[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016225664A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2016225664A
JP2016225664A JP2016197770A JP2016197770A JP2016225664A JP 2016225664 A JP2016225664 A JP 2016225664A JP 2016197770 A JP2016197770 A JP 2016197770A JP 2016197770 A JP2016197770 A JP 2016197770A JP 2016225664 A JP2016225664 A JP 2016225664A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
transmitting member
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016197770A
Other languages
Japanese (ja)
Other versions
JP6222325B2 (en
Inventor
佐野 雅彦
Masahiko Sano
雅彦 佐野
俊介 湊
Shunsuke Minato
俊介 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2016197770A priority Critical patent/JP6222325B2/en
Publication of JP2016225664A publication Critical patent/JP2016225664A/en
Application granted granted Critical
Publication of JP6222325B2 publication Critical patent/JP6222325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device capable of achieving light emission of high luminance with high luminous efficiency, by increasing the optical coupling efficiency from a light-emitting element to a light transmitting member.SOLUTION: A light-emitting device includes: a light transmitting member having the light-emitting surface and the light-receiving surface of the light-emitting device; a light-emitting element including an emission surface facing the light-receiving surface, and being bonded to the light transmitting member; and a light guide member provided to extend from the light-emitting element surface to the light transmitting member surface, and guiding the emission light from the light-emitting element to the light transmitting member. The light guide member has: a junction region for bonding the emission surface of the light-emitting element and the light-receiving surface of the light transmitting member while facing each other; and a first coating region extending from the junction region, and covering the surface of one of the light-emitting element and light transmitting member projecting outward from the junction region. A first reflection surface for reflecting the emission light to the light transmitting member side is provided on the outer surface of the first coating region.SELECTED DRAWING: Figure 1

Description

本発明は、発光装置に関し、特に発光効率を高める導光部材を備える発光装置に関する。   The present invention relates to a light emitting device, and more particularly to a light emitting device including a light guide member that increases luminous efficiency.

近年、光源として発光ダイオード(Light Emitting Diode:LED)やレーザダイオード(Laser Diode:LD)等の半導体発光素子を搭載した発光装置は、各種の照明や表示装置に利用されている。特に、これら半導体発光素子は消費電力が低く長寿命であるため、蛍光灯に代替可能な次世代照明の光源として注目を集めており、さらなる発光出力および発光効率の向上が求められている。また、車のヘッドライトなどの投光照明のように、配光特性が良く高輝度な光源も求められている。   2. Description of the Related Art In recent years, light-emitting devices equipped with semiconductor light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) as light sources have been used for various lighting and display devices. In particular, since these semiconductor light emitting devices have low power consumption and long life, they are attracting attention as light sources for next-generation illumination that can be replaced with fluorescent lamps, and further improvements in light emission output and light emission efficiency are required. There is also a need for a light source with good light distribution characteristics and high brightness, such as floodlights such as car headlights.

例えば特許文献1には、LEDチップに光透過性の接着剤により蛍光体チップを固着したLEDチップ組立体を、リードフレームのカップ部や絶縁性基板上に実装し、光散乱剤を混合した保護層や封止樹脂により該LEDチップ組立体を封止した発光装置が提案されている。   For example, Patent Document 1 discloses a protection in which an LED chip assembly in which a phosphor chip is fixed to an LED chip with a light-transmitting adhesive is mounted on a cup portion or an insulating substrate of a lead frame and a light scattering agent is mixed. A light emitting device in which the LED chip assembly is sealed with a layer or a sealing resin has been proposed.

特開2002−141559号公報JP 2002-141559 A 特開2007−019096号公報JP 2007-019096 A 特開2002−305328号公報JP 2002-305328 A 特開平10−151794号公報JP-A-10-151794 特開2009−043764号公報JP 2009-043764 A 特開2008−300621号公報JP 2008-300621 A 特開2008−277592号公報JP 2008-277592 A

しかしながら、引用文献1に記載された発光装置において、LEDチップ上に蛍光体チップを接着する光透過性の接着剤が、蛍光体チップから直接あるいは発光素子の側面を伝って、リードフレームのカップ部や絶縁性基板まで垂れる虞があり、LEDチップや蛍光体チップからの出射光が該接着剤により導光されて、絶縁性基板やその上に設けられた電極やリードフレームの表面で吸収されることで、発光装置の光出力が低下するという問題があり、また発光素子や蛍光体チップと、上記基板、電極などの表面とを被覆する透光性樹脂にも同様の問題がある。また、このような透光性の部材による光経路は小さく、狭いものであっても発光装置の特性に及ぼす影響は大きい。さらに、引用文献1のLEDチップと蛍光体チップは、接着剤によりその対向面同士が固着されているに過ぎず、LEDチップから放出される光の蛍光体チップへの結合効率が低いこと、両者の外形の整合が悪い場合に輝度むら、色むらや指向性が悪化することが懸念される。   However, in the light-emitting device described in the cited document 1, the light-transmitting adhesive that adheres the phosphor chip onto the LED chip is directly from the phosphor chip or through the side surface of the light-emitting element, and the lead frame cup portion. The light emitted from the LED chip or the phosphor chip is guided by the adhesive and absorbed by the surface of the insulating substrate, the electrode provided on the insulating substrate, or the lead frame. As a result, there is a problem that the light output of the light emitting device is reduced, and the same problem exists in the translucent resin that covers the surface of the light emitting element or phosphor chip and the substrate, electrode, or the like. Moreover, the light path by such a translucent member is small, and even if it is narrow, the influence on the characteristics of the light emitting device is large. Furthermore, the LED chip and the phosphor chip of the cited document 1 are only bonded to each other by an adhesive, and the coupling efficiency of light emitted from the LED chip to the phosphor chip is low. There is a concern that luminance unevenness, color unevenness, and directivity deteriorate when the external shape alignment is poor.

本発明は、上記課題に鑑みてなされたものであり、その目的は、発光素子から出射される光の損失を低減してその利用効率を高め、発光素子から光透過部材への光結合効率を高め、発光効率、輝度を高められる発光装置を提供することである。   The present invention has been made in view of the above problems, and its purpose is to reduce the loss of light emitted from the light emitting element to increase its utilization efficiency, and to improve the optical coupling efficiency from the light emitting element to the light transmitting member. It is to provide a light emitting device capable of enhancing the luminous efficiency and luminance.

