[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017036745A - Heat insulation material, apparatus made by using the same and manufacturing method of heat insulation material - Google Patents

Heat insulation material, apparatus made by using the same and manufacturing method of heat insulation material Download PDF

Info

Publication number
JP2017036745A
JP2017036745A JP2015156537A JP2015156537A JP2017036745A JP 2017036745 A JP2017036745 A JP 2017036745A JP 2015156537 A JP2015156537 A JP 2015156537A JP 2015156537 A JP2015156537 A JP 2015156537A JP 2017036745 A JP2017036745 A JP 2017036745A
Authority
JP
Japan
Prior art keywords
fiber
heat insulating
insulating material
fibers
composite layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015156537A
Other languages
Japanese (ja)
Other versions
JP6771195B2 (en
Inventor
坂口 茂樹
Shigeki Sakaguchi
茂樹 坂口
茂昭 酒谷
Shigeaki Sakatani
茂昭 酒谷
太一 中村
Taichi Nakamura
太一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015156537A priority Critical patent/JP6771195B2/en
Publication of JP2017036745A publication Critical patent/JP2017036745A/en
Application granted granted Critical
Publication of JP6771195B2 publication Critical patent/JP6771195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Silicon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation material capable of suppressing that silica aerogel pieces existing on opening parts of nonwoven fabric are released and destroyed on a heat insulation material surface and a large amount of silica aerogel fine particles are scattered into an electronic apparatus without deteriorating heat conductivity, in the heat insulation material to which silica aerogel is deposited among fibers.SOLUTION: A heat insulation material has a second composite layer 105 different in basic weight, at least on one surface of a first composite layer 103 which has silica aerogel deposited among fibers. Therein, second fibers 104 of the second composite layer 105 are larger in basic weight than first fibers 101 of the first composite layer 103, the basic weight of the second fibers 104 is 34 to 53 g/m, a fiber layer having a thickness of the second fibers 104 of 0.02 to 0.05 mm is formed and, thereby, powder dropping is suppressed by means of the second composite layer 105.SELECTED DRAWING: Figure 1

Description

本発明は、電子機器等で使用される断熱材の中でも、特に放熱材と積層して用いられる断熱材に関するものである。   The present invention relates to a heat insulating material used by being laminated with a heat radiating material among heat insulating materials used in electronic devices and the like.

近年、スマートフォン、タブレット、ノートパソコンなどICT( Information and
Communication Technology )と言われる情報通信技術分野の電子機器の高性能化が進むにつれ、CPUなどの発熱部品からの発熱密度は急激に増加しており、これらの電子機器における熱拡散技術が必須となってきている。
In recent years, ICT (Information and
As the performance of electronic devices in the information and communication technology field called Communication Technology) increases, the heat generation density from heat-generating components such as CPUs has increased rapidly, and heat diffusion technology in these electronic devices has become essential. It is coming.

従来、機器表面の温度上昇を低く抑えながらも機器内部の発熱部品の熱を放熱することができる断熱材として、シリカエアロゲルシートとグラファイトシートとを積層した複合シートが考えられる(特許文献1)。   Conventionally, a composite sheet in which a silica airgel sheet and a graphite sheet are laminated is conceivable as a heat insulating material capable of dissipating the heat of heat-generating components inside the apparatus while keeping the temperature rise on the apparatus surface low (Patent Document 1).

グラファイトシートは、厚み方向の熱伝導率よりも面内の熱伝度率が高く、10倍以上の異方性を持つため、発熱部品からの発熱を面内に散らすことができる。また、シリカエアロゲルシートは、不織布にナノサイズの多孔質構造を有するシリカエアロゲルを坦持させたものである。   Since the graphite sheet has an in-plane thermal conductivity higher than the thermal conductivity in the thickness direction and has anisotropy of 10 times or more, the heat generated from the heat-generating component can be scattered in the plane. In addition, the silica airgel sheet is obtained by carrying a silica airgel having a nano-sized porous structure on a nonwoven fabric.

シリカエアロゲルとは、図3に示すように1nm程度の径をもつシリカ1次粒子301が集合して形成された10nm前後の径を持つシリカ2次粒子302が、10〜60nm程度の粒子間距離の空隙303をもつ網目構造の集合体である。   As shown in FIG. 3, the silica aerogel is composed of silica primary particles 301 having a diameter of about 1 nm, and the silica secondary particles 302 having a diameter of about 10 nm formed by aggregating the silica primary particles 301 have an interparticle distance of about 10 to 60 nm. It is an aggregate of a network structure having the voids 303.

この粒子間距離が空気(窒素分子)の平均自由工程以下であるため、熱伝導率は0.015〜0.024W/mKと非常に低くなり、常温の静止空気の熱伝導率である0.026W/mK以下にすることができる。従って、熱伝導率の低いエアロゲルシートを積層することにより、グラファイトシートで面内に散らした熱が筐体に伝わるのを抑制することができる。   Since this interparticle distance is less than the mean free path of air (nitrogen molecules), the thermal conductivity is as low as 0.015 to 0.024 W / mK, which is 0. 0 which is the thermal conductivity of still air at room temperature. 026 W / mK or less. Therefore, by laminating the airgel sheets having low thermal conductivity, it is possible to suppress the heat scattered in the plane by the graphite sheet from being transmitted to the casing.

しかしながら、不織布にナノサイズの多孔質構造を有するシリカエアロゲルを坦持させたシリカエアロゲルシートは、シリカエアロゲルのシリカ2次粒子302同士の結合力が小さく極めて脆弱であるため、外部から応力が加わると、シリカエアロゲルシート表面の不織布の開口部に存在している100μm〜200μm角のシリカエアロゲル片が電子機器内に脱離する。   However, since the silica airgel sheet in which the silica airgel having a nano-sized porous structure is supported on the nonwoven fabric has a small bonding force between the silica secondary particles 302 of the silica airgel and is extremely fragile, when stress is applied from the outside The 100 μm to 200 μm square silica airgel pieces present in the openings of the nonwoven fabric on the surface of the silica airgel sheet are detached into the electronic apparatus.

さらに、電子機器内に脱離したシリカエアロゲル片は、外部からの応力を緩和する不織布に坦持されていない状態となるため、粉砕されて大量のシリカ粒子の微粉となり、電子機器内に飛散し、接触不良等の不具合を引き起こす。   Furthermore, since the silica airgel pieces desorbed in the electronic device are not carried by the nonwoven fabric that relieves external stress, they are crushed into a large amount of silica particles and scattered in the electronic device. Cause problems such as poor contact.

従って、エアロゲルシートの少なくとも片面、もしくは両面の表面において、不織布にナノサイズの多孔質構造を有するシリカエアロゲルを坦持させたものである不織布に外部応力が加わった際、シリカエアロゲルが脱離するのを抑制することが必要である。   Therefore, when at least one or both surfaces of the airgel sheet have external stress applied to the nonwoven fabric in which the nonwoven fabric is supported by a silica airgel having a nano-sized porous structure, the silica airgel is detached. It is necessary to suppress this.

