JP2017190675A - Manufacturing method of hemispherical shoe for swash plate compressor - Google Patents
Manufacturing method of hemispherical shoe for swash plate compressor Download PDFInfo
- Publication number
- JP2017190675A JP2017190675A JP2016079047A JP2016079047A JP2017190675A JP 2017190675 A JP2017190675 A JP 2017190675A JP 2016079047 A JP2016079047 A JP 2016079047A JP 2016079047 A JP2016079047 A JP 2016079047A JP 2017190675 A JP2017190675 A JP 2017190675A
- Authority
- JP
- Japan
- Prior art keywords
- resin layer
- swash plate
- molded body
- hemispherical shoe
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compressor (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
Description
本発明は、自動車用エアコンなどに用いられる斜板式コンプレッサにおいて、斜板とピストンとの間に介在して斜板の回転運動をピストンの往復運動に変換するための半球シューの製造方法に関する。 The present invention relates to a method of manufacturing a hemispherical shoe for converting a rotary motion of a swash plate into a reciprocating motion of a piston interposed between a swash plate and a piston in a swash plate compressor used for an air conditioner for automobiles and the like.
斜板式コンプレッサは、冷媒が存在するハウジング内で、回転軸に直接固定するように、または連結部材を介して間接的に、直角および斜めに取り付けた斜板に半球シューを摺動させている。この半球シューを介して斜板の回転運動をピストンの往復運動に変換して、冷媒を圧縮、膨張させている。斜板式コンプレッサには、両頭形のピストンを用いて冷媒を両側で圧縮、膨張させる両斜板タイプのものと、片頭形のピストンを用いて冷媒を片側のみで圧縮、膨張させる片斜板タイプのものとがある。また、半球シューは斜板の片側面のみで摺動するものと、斜板の両側面で摺動するものとがある。これらの斜板式コンプレッサでは、斜板と半球シューの摺動面に毎秒20m以上の大きな相対速度の滑りが発生して、半球シューは非常に過酷な環境で使用される。 In the swash plate compressor, a hemispherical shoe is slid on a swash plate that is fixed at right angles and obliquely so as to be directly fixed to a rotating shaft or indirectly via a connecting member in a housing in which refrigerant exists. Through this hemispherical shoe, the rotational movement of the swash plate is converted into the reciprocating movement of the piston to compress and expand the refrigerant. There are two types of swash plate compressors: a double swash plate type that uses a double-headed piston to compress and expand refrigerant on both sides, and a single swash plate type that uses a single-headed piston to compress and expand refrigerant only on one side. There is a thing. In addition, the hemispherical shoes include those that slide only on one side of the swash plate and those that slide on both sides of the swash plate. In these swash plate type compressors, sliding with a large relative speed of 20 m or more per second occurs on the sliding surface of the swash plate and the hemispheric shoe, and the hemispheric shoe is used in a very severe environment.
また、潤滑については、潤滑油は冷媒に溶け込みながら薄められハウジング内を循環し、ミスト状となって摺動部に供給される。しかし、運転休止状態から運転を再開した場合において、液化した冷媒により潤滑油が洗い流されてしまい、運転開始時の斜板と半球シューとの摺動面は、潤滑油のないドライ状態となり、焼付きが発生しやすいという問題がある。 As for lubrication, the lubricating oil is diluted while dissolved in the refrigerant, circulates in the housing, and is supplied to the sliding portion in the form of a mist. However, when the operation is resumed from the operation suspension state, the lubricating oil is washed away by the liquefied refrigerant, and the sliding surface between the swash plate and the hemispherical shoe at the start of the operation becomes a dry state without the lubricating oil, and is burned. There is a problem that sticking is likely to occur.
この焼付きを防止する手段としては、例えば、斜板および半球シューの少なくとも摺動面にポリエーテルエーテルケトン(PEEK)樹脂被膜を静電粉体塗装法により直接形成したもの(特許文献1参照)、固体潤滑剤を含有する熱可塑性ポリイミド被膜を静電粉体塗装法により形成したもの(特許文献2参照)が提案されている。 As a means for preventing this seizure, for example, a polyether ether ketone (PEEK) resin film is directly formed on at least sliding surfaces of a swash plate and a hemispherical shoe by an electrostatic powder coating method (see Patent Document 1). There has been proposed a thermoplastic polyimide coating containing a solid lubricant formed by an electrostatic powder coating method (see Patent Document 2).
また、高速・高温条件において高い摺動性を確保するため、斜板、半球シューおよびピストンの少なくとも一の摺接部位にPEEK樹脂からなるバインダと、該バインダ中に分散された固体潤滑剤とからなる摺動層を形成したもの(特許文献3参照)が提案されている。 Further, in order to ensure high slidability under high speed and high temperature conditions, a binder made of PEEK resin at at least one sliding contact portion of the swash plate, hemispherical shoe and piston, and a solid lubricant dispersed in the binder The thing which formed the sliding layer which becomes (refer patent document 3) is proposed.
従来技術では、斜板と半球シューの潤滑特性の向上のために、上記したとおり、斜板や半球シューの摺動面に潤滑性被膜を形成する方法が提案されてきたが、現実には斜板への潤滑性被膜の形成はあっても、半球シューへの潤滑性被膜の形成は皆無であった。 In the prior art, in order to improve the lubrication characteristics of the swash plate and the hemispherical shoe, as described above, a method of forming a lubricating film on the sliding surface of the swash plate and the hemispherical shoe has been proposed. There was no formation of a lubricious coating on the hemispherical shoe, even though a lubricious coating was formed on the plate.
この理由は、斜板に比べて半球シューは非常に小さく、斜板と摺動する平面部やピストンと摺動する球面部への潤滑性被膜(潤滑性樹脂層)の形成において困難性が高いためであると考えられる。また、半球シューは斜板との摺動面積が小さいうえに、ピストンの球面座との摺動も受けるため、摩擦熱によって潤滑性被膜の耐久性が十分に得られていないということが推測される。また、半球シューの摺動面は面圧が高いために、潤滑性被膜には強度的にも高いレベルが要求される。さらには、斜板とピストンの材料が異なることも要因と考えられる。 This is because the hemispherical shoe is very small compared to the swash plate, and it is difficult to form a lubricious coating (lubricating resin layer) on the flat surface portion that slides with the swash plate and the spherical surface portion that slides with the piston. This is probably because of this. In addition, since the hemispherical shoe has a small sliding area with the swash plate and also receives sliding with the spherical seat of the piston, it is speculated that the durability of the lubricating coating is not sufficiently obtained by frictional heat. The Further, since the sliding surface of the hemispherical shoe has a high surface pressure, the lubricating coating is required to have a high level in terms of strength. Furthermore, it is considered that the materials of the swash plate and the piston are different.