本発明に係る発光装置は、下記(1)〜(15)の構成により、上記目的を達成することができる。
(1) 発光装置の発光面と受光面を有する光透過部材と、該受光面に対向する出射面を備えて、前記光透過部材に接合される発光素子と、前記発光素子表面から前記光透過部材表面まで延在して設けられて、前記発光素子からの出射光を前記光透過部材に導光する導光部材と、を備え、前記導光部材は、前記発光素子の出射面と前記光透過部材の受光面を互いに対向させて接合する接合領域と、前記接合領域より延在して、該接合領域より外側に突出された前記発光素子及び光透過部材の一方の表面を被覆する第1の被覆領域と、を有すると共に、前記出射光を前記光透過部材側に反射させる第1の反射面が、前記第1の被覆領域の外表面に設けられている発光装置。
(2) 前記発光装置は、光反射材料を有する被覆部材を備え、該被覆部材が、前記導光部材の表面を覆い、前記発光面を露出させて前記発光素子及び光透過部材の表面を被覆する上記(1)に記載の発光装置。
(3) 前記光透過部材は、前記発光素子の出射光で励起される波長変換部材である上記(1)又は(2)に記載の発光装置。
(4) 前記第1の被覆領域は、前記発光素子及び光透過部材の一方の前記突出表面と他方の側面を被覆し、前記第1の反射面は、前記側面に対向して設けられている上記(1)乃至(3)のいずれかに記載の発光装置。
(5) 前記被覆部材は、前記他方の側面を第1の被覆領域の導光部材を介して該表面を覆い、該導光部材から露出された前記発光素子又は光透過部材の側面の表面を覆う上記(4)に記載の発光装置。
(6) 前記光透過部材の受光面の一部が前記出射面より外側に突出しており、前記第1の反射面は、前記発光素子の側面から前記受光面側に傾斜した傾斜面である上記(1)乃至(5)のいずれかに記載の発光装置。
(7) 前記光透過部材の受光面が、前記発光素子の出射面より大きく、該出射面を内包する上記(6)に記載の発光装置。
(8) 前記発光素子の出射面の一部が該受光面より外側に突出しており、前記第1の反射面は、前記光透過部材の側面から前記出射面側に傾斜した傾斜面である上記(1)乃至(5)のいずれかに記載の発光装置。
(9) 前記発光素子の出射面が、前記光透過部材の受光面より大きく、該受光面を内包する上記(8)に記載の発光装置。
(10) 前記発光素子が互いに離間されて、前記光透過部材の受光面側に複数接合されており、前記導光部材は、前記離間された発光素子に挟まれた前記受光面の一部を前記接合領域から延在して被覆する第2の被覆領域を有すると共に、前記隣接する発光素子からの出射光をそれぞれ前記受光面側に反射させる第2の反射面が、前記第2の被覆領域の外表面に設けられている上記(1)乃至(9)のいずれかに記載の発光装置。
(11) 前記第2の被覆領域が、前記離間された発光素子の互いに対向する側面を被覆する上記(10)に記載の発光装置。
(12) 前記複数の発光素子は、少なくとも1組が該出射面から前記光透過部材の受光面までの距離が互いに異なる上記(10)又は(11)に記載の発光装置。
(13) 前記発光素子が、半導体層と、該半導体層より出射面側の基板とを有し、前記導光部材が、前記基板の側面まで延在して覆い、前記半導体側面を露出させている上記(1)乃至(12)のいずれかに記載の発光装置。
(14) 前記発光装置は、光反射性材料を含有し、前記発光面を露出させて、前記発光素子及び前記光透過部材の一部を被覆する被覆部材を備え、前記第1の反射面又は第2の反射面は、前記導光部材と前記被覆部材との界面に設けられている上記(1)乃至(13)のいずれに記載の発光装置。
(15) 前記第1の反射面又は第2の反射面は、前記側面に向かって凸な凸曲面である上記(1)乃至(14)のいずれかに記載の発光装置。
The light emitting device according to the present invention can achieve the above object by the following configurations (1) to (15).
(1) A light-transmitting member having a light-emitting surface and a light-receiving surface of a light-emitting device, a light-emitting element that includes an output surface facing the light-receiving surface, and is bonded to the light-transmitting member; A light guide member that extends to the surface of the member and guides the light emitted from the light emitting element to the light transmitting member, wherein the light guide member includes the light exit surface of the light emitting element and the light. A joining region that joins the light-receiving surfaces of the transmissive member facing each other, and a first portion that extends from the joining region and covers one surface of the light emitting element and the light transmissive member that protrudes outward from the joining region. And a first reflective surface that reflects the emitted light toward the light transmitting member, provided on an outer surface of the first covered region.
(2) The light emitting device includes a covering member having a light reflecting material, and the covering member covers the surface of the light guide member and exposes the light emitting surface to cover the surfaces of the light emitting element and the light transmitting member. The light emitting device according to (1) above.
(3) The light-emitting device according to (1) or (2), wherein the light transmission member is a wavelength conversion member that is excited by light emitted from the light-emitting element.
(4) The first covering region covers one protruding surface and the other side surface of the light emitting element and the light transmitting member, and the first reflecting surface is provided to face the side surface. The light emitting device according to any one of (1) to (3) above.
(5) The covering member covers the surface of the other side surface through the light guide member of the first covering region, and covers the surface of the side surface of the light emitting element or the light transmitting member exposed from the light guide member. The light emitting device according to (4), wherein the light emitting device is covered.
(6) A part of the light receiving surface of the light transmitting member protrudes outward from the emission surface, and the first reflecting surface is an inclined surface inclined from the side surface of the light emitting element toward the light receiving surface side. (1) The light-emitting device in any one of (5).
(7) The light emitting device according to (6), wherein a light receiving surface of the light transmitting member is larger than an emission surface of the light emitting element and includes the emission surface.
(8) A part of the emission surface of the light emitting element protrudes outward from the light receiving surface, and the first reflection surface is an inclined surface inclined from the side surface of the light transmission member to the emission surface side. (1) The light-emitting device in any one of (5).
(9) The light emitting device according to (8), wherein an emission surface of the light emitting element is larger than a light receiving surface of the light transmitting member and includes the light receiving surface.
(10) A plurality of the light emitting elements are separated from each other and bonded to a light receiving surface side of the light transmitting member, and the light guide member has a part of the light receiving surface sandwiched between the separated light emitting elements. A second reflecting surface that extends from the joining region and covers the second covering region and that reflects the emitted light from the adjacent light emitting elements toward the light receiving surface is provided in the second covering region. The light-emitting device according to any one of (1) to (9), provided on the outer surface of the device.
(11) The light emitting device according to (10), wherein the second covering region covers side surfaces of the separated light emitting elements facing each other.
(12) The light emitting device according to (10) or (11), wherein at least one pair of the plurality of light emitting elements has different distances from the light emitting surface to the light receiving surface of the light transmitting member.
(13) The light-emitting element includes a semiconductor layer and a substrate closer to the emission surface than the semiconductor layer, and the light guide member extends to and covers a side surface of the substrate to expose the semiconductor side surface. The light-emitting device according to any one of (1) to (12).
(14) The light-emitting device includes a light-reflective material, includes a covering member that exposes the light-emitting surface and covers a part of the light-emitting element and the light-transmitting member, and the first reflective surface or The light emitting device according to any one of (1) to (13), wherein the second reflecting surface is provided at an interface between the light guide member and the covering member.
(15) The light emitting device according to any one of (1) to (14), wherein the first reflection surface or the second reflection surface is a convex curved surface that is convex toward the side surface.