シリカ粒子の微粉が飛散するのを防止するため、放熱材と断熱材とを特許文献2のように絶縁フィルムでラミネートした状態で配置することも考えられる。
また、特許文献3のように、断熱材をアルミナからなるコーティング層で被覆することもできる。
In order to prevent the fine powder of silica particles from scattering, it is conceivable to dispose the heat dissipating material and the heat insulating material in a state of being laminated with an insulating film as in Patent Document 2.
Moreover, like patent document 3, a heat insulating material can also be coat | covered with the coating layer which consists of alumina.

特開2015−84402号公報Japanese Patent Laying-Open No. 2015-84402 特表平11−513431公報Japanese National Patent Publication No. 11-513431 特開2011−162902号公報JP 2011-162902 A

しかしながら、特許文献2のように断熱材表面に絶縁フィルム材料を使用すると、絶縁フィルム材料を介することにより断熱材の熱伝導率の上昇や、ラミネート材の種類により使用温度域が制限されることなどの問題がある。   However, when an insulating film material is used on the surface of the heat insulating material as in Patent Document 2, an increase in the thermal conductivity of the heat insulating material through the insulating film material, or the operating temperature range is limited by the type of the laminate material, etc. There is a problem.

また、特許文献3のように、断熱材の表面にアルミナからなるコーティング層を設けた場合には、断熱材への濡れ性改善を目的して添加した界面活性剤入りの塗布液を塗布すると、表面張力の大きい水がシリカエアロゲルの細孔内に浸透する。   Further, as in Patent Document 3, when a coating layer made of alumina is provided on the surface of the heat insulating material, when a coating solution containing a surfactant added for the purpose of improving the wettability to the heat insulating material is applied, Water having a large surface tension penetrates into the pores of the silica airgel.

その後の乾燥工程において細孔内の水を揮発させる際に、シリカエアロゲル骨格の収縮を促進する毛管力が働き、収縮してしまう。このことにより細孔を潰してしまうため、固体熱伝導率が高くなり、熱伝導率が悪化するといった課題がある。   When the water in the pores is volatilized in the subsequent drying step, the capillary force that promotes the shrinkage of the silica airgel skeleton acts and shrinks. As a result, the pores are crushed, so that there is a problem that the solid thermal conductivity is increased and the thermal conductivity is deteriorated.

そこで本発明では、上記課題に鑑み、シリカエアロゲルの構造を保持して熱伝導率の悪化を抑制し、断熱材表面において不織布表面に存在しているシリカエアロゲル片が脱離・破壊し、大量のシリカエアロゲル微粉が電子機器内に飛散することを抑制できる断熱材を提供することを目的とする。   Therefore, in the present invention, in view of the above problems, the structure of the silica airgel is maintained to suppress the deterioration of the thermal conductivity, and the silica airgel pieces existing on the nonwoven fabric surface are detached and destroyed on the surface of the heat insulating material, and a large amount of It aims at providing the heat insulating material which can suppress that silica airgel fine powder disperses in an electronic device.

本発明の断熱材は、第1繊維にシリカエアロゲルを坦持させた第1複合層と、第2繊維にシリカエアロゲルを坦持させた第2複合層との積層体であり、前記第1繊維と前記第2繊維とで、目付量が異なることを特徴とする。   The heat insulating material of the present invention is a laminate of a first composite layer in which silica aerogel is supported on first fibers and a second composite layer in which silica aerogel is supported on second fibers, and the first fibers The basis weight is different between the second fiber and the second fiber.

具体的には、前記第2繊維の目付量が前記第1繊維よりも大きく、前記第2繊維の目付量が34g/m以上53g/m以下であって、かつ前記第2繊維の厚みが0.02mm〜0.05mmである。 Specifically, the basis weight of the second fiber is larger than the first fiber, the basis weight of the second fiber is 34 g / m 2 or more and 53 g / m 2 or less, and the thickness of the second fiber Is 0.02 mm to 0.05 mm.

本発明によれば、ラミネートによる熱伝導率シリカエアロゲルの構造とそれに紐づく熱伝導率を保持したまま、第1複合層の表面付近のシリカエアロゲル片が脱離・破壊するのを第2複合層によって抑制することができる。結果、熱伝導率が低くかつシリカ微粉の脱離量を大幅に抑制できる断熱材を実現できる。   According to the present invention, it is possible to prevent the silica airgel pieces near the surface of the first composite layer from detaching and breaking while maintaining the structure of the thermal conductivity silica airgel by the laminate and the thermal conductivity associated therewith. Can be suppressed. As a result, it is possible to realize a heat insulating material having a low thermal conductivity and capable of greatly suppressing the amount of silica fine particles detached.

本発明の実施の形態1の断熱材の拡大断面図The expanded sectional view of the heat insulating material of Embodiment 1 of this invention スマートフォンの筐体部分の断面図Cross-sectional view of the smartphone housing シリカエアロゲルの一部を拡大した模式図Schematic diagram enlarging a part of silica airgel 比較例の断熱材の拡大断面図Expanded cross-sectional view of the heat insulating material of the comparative example (a)〜(d)目付量の異なる繊維にシリカエアロゲルを担持させた表面状態を示す図(A)-(d) The figure which shows the surface state which carry | supported the silica airgel on the fiber from which a basis weight differs. (a)〜(c)実施の形態の断熱材の製造方法を示す図The figure which shows the manufacturing method of the heat insulating material of (a)-(c) embodiment. 実施の形態の断熱材の別の製造方法を示す図The figure which shows another manufacturing method of the heat insulating material of embodiment 断熱材における繊維の目付量と熱伝導率の関係を示す図The figure which shows the relationship between the fabric weight of a fiber in a heat insulating material, and thermal conductivity 断熱材における繊維の目付量とシリカエアロゲルの脱離数の関係を示す図The figure which shows the relationship between the fabric weight of a fiber in a heat insulating material, and the desorption number of silica airgel 本発明の実施の形態2の断熱材の拡大断面図The expanded sectional view of the heat insulating material of Embodiment 2 of this invention

以下、本発明の各実施の形態を図に基づいて説明する。
(実施の形態1)
図1は、本発明の実施の形態における断熱材100の一例を示す。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
FIG. 1 shows an example of a heat insulating material 100 according to an embodiment of the present invention.

断熱材100は、不織布の第1繊維101にナノサイズの多孔質構造を有するシリカエアロゲル102を坦持させた第1複合層103と、この第1複合層103の表面に設けられた第2複合層105とを合わせることで構成されている。第2複合層105は、不織布の第2繊維104にナノサイズの多孔質構造を有するシリカエアロゲル102を坦持させて構成されている。   The heat insulating material 100 includes a first composite layer 103 in which a silica airgel 102 having a nano-sized porous structure is supported on a first fiber 101 of a nonwoven fabric, and a second composite provided on the surface of the first composite layer 103. The layer 105 is combined. The 2nd composite layer 105 is comprised by making the silica airgel 102 which has a nano-sized porous structure carry on the 2nd fiber 104 of a nonwoven fabric.