一方、潤滑性被膜を有する斜板は、摺動面の平面度、平行度、厚さ精度の加工精度が厳しいだけでなく、高価な材料からなる潤滑性被膜の被膜面積が大きいため低価格化できないという問題がある。 On the other hand, a swash plate with a lubricious coating is not only strict in terms of flatness, parallelism and thickness accuracy of the sliding surface, but also has a low coating cost due to the large coating area of the lubricious coating made of expensive materials. There is a problem that you can not.
本発明はこれらの問題に対処するためになされたものであり、斜板とピストンとの摺動面に耐久性等に優れる摺動性樹脂層を設けた半球シューを容易に製造できる製造方法を提供することを目的とする。 The present invention has been made in order to cope with these problems, and a manufacturing method capable of easily manufacturing a hemispherical shoe provided with a sliding resin layer having excellent durability on a sliding surface between a swash plate and a piston. The purpose is to provide.
本発明の斜板式コンプレッサの半球シューの製造方法は、冷媒が存在するハウジング内で、回転軸に直接固定するように、または連結部材を介して間接的に、直角および斜めに取り付けた斜板に半球シューを摺動させ、この半球シューを介して前記斜板の回転運動をピストンの往復運動に変換して、冷媒を圧縮、膨張させる斜板式コンプレッサの半球シューの製造方法であって、上記半球シューは、硬質部材を基材とし、上記斜板と摺動する平面部の表面および上記ピストンと摺動する球面部の表面に樹脂層を有し、該製造方法は、上記平面部の樹脂層となる成形体と、上記球面部の樹脂層となる成形体を、それぞれ別個に射出成形で成形する樹脂層成形工程と、上記平面部の樹脂層となる成形体と、上記球面部の樹脂層となる成形体とで、上記基材を中に挟むように包み込んで一体化する一体化工程とを有することを特徴とする。 The method of manufacturing a hemispherical shoe for a swash plate compressor according to the present invention is provided on a swash plate that is fixed at a right angle and at an angle so as to be directly fixed to a rotating shaft or indirectly through a connecting member in a housing in which a refrigerant exists. A method for producing a hemispherical shoe for a swash plate compressor, wherein a hemispherical shoe is slid and the rotational motion of the swash plate is converted into a reciprocating motion of a piston through the hemispherical shoe to compress and expand the refrigerant. The shoe has a resin layer on the surface of the flat surface portion that slides with the swash plate and the surface of the spherical surface portion that slides with the piston. A molded body that becomes a resin layer of the spherical portion, a molded body that becomes a resin layer of the spherical portion, a resin layer molding step that separately molds the molded body that becomes the resin layer of the spherical portion, a molded body that becomes the resin layer of the planar portion, With the molded body to be And having a integration step of integrating wrap so as to sandwich in the Kimotozai.
上記基材は、中心軸部分に中空部を有し、上記樹脂層成形工程において、上記平面部の樹脂層となる成形体および上記球面部の樹脂層となる成形体の各成形体の反摺動面側中心部に脚部を形成し、上記一体化工程において、上記基材の中空部に、上記各成形体の脚部を嵌合しつつ、上記各成形体で上記基材を中に挟むように包み込んで一体化することを特徴とする。また、上記一体化工程において、(1)上記各成形体の外周部同士を超音波溶着する、または、(2)上記各成形体の外周部同士を弾性嵌合する、ことを特徴とする。 The base material has a hollow portion at a central axis portion, and in the resin layer molding step, the molded body that becomes the resin layer of the planar portion and the rebound of each molded body that becomes the resin layer of the spherical surface portion. A leg portion is formed at the center of the moving surface, and in the integration step, the base material is inserted into the hollow portion of the base material while the base material is fitted into the hollow portion of the base material. It is characterized by being wrapped and integrated so as to sandwich. Further, in the integration step, (1) the outer peripheral portions of the respective molded bodies are ultrasonically welded, or (2) the outer peripheral portions of the respective molded bodies are elastically fitted to each other.
本発明の斜板式コンプレッサの半球シューの製造方法は、硬質部材を基材とし、斜板と摺動する平面部の表面およびピストンと摺動する球面部の表面に樹脂層を有する半球シューを製造する方法であり、平面部の樹脂層となる成形体Aと、球面部の樹脂層となる成形体Bを、それぞれ別個に射出成形で成形する樹脂層成形工程と、成形体Aと成形体Bとで基材を中に挟むように包み込んで一体化する一体化工程とを有するので、半球シューの摺動面に対する樹脂層の形成が容易である。 The method for producing a hemispherical shoe for a swash plate compressor according to the present invention produces a hemispherical shoe using a hard member as a base material and having a resin layer on the surface of a flat part sliding with a swash plate and the surface of a spherical part sliding with a piston. A molded body A that is a resin layer of a flat surface portion and a molded body B that is a resin layer of a spherical surface portion are separately molded by injection molding, respectively, and the molded body A and the molded body B Therefore, it is easy to form a resin layer on the sliding surface of the hemispherical shoe.
また、樹脂層成形工程において、樹脂層を形成する樹脂組成物に、潤滑性に優れ、耐熱性や機械強度の高いエンジニアリングプラスチックを採用することで、運転開始時の潤滑油のないドライ状態においても、焼付きが発生せず、摩擦発熱による潤滑特性の低下や剥離がなく耐久性が十分に確保された樹脂層を形成できる。また、平面部の成形体Aと球面部の成形体Bとを、それぞれ別個の射出成形体として製造するので、半球シューに応じた種々の形状やサイズの樹脂層として容易に形成でき、量産性にも優れる。 Also, in the resin layer molding process, the resin composition that forms the resin layer is made of engineering plastics with excellent lubricity, heat resistance and high mechanical strength, so that even in a dry state without lubricating oil at the start of operation. Thus, there is no seizure, and it is possible to form a resin layer in which durability is sufficiently ensured without lowering or peeling of lubrication characteristics due to frictional heat generation. In addition, since the molded body A of the flat surface portion and the molded body B of the spherical surface portion are manufactured as separate injection molded bodies, they can be easily formed as resin layers having various shapes and sizes according to the hemispherical shoe, and are mass-productive. Also excellent.