本発明によれば、互いに対向して配置された光透過部材と発光素子とを、その間とそこから延在した領域に設けられる導光部材により接合させることによって、発光素子から光を効率良く取り出し、導光して光透過部材に光結合することができ、高い発光効率を有し高輝度の発光が可能な発光装置を提供することができる。また、上記導光部材により接合された光透過部材および発光素子を、さらに光反射性の被覆部材により被覆して光透過部材の一部に発光面を備えた発光装置とすることにより、さらに効率良く導光することができ、また光透過部材が波長変換部材である場合には色むらの少ない配光特性および高い発光効率を有し高輝度発光が可能な発光装置を提供することができる。また、このような構造により、発光素子と光透過部材の外形、大きさ、配置が異ならしめて、所望形状、外形寸法の光源できるため、小型化容易な発光装置が得られ、更には適宜光束、輝度などの発光特性を調節可能な発光装置とできる。   According to the present invention, light is efficiently extracted from the light emitting element by joining the light transmitting member and the light emitting element disposed to face each other by the light guide member provided between and between the light transmitting member and the region extending from the light transmitting member. Thus, a light-emitting device that can be light-guided and optically coupled to the light-transmitting member and can emit light with high luminance and high luminance can be provided. Further, the light transmission member and the light emitting element joined by the light guide member are further covered with a light reflective coating member to form a light emitting device having a light emitting surface in a part of the light transmission member, thereby further improving the efficiency. When the light transmissive member is a wavelength converting member, the light emitting device that can emit light with high luminance with light distribution characteristics with little color unevenness and high light emission efficiency can be provided. Further, with such a structure, the light emitting element and the light transmitting member have different outer shapes, sizes, and arrangements, so that a light source having a desired shape and outer dimensions can be obtained. A light emitting device capable of adjusting light emission characteristics such as luminance can be obtained.

本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのAA断面における概略断面図(a)である。It is the schematic top view (b) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (a) in the AA cross section. 本発明の一実施の形態に係る発光装置の光源部周辺を説明する概略断面図である。It is a schematic sectional drawing explaining the light source part periphery of the light-emitting device which concerns on one embodiment of this invention. 本発明に係る比較例の発光装置の光源部周辺を説明する概略断面図である。It is a schematic sectional drawing explaining the periphery of the light source part of the light-emitting device of the comparative example which concerns on this invention. 本発明の一実施の形態に係る発光素子の概略断面図である。It is a schematic sectional drawing of the light emitting element which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の概略断面図(a)と、その光源部周辺を説明する概略断面図(b)である。It is the schematic sectional drawing (a) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (b) explaining the light source part periphery. 本発明の一実施の形態に係る発光装置の光源部周辺を説明する概略断面図である。It is a schematic sectional drawing explaining the light source part periphery of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の光源部周辺を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the light source part periphery of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置を説明する概略断面図である。It is a schematic sectional drawing explaining the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置を説明する概略断面図である。It is a schematic sectional drawing explaining the light-emitting device which concerns on one embodiment of this invention.

以下、発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光素子・装置は、本発明の技術思想を具体化するためのものであって、本発明を以下のものに特定しない。特に、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、以下に記載されている各実施の形態についても同様に、特に排除する記載が無い限りは各構成等を適宜組み合わせて適用できる。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light-emitting element / device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described below are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. Similarly, each embodiment described below can be applied by appropriately combining the components and the like unless otherwise specified.

本発明の発光装置は、図1,2に示すように、主として、発光素子10、光透過部材20、導光部材30、から構成される。発光素子10は、出射面を有し、光透過部材20は、外部に露出された表面21(発光面90)と、該表面21に対向する受光面22と、側面と、を各々有し、発光素子10は、その出射面を光透過部材の受光面22に対向させて配置して、発光素子10および光透過部材20の一方の部材を、他方の部材より外側に突出させる。導光部材30は、発光素子10と光透過部材20とを固着させる接着剤を適用でき、透光性を有して発光素子と光透過部材の表面、具体的には発光素子表面から光透過部材表面まで延在して設けられ、発光素子10の出射光を光透過部材20に導光する機能を有する。この導光部材30は、互いに対向する発光素子の出射面と光透過部材の受光面22とを接合する接合領域31と、この接合領域より延在して、上記突出した表面(発光素子の出射面又は光透過部材の受光面22の一部)を被覆する被覆領域(32,37)と、を有している。導光部材は基板の実装面から離間され、発光素子10の実装側表面より後退して前記光透過部材20側に位置している。したがって、発光素子10から出射される光が導光部材30を伝搬して基板50に導光され、吸収されることを防止することができる。そして、該被覆領域の外表面には、発光素子10から出射される光を光透過部材20側に反射させる反射面が設けられている。このように、導光部材30の外表面の反射により、光の拡散を抑制し導光部材30中に光を集束させて、光透過部材20に導光することができ、吸収による光の損失を低減し、発光素子10から出射される光を効率良く光透過部材20に結合することができ、発光面の輝度分布を改善できる。また、発光素子と光変換部材を接合させることにより、発光面内の輝度や色度を良好な分布にできる。   As shown in FIGS. 1 and 2, the light emitting device of the present invention mainly includes a light emitting element 10, a light transmitting member 20, and a light guide member 30. The light emitting element 10 has an emission surface, and the light transmitting member 20 has a surface 21 (light emitting surface 90) exposed to the outside, a light receiving surface 22 facing the surface 21, and a side surface, respectively. The light emitting element 10 is arranged with its emission surface facing the light receiving surface 22 of the light transmitting member, and one member of the light emitting element 10 and the light transmitting member 20 is protruded outward from the other member. The light guide member 30 can be applied with an adhesive that fixes the light emitting element 10 and the light transmitting member 20, and has a light transmitting property, and transmits light from the surface of the light emitting element and the light transmitting member, specifically from the surface of the light emitting element. It extends to the surface of the member and has a function of guiding the emitted light from the light emitting element 10 to the light transmitting member 20. The light guide member 30 has a joining region 31 that joins the emitting surface of the light emitting element and the light receiving surface 22 of the light transmitting member that face each other, and extends from the joining region, and the protruding surface (the emitting surface of the light emitting element). Covering area (32, 37) covering the surface or a part of the light receiving surface 22 of the light transmitting member). The light guide member is spaced apart from the mounting surface of the substrate, and recedes from the mounting side surface of the light emitting element 10 and is positioned on the light transmitting member 20 side. Accordingly, it is possible to prevent light emitted from the light emitting element 10 from being propagated through the light guide member 30 and guided to the substrate 50 and absorbed. A reflective surface that reflects the light emitted from the light emitting element 10 toward the light transmitting member 20 is provided on the outer surface of the covering region. As described above, the reflection of the outer surface of the light guide member 30 can suppress the diffusion of light, focus the light in the light guide member 30, and guide the light to the light transmission member 20. The loss of light due to absorption , The light emitted from the light emitting element 10 can be efficiently coupled to the light transmitting member 20, and the luminance distribution on the light emitting surface can be improved. Moreover, the brightness | luminance and chromaticity in a light emission surface can be made favorable distribution by joining a light emitting element and a light conversion member.