第1複合層103を構成している第1繊維101と、第2複合層105を構成している第2繊維104とは、目付量が異なる繊維にて構成されている。目付量とは、単位面積1mあたりに占める繊維の重量である。 The first fibers 101 constituting the first composite layer 103 and the second fibers 104 constituting the second composite layer 105 are composed of fibers having different basis weights. The basis weight is the weight of the fiber per unit area 1 m 2 .

<断熱材100の熱伝導率>
この実施の形態では、ICTの携帯機器などのように筐体内のスペースが限られた電子機器に、断熱材100が使用されている。ここでは、一例としてスマートフォンの断面図を図2に示す。
<Thermal conductivity of heat insulating material 100>
In this embodiment, the heat insulating material 100 is used for an electronic device having a limited space in the housing, such as an ICT portable device. Here, FIG. 2 shows a cross-sectional view of a smartphone as an example.

このスマートフォンでは、上ケース201aと下ケース201bとで囲まれた筐体内部に、液晶パネル202、基板203とそれに設置された発熱部品であるCPU204およびIC部品205、CPU204に接触して配置される放熱材としてのグラファイトシート206が配置されている。この例では2枚の断熱材100が使用されている。これを断熱材100a,100bとする。   In this smartphone, the liquid crystal panel 202, the substrate 203, and the CPU 204 and the IC component 205, which are the heat generating components installed therein, are arranged in contact with the CPU 204 in a housing surrounded by the upper case 201a and the lower case 201b. A graphite sheet 206 as a heat dissipating material is disposed. In this example, two heat insulating materials 100 are used. Let this be the heat insulating materials 100a and 100b.

上ケース201aとグラファイトシート206との間に介装されている断熱材100aは、上ケース201aとグラファイトシート206に密着している。断熱材100aの第1複合層103はグラファイトシート206に密着している。上ケース201aとグラファイトシート206との隙間の厚みは、0.5mm以下が求められている。   The heat insulating material 100 a interposed between the upper case 201 a and the graphite sheet 206 is in close contact with the upper case 201 a and the graphite sheet 206. The first composite layer 103 of the heat insulating material 100 a is in close contact with the graphite sheet 206. The thickness of the gap between the upper case 201a and the graphite sheet 206 is required to be 0.5 mm or less.

下ケース201bと基板203の背面側に実装されたIC部品205との間に介装されている断熱材100bは、IC部品205と下ケース201bに密着している。断熱材100bの第1複合層103はIC部品205に密着している。下ケース201bとグラファイトシート206との隙間の厚みは、0.5mm以下が求められている。   The heat insulating material 100b interposed between the lower case 201b and the IC component 205 mounted on the back side of the substrate 203 is in close contact with the IC component 205 and the lower case 201b. The first composite layer 103 of the heat insulating material 100 b is in close contact with the IC component 205. The thickness of the gap between the lower case 201b and the graphite sheet 206 is required to be 0.5 mm or less.

そこで、0.5mm以下のスペースで使用するという断熱材100の条件からは、断熱材100の熱伝導率は、0.05W/m・K以下が良い。断熱材100の熱伝導率が、0.05W/m・Kより大きいと、発熱部品から発せられた熱の断熱効果が低い。   Therefore, from the condition of the heat insulating material 100 to be used in a space of 0.5 mm or less, the heat conductivity of the heat insulating material 100 is preferably 0.05 W / m · K or lower. When the heat conductivity of the heat insulating material 100 is larger than 0.05 W / m · K, the heat insulating effect of heat generated from the heat-generating component is low.

<第1複合層103の構成>
断熱材100の主体となる部分である第1複合層103は、シリカエアロゲル102の製造過程で、ゲル原料を第1繊維101に含浸させる。その後、ゲル原料を反応させて湿潤ゲルを形成する。最後に、湿潤ゲル表面を疎水化、熱風乾燥することにより得られる。
<Configuration of first composite layer 103>
The first composite layer 103, which is a main part of the heat insulating material 100, impregnates the first fiber 101 with the gel raw material in the manufacturing process of the silica airgel 102. Thereafter, the gel raw material is reacted to form a wet gel. Finally, it is obtained by hydrophobizing the wet gel surface and drying with hot air.

第1繊維101の繊維径は、0.1〜30μmであることが望ましい。第1繊維101の繊維径が30μmより大きくなると、第1繊維101を通じて熱が伝達しやすくなるため、熱伝導率が上昇し、断熱性が悪化してしまうためである。第1繊維101の繊維径が0.1μmより小さくなると、断熱材100に外力が付加された際に、シリカエアロゲルに応力が付加するのを緩和することが出来ず、シリカエアロゲルが破壊されやすくなる。   The fiber diameter of the first fiber 101 is desirably 0.1 to 30 μm. This is because when the fiber diameter of the first fiber 101 is larger than 30 μm, heat is easily transferred through the first fiber 101, so that the thermal conductivity is increased and the heat insulation is deteriorated. When the fiber diameter of the first fiber 101 is smaller than 0.1 μm, when an external force is applied to the heat insulating material 100, it is not possible to relax the stress applied to the silica airgel, and the silica airgel is easily destroyed. .

第1繊維101の目付量は、20〜30g/mであることが望ましい。
第1繊維101の目付量が30g/mより大きくなると、第1繊維101間に充填できるシリカエアロゲル102が少なくなるため、熱伝導率が上昇し、断熱性が悪化してしまうためである。
The basis weight of the first fiber 101 is desirably 20 to 30 g / m 2 .
This is because when the basis weight of the first fibers 101 is larger than 30 g / m 2 , the silica airgel 102 that can be filled between the first fibers 101 is reduced, so that the thermal conductivity is increased and the heat insulation is deteriorated.

また、第1繊維101の目付量が20g/mより小さくなると、断熱材100に外力が付加された際に、シリカエアロゲルに応力が付加するのを緩和することが出来ず、シリカエアロゲルが破壊されやすくなる。 Further, when the basis weight of the first fiber 101 is smaller than 20 g / m 2 , when an external force is applied to the heat insulating material 100, it is not possible to mitigate the stress applied to the silica airgel, and the silica airgel is destroyed. It becomes easy to be done.

第1繊維101の材質としては、無機繊維系のグラスウールやロックウール、天然系の羊毛断熱材やセルロース断熱材、発泡セラミックス、炭化発泡コルク、樹脂系断熱材としてのウレタンフォーム、フェノールフォーム、ポリスチレンフォームなどを利用することができる。これらの中でも、放熱材であるグラファイトシート206との良好な接着性を考慮すれば、樹脂系断熱材がより好ましい。   Examples of the material of the first fiber 101 include inorganic fiber glass wool and rock wool, natural wool heat insulating material and cellulose heat insulating material, foam ceramics, carbonized foam cork, urethane foam, phenol foam, polystyrene foam as resin heat insulating material. Etc. can be used. Among these, a resin-based heat insulating material is more preferable in consideration of good adhesiveness with the graphite sheet 206 as a heat radiating material.