上記基材は、中心軸部分に中空部を有し、樹脂層成形工程において、平面部の成形体Aおよび球面部の成形体Bの各成形体の反摺動面側中心部に脚部を形成し、一体化工程において、該基材の中空部に、各成形体の脚部を嵌合しつつ、各成形体で上記基材を中に挟むように包み込んで一体化するので、製造時に各成形体を基材に対して容易に位置決めできる。また、得られた半球シューにおいて、基材と成形体とが外れることを防止でき、強固に一体化させることができる。 The base material has a hollow portion at the central axis portion, and in the resin layer molding step, a leg portion is provided at the center portion on the anti-sliding surface side of each molded body of the molded body A of the flat surface portion and the molded body B of the spherical surface portion. In the integration step, the base of each molded body is wrapped in the hollow portion of the base material and the base is sandwiched between the molded bodies so that they are integrated. Each molded body can be easily positioned with respect to the substrate. Moreover, in the obtained hemispherical shoe, it is possible to prevent the base material and the molded body from coming off, and to be firmly integrated.
また、上記一体化工程において、各成形体の外周部同士を超音波溶着することで、各成形体同士を強固に結合でき、基材と樹脂層の密着性に優れる。また、各成形体の脚部同士も超音波溶着することで、各成形体と基材とをさらに強固に一体化できる。 Moreover, in the said integration process, each molded object can be firmly couple | bonded by ultrasonically welding the outer peripheral parts of each molded object, and it is excellent in the adhesiveness of a base material and a resin layer. Moreover, each molded body and a base material can be more firmly integrated by ultrasonically welding the leg parts of each molded body.
また、上記一体化工程において、各成形体の外周部同士を弾性嵌合することで、各成形体と基材とを容易に一体化でき、基材と樹脂層の密着性にも優れる。 Moreover, in the said integration process, each molded object and a base material can be integrated easily by elastically fitting the outer peripheral parts of each molded object, and it is excellent also in the adhesiveness of a base material and a resin layer.
本発明の製造方法で得られる半球シューを備えた斜板式コンプレッサの一実施例を図面に基づき説明する。図1は、斜板式コンプレッサの一例を示す縦断面図である。図1に示す斜板式コンプレッサは、炭酸ガスを冷媒に用いるものであり、両斜板タイプのものである。この斜板式コンプレッサは、冷媒が存在するハウジング1内で、回転軸2に直接固定するように斜めに取り付けた斜板3の回転運動を、斜板3の両側面で摺動する半球シュー4を介して両頭形ピストン9の往復運動に変換する。そして、ハウジング1の周方向に等間隔で形成されたシリンダボア10内の各ピストン9の両側で、冷媒を圧縮、膨張させる。高速で回転駆動される回転軸2は、ラジアル方向を針状ころ軸受11で支持され、スラスト方向をスラスト針状ころ軸受12で支持されている。この構成において、斜板3は、連結部材を介して間接的に回転軸2に固定される態様でもよい。また、斜めではなく直角に取り付けられる態様であってもよい。
An embodiment of a swash plate compressor having a hemispherical shoe obtained by the production method of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an example of a swash plate compressor. The swash plate type compressor shown in FIG. 1 uses carbon dioxide gas as a refrigerant, and is a double swash plate type. In this swash plate compressor, a
各ピストン9には斜板3の外周部を跨ぐように凹部9aが形成され、この凹部9aの軸方向対向面に形成された球面座13に、半球シュー4が着座されており、ピストン9を斜板3の回転に対して相対移動自在に支持する。これによって、斜板3の回転運動からピストン9の往復運動への変換が円滑に行われる。半球シュー4は、平面部が斜板3と摺動し、球面部がピストン9(球面座13)と摺動する。
Each piston 9 is formed with a recess 9 a so as to straddle the outer periphery of the
本発明の製造方法で得られる半球シューを図2に基づき詳細に説明する。図2は半球シューの一例を示す縦断面図と分解図である。なお、図2における右図が縦断面図であり、左図がその分解図である。この形態の半球シュー4は、球体の一部を構成する球面部4aと、球面部4aの反対側において該球体を略平面でカットした形態の平面部4bと、球面部4aと平面部4bとを繋ぐ外周部4cとを備えた略半球状の構造を有する。半球シュー4は、平面形状が円形状となる。半球シュー4の全体形状は、円柱体の一方の底面を半球の一部を構成する凸形状とした形状である。なお、半球シュー4の全体形状は、これに限定されるものではなく、少なくとも、斜板と摺動する平面部とピストンと摺動する球面部とを有していればよい。
The hemispherical shoe obtained by the production method of the present invention will be described in detail with reference to FIG. FIG. 2 is a longitudinal sectional view and an exploded view showing an example of a hemispherical shoe. In addition, the right figure in FIG. 2 is a longitudinal cross-sectional view, and the left figure is the exploded view. The
半球シュー4は、金属製などの硬質部材を基材5とし、斜板と摺動する平面部4bの表面およびピストン(球面座)と摺動する球面部4aの表面に樹脂層6が設けられている。樹脂層6は樹脂の成形体であり、該樹脂層のうち、球面部4aの表面に形成されるものが樹脂層6aであり、平面部4bの表面に形成されるものが樹脂層6bである。
The
本発明の半球シューの製造方法は、このような樹脂層と基材とから構成される半球シューの製造方法である。本発明の半球シューの製造方法のフロー図を図3に示す。図2と図3に示すように、この製造方法は、まず、樹脂層成形工程として、平面部4bの樹脂層6bとなる成形体と、球面部4aの樹脂層6aとなる成形体を、それぞれ別個に射出成形で成形する。その後、一体化工程として、平面部4bの樹脂層6bとなる成形体と、球面部4aの樹脂層6aとなる成形体とで、基材5を中に挟むように包み込んで一体化している。
The method for manufacturing a hemispherical shoe of the present invention is a method for manufacturing a hemispherical shoe composed of such a resin layer and a base material. A flow chart of the method for manufacturing the hemispherical shoe of the present invention is shown in FIG. As shown in FIGS. 2 and 3, in this manufacturing method, first, as a resin layer molding step, a molded body that becomes the resin layer 6b of the flat surface portion 4b and a molded body that becomes the resin layer 6a of the spherical surface portion 4a are respectively obtained. Molded separately by injection molding. Thereafter, as an integration step, the molded body that becomes the resin layer 6b of the flat surface portion 4b and the molded body that becomes the resin layer 6a of the spherical surface portion 4a are wrapped and integrated so as to sandwich the
半球シューの基材となる硬質部材の材質としては、金属、セラミックス、硬質な合成樹脂などが挙げられる。硬質部材に金属を採用する場合は、プレス加工、機械加工、ダイカストなどにより製造された溶製金属製や焼結金属製が採用できる。特に、生産性、強度、コストなどのバランスが良いことから、基材を焼結金属製の金属焼結体とすることが好ましい。溶製金属としては、例えば、軸受鋼(SUJ1〜5など)、クロムモリブデン鋼、機械構造用炭素鋼、軟鋼、ステンレス鋼、もしくは高速度鋼などの鋼や、アルミニウム、アルミニウム合金、銅、銅合金が挙げられる。焼結金属としては、例えば、鉄系、銅鉄系、銅系、ステンレス系などが挙げられる。また、基材を焼結金属とする場合の密度は、材質の理論密度比0.7〜0.9とすることが好ましく、この範囲内にすることで、高い緻密性を有し、基材の熱伝導性を十分に確保できる。 Examples of the material of the hard member that becomes the base material of the hemispherical shoe include metals, ceramics, and hard synthetic resins. When a metal is used for the hard member, a molten metal or a sintered metal manufactured by pressing, machining, die casting or the like can be used. In particular, since the balance of productivity, strength, cost and the like is good, it is preferable that the base material is a sintered metal made of sintered metal. Examples of the molten metal include steels such as bearing steel (SUJ1-5, etc.), chromium molybdenum steel, carbon steel for mechanical structure, mild steel, stainless steel, or high speed steel, aluminum, aluminum alloy, copper, copper alloy Is mentioned. Examples of the sintered metal include iron, copper iron, copper, and stainless steel. In addition, the density when the base material is a sintered metal is preferably 0.7 to 0.9 in terms of the theoretical density ratio of the material. The thermal conductivity of can be sufficiently secured.