さらに、この被覆領域は、図1,2,5,6に示すように、上記突出部の表面と他方の側面とを接続するように被覆して、その被覆された側面に対向する導光部材の外表面に前記反射面が設けられていることが好ましい。一方の突出部の表面と、他方の側面と、を接続する傾斜面を外表面とすることで、被覆領域の外側への膨らみを抑え、その外表面で反射される光の光透過部材20までの光路長を短くし、更に外表面が凹曲面であることで、凸曲面の反射面となり導光部材30による導光機能を高めることができる。   Further, as shown in FIGS. 1, 2, 5, and 6, the covering region covers the surface of the protruding portion so as to connect the other side surface, and faces the coated side surface. It is preferable that the reflecting surface is provided on the outer surface of the film. By making the inclined surface connecting the surface of one protrusion and the other side surface the outer surface, the swelling to the outside of the covering region is suppressed, and the light transmitting member 20 of the light reflected by the outer surface is reached When the optical path length of the light guide member 30 is shortened and the outer surface is a concave curved surface, the light guide function of the light guide member 30 can be enhanced by a convex curved reflection surface.

また、本発明の発光装置は、図1,2に示すように、さらに光反射性の被覆部材40を備え、発光素子10および光透過部材20の一部をこの被覆部材40により被覆して、光透過部材の露出された表面21を装置の発光面90とでき、面発光型の発光装置とすることもできる。被覆部材40は、光反射性材料45を含有する充填材、封止材としても機能して、発光装置の小型化が実現できる。また、その光反射性により、導光部材30表面を被覆して設けることで、その導光作用を補助し、発光素子10からの出射光の光透過部材への光結合効率をさらに高めることができる。また、発光素子及び光透過部材の表面において、導光部材に被覆された領域と、該領域から露出された領域とを設け、それらの領域を被覆部材で覆うこと、すなわち、露出領域は直接、被覆領域は導光部材を介して、被覆部材に覆うことが好ましい。具体的には被覆部材が、上記被覆領域内の一方の側面を、導光部材30を介して被覆し、導光部材30から露出される他方の側面を被覆する。これにより、被覆部材による光反射機能でもって、被覆領域で導光部材30中の光の閉じ込め作用を強化しながら、露出領域で発光素子10から光透過部材20への光の伝搬領域を制限して、導光部材30により光を光透過部材20に効率良く導くことができる。さらに、前記被覆領域の反射面が、前記導光部材と前記被覆部材との界面に設けられていることにより、さらにその機能を高められ好ましい。このような構成により、発光素子10から出射される光の利用効率を高め、色むらが少なく配光特性に優れた高輝度な発光を実現することができる。   In addition, as shown in FIGS. 1 and 2, the light-emitting device of the present invention further includes a light-reflective coating member 40, and a part of the light-emitting element 10 and the light transmission member 20 is covered with the coating member 40. The exposed surface 21 of the light transmitting member can be used as the light emitting surface 90 of the device, and a surface light emitting type light emitting device can be obtained. The covering member 40 also functions as a filler and a sealing material containing the light reflective material 45, and the light emitting device can be downsized. Further, by providing the light guide member 30 so as to cover the surface of the light guide member 30 due to its light reflectivity, the light guide action is assisted, and the light coupling efficiency of the emitted light from the light emitting element 10 to the light transmitting member can be further enhanced. it can. Further, on the surface of the light emitting element and the light transmitting member, an area covered by the light guide member and an area exposed from the area are provided, and these areas are covered with the covering member, that is, the exposed area is directly The covering region is preferably covered with the covering member via the light guide member. Specifically, the covering member covers one side surface in the covering region via the light guide member 30 and covers the other side surface exposed from the light guide member 30. Thus, the light reflection function by the covering member restricts the light propagation region from the light emitting element 10 to the light transmitting member 20 in the exposed region while strengthening the light confinement action in the light guide member 30 in the covering region. Thus, light can be efficiently guided to the light transmitting member 20 by the light guide member 30. Furthermore, the reflective surface of the said covering area | region is provided in the interface of the said light guide member and the said covering member, and the function is further improved and it is preferable. With such a configuration, it is possible to increase the utilization efficiency of light emitted from the light emitting element 10 and to realize high luminance light emission with less color unevenness and excellent light distribution characteristics.