<第2複合層105>
第2複合層105は、断熱性能を極力保持しつつ、第1複合層103からのシリカエアロゲル片の脱離を防止する効果がある。
<Second composite layer 105>
The second composite layer 105 has an effect of preventing the silica airgel pieces from being detached from the first composite layer 103 while maintaining heat insulation performance as much as possible.

第2繊維104の厚みは、0.02mm〜0.05mmが良い。厚みが0.02mmより小さい場合、繊維の目付量の確保が難しい。厚みが0.05mmより大きい場合、熱伝導率が悪化するからである。   The thickness of the second fiber 104 is preferably 0.02 mm to 0.05 mm. When the thickness is smaller than 0.02 mm, it is difficult to ensure the basis weight of the fiber. This is because when the thickness is larger than 0.05 mm, the thermal conductivity is deteriorated.

第2繊維104の繊維径は、第1繊維101の場合と同様の理由で、0.1〜30μmであることが望ましい。
(比較例)
図1に示した実施の形態1とは構成が異なり、機器表面の温度上昇を低く抑えながらも機器内部の発熱部品の熱を放熱することができる断熱材の例を、比較例として図4に示す。この比較例は、シリカエアロゲルシートとグラファイトシートとを積層した複合シートであって、次のようにしてシリカエアロゲル片の脱離を防止している。
The fiber diameter of the second fiber 104 is desirably 0.1 to 30 μm for the same reason as in the case of the first fiber 101.
(Comparative example)
FIG. 4 shows an example of a heat insulating material that is different in configuration from the first embodiment shown in FIG. 1 and that can dissipate heat from heat-generating components inside the device while keeping the temperature rise on the device surface low. Show. This comparative example is a composite sheet in which a silica airgel sheet and a graphite sheet are laminated, and the silica airgel pieces are prevented from being detached as follows.

グラファイト層403と断熱層402の複合シートのグラファイト層403の面が、基板406に実装された発熱部品405に、両面テープ404を介して密着し、複合シートの断熱層402の面が、絶縁フィルム401を介して筐体400に当接している。   The surface of the graphite layer 403 of the composite sheet of the graphite layer 403 and the heat insulating layer 402 is in close contact with the heat-generating component 405 mounted on the substrate 406 via the double-sided tape 404, and the surface of the heat insulating layer 402 of the composite sheet is the insulating film. It is in contact with the housing 400 via 401.

絶縁フィルム401は、シリカエアロゲル片の脱離を防止に対し効果的であるが、熱伝導率が高く断熱効果を低下させる欠点がある。たとえば、上記図2のように、上ケース201a,下ケース201bとCPU204の隙間の厚みが0.5mm以下の場合、0.05mmの絶縁フィルムを用いた場合の熱伝導率は0.08W/m・Kとなり、断熱効果が大きく低下する。   The insulating film 401 is effective for preventing the separation of the silica airgel pieces, but has a drawback that the heat conductivity is high and the heat insulating effect is lowered. For example, as shown in FIG. 2, when the thickness of the gap between the upper case 201a, the lower case 201b and the CPU 204 is 0.5 mm or less, the thermal conductivity when a 0.05 mm insulating film is used is 0.08 W / m.・ It becomes K and the heat insulation effect is greatly reduced.

<シリカエアロゲル102>
次に、実施の形態1の第1繊維101,第2繊維104に担持させるシリカエアロゲルの構造について詳しく説明する。
<Silica airgel 102>
Next, the structure of the silica airgel carried on the first fiber 101 and the second fiber 104 of the first embodiment will be described in detail.

シリカエアロゲル102は、図3に示したように1nm程度の径をもつシリカ1次粒子301が集合して形成された10nm前後の径を持つシリカ2次粒子302が、10〜60nm程度の粒子間距離の空隙303をもつ網目構造の集合体である。   As shown in FIG. 3, the silica airgel 102 is composed of silica primary particles 301 having a diameter of about 1 nm. The silica secondary particles 302 having a diameter of about 10 nm formed between the particles are about 10 to 60 nm. It is an aggregate of a network structure having a gap 303 of distance.

シリカエアロゲル102は、水ガラスやテトラメトキシシランのような金属アルコキシドをゲル原料として、水やアルコールなどの溶媒と必要に応じて触媒を混合することで、溶媒中でゲル原料と反応させ湿潤ゲルを形成し、内部の溶媒を乾燥させたものである。   Silica airgel 102 uses water alkoxide such as water glass or tetramethoxysilane as a gel raw material, and mixes a solvent such as water or alcohol with a catalyst as necessary to react with the gel raw material in the solvent to form a wet gel. It is formed and the solvent inside is dried.

しかしながら、湿潤ゲルを普通に熱風乾燥させたものは、溶媒が乾燥するときの表面張力により、収縮してしまい空隙303を潰してしまい、断熱材として機能しない。従って、溶媒が乾燥するときに表面張力がほとんど働かないように、超臨界乾燥、あるいは湿潤ゲルの表面のシラノール基を、シリル化剤を用いてシリル化することにより疎水化した後に熱風乾燥することが必要になる。   However, when the wet gel is normally dried with hot air, it shrinks due to the surface tension when the solvent dries, crushes the gap 303, and does not function as a heat insulating material. Therefore, so that the surface tension hardly works when the solvent dries, it is supercritical drying, or the silanol group on the surface of the wet gel is hydrophobized by silylation using a silylating agent and then dried with hot air. Is required.

<第2繊維104の目付量と熱伝導率>
第2繊維104の材質としては、第1繊維101と同じように、無機繊維系のグラスウールやロックウール、天然系の羊毛断熱材やセルロース断熱材、発泡セラミックス、炭化発泡コルク、樹脂系断熱材としてのウレタンフォーム、フェノールフォーム、ポリスチレンフォームなどを利用することができる。
<The basis weight and thermal conductivity of the second fiber 104>
As the material of the second fiber 104, as with the first fiber 101, inorganic fiber glass wool or rock wool, natural wool heat insulating material or cellulose heat insulating material, foam ceramics, carbonized foam cork, resin heat insulating material Urethane foam, phenol foam, polystyrene foam, etc. can be used.

第2複合層105中の第2繊維104における目付量の違いによる熱伝導率を下記の表1に示す。   Table 1 below shows the thermal conductivity due to the difference in the basis weight of the second fibers 104 in the second composite layer 105.

図8に目付量と熱伝導率の関係を示す。目付量を20,35,40,45と変化させた場合の表面状態を図5(a)〜図5(d)に示す。図5の拡大倍率は何れも同じで20倍である。 FIG. 8 shows the relationship between the basis weight and the thermal conductivity. Surface states when the basis weight is changed to 20, 35, 40, 45 are shown in FIGS. 5 (a) to 5 (d). The magnifications in FIG. 5 are the same and are 20 times.