樹脂層成形工程において、平面部の樹脂層と球面部の樹脂層は、潤滑性に優れ耐熱性および機械強度の高いエンジニアリングプラスチックを用いて射出成形によって製造される。樹脂層を潤滑性に優れ、耐熱性および機械強度の高いエンジニアリングプラスチックで形成することにより、運転開始時の潤滑油のないドライ状態においても、焼付きが発生せず、摩擦発熱による潤滑特性の低下や樹脂層の剥離がなく耐久性が十分に確保される。樹脂層を形成する合成樹脂(ベース樹脂)としては、半球シューに要求される潤滑特性および耐熱性を確保できるものであれば特に限定されず、例えば、ポリフェニレンスルフィド(PPS)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリイミド(PI)樹脂、フェノール樹脂などが挙げられる。これらの各合成樹脂は単独で使用してもよく、2種類以上混合したポリマーアロイであってもよい。これらの中でも、耐熱性、耐摩耗性に優れたPAI樹脂、PEEK樹脂、PI樹脂、PPS樹脂が好ましい。 In the resin layer molding step, the resin layer in the flat portion and the resin layer in the spherical portion are manufactured by injection molding using an engineering plastic having excellent lubricity and high heat resistance and mechanical strength. By forming the resin layer with engineering plastics with excellent lubricity, heat resistance and high mechanical strength, seizure does not occur even in the dry state without lubricating oil at the start of operation, and the lubrication characteristics are deteriorated due to frictional heat generation In addition, there is no peeling of the resin layer and sufficient durability is ensured. The synthetic resin (base resin) for forming the resin layer is not particularly limited as long as it can ensure the lubrication characteristics and heat resistance required for the hemispherical shoe. For example, polyphenylene sulfide (PPS) resin, polyamideimide (PAI) ) Resin, polyether ether ketone (PEEK) resin, polyimide (PI) resin, phenol resin and the like. Each of these synthetic resins may be used alone or may be a polymer alloy in which two or more kinds are mixed. Among these, PAI resin, PEEK resin, PI resin, and PPS resin excellent in heat resistance and wear resistance are preferable.
平面部の樹脂層と球面部の樹脂層とを別個の射出成形体とすることで、樹脂層の形成が容易となる。射出成形は、樹脂組成物に溶融状態で圧力を加えるため、樹脂層が緻密に形成され、耐荷重性や耐摩耗性が高くなる。なお、射出成形で樹脂層を形成する際、射出成形で所望の寸法に一発成形する他、射出成形後に所望の寸法に機械加工してもよい。 By forming the resin layer of the flat surface part and the resin layer of the spherical surface part as separate injection-molded bodies, the resin layer can be easily formed. In injection molding, since a pressure is applied to a resin composition in a molten state, a resin layer is densely formed, and load resistance and wear resistance are increased. In addition, when forming a resin layer by injection molding, it may be machined to a desired dimension after injection molding, in addition to being molded once to a desired dimension by injection molding.
また、平面部の樹脂層と球面部の樹脂層とを別個に成形することで、それぞれを異なった樹脂材料で成形することができる。例えば、平面部は鉄系材料からなる斜板と摺動するため耐摩耗性の優れた樹脂組成物を採用し、球面部はアルミニウム系材料からなるピストンと摺動するため軟質材への攻撃性の低い樹脂組成物を採用するという材料選定が可能となる。 In addition, by separately molding the resin layer of the planar portion and the resin layer of the spherical portion, each can be molded with different resin materials. For example, since the flat part slides with a swash plate made of an iron-based material, a resin composition with excellent wear resistance is used, and the spherical part slides with a piston made of an aluminum-based material, so it is aggressive against soft materials. It is possible to select a material that employs a resin composition having a low viscosity.
平面部には、疲労特性および射出成形時の流動性に優れるPEEK樹脂が特に好ましい。これらの合成樹脂には、機械強度や耐摩耗性を向上させる目的で、炭素繊維、ガラス繊維、マイカ、タルクなどを配合してもよい。また、低摩擦化、油枯渇時の焼付き性向上させる目的で、ポリテトラフルオロエチレン(PTFE)樹脂、黒鉛、二硫化モリブデンなどを配合してもよい。 A PEEK resin excellent in fatigue characteristics and fluidity during injection molding is particularly preferable for the flat portion. These synthetic resins may be blended with carbon fiber, glass fiber, mica, talc and the like for the purpose of improving mechanical strength and wear resistance. Further, for the purpose of reducing friction and improving seizure at the time of oil exhaustion, polytetrafluoroethylene (PTFE) resin, graphite, molybdenum disulfide, or the like may be blended.
これに対して、球面部はピストンと摺動するため、ピストンの材料であるアルミに対して攻撃性の低い材料選定が必要となる。少なくとも、ガラス繊維や炭素繊維を含まない樹脂である必要がある。平面部の材料と同様に摩擦化、油枯渇時の焼付き性向上させる目的で、PTFE樹脂、黒鉛、二硫化モリブデンなどを配合してもよい。補強のためにマイカ、タルクなどを配合してもよい。 On the other hand, since the spherical portion slides with the piston, it is necessary to select a material that is less aggressive against aluminum, which is the material of the piston. At least, it is necessary to be a resin that does not contain glass fiber or carbon fiber. PTFE resin, graphite, molybdenum disulfide, or the like may be blended for the purpose of improving friction and improving seizure at the time of oil exhaustion in the same manner as the material for the flat portion. Mica, talc, etc. may be added for reinforcement.