(実施の形態1)
図1,2は、本発明の実施の形態1に係る発光装置100であり、図1(a)の断面は、概略上面の図1(b)のA−Aにおける概略断面図であり、図2はその光源部周辺の概略断面図である。図1に示す例の発光装置100は、発光面90を有する面発光型の発光装置である。この発光装置100は、主として、成長基板1上に半導体素子構造11を有する発光素子10と、発光面90となる表面21が露出され、該表面21と対向する受光面22を有する板状の光透過部材20と、発光素子10の出射光を光透過部材20に導光する導光部材30と、光反射性材料45を含有する被覆部材40と、から構成される。発光素子10は、その成長基板1の裏面である出射面を光透過部材の受光面22に対向させて、基板50の配線層51上にフリップチップ実装されており、介在する導光部材30により光透過部材20と光結合されている。基板50上には、発光素子10および光透過部材20を包囲する枠体55が設けられており、その内側に被覆部材40が充填されて、発光素子10と光透過部材20の一部は被覆部材40により被覆されている。このような発光装置100の発光領域つまり光放出の窓部は、実質的に光透過部材20の表面21にほぼ限定され、この表面21を発光面90とする面発光型の発光装置となる。また、発光装置100は、光透過部材20の表面21の形状、大きさによって、この表面21すなわち発光面90から放出される光の輝度、並びに配光の分布を制御可能となっている。さらに、発光面内の輝度、色度が比較的均一な発光装置となる。ここで、光透過部材、発光素子の平面形状は図示するように矩形状であり、平面で発光素子が光透過部材に内包されている。
(Embodiment 1)
1 and 2 show a light-emitting device 100 according to Embodiment 1 of the present invention, and the cross-section of FIG. 1A is a schematic cross-sectional view taken along the line AA of FIG. 2 is a schematic cross-sectional view around the light source section. The light emitting device 100 of the example shown in FIG. 1 is a surface light emitting type light emitting device having a light emitting surface 90. The light-emitting device 100 mainly includes a light-emitting element 10 having a semiconductor element structure 11 on a growth substrate 1 and a plate-like light having a light-receiving surface 22 opposite to the surface 21 where a surface 21 to be a light-emitting surface 90 is exposed. The light-transmitting member 20, the light guide member 30 that guides the light emitted from the light-emitting element 10 to the light-transmitting member 20, and the covering member 40 containing the light-reflecting material 45 are configured. The light emitting element 10 is flip-chip mounted on the wiring layer 51 of the substrate 50 with the emission surface being the back surface of the growth substrate 1 facing the light receiving surface 22 of the light transmitting member. The light transmitting member 20 is optically coupled. A frame body 55 is provided on the substrate 50 so as to surround the light emitting element 10 and the light transmissive member 20, and a covering member 40 is filled inside thereof, so that the light emitting element 10 and a part of the light transmissive member 20 are covered. Covered by a member 40. The light emitting region of the light emitting device 100, that is, the light emission window portion is substantially limited to the surface 21 of the light transmitting member 20, and a surface light emitting light emitting device having the light emitting surface 90 as the surface 21 is obtained. Further, the light emitting device 100 can control the luminance of light emitted from the surface 21, that is, the light emitting surface 90, and the distribution of light distribution, depending on the shape and size of the surface 21 of the light transmitting member 20. Furthermore, the light emitting device has a relatively uniform luminance and chromaticity within the light emitting surface. Here, the planar shapes of the light transmitting member and the light emitting element are rectangular as shown in the figure, and the light emitting element is included in the light transmitting member in a plane.

図2を用いて、その光源部を詳述すると、導光部材30は、発光素子10と光透過部材20とを互いに対向させて接合する接合領域31を有し、より詳細には、光透過部材の受光面22において、発光素子10の出射面と対向する領域に設けられる。具体例、例えば後述の実施例、において、この接合領域の厚さは、0.01μm〜100μm程度である。導光部材30が接合領域で介在することで、発光素子と光透過部材とが離間され、大気などの気体が介在する場合に比して、発光素子10の出射面における屈折率差を緩和し、発光素子10から光を効率良く取り出すことができる。したがって、発光素子10の出射面からの光は、接合領域31内に透過されて光透過部材の受光面22に直接的に光結合する。   The light source part will be described in detail with reference to FIG. 2. The light guide member 30 has a joining region 31 that joins the light emitting element 10 and the light transmitting member 20 to face each other, and more specifically, transmits light. The light receiving surface 22 of the member is provided in a region facing the light emitting surface of the light emitting element 10. In a specific example, for example, an example described later, the thickness of the bonding region is about 0.01 μm to 100 μm. By interposing the light guide member 30 in the joining region, the light emitting element and the light transmitting member are separated from each other, and the refractive index difference on the exit surface of the light emitting element 10 is reduced as compared with the case where gas such as the atmosphere is interposed. The light can be efficiently extracted from the light emitting element 10. Therefore, light from the emission surface of the light emitting element 10 is transmitted into the bonding region 31 and directly optically coupled to the light receiving surface 22 of the light transmitting member.

本実施の形態では光透過部材の受光面22は、発光素子10の出射面より大きく、それを内包して、受光面22の一部が発光素子10の出射面より外側に突出している。言い換えれば、光透過部材20の側面は発光素子10の側面より外側に位置し、その周縁全体に突出部が設けられている。このような発光装置100は、発光装置の発光面90を、素子の出射面より、比較的大きい光放出の窓部として、放出光の光束を高くできる。そして、導光部材30は、上述の接合領域31から延在して、光透過部材の突出表面と、発光素子10の側面の一部に垂下した該側面とを被覆する第1の被覆領域32を有し、具体的には、この領域は上記接合領域より外側に突出した領域に設けられている。ここで、発光素子10から出射光は、通常、出射面だけでなく、側面や底面側(実装面側)からも放射されるため、その光の一部は主に発光素子の側面から第1の被覆領域32に入射され、導光される。つまり、上述の接合領域の場合と同様に、第1の被覆領域32においても、その発光素子の放射面の屈折率差を緩和し、光取り出し効率を高くできる。ここで、第1の被覆領域32の被覆部材40側に面する外表面、すなわち第1の被覆領域32の発光素子10の側面と対向する外表面は、発光素子10の出射光を、光透過部材20側に反射させる第1の反射面33を有し、従ってその出射光の反射光は、第1の反射面33により光透過部材20の受光面22側に反射されて導光されて、光透過部材20に光結合される。このように、発光素子10から側方への出射光を導光部材30内に一度取り出してから第1の反射面33により反射させることで、導光部材から露出され、発光素子10を光反射性の被覆部材40により直接被覆する形態に比して、発光素子10内での吸収による光の損失を低減でき、一旦、導光部材内で光が伝搬して広がることから、光結合効率や発光特性を高めることができる。   In the present embodiment, the light receiving surface 22 of the light transmitting member is larger than the light emitting surface of the light emitting element 10, and a part of the light receiving surface 22 protrudes outward from the light emitting surface of the light emitting element 10. In other words, the side surface of the light transmitting member 20 is located outside the side surface of the light emitting element 10, and the protrusion is provided on the entire periphery. Such a light emitting device 100 can increase the luminous flux of the emitted light by using the light emitting surface 90 of the light emitting device as a relatively large light emitting window than the emitting surface of the element. The light guide member 30 extends from the joining region 31 described above, and covers the protruding surface of the light transmitting member and the side surface hanging from a part of the side surface of the light emitting element 10. Specifically, this region is provided in a region protruding outward from the joining region. Here, since the emitted light from the light emitting element 10 is usually radiated not only from the emitting surface but also from the side surface and the bottom surface side (mounting surface side), a part of the light is mainly emitted from the side surface of the light emitting element. Is incident on the light-guiding area 32 and guided. That is, as in the case of the junction region described above, also in the first covering region 32, the difference in the refractive index of the emission surface of the light emitting element can be relaxed, and the light extraction efficiency can be increased. Here, the outer surface facing the coating member 40 side of the first covering region 32, that is, the outer surface facing the side surface of the light emitting element 10 of the first covering region 32, transmits the light emitted from the light emitting element 10. The first reflecting surface 33 is reflected on the member 20 side, and thus the reflected light of the emitted light is reflected and guided by the first reflecting surface 33 to the light receiving surface 22 side of the light transmitting member 20. The light transmission member 20 is optically coupled. In this way, the light emitted from the light emitting element 10 to the side is once taken out into the light guide member 30 and then reflected by the first reflecting surface 33, so that it is exposed from the light guide member and reflects the light emitting element 10. Light loss due to absorption in the light emitting element 10 can be reduced as compared with a form directly covered by the conductive covering member 40, and light is once propagated and spread in the light guide member. The light emission characteristics can be improved.