目付量が増加するにつれ、繊維間は短く、緻密になる。結果、第2繊維104間に充填できるシリカエアロゲル102が少なくなる。このため、熱伝導率が上昇している。繊維単体での熱伝導率は0.05W/m・Kである。この結果から、繊維単体においても熱伝導率が絶縁フィルム以下であることが判る。上記にように、熱伝導率は0.05W/m・K以下ならよい。   As the basis weight increases, the distance between fibers becomes shorter and denser. As a result, the silica airgel 102 that can be filled between the second fibers 104 is reduced. For this reason, thermal conductivity is rising. The thermal conductivity of the single fiber is 0.05 W / m · K. From this result, it is understood that the thermal conductivity of the single fiber is not more than that of the insulating film. As described above, the thermal conductivity may be 0.05 W / m · K or less.

したがって、第2複合層105は、シリカゲルを含まない繊維単体でも問題はない。つまり、熱伝導率からは、目付量に制限はない。しかし、熱伝導率が低いほど断熱性はよくなるので、第2繊維104にシリカエアロゲルを担持させることが望ましい。   Therefore, there is no problem even if the second composite layer 105 is a single fiber not containing silica gel. That is, the basis weight is not limited from the thermal conductivity. However, the lower the thermal conductivity, the better the heat insulation. Therefore, it is desirable to support the silica airgel on the second fibers 104.

図8からわかるように、目付量24〜34g/mで、熱伝導率は一定である。熱伝導率が変化しない場合、目付量を多くした方が、シリカエアロゲル片の脱離を防げる。よって、34g/m以上53g/m以下の目付量を使用するのが好ましい。 As can be seen from FIG. 8, the thermal conductivity is constant at a basis weight of 24 to 34 g / m 2 . When the thermal conductivity does not change, the silica airgel pieces can be prevented from being detached by increasing the basis weight. Therefore, it is preferable to use a basis weight of 34 g / m 2 or more and 53 g / m 2 or less.

次に、目付量とシリカエアロゲル片の脱離との関係を示す。
<第2繊維104の目付量と発塵の抑制>
図9に目付量とシリカエアロゲル片の脱離数を示す。目付量20g/mの粉落ち数を1として各それぞれのシリカエアロゲル片の脱離数を計測した。
Next, the relationship between the basis weight and the desorption of the silica airgel pieces is shown.
<Weight per unit of second fiber 104 and suppression of dust generation>
FIG. 9 shows the basis weight and the number of desorption of silica airgel pieces. The number of desorptions of each silica airgel piece was measured with the number of powder falling off with a basis weight of 20 g / m 2 as 1.

目付量が大きくなるにつれシリカエアロゲル片の脱離数は、減少している。
目付量の増加に伴い、シリカエアロゲル片の脱離数が減少する理由として、図5(a)〜図5(d)に示したように目付量の増加に伴い、シリカエアロゲル片のサイズも小さくなり繊維と絡み合う構造となるためである。
As the basis weight increases, the number of detached silica airgel pieces decreases.
As the reason for the decrease in the number of detached silica airgel pieces as the basis weight increases, the size of the silica airgel pieces decreases as the basis weight increases, as shown in FIGS. 5 (a) to 5 (d). This is because the structure becomes intertwined with the fibers.

第1繊維101と第2繊維104の目付量を変える効果について説明する。
第1複合層103の断熱特性を向上させるには第1繊維101の目付量を少なくし、シリカエアロゲルを増加させるほど断熱特性は向上する。一方、シリカエアロゲルの増加に伴い機械的強度が低下しシリカエアロゲル片が脱離する欠点がある。そこで、第2繊維104の目付量を増加させることでシリカエアロゲルが第2繊維104に絡まりシリカエアロゲル片の脱離を抑制する効果がある。
The effect of changing the basis weight of the first fiber 101 and the second fiber 104 will be described.
In order to improve the heat insulation property of the first composite layer 103, the heat insulation property is improved as the basis weight of the first fiber 101 is decreased and the silica airgel is increased. On the other hand, there is a drawback that the mechanical strength is reduced with the increase of silica airgel and the silica airgel pieces are detached. Therefore, by increasing the basis weight of the second fiber 104, the silica airgel is entangled with the second fiber 104 and has an effect of suppressing the separation of the silica airgel piece.

<断熱材100の製造方法>
断熱材100の製造方法の一例を図6に示す。
はじめに、図6(a)に示すように、目付量の異なる第1繊維101(目付量12g/m、厚み0.07mm、寸法12cm□)と第2繊維104(目付量34g/m、厚み0.04mm、寸法12cm□)を合わせ、第1繊維101を下にして水槽604のゾル液602に浸漬してゾル液602を含浸させる。
<The manufacturing method of the heat insulating material 100>
An example of the manufacturing method of the heat insulating material 100 is shown in FIG.
First, as shown in FIG. 6 (a), the first fibers 101 having different basis weights (basis weight 12g / m 2 , thickness 0.07mm, dimensions 12cm □) and second fibers 104 (weight per unit area 34g / m 2) , The thickness is 0.04 mm and the dimensions are 12 cm □), and the first fiber 101 is immersed downward in the sol solution 602 of the water tank 604 to impregnate the sol solution 602.

ゾル液602に浸漬させる場合には、第2繊維104を下にしてゾル液602に浸漬するよりも第1繊維101を下にしてゾル液602に浸漬させた方が含浸時間を短縮できる。   When immersed in the sol solution 602, the impregnation time can be shortened by immersing the first fiber 101 downward in the sol solution 602 rather than immersing in the sol solution 602 with the second fiber 104 facing down.

または、図6(b)に示すようにディスペンサ601を用いてゾル液602を供給する場合には、第2繊維104を下にして含浸させるとよい。
図6(a)と図6(b)の何れの場合にも、ゾル液602は、高モル珪酸ソーダ(珪酸水溶液、Si濃度14%)に触媒として濃塩酸(12N)を1.4wt%添加し攪拌することにより調合する。
Or when supplying the sol liquid 602 using the dispenser 601 as shown in FIG.6 (b), it is good to impregnate the 2nd fiber 104 below.
In both cases of FIG. 6A and FIG. 6B, the sol solution 602 is obtained by adding 1.4 wt% of concentrated hydrochloric acid (12N) as a catalyst to high molar sodium silicate (silicic acid aqueous solution, Si concentration 14%). And then mix by stirring.

図6(a)と図6(b)の何れの場合にも、ゾル液602を含浸させた後に、室温23℃で約20分間放置し、ゾルをゲル化させる。このとき、ゲル化を促進し、時間短縮を行うため、ヒーターなどで約50℃〜130℃に加熱させてもよい。次に、図6(c)に示したように2軸ロール603等の間を通過させて所望の厚みに形成する。   6A and 6B, after impregnating the sol solution 602, the sol is allowed to stand for about 20 minutes at a room temperature of 23 ° C. to gel the sol. At this time, in order to accelerate the gelation and reduce the time, it may be heated to about 50 ° C. to 130 ° C. with a heater or the like. Next, as shown in FIG.6 (c), it passes between biaxial rolls 603 grade | etc., And forms in desired thickness.