また、平面部と球面部はその運動量が異なり、平面部より球面部の方が運動量が小さいことから、平面部の樹脂層よりも球面部の樹脂層の硬度を低く軟質にした方が、半球シューの平面部と球面部および斜板とピストンの摩耗を低く抑えることができる。ここで「硬度」は、ロックウェル硬度やショア硬度などの樹脂成形体に一般に使用される硬度であり、硬度の高低は同じ測定基準により硬度測定した場合の比較である。 In addition, since the momentum is different between the flat surface portion and the spherical surface portion, the spherical portion has a smaller momentum than the flat surface portion. Therefore, it is more hemispherical if the hardness of the resin layer of the spherical surface portion is lower than the resin layer of the flat surface portion. Wear of the flat portion and spherical portion of the shoe and the swash plate and piston can be kept low. Here, “hardness” is a hardness generally used for resin moldings such as Rockwell hardness and Shore hardness, and the hardness level is a comparison when the hardness is measured according to the same measurement standard.
例えば、同じベース樹脂を用いた場合であれば、(1)平面部の樹脂層に炭素繊維を配合し、球面部の樹脂層にアラミド繊維を配合する構成、(2)平面部の樹脂層に黒鉛を配合し、球面部の樹脂層にPTFE樹脂を配合する構成、とすることで特にピストンに対する攻撃性を小さくし、平面部と球面部および斜板とピストンの摩耗を均一にすることが可能となる。また、上述のように、平面部の樹脂層には炭素系材料(炭素繊維や黒鉛)を配合することで、運動量の大きい平面部樹脂層での耐摩耗性を向上し、球面部の樹脂層には炭素系材料を未配合とすることで、アルミニウム系材料からなるピストンの摩耗を防止することができる。 For example, in the case of using the same base resin, (1) a structure in which carbon fiber is blended in the resin layer in the plane portion, and aramid fiber is blended in the resin layer in the spherical portion; (2) in the resin layer in the plane portion By combining graphite with PTFE resin in the spherical resin layer, it is possible to reduce the aggressiveness to the piston in particular and make the flat part, spherical part, swash plate, and piston wear uniform. It becomes. In addition, as described above, by adding a carbon-based material (carbon fiber or graphite) to the resin layer in the flat part, the wear resistance in the flat resin part having a large momentum is improved, and the resin layer in the spherical part In this case, the wear of the piston made of the aluminum-based material can be prevented by not adding the carbon-based material.
一体化工程では、以上の樹脂層成形工程で得られた各成形体を用意し、平面部の成形体と、球面部の成形体とで基材をサンドイッチ状に挟み込んで一体化している。一体化(固定)方法は特に限定されず、嵌合、接着、溶着などが採用できる。例えば、(1)基材に嵌合凹部(中心軸の中空部や基材外周の溝)を設けて、成形体をこの凹部に圧入すること、(2)一方の成形体に嵌合凹部を設けて他方の成形体をこの凹部に圧入すること、(3)成形体同士を超音波溶着すること、(4)基材に対して成形体を接着剤にて接着すること、等が挙げられる。 In the integration step, each molded body obtained in the above resin layer molding step is prepared, and the substrate is sandwiched and integrated between the planar portion molded body and the spherical portion molded body. The integration (fixing) method is not particularly limited, and fitting, adhesion, welding, and the like can be employed. For example, (1) a fitting recess (a hollow portion of the central axis or a groove on the outer periphery of the substrate) is provided in the base material, and the molded body is press-fitted into the concave portion, and (2) the fitting concave portion is provided in one molded body. For example, (3) ultrasonic welding of the molded bodies to each other, (4) bonding the molded body to the base material with an adhesive, and the like. .
図2に示す形態では、基材5は、中心軸部分に中空部7が設けられている。平面部4bの樹脂層6bとなる成形体は、非摺動側の中心軸に棒状の脚部6dを有する。同様に、球面部4aの樹脂層6aとなる成形体は、非摺動側の中心軸に棒状の脚部6cを有する。一体化工程において、基材5の中空部7に、これらの脚部6c、6dが圧入される。また、この形態の半球シュー4では、平面部4bの樹脂層6bとなる成形体の外周部と、球面部4aの樹脂層6aとなる成形体の外周部とが弾性嵌合にて固定されている。詳細には、一方の成形体の外周部に凹部8aが設けられており、他方の成形体の外周部にはそれに対応する凸部8bが設けられており、一方の成形体の外周部の凹部8aに、他方の成形体の外周部の凸部8bが組み合わされて弾性嵌合されている。図中の8が弾性嵌合部である。弾性嵌合部における凹凸関係は、図2に示す場合と反対であってもよい。これにより、成形体同士がその中心軸部と外周部の両方において基材をサンドイッチ状に保持した状態で強固に固定される。この結果、半球シューの基材を挟んで平面部と球面部の樹脂層(成形体)が一体化され、基材と樹脂層の密着性が向上する。
In the form shown in FIG. 2, the
また、図2に示すように、この形態の半球シュー4では、基材5の表面のほぼ全体を覆うように樹脂層6が設けられている。半球シューの直径10mm程度(5〜15mm)の場合において、基材5の外側を覆う樹脂層6の厚みは0.1〜0.7mm程度の薄肉であり、基材5の形状は半球シュー4の全体形状に沿った形状である。このため、基材5は、半球シュー4の球面部4a、平面部4b、外周部4cにそれぞれ対応する、球面部5a、平面部5b、外周部5cを有する。樹脂層を上記範囲のような薄肉とすることで、摩擦熱が摩擦摺動面から基材側に逃げ易く、蓄熱し難いので、好ましい。
Further, as shown in FIG. 2, in the
一体化工程に超音波溶着を用いた例を図4に基づき説明する。図4に示す形態の半球シュー4は、平面部4bの樹脂層6bと球面部4aの樹脂層6aとが基材5を挟んでそれぞれ別個の成形体から形成されており、各成形体の外周部の弾性嵌合部(凹凸部)がないことを除いて、その構成は図2に示す半球シューと同じである。また、樹脂層成形工程も同じである。この形態では、平面部4bの樹脂層6bとなる成形体の外周部端面と、球面部4aの樹脂層6aとなる成形体の外周部端面とが超音波溶着により結着されている。詳細には、まず、平面部4bの樹脂層6bとなる成形体の棒状の脚部6dと、球面部4aの樹脂層6aとなる成形体の棒状の脚部6cとを基材5の中空部7に圧入する。そして、棒状脚部6c、6dの先端同士を超音波溶着で結着させるとともに、平面部4bの樹脂層6bとなる成形体の外周部端面と、球面部4aの樹脂層6aとなる成形体の外周部端面とを超音波溶着で結着させる。図中の14が超音波溶着部である。これにより、成形体同士がその中心軸部と外周部の両方において基材をサンドイッチ状に保持した状態で強固に結着されて固定され、基材と樹脂層の密着性が向上する。
An example in which ultrasonic welding is used in the integration process will be described with reference to FIG. In the
図2と図4のいずれの場合においても、平面部4bの樹脂層6bとなる成形体と、球面部4aの樹脂層6aとなる成形体との接合箇所が、半球シューの外周部4cに位置している。外周部4cは、球面部や平面部と異なり、ピストンや斜板と摺接しない部位である。このため、当該箇所において、弾性嵌合や超音波溶着により両部材を接合することで、接合部が摺接面に位置することにより摺動特性に悪影響を与えるなどの懸念がない。 2 and 4, the joint portion between the molded body that becomes the resin layer 6 b of the flat surface portion 4 b and the molded body that becomes the resin layer 6 a of the spherical surface portion 4 a is located at the outer peripheral portion 4 c of the hemispherical shoe. doing. The outer peripheral portion 4c is a portion that is not slidably contacted with the piston or the swash plate, unlike the spherical portion or the flat portion. For this reason, there is no concern that the sliding characteristics are adversely affected by joining the two members by elastic fitting or ultrasonic welding at the location so that the joint portion is positioned on the sliding contact surface.