上述したように、本実施の形態のように図1及び図2に示すように、導光部材30の第1の反射面33が被覆部材40との界面に設けられること反射機能を高められる。また、その界面はこの透光性の導光部材30と透光性基材中に光反射性材料を含有する被覆部材40とで構成されるため、被覆部材中にしみ出す緩やかな反射界面となる。このような構成は、導光部材30に第1の被覆領域32を形成後、被覆部材40を充填することで容易に形成可能であり量産性に優れた構造である。なお、第1の反射面33は、必ずしも被覆部材40との界面に設けられなくてもよい。例えば、第1の被覆領域32の被覆部材40側に面する外表面と被覆部材40とが離間され、その間に空隙が設けられ、第1の反射面33が導光部材30と空気との界面に設けられる形態であってもよい。この形態によれば、この界面において導光部材30側が高屈折率となって、第1の被覆領域32内にて多くの光を反射させることができる。さらに、第1の被覆領域32から空隙内に透過した光成分も被覆部材40の表面にて再度反射させることも可能である。この形態のほか、例えば、第1の被覆領域32の外面に、銀(Ag)やアルミニウム(Al)などの高反射性の金属膜や誘電体多層膜や透光性粒子からなる層を設けて第1の反射面33を形成してもよい。   As described above, the first reflecting surface 33 of the light guide member 30 is provided at the interface with the covering member 40 as shown in FIG. 1 and FIG. In addition, since the interface is composed of the translucent light guide member 30 and the covering member 40 containing a light reflective material in the translucent base material, Become. Such a configuration is a structure that can be easily formed by filling the covering member 40 after forming the first covering region 32 on the light guide member 30 and is excellent in mass productivity. The first reflecting surface 33 is not necessarily provided at the interface with the covering member 40. For example, the outer surface of the first covering region 32 facing the covering member 40 and the covering member 40 are separated from each other, a gap is provided therebetween, and the first reflecting surface 33 is an interface between the light guide member 30 and air. The form provided in may be sufficient. According to this form, the light guide member 30 side has a high refractive index at this interface, and a large amount of light can be reflected in the first covering region 32. Further, the light component transmitted from the first covering region 32 into the gap can be reflected again on the surface of the covering member 40. In addition to this form, for example, a layer made of a highly reflective metal film such as silver (Ag) or aluminum (Al), a dielectric multilayer film, or translucent particles is provided on the outer surface of the first covering region 32. The first reflecting surface 33 may be formed.

また、発光装置100において、第1の被覆領域32の発光素子10の側面と対向する面は、該側面から光透過部材の受光面22側に傾斜した傾斜面であることが好ましい。これにより、発光素子10から側方に出射される光を光透過部材の受光面22側に良好に反射させることができ、また断面幅が突出表面に向かって広がる形態のため良好な光結合とできる。さらに、この傾斜面は平面であってもよいが、接合領域31に向かって凸な凸曲面であることで、平面である場合に比して第1の反射面33の表面積を増大でき、光の反射効率を高めることができるので好ましい。   In the light emitting device 100, the surface of the first covering region 32 that faces the side surface of the light emitting element 10 is preferably an inclined surface that is inclined from the side surface toward the light receiving surface 22 of the light transmitting member. Thereby, the light emitted from the light emitting element 10 to the side can be favorably reflected to the light receiving surface 22 side of the light transmitting member, and the cross-sectional width is widened toward the protruding surface, so that the optical coupling is good. it can. Further, the inclined surface may be a flat surface, but by being a convex curved surface that is convex toward the bonding region 31, the surface area of the first reflecting surface 33 can be increased as compared with the case of being a flat surface. This is preferable because the reflection efficiency can be increased.

第1の被覆領域32の形成方法は、特に限定されないが、例えば導光部材30を構成する樹脂材料を発光素子10の出射面上に適量塗布した後、光透過部材20を搭載することで形成することができる。この際、光透過部材20を適度に押圧してもよい。樹脂の塗布は、ディスペンス法、スタンピング法などで、光透過部材20の載置についても、光透過部材20を吸着、搬送、押圧可能なコレットを備えたダイボンディング装置で量産できる。   The method for forming the first covering region 32 is not particularly limited. For example, the first covering region 32 is formed by mounting the light transmitting member 20 after applying an appropriate amount of the resin material constituting the light guide member 30 on the emission surface of the light emitting element 10. can do. At this time, the light transmitting member 20 may be pressed appropriately. The resin can be applied by a dispensing method, a stamping method, or the like, and the light transmitting member 20 can be placed in a mass production with a die bonding apparatus having a collet capable of adsorbing, transporting and pressing the light transmitting member 20.

なお、導光部材30を構成する樹脂材料は、発光素子10又は光透過部材20の突出部から直接又は発光素子10の側面を伝って滴り、実装基板50上に達することがある。図3は、そのような導光部材36に垂下部が設けられる形態を説明するための概略断面図である。本発明と比較されるこの形態は、図3に示すように、導光部材36の接着樹脂が発光素子10の側面を伝って実装基板50上にまで連続的に垂れると、その垂下部で光経路が形成される。このため、発光素子10から側方又は下方に出射された光が、この垂下部により実装基板50側に導光されて、実装基板50の表面や配線51に到達して、吸収による光損失を生じる。また、垂下部の形成によって、発光素子10と基板50との間の領域へのアンダーフィル70等の形成、被覆部材40の浸入が遮断される場合があり、その空洞化で光の漏れる場合に光損失が起きる。特に、樹脂材料の塗布量が多過ぎると光透過部材20の突出部から基板50上に導光部材36が直接垂下したり、上記接合領域から分離して発光素子10と基板50と架橋したり、しても上記同様に光経路が形成され、光損失を招く虞がある。また、後述の実施の形態3では、本実施の形態のように光透過部材が突出する場合に比して、形成され難い構造であるものの同様に側面を被覆して実装基板に到達する垂下部が設けられ得る。そのため、樹脂材料の塗布量が過剰とならないように適宜調節し、また後述のように突出表面の面積、突出部の位置で調節する。   Note that the resin material constituting the light guide member 30 may drip directly from the protruding portion of the light emitting element 10 or the light transmitting member 20 or along the side surface of the light emitting element 10 and reach the mounting substrate 50. FIG. 3 is a schematic cross-sectional view for explaining a mode in which a hanging portion is provided on such a light guide member 36. As shown in FIG. 3, in this embodiment compared with the present invention, when the adhesive resin of the light guide member 36 hangs down continuously onto the mounting substrate 50 along the side surface of the light emitting element 10, light is emitted at the hanging portion. A path is formed. For this reason, the light emitted from the light emitting element 10 to the side or below is guided to the mounting substrate 50 side by this hanging portion, reaches the surface of the mounting substrate 50 and the wiring 51, and reduces the light loss due to absorption. Arise. In addition, the formation of the drooping portion may block the formation of the underfill 70 or the like in the region between the light emitting element 10 and the substrate 50 and the intrusion of the covering member 40. Light loss occurs. In particular, when the application amount of the resin material is too large, the light guide member 36 hangs directly on the substrate 50 from the protruding portion of the light transmitting member 20, or the light emitting element 10 and the substrate 50 are cross-linked by being separated from the bonding region. Even so, an optical path is formed in the same manner as described above, and there is a risk of causing optical loss. Further, in the third embodiment to be described later, a hanging portion that covers the side surface and reaches the mounting board similarly, although it is a structure that is difficult to be formed as compared with the case where the light transmitting member protrudes as in the present embodiment. Can be provided. Therefore, it adjusts suitably so that the application quantity of a resin material may not become excessive, and it adjusts with the area of a protrusion surface, and the position of a protrusion part so that it may mention later.