次に、容器に、乾燥防止のために純水を注ぎ、80℃の恒温槽に12時間入れて、シラノールの脱水縮合反応を促進することにより、シリカ粒子を成長させ、多孔質構造を形成する。   Next, pure water is poured into the container to prevent drying and placed in a thermostatic bath at 80 ° C. for 12 hours to promote silanol dehydration condensation reaction to grow silica particles to form a porous structure. .

次に、ゲルシートを塩酸(6〜12N)に浸漬後、常温23℃で1時間放置してゲルシートの中に塩酸を取り込む。
次に、ゲルシートを、例えばシリル化剤であるオクタメチルトリシロキサンと2−プロパノール(IPA)の混合液に浸漬させて、55℃の恒温槽に入れて2時間反応させる。トリメチルシロキサン結合が形成され始めると、ゲルシートから塩酸が排出され、上層がトリシロキサン、下層が塩酸水に2液分離する。
Next, after immersing the gel sheet in hydrochloric acid (6 to 12N), the gel sheet is left at room temperature of 23 ° C. for 1 hour to incorporate hydrochloric acid into the gel sheet.
Next, the gel sheet is immersed in, for example, a mixed solution of octamethyltrisiloxane, which is a silylating agent, and 2-propanol (IPA), and placed in a constant temperature bath at 55 ° C. for 2 hours. When the trimethylsiloxane bond starts to form, hydrochloric acid is discharged from the gel sheet, and the upper layer is separated into trisiloxane and the lower layer is separated into hydrochloric acid water.

次に、ゲルシートを150℃の恒温槽に移して2時間乾燥させることにより、第1繊維101、第2繊維104のように、ナノサイズの多孔質構造を有する繊維にシリカエアロゲルを坦持させた第1複合層103および第2複合層105を有する断熱材100ができる。   Next, the gel sheet was transferred to a constant temperature bath at 150 ° C. and dried for 2 hours, so that the silica airgel was supported on the fibers having the nano-sized porous structure such as the first fibers 101 and the second fibers 104. A heat insulating material 100 having the first composite layer 103 and the second composite layer 105 is formed.

第1複合層103と第2複合層105のシートを作製する方法として、以下の別の方法がある。
図7のように第1複合層103の第1繊維101に、第1繊維101の嵩密度以上のゾル液602を含浸させる。その後、ゲル化が進行すると同時に、この第1繊維101に、シリカエアロゲル102またはゾル液602を含まない第2繊維104を重ね合わせ、ゾルをゲル化させ、2軸ロール603の間を通過させて、所望の厚みとする。
As a method for producing the sheets of the first composite layer 103 and the second composite layer 105, there is another method described below.
As shown in FIG. 7, the first fiber 101 of the first composite layer 103 is impregnated with a sol liquid 602 having a bulk density higher than that of the first fiber 101. Thereafter, at the same time as the gelation progresses, the first fiber 101 is overlaid with the second fiber 104 that does not contain the silica airgel 102 or the sol solution 602 to gel the sol, and pass between the biaxial rolls 603. And a desired thickness.

上記により、本発明の特徴である断熱材100は、ナノサイズの多孔質構造を有する繊維にシリカエアロゲルを坦持させた第1複合層103の表面に、目付量が第1複合層103とは異なる第2複合層105を有する断熱材を製作することができる。   As described above, the heat insulating material 100, which is a feature of the present invention, has a basis weight of the first composite layer 103 on the surface of the first composite layer 103 in which silica aerogel is supported on fibers having a nano-sized porous structure. A thermal insulation with a different second composite layer 105 can be made.

これにより、シリカエアロゲルの構造を保持し、熱伝導率を悪化させないまま、断熱材表面においてシリカエアロゲル片が脱離・破壊し、大量のシリカエアロゲル微粉が電子機器内に飛散することを抑制することができる。   This keeps the structure of the silica airgel and prevents the silica airgel fragments from detaching and destroying on the surface of the heat insulating material without deteriorating the thermal conductivity, and preventing a large amount of silica airgel fine particles from scattering in the electronic device. Can do.

なお、第1複合層103と第2複合層105の間の接着は、両層に位置するシリカエアロゲル102によって連結されている。
(実施の形態2)
実施の形態1では第1複合層103の片側の表面に第2複合層105が形成されていたが、図10に示すように第1複合層103の両側の表面に第2複合層105を形成することもできる。
The adhesion between the first composite layer 103 and the second composite layer 105 is connected by the silica airgel 102 located in both layers.
(Embodiment 2)
In the first embodiment, the second composite layer 105 is formed on one surface of the first composite layer 103, but the second composite layer 105 is formed on both surfaces of the first composite layer 103 as shown in FIG. You can also

この場合の製造方法は、目付量が異なる第1繊維101と第2繊維104のうちの第1繊維101を中央に挟んで両面に第2繊維104を積層した積層体を作成し、これをゾル液に浸漬し、前記積層体に含浸したゾル液をゲル化させた後に所望の厚みに成形し、前記積層体の中のシリカ粒子を成長させた多孔質構造を形成してシリカエアロゾルを担持させる。   The manufacturing method in this case is to create a laminate in which the first fibers 101 and the second fibers 104 having different basis weights are sandwiched between the first fibers 101 and the second fibers 104 are laminated on both sides, and this is used as a sol. Immerse in the solution, gel the sol solution impregnated in the laminate, shape it to a desired thickness, form a porous structure in which the silica particles in the laminate are grown, and support the silica aerosol .

または別の方法として、目付量が異なる第2繊維104と第1繊維101のうちの第1繊維101に嵩密度以上のゾル液を含浸させ、ゾル液のゲル化が進行中の第1繊維101を中央にしてその両側に、シリカエアロゾルを担持していない第2繊維104を重ね合わせ所望の厚みに成形して、第2繊維104に第1繊維101のゾル液を含浸させ、第2繊維104と第1繊維101の中のシリカ粒子を成長させた多孔質構造を形成してシリカエアロゾルを担持させて作成することもできる。   As another method, the first fibers 101 of the second fibers 104 and the first fibers 101 having different basis weights are impregnated with a sol solution having a bulk density or higher, and the first fibers 101 in which the gelation of the sol solution is in progress. The second fibers 104 that do not carry silica aerosol are overlapped on both sides and formed to have a desired thickness, and the second fibers 104 are impregnated with the sol solution of the first fibers 101. It is also possible to form a porous structure in which silica particles in the first fiber 101 are grown and to carry a silica aerosol.

この図10の断熱材100を、図2に示したスマートフォンの断熱材100a,100bとして使用できる。   The heat insulating material 100 of FIG. 10 can be used as the heat insulating materials 100a and 100b of the smartphone shown in FIG.

本発明の製造方法によって製造される断熱材は、熱伝導率を保持したまま表面のシリカエアロゲル片の脱離を抑制できるものであって、広く各種の電子機器に利用することができる。情報機器、携帯電話機、ディスプレイなど、発熱を伴う製品へ応用できる。   The heat insulating material manufactured by the manufacturing method of the present invention can suppress detachment of the silica airgel pieces on the surface while maintaining the thermal conductivity, and can be widely used for various electronic devices. It can be applied to products that generate heat, such as information equipment, mobile phones, and displays.