半球シューは非常に過酷な環境で使用されるため、なんらかの理由で異常発熱などが生じて基材と樹脂層の密着性が低下した場合など、基材に対して樹脂層が相対的に回転するおそれがある。これを防止するために、基材において各成形体が設けられる面に、その成形体の基材に対する回転を防止するための凹部を形成することが好ましい。 Since hemispherical shoes are used in extremely harsh environments, the resin layer rotates relative to the base material when abnormal heat generation occurs for some reason and the adhesion between the base material and the resin layer decreases. There is a fear. In order to prevent this, it is preferable to form a recess for preventing rotation of the molded body with respect to the base material on the surface of the base material on which each molded body is provided.
このような凹部の一形態として放射状に形成された溝を図5に基づき説明する。図5(a)は基材の正面図であり、図5(b)は基材の底面図(平面部側からみた図)である。図5(a)および図5(b)に示すように、基材5の表面には基材中心軸から放射状に凹部である溝15が形成されている。溝15は、平面部5bおよび球面部5aの両方の基材表面に形成されている。平面部5bにおける放射状の溝15は、中心軸に対して等角度(90度)毎に4本配置されており、4本ともに同一形状である。同様に、球面部5aにおける放射状の溝15も、基材の中心軸から放射状に等配分で4本配置されている。
The groove | channel formed radially as one form of such a recessed part is demonstrated based on FIG. Fig.5 (a) is a front view of a base material, FIG.5 (b) is a bottom view (figure seen from the plane part side) of a base material. As shown in FIGS. 5A and 5B,
凹部の他形態として軸方向に形成された溝を図6に基づき説明する。図6(a)は基材の正面図であり、図6(b)は基材の底面図(平面部側からみた図)である。図6(a)および図6(b)に示すように、基材5の外径面(外周部5cの表面)に軸方向の溝16が形成されている。軸方向の溝16は、基材中心軸に対して等角度(90度)毎に4本配置されており、4本ともに同一形状である。
The groove | channel formed in the axial direction as another form of a recessed part is demonstrated based on FIG. 6A is a front view of the base material, and FIG. 6B is a bottom view of the base material (viewed from the plane portion side). As shown in FIGS. 6A and 6B, an
平面部の樹脂層(成形体)と球面部の樹脂層(成形体)は、これら溝に対応する凸部を基材との接触面に有しており、この樹脂層の凸部と、基材の凹部である溝とが嵌合する。これにより、基材に対する樹脂層の相対的な回転を防止できる。また、一体化工程時において、位置決めができ、組み込み性が向上する。樹脂層(成形体)の凸部は、凹部である溝と相補的な形状であり、樹脂層成形工程時において容易に形成できる。 The resin layer (molded body) of the flat surface portion and the resin layer (molded body) of the spherical surface portion have convex portions corresponding to these grooves on the contact surface with the base material. A groove which is a concave portion of the material is fitted. Thereby, relative rotation of the resin layer with respect to the substrate can be prevented. In addition, positioning can be performed during the integration process, and assemblability is improved. The convex portion of the resin layer (molded body) has a shape complementary to the groove that is the concave portion, and can be easily formed during the resin layer molding step.
放射状の溝を形成する場合、基材への形成が容易であり、かつ、樹脂層に薄肉部分ができないため、樹脂層の強度低下を防ぎ、該樹脂層の割れなどを防止できる。軸方向の溝を形成する場合、回転防止と同時に、基材に対する成形体の組み込み性が特に向上する。 When the radial groove is formed, it is easy to form on the base material, and since the resin layer cannot have a thin portion, the strength of the resin layer can be prevented from being reduced, and the resin layer can be prevented from cracking. When the axial groove is formed, the assemblability of the molded body with respect to the base material is particularly improved simultaneously with the prevention of rotation.
また、軸方向の溝を設ける形態において、該溝部分に上述の弾性嵌合部を配置する構成とすることが好ましい(図2参照)。この溝部分に、上述の弾性嵌合部を配置することで、弾性嵌合する凹部と凸部の肉厚を厚くでき、弾性嵌合部の割れなどを防止でき、強固な接合が可能となる。 Moreover, in the form which provides the groove | channel of an axial direction, it is preferable to set it as the structure which arrange | positions the above-mentioned elastic fitting part in this groove part (refer FIG. 2). By disposing the above-described elastic fitting portion in the groove portion, the thickness of the concave portion and the convex portion to be elastically fitted can be increased, cracking of the elastic fitting portion can be prevented, and strong bonding is possible. .