したがって、第1の被覆領域32の外表面は、発光素子10の底面、実装面より前記光透過部材20側に位置していることが好ましく、第1の被覆領域32が被覆する範囲は、発光素子10の側面の途中までであることが好ましい。つまり、図1,2に示すように、発光素子10の側面において、導光部材に対して、出射面(上方)側に被覆された領域(第1の被覆領域32)と、底面、実装面(下方)側に露出された領域と、が設けられていることが望ましい。さらには、この露出領域は、被覆部材40で被覆されていることが好ましい。より具体的には、発光素子10が素子構造である半導体層11と該半導体層より出射面側の基板1とを有する場合、導光部材30が該基板の側面まで延在して被覆し、該半導体層11の側面を露出させていることが好ましい。これにより、発光層を含む半導体層11側の光反射性を高める一方、基板側の光透過性を高めることができる。また、第1の被覆領域32は、接合領域31から発光素子10の側面に一様に延在して形成されてもよいが、離散的、部分的に接合領域31から発光素子10の側面に垂下して形成されてもよい。   Therefore, it is preferable that the outer surface of the first covering region 32 is located closer to the light transmission member 20 than the bottom surface and the mounting surface of the light emitting element 10, and the range covered by the first covering region 32 is light emission. It is preferable to be halfway along the side surface of the element 10. That is, as shown in FIGS. 1 and 2, on the side surface of the light emitting element 10, the region (first covering region 32) covered with the light emitting member on the emission surface (upper) side, the bottom surface, and the mounting surface It is desirable that a region exposed on the (lower) side is provided. Furthermore, the exposed region is preferably covered with the covering member 40. More specifically, when the light emitting element 10 includes the semiconductor layer 11 having an element structure and the substrate 1 on the emission surface side from the semiconductor layer, the light guide member 30 extends to the side surface of the substrate to cover the substrate, The side surface of the semiconductor layer 11 is preferably exposed. Thereby, while improving the light reflectivity by the side of the semiconductor layer 11 containing a light emitting layer, the light transmittance by the side of a board | substrate can be improved. The first covering region 32 may be formed to extend uniformly from the bonding region 31 to the side surface of the light emitting element 10, but discretely and partially from the bonding region 31 to the side surface of the light emitting element 10. It may be formed by drooping.

このような形態は、導光部材30から露出させたい領域に予め離型剤を塗布するなど表面処理して、その領域が導光部材30等により被覆され難くすることにより達成しやすくなる。離型剤には、一般的に市販されているものを用いることができ、例えばダイキン社製の噴霧タイプのダイフリー、薬液タイプのオプツールなど、フッ素系離型剤を用いることができる。特に、発光素子10の出射面と対向する表面、実装面には表面処理されていることが好ましく、さらにはそこから連続する側面の一部、特に半導体層11の側面、すなわち半導体層11の露出表面に表面処理されていることが好ましい。また、この表面処理と被覆部材40とが一致していなくても良く、一部重なったり、離間されたり、する場合がある。   Such a form is easily achieved by subjecting the region to be exposed from the light guide member 30 to a surface treatment such as applying a release agent in advance so that the region is not easily covered with the light guide member 30 or the like. A commercially available product can be used as the mold release agent, and for example, a fluorine-type mold release agent such as a spray-type die-free or a chemical liquid-type optool manufactured by Daikin can be used. In particular, the surface opposite to the emission surface of the light emitting element 10 and the mounting surface are preferably surface-treated, and further, a part of the side surface continuous from the surface, particularly the side surface of the semiconductor layer 11, that is, the exposure of the semiconductor layer 11. The surface is preferably surface-treated. Further, the surface treatment and the covering member 40 do not have to coincide with each other, and may partially overlap or be separated.

一方、図1,2に示す例の発光装置100において、光透過部材20の側面は導光部材30から露出され、更に光反射性の被覆部材40により被覆されていることが好ましい。このように、導光部材30が光透過部材20の側面も被覆する場合に比べて、導光部材30の外表面の外側への膨らみを抑えられ、したがって光透過部材20までの光路長を短くでき、光結合効率を高められる。また、上述したように受光面22側への光反射に適した形状、傾斜角を有する第1の反射面33を形成しやすくなり好ましい。   On the other hand, in the light emitting device 100 of the example shown in FIGS. 1 and 2, the side surface of the light transmitting member 20 is preferably exposed from the light guide member 30 and further covered with a light reflective coating member 40. Thus, compared to the case where the light guide member 30 also covers the side surface of the light transmissive member 20, the outward bulge of the outer surface of the light guide member 30 can be suppressed, and thus the optical path length to the light transmissive member 20 is shortened. It is possible to increase the optical coupling efficiency. Further, as described above, it is preferable because the first reflection surface 33 having a shape and an inclination angle suitable for light reflection toward the light receiving surface 22 side can be easily formed.

次に、本発明の発光装置の各構成部材および構造について、以下に詳述する。   Next, each component and structure of the light emitting device of the present invention will be described in detail below.

(発光素子)
発光素子10は公知のもの、具体的には半導体発光素子を利用でき、特にGaN系化合物半導体であれば、蛍光物質を効率良く励起できる短波長の可視光や紫外光が発光可能であるため好ましい。具体的な発光ピーク波長は240nm以上560nm以下、好ましくは380nm以上470nm以下である。なお、このほか、ZnSe系、InGaAs系、AlInGaP系半導体の発光素子でもよい。
(Light emitting element)
The light-emitting element 10 can be a known element, specifically a semiconductor light-emitting element, and is particularly preferably a GaN-based compound semiconductor because it can emit visible light and ultraviolet light having a short wavelength that can excite a fluorescent substance efficiently. . A specific emission peak wavelength is 240 nm or more and 560 nm or less, preferably 380 nm or more and 470 nm or less. In addition, a light emitting element of ZnSe, InGaAs, or AlInGaP semiconductor may be used.