100 断熱材
101 第1繊維
102 シリカエアロゲル
103 第1複合層
104 第2繊維
105 第2複合層
201a 上ケース
201b 下ケース
202 液晶パネル
203 基板
204 CPU
205 IC部品
206 グラファイトシート
301 シリカ1次粒子
302 シリカ2次粒子
303 空隙
601 ディスペンサ
602 ゾル液
603 2軸ロール
DESCRIPTION OF SYMBOLS 100 Heat insulating material 101 1st fiber 102 Silica airgel 103 1st composite layer 104 2nd fiber 105 2nd composite layer 201a Upper case 201b Lower case 202 Liquid crystal panel 203 Substrate 204 CPU
205 IC component 206 Graphite sheet 301 Silica primary particle 302 Silica secondary particle 303 Void 601 Dispenser 602 Sol solution 603 Biaxial roll

Claims (8)

第1繊維にシリカエアロゲルを坦持させた第1複合層と、
第2繊維にシリカエアロゲルを坦持させた第2複合層と
の積層体であり、
前記第1繊維と前記第2繊維とで、目付量が異なる、
断熱材。
A first composite layer in which silica aerogel is supported on the first fibers;
It is a laminate with a second composite layer in which silica aerogel is supported on the second fiber,
The basis weight is different between the first fiber and the second fiber.
Insulation.
前記第2繊維の目付量が前記第1繊維よりも大きく、前記第2繊維の目付量が34g/m以上53g/m以下である、
請求項1記載の断熱材。
The basis weight of the second fiber is larger than the first fiber, and the basis weight of the second fiber is 34 g / m 2 or more and 53 g / m 2 or less.
The heat insulating material according to claim 1.
前記第1複合層の厚みが前記第2複合層より厚く、前記第2複合層の厚みが0.02mm〜0.05mmであることを特徴とする、
請求項1または2に記載の断熱材。
The thickness of the first composite layer is thicker than the second composite layer, and the thickness of the second composite layer is 0.02 mm to 0.05 mm,
The heat insulating material according to claim 1 or 2.
前記第1繊維と前記第2繊維は、繊維径が0.1〜30μmであることを特徴とする、
請求項1〜3のいずれか1項に記載の断熱材。
The first fiber and the second fiber have a fiber diameter of 0.1 to 30 μm,
The heat insulating material according to any one of claims 1 to 3.
発熱箇所と筐体の間に、放熱材と請求項1〜4のいずれか1項記載の前記断熱材が積層して配置されている、
機器。
Between the heat generation location and the housing, a heat dissipating material and the heat insulating material according to any one of claims 1 to 4 are stacked and disposed.
machine.
目付量が異なる第1繊維と第2繊維のうちの第1繊維の少なくとも片面に第2繊維を積層した積層体を、ゾル液に浸漬し、
前記積層体に含浸したゾル液をゲル化させた後に所望の厚みに成形し、
前記積層体の中のシリカ粒子を成長させた多孔質構造を形成し、これにシリカエアロゾルを担持させる、
断熱材の製造方法。
A laminate in which the second fibers are laminated on at least one side of the first fibers and the first fibers having different basis weights is immersed in a sol solution,
After the sol solution impregnated in the laminate is gelled, it is molded to a desired thickness,
Forming a porous structure in which the silica particles in the laminate are grown, and supporting silica aerosol on the porous structure;
A method of manufacturing a heat insulating material.
目付量が異なる第1繊維と第2繊維のうちの目付量が小さい方の第1繊維に嵩密度以上のゾル液を含浸させ、
ゾル液のゲル化が進行中の第1繊維の少なくとも片面に、シリカエアロゾルを含まない第2繊維を重ね合わせ所望の厚みに成形して、第2繊維に第2繊維のゾル液を含浸させ、
第2繊維と第1繊維の中のシリカ粒子を成長させた多孔質構造を形成し、これにシリカエアロゾルを担持させる、
断熱材の製造方法。
Impregnating a first fiber having a smaller basis weight of the first fiber and the second fiber having a different basis weight with a sol solution having a bulk density or more,
At least one surface of the first fiber in which gelation of the sol solution is in progress is overlaid with a second fiber not containing silica aerosol to have a desired thickness, and the second fiber is impregnated with the sol solution of the second fiber,
Forming a porous structure in which silica particles in the second fiber and the first fiber are grown, and supporting the silica aerosol on the porous structure;
A method of manufacturing a heat insulating material.
前記第2繊維の目付量が前記第1繊維よりも大きく、第2繊維として目付量が34g/m以上53g/m以下の繊維を使用する、
請求項6または請求項7に記載の断熱材の製造方法。
The basis weight of the second fiber is larger than the first fiber, and a fiber having a basis weight of 34 g / m 2 or more and 53 g / m 2 or less is used as the second fiber.
The manufacturing method of the heat insulating material of Claim 6 or Claim 7.
JP2015156537A 2015-08-07 2015-08-07 Insulation material and equipment using it and manufacturing method of insulation material Active JP6771195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015156537A JP6771195B2 (en) 2015-08-07 2015-08-07 Insulation material and equipment using it and manufacturing method of insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015156537A JP6771195B2 (en) 2015-08-07 2015-08-07 Insulation material and equipment using it and manufacturing method of insulation material

Publications (2)

Publication Number Publication Date
JP2017036745A true JP2017036745A (en) 2017-02-16
JP6771195B2 JP6771195B2 (en) 2020-10-21

Family

ID=58047415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015156537A Active JP6771195B2 (en) 2015-08-07 2015-08-07 Insulation material and equipment using it and manufacturing method of insulation material

Country Status (1)

