202 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200401 |