溝は基材の各表面(15については球面部5aの表面、平面部5bの表面のそれぞれ、16については外周部5cの表面)に2〜8本形成することが好ましい。等配分された放射状の溝が1本であると基材の重心位置が中心軸からずれるため、半球シューの動きに何らかの悪影響が生じるおそれがある。また、9本以上であると基材表面に対して溝をはっきりと形成することが難しくなる。
It is preferable that 2 to 8 grooves are formed on each surface of the base material (for the surface of the
溝の深さは、最も深い部分が0.2〜1.3mmであることが好ましい。基材の溝の深さを0.2〜1.3mmにすることで、確実に基材に対して樹脂層のずれによる相対的な回転を防止できる。0.2mmより浅いと溝に対応する樹脂層の凸部が溝を乗り越えるおそれがある。また、1.3mmより深いと、対応する樹脂層の凸部を形成する際に、その凸部裏側の樹脂層表面に射出成形のヒケが生じるなどのおそれがある。なお、放射状の溝については、摺動面である球面部と平面部の樹脂層に対応する位置に形成するため、深すぎる場合の上記悪影響を極力避けるため、その深さは0.2〜1.0mmであることがより好ましい。 The depth of the groove is preferably 0.2 to 1.3 mm at the deepest portion. By setting the depth of the groove of the base material to 0.2 to 1.3 mm, it is possible to reliably prevent relative rotation due to the displacement of the resin layer with respect to the base material. If it is shallower than 0.2 mm, the convex portion of the resin layer corresponding to the groove may get over the groove. On the other hand, if it is deeper than 1.3 mm, there is a risk that, when forming the convex portion of the corresponding resin layer, an injection molding sink may occur on the resin layer surface on the back side of the convex portion. In addition, since the radial groove is formed at a position corresponding to the spherical and planar resin layers that are sliding surfaces, the depth is 0.2 to 1 in order to avoid the above-described adverse effect when it is too deep. More preferably, it is 0.0 mm.
溝の基材表面とのエッジ部は、0.05mm以下の面取りを設けることが好ましい。溝のエッジ部に0.05mmをこえる面取りを設けると、溝に対応する樹脂層の凸部が溝を乗り越え易くなる。 The edge portion of the groove with the substrate surface is preferably provided with a chamfer of 0.05 mm or less. If chamfering exceeding 0.05 mm is provided at the edge portion of the groove, the convex portion of the resin layer corresponding to the groove easily gets over the groove.
斜板またはピストンとの摺動面となる樹脂層の表面は、樹脂層の成形後(樹脂層成形工程内)、またはこれを基材に固定した後に、研磨加工してもよい。研磨加工により、個々の高さ寸法にばらつきがなくなり精度が向上する。また、樹脂層の該表面の表面粗さRaは、0.05μm〜1.0μm(JIS B0601)に調整することが好ましい。この範囲内にすることで、斜板またはピストンと摺動する樹脂層摺動面における真実接触面積が大きくなり、実面圧を下げることができ、焼き付きを防止できる。表面粗さRaが、0.05μm未満では摺動面への潤滑油の供給が不足し、1.0μmをこえると摺動面での真実接触面積の低下により、局部的に高面圧となり、焼き付くおそれがある。さらに好ましくは、表面粗さRaが、0.1μm〜0.5μmである。 The surface of the resin layer serving as a sliding surface with the swash plate or the piston may be polished after the resin layer is molded (in the resin layer molding process) or after being fixed to the substrate. The polishing process eliminates variations in individual height dimensions and improves accuracy. The surface roughness Ra of the surface of the resin layer is preferably adjusted to 0.05 μm to 1.0 μm (JIS B0601). By setting it within this range, the real contact area on the sliding surface of the resin layer sliding with the swash plate or the piston is increased, the actual surface pressure can be lowered, and seizure can be prevented. If the surface roughness Ra is less than 0.05 μm, the supply of lubricating oil to the sliding surface is insufficient. If the surface roughness Ra exceeds 1.0 μm, the real contact area on the sliding surface will decrease, resulting in high local pressure. There is a risk of seizure. More preferably, the surface roughness Ra is 0.1 μm to 0.5 μm.
斜板またはピストンとの摺動面となる樹脂層の表面には、希薄潤滑時における潤滑作用を補うため、上述の中空部以外にオイルポケットや動圧溝を形成してもよい。オイルポケットの形態としては、斑点状または筋状の凹部が挙げられる。斑点状または筋状としては、平行な直線状、格子状、渦巻状、放射状または環状などが挙げられる。オイルポケットの深さは、樹脂層の厚み未満で適宜決定できる。 Oil pockets and dynamic pressure grooves may be formed on the surface of the resin layer serving as the sliding surface with the swash plate or the piston in addition to the above-described hollow portion in order to supplement the lubricating action during lean lubrication. Examples of the shape of the oil pocket include a spot-like or streak-like recess. Examples of the spot shape or the stripe shape include a parallel straight line shape, a lattice shape, a spiral shape, a radial shape, and a ring shape. The depth of the oil pocket can be determined as appropriate below the thickness of the resin layer.
本発明の製造方法で得られる半球シューが使用される斜板式コンプレッサは、冷媒が存在するハウジング内で、回転軸に直接固定するように、または連結部材を介して間接的に、直角および斜めに取り付けた斜板に半球シューを摺動させ、この半球シューを介して上記斜板の回転運動をピストンの往復運動に変換して、冷媒を圧縮、膨張させる斜板式コンプレッサである。この斜板式コンプレッサに本発明で得られる半球シュー(樹脂層あり)を使用することによって、半球シューと摺動する斜板およびピストンにおいては、潤滑性被膜を除くことができる。すなわち、斜板などの表面は基材の研磨面のままの状態で斜板式コンプレッサに組み込み半球シューと摺動させることが可能となる。このため、機能面で同等でありながら、低価格の斜板式コンプレッサを提供できる。また、運転開始時の潤滑油のないドライ状態においても、半球シューの摺動面での焼付きが発生せず、摩擦発熱による潤滑特性の低下や樹脂層の剥離がなく耐久性に優れ、安心、長寿命な斜板式コンプレッサとなる。 The swash plate type compressor using the hemispherical shoe obtained by the manufacturing method of the present invention is fixed at right angles and obliquely in a housing where refrigerant is present, so as to be directly fixed to a rotating shaft or indirectly through a connecting member. This is a swash plate type compressor that compresses and expands a refrigerant by sliding a hemispherical shoe on an attached swash plate and converting the rotational motion of the swash plate into a reciprocating motion of a piston through the hemispherical shoe. By using the hemispherical shoe (with a resin layer) obtained in the present invention for this swash plate compressor, the lubricating coating can be removed from the swash plate and piston that slide with the hemispherical shoe. In other words, the surface of the swash plate or the like can be incorporated in the swash plate compressor and slid with the hemispherical shoe while the polished surface of the base material remains. Therefore, it is possible to provide a low-cost swash plate compressor that is functionally equivalent. In addition, even in a dry state without lubricating oil at the start of operation, seizure on the sliding surface of the hemispherical shoe does not occur, and there is no deterioration in lubrication characteristics due to frictional heat generation and exfoliation of the resin layer. It becomes a long-life swash plate compressor.
なお、斜板やピストンの半球シューとの摺動面には、樹脂製などの潤滑性被膜が形成されていてもよいが、潤滑性被膜が無くても十分な摺動特性が発揮できるものである。 The sliding surface of the swash plate and the hemispherical shoe of the piston may be provided with a resinous lubrication film, but sufficient sliding characteristics can be exhibited without the lubrication film. is there.