Country Link
JP (1) JP6771195B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140554A (en) * 2017-02-28 2018-09-13 パナソニックIpマネジメント株式会社 Composite material and method of producing the same
DE112017001590T5 (en) 2016-03-28 2018-12-13 Denso Corporation POWER CONVERSION DEVICE
JP2020078896A (en) * 2018-11-13 2020-05-28 住友理工株式会社 Thermal insulation structure and manufacturing method thereof
US11072145B2 (en) 2016-01-27 2021-07-27 Aspen Aerogels, Inc. Laminates comprising reinforced aerogel composites
CN113614983A (en) * 2019-03-27 2021-11-05 三洋电机株式会社 Power supply device and electric vehicle
CN114634331A (en) * 2022-03-15 2022-06-17 重庆再升科技股份有限公司 Aerogel modified glass fiber thermal insulation board and preparation method thereof
CN114801395A (en) * 2022-05-24 2022-07-29 巩义市泛锐熠辉复合材料有限公司 Low-dust aerogel product and preparation method thereof
US11547977B2 (en) 2018-05-31 2023-01-10 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions
US11842945B2 (en) 2020-10-30 2023-12-12 Samsung Electronics Co., Ltd. Chip on film package and display apparatus including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112830760B (en) * 2021-01-20 2021-11-26 湖南荣岚智能科技有限公司 Heat-insulating and high-temperature-resistant aerogel gradient composite material and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834678A (en) * 1994-07-27 1996-02-06 Matsushita Electric Works Ltd Aerogel panel
JP2002333092A (en) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd Fiber and fine particle composite heat-insulating material
JP2002339217A (en) * 2001-05-09 2002-11-27 Kanebo Ltd Heat insulating material
JP2004517222A (en) * 2000-12-22 2004-06-10 アスペン・エアロジエルズ・インコーポレーテツド Airgel and fiber bat composite
JP2009197362A (en) * 2008-02-22 2009-09-03 Unitika Textiles Ltd Bamboo fiber sheet and method for producing the same
EP2281961A1 (en) * 2009-06-25 2011-02-09 Knauf Insulation Technology GmbH Aerogel containing composite materials
JP2011162902A (en) * 2010-02-08 2011-08-25 Nichias Corp Heat insulation material and method for producing the same
US20130344279A1 (en) * 2012-06-26 2013-12-26 Cabot Corporation Flexible insulating structures and methods of making and using same
JP2014508869A (en) * 2011-01-17 2014-04-10 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Composite insulation system
JP2015048543A (en) * 2013-08-30 2015-03-16 アキレス株式会社 Fiber substrate and heat insulation mat including fiber substrate
JP2015084402A (en) * 2013-09-17 2015-04-30 パナソニックIpマネジメント株式会社 Composite sheet

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834678A (en) * 1994-07-27 1996-02-06 Matsushita Electric Works Ltd Aerogel panel
JP2004517222A (en) * 2000-12-22 2004-06-10 アスペン・エアロジエルズ・インコーポレーテツド Airgel and fiber bat composite
JP2002333092A (en) * 2001-05-09 2002-11-22 Kanegafuchi Chem Ind Co Ltd Fiber and fine particle composite heat-insulating material
JP2002339217A (en) * 2001-05-09 2002-11-27 Kanebo Ltd Heat insulating material
JP2009197362A (en) * 2008-02-22 2009-09-03 Unitika Textiles Ltd Bamboo fiber sheet and method for producing the same
EP2281961A1 (en) * 2009-06-25 2011-02-09 Knauf Insulation Technology GmbH Aerogel containing composite materials
JP2011162902A (en) * 2010-02-08 2011-08-25 Nichias Corp Heat insulation material and method for producing the same
JP2014508869A (en) * 2011-01-17 2014-04-10 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Composite insulation system
US20130344279A1 (en) * 2012-06-26 2013-12-26 Cabot Corporation Flexible insulating structures and methods of making and using same
JP2015528071A (en) * 2012-06-26 2015-09-24 キャボット コーポレイションCabot Corporation Flexible insulating structure and method for making and using the same
JP2015048543A (en) * 2013-08-30 2015-03-16 アキレス株式会社 Fiber substrate and heat insulation mat including fiber substrate
JP2015084402A (en) * 2013-09-17 2015-04-30 パナソニックIpマネジメント株式会社 Composite sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072145B2 (en) 2016-01-27 2021-07-27 Aspen Aerogels, Inc. Laminates comprising reinforced aerogel composites
US12103291B2 (en) 2016-01-27 2024-10-01 Aspen Aerogels, Inc. Laminates comprising reinforced aerogel composites
DE112017001590T5 (en) 2016-03-28 2018-12-13 Denso Corporation POWER CONVERSION DEVICE
JP2018140554A (en) * 2017-02-28 2018-09-13 パナソニックIpマネジメント株式会社 Composite material and method of producing the same
US12005413B2 (en) 2018-05-31 2024-06-11 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions
US11547977B2 (en) 2018-05-31 2023-01-10 Aspen Aerogels, Inc. Fire-class reinforced aerogel compositions
JP2020078896A (en) * 2018-11-13 2020-05-28 住友理工株式会社 Thermal insulation structure and manufacturing method thereof
JP7223557B2 (en) 2018-11-13 2023-02-16 住友理工株式会社 Thermal insulation structure and manufacturing method thereof
CN113614983A (en) * 2019-03-27 2021-11-05 三洋电机株式会社 Power supply device and electric vehicle
US11842945B2 (en) 2020-10-30 2023-12-12 Samsung Electronics Co., Ltd. Chip on film package and display apparatus including the same
CN114634331B (en) * 2022-03-15 2023-05-16 重庆再升科技股份有限公司 Aerogel modified glass fiber thermal insulation board and preparation method thereof
CN114634331A (en) * 2022-03-15 2022-06-17 重庆再升科技股份有限公司 Aerogel modified glass fiber thermal insulation board and preparation method thereof
CN114801395A (en) * 2022-05-24 2022-07-29 巩义市泛锐熠辉复合材料有限公司 Low-dust aerogel product and preparation method thereof

Also Published As

Publication number Publication date
JP6771195B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
JP6771195B2 (en) Insulation material and equipment using it and manufacturing method of insulation material
JP6600808B2 (en) Insulating material, manufacturing method thereof, and electronic equipment using the insulating material
JP6361022B2 (en) Composite sheet
KR101855033B1 (en) Heat insulation sheet, electronic equipment using same, and method for manufacturing heat insulation sheet
JP6393902B2 (en) Composite materials and electronics
US11905647B2 (en) Thermal insulation sheet and method for producing the same, and electronic device and battery unit
KR100909732B1 (en) Aerogel Composites with Fibrous Betting
US9937683B2 (en) Composite sheet, production method thereof and electronic apparatus using the same
WO2018211906A1 (en) Heat-insulating material and heat-insulating structure employing same
JP6330974B2 (en) Airgel composite material
KR101365657B1 (en) Low Density Insulation of Inorganic Powder with Supporting Structure Using Expended Perlite, its Manufacturing Method and Making Machine
CN104478394A (en) Preparation method of fiber felt enhanced silica aerogel composite panel
JP2017215014A (en) Heat insulating material and apparatus using the same
CN106660317A (en) Composite sheet and manufacturing method therefor
Dong et al. 3D electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation
JP2018140554A (en) Composite material and method of producing the same
CN107640955A (en) Heat insulating material and its manufacture method
JP6550599B2 (en) Composite sheet
CN106747266B (en) Aeroge sandwich and its preparation method and application includes its structure or device
TW202140629A (en) Method for producing a heat insulating material composed of a hydrophobic aerogel and the application thereof
JP2019138436A (en) Heat insulation sheet, method for manufacturing the same and apparatus using the same
Kang et al. Phase change composites with ultra-high through-plane thermal conductivity achieved by vertically-aligned graphite film and double-shelled microcapsules
JP2024092799A (en) Electronic apparatus
KR20240045793A (en) Composite Filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191030

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191106

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200124

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200128

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200602

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200714

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200818

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R151 Written notification of patent or utility model registration

Ref document number: 6771195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151