本発明の斜板式コンプレッサ用半球シューの製造方法は、斜板とピストンとの摺動面に耐久性等に優れる摺動性樹脂層を設けた半球シューを容易に製造できるので、種々の斜板式コンプレッサ用半球シューの製造に利用できる。特に、炭酸ガスやHFC1234yfを冷媒とし、高速高負荷仕様(例えば、面圧が8MPaをこえる)である近年の斜板式コンプレッサに用いる半球シューの製造にも好適に利用できる。 The manufacturing method of the swash plate compressor hemispherical shoe of the present invention can easily manufacture hemispherical shoes provided with a slidable resin layer having excellent durability on the sliding surface between the swash plate and the piston. It can be used to manufacture hemispherical shoes for compressors. In particular, carbon dioxide gas or HFC1234yf is used as a refrigerant, and it can be suitably used for manufacturing a hemispherical shoe used in a recent swash plate type compressor having a high-speed and high-load specification (for example, a surface pressure exceeding 8 MPa).
1 ハウジング
2 回転軸
3 斜板
4 半球シュー
5 基材
6 樹脂層
7 中空部
8 弾性嵌合部
9 ピストン
10 シリンダボア
11 針状ころ軸受
12 スラスト針状ころ軸受
13 球面座
14 超音波溶着部
15 放射状の溝
16 軸方向の溝
DESCRIPTION OF
Claims (5)
前記半球シューは、硬質部材を基材とし、前記斜板と摺動する平面部の表面および前記ピストンと摺動する球面部の表面に樹脂層を有し、
前記製造方法は、前記平面部の樹脂層となる成形体と、前記球面部の樹脂層となる成形体を、それぞれ別個に射出成形で成形する樹脂層成形工程と、
前記平面部の樹脂層となる成形体と、前記球面部の樹脂層となる成形体とで、前記基材を中に挟むように包み込んで一体化する一体化工程とを有することを特徴とする斜板式コンプレッサ用半球シューの製造方法。 In the housing in which the refrigerant is present, the hemispherical shoe is slid on a swash plate mounted at right angles and obliquely so as to be directly fixed to the rotating shaft or indirectly through the connecting member, and the hemispherical shoe is passed through the hemispherical shoe. A method for producing a hemispherical shoe for a swash plate compressor that converts rotational movement of a swash plate into reciprocating motion of a piston to compress and expand a refrigerant,
The hemispherical shoe has a resin layer on the surface of the flat surface portion that slides with the swash plate and the surface of the spherical surface portion that slides with the piston, using a hard member as a base material.
The manufacturing method includes a resin layer molding step in which a molded body that becomes the resin layer of the planar portion and a molded body that becomes the resin layer of the spherical portion are separately molded by injection molding, and
And an integrated step of wrapping and integrating the base material so as to sandwich the molded body that becomes the resin layer of the flat surface portion and the molded body that becomes the resin layer of the spherical surface portion. Manufacturing method of hemispherical shoe for swash plate compressor.
前記樹脂層成形工程において、前記平面部の樹脂層となる成形体および前記球面部の樹脂層となる成形体の各成形体の反摺動面側中心部に脚部を形成し、
前記一体化工程において、前記基材の中空部に、前記各成形体の脚部を嵌合しつつ、前記各成形体で前記基材を中に挟むように包み込んで一体化することを特徴とする請求項1記載の斜板式コンプレッサ用半球シューの製造方法。 The base material has a hollow portion in a central axis portion,
In the resin layer molding step, a leg portion is formed at the center part on the anti-sliding surface side of each molded body of the molded body that becomes the resin layer of the flat surface portion and the molded body that becomes the resin layer of the spherical surface portion,
In the integration step, the base material is wrapped and integrated so as to sandwich the base material in each molded body while fitting the legs of the respective molded body into the hollow portion of the base material. A method of manufacturing a hemispherical shoe for a swash plate compressor according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016079047A JP2017190675A (en) | 2016-04-11 | 2016-04-11 | Manufacturing method of hemispherical shoe for swash plate compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016079047A JP2017190675A (en) | 2016-04-11 | 2016-04-11 | Manufacturing method of hemispherical shoe for swash plate compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017190675A true JP2017190675A (en) | 2017-10-19 |
Family
ID=60085170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016079047A Pending JP2017190675A (en) | 2016-04-11 | 2016-04-11 | Manufacturing method of hemispherical shoe for swash plate compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017190675A (en) |
-
2016
- 2016-04-11 JP JP2016079047A patent/JP2017190675A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013145889A1 (en) | Composite plain bearing, cradle guide, and sliding nut | |
KR20160095136A (en) | Internally meshing gear pump | |
WO2013022094A1 (en) | Sliding nut, sliding bearing for compressor, and cradle guide | |
JP5938217B2 (en) | Compressor plain bearings and compressors | |
JP6230803B2 (en) | Swash plate compressor hemispherical shoe and swash plate compressor | |
JP2017190675A (en) | Manufacturing method of hemispherical shoe for swash plate compressor | |
WO2017057430A1 (en) | Compressor swashplate and compressor provided with same | |
JP4844367B2 (en) | Spherical crown shoe | |
JP2017036711A (en) | Semi-spherical shoe of swash plate type compressor and swash plate type compressor | |
JP2017036712A (en) | Semi-spherical shoe of swash plate type compressor and swash plate type compressor | |
JP6313683B2 (en) | Swash plate compressor hemispherical shoe and swash plate compressor | |
WO2016013558A1 (en) | Semispherical shoe for swash plate compressor, and swash plate compressor | |
JP4955412B2 (en) | Swash plate compressor and swash plate compressor | |
WO2016027876A1 (en) | Method for manufacturing hemispherical shoe for swash plate compressor and mold for injection molding same | |
JP2014142070A (en) | Compound slide bearing | |
JP6313681B2 (en) | Swash plate compressor hemispherical shoe and swash plate compressor | |
WO2017183669A1 (en) | Hemispherical shoe for swash plate compressor, and swash plate compressor | |
JP6466754B2 (en) | Swash plate compressor hemispherical shoe and swash plate compressor | |
JP6571960B2 (en) | Swash plate compressor hemispherical shoe and swash plate compressor | |
JP5623852B2 (en) | Plain bearing | |
JP6313682B2 (en) | Swash plate compressor hemispherical shoe and swash plate compressor | |
JP2017082730A (en) | Swash plate type compressor | |
JP2016180381A (en) | Hemispherical shoe of swash plate type compressor, and swash plate type compressor | |
JP2002276543A (en) | Spherical crown shaped shoe and swash plate type compressor | |
JP2017198212A (en) | Hemispherical shoe for swash plate type compressor, and swash plate type compressor |