(発光素子構造)
半導体層による発光素子構造11は、図4に例示するように少なくとも第1導電型(n型)層2と第2導電型(p型)層3とにより構成され、更にその間に活性層3を有する構造が好ましい。また、電極構造は、一方の主面側に第1導電型(負)、第2導電型(正)の両電極6,7が設けられる同一面側電極構造が好ましいが、半導体層の各主面に対向して電極が各々設けられる対向電極構造でも良い。発光素子10の実装形態も、例えば上記同一面側電極構造では、電極形成面を実装面として、それに対向する基板1側を主な出射面とするフリップチップ実装が、その出射面と光透過部材20との光学的な接続上好ましい。この他、電極形成面側を主な出射面として、その上に光透過部材を結合する実装、フェイスアップ実装、また配線構造を備えた光透過部材にフリップチップ実装、上記対向電極構造で光透過部材と実装基板に接続すること、ができ、好ましくは発光素子と光透過部材に配線、電極を備えない実施例の実装が良い。なお、半導体層11の成長基板1は、発光素子構造を構成しない場合には除去してもよく、成長基板が除去された半導体層に、支持基板、例えば導電性基板または別の透光性部材・基板を接着した構造とすることもできる。この支持基板に光透過部材20を用いることもでき、その他、ガラス、樹脂などの光透過部材により半導体層が接着・被覆されて、支持された構造の素子でもよい。成長基板の除去は、例えば支持体、装置又はサブマウントに実装又は保持して、剥離、研磨、若しくはLLO(Laser Lift Off)で実施できる。また、発光素子10は光反射構造を有することができ、具体的には、半導体層11の互いに対向する2つの主面の内、光取り出し側(出射面側)と対向する他方の主面を光反射側(図1における下側)とし、この光反射側の半導体層内や電極などに光反射構造を設けることができる。光反射構造の例として、半導体層内に多層膜反射層が設ける構造、あるいは半導体層の上にAg、Al等の光反射性の高い金属膜や誘電体多層膜を有する電極、反射層を設けた構造がある。
(Light emitting element structure)
The light emitting element structure 11 by the semiconductor layer is composed of at least a first conductivity type (n-type) layer 2 and a second conductivity type (p-type) layer 3 as illustrated in FIG. The structure which has is preferable. The electrode structure is preferably the same surface side electrode structure in which both the first conductivity type (negative) and the second conductivity type (positive) electrodes 6 and 7 are provided on one main surface side. A counter electrode structure in which electrodes are provided to face each other may be used. As for the mounting form of the light emitting element 10, for example, in the same surface side electrode structure, flip chip mounting in which the electrode forming surface is the mounting surface and the substrate 1 side facing it is the main emitting surface is the emitting surface and the light transmitting member. 20 is preferable in terms of optical connection. In addition to this, the electrode forming surface side is the main emission surface, and the light transmission member is mounted on it, face-up mounting, flip chip mounting on the light transmission member with wiring structure, and light transmission with the above-mentioned counter electrode structure It is possible to connect the member and the mounting substrate, and it is preferable to mount the embodiment in which the light emitting element and the light transmitting member are not provided with wiring and electrodes. Note that the growth substrate 1 of the semiconductor layer 11 may be removed when the light emitting element structure is not formed, and a support substrate such as a conductive substrate or another translucent member is added to the semiconductor layer from which the growth substrate has been removed. -It is also possible to have a structure in which substrates are bonded. The light transmitting member 20 can also be used for the supporting substrate, and other elements having a structure in which the semiconductor layer is bonded and covered with a light transmitting member such as glass or resin may be used. The removal of the growth substrate can be performed by peeling, polishing, or LLO (Laser Lift Off), for example, by mounting or holding on a support, an apparatus, or a submount. In addition, the light emitting element 10 can have a light reflecting structure. Specifically, of the two main surfaces of the semiconductor layer 11 facing each other, the other main surface facing the light extraction side (emission surface side) is formed. The light reflection side (the lower side in FIG. 1) can be provided, and a light reflection structure can be provided in the semiconductor layer on this light reflection side or in an electrode. As an example of the light reflecting structure, a structure in which a multilayer reflective layer is provided in the semiconductor layer, or an electrode having a highly light reflective metal film such as Ag or Al or a dielectric multilayer film, or a reflective layer is provided on the semiconductor layer. There is a structure.

(窒化物半導体発光素子)
発光素子10の一例として、図4の窒化物半導体の発光素子10では、成長基板1であるC面サファイア基板の上に、第1の窒化物半導体層2であるn型半導体層、活性層3である発光層、第2の窒化物半導体層4であるp型半導体層が順にエピタキシャル成長されている。そして、n型層2の一部が露出されて第1の電極7であるn型パッド電極を形成し、p型層4のほぼ全面にITO等の透光性導電層5、第2の電極6であるp型パッド電極が形成されている。さらに、保護膜8をn型、p型パッド電極6,7の表面を露出し、半導体層を被覆して設けられる。なお、n型パッド電極7は、p型同様に透光性導電層を介して形成してもよい。成長基板1は、C面サファイアの他、R面、及びA面、スピネル(MgAl)のような絶縁性基板、また炭化珪素(6H、4H、3C)、Si、ZnS、ZnO、GaAs、GaNやAlN等の半導体の導電性基板がある。窒化物半導体の例としては、一般式がInAlGa1−x−yN(0≦x、0≦y、x+y≦1)の他、BやP、Asを混晶してもよい。また、n型、p型半導体層2,4は、単層、多層を特に限定されず、活性層3は単一(SQW)又は多重量子井戸構造(MQW)が好ましい。青色発光の素子構造11の例としては、サファイア基板上に、バッファ層などの窒化物半導体の下地層、例えば低温成長薄膜GaNとGaN層、を介して、n型半導体層として、例えばSiドープGaNのn型コンタクト層とGaN/InGaNのn型多層膜層が積層され、続いてInGaN/GaNのMQWの活性層、更にp型半導体層として、例えばMgドープのInGaN/AlGaNのp型多層膜層とMgドープGaNのp型コンタクト層が積層された構造がある。
(Nitride semiconductor light emitting device)
As an example of the light emitting element 10, in the nitride semiconductor light emitting element 10 of FIG. 4, an n-type semiconductor layer that is the first nitride semiconductor layer 2 and the active layer 3 are formed on the C-plane sapphire substrate that is the growth substrate 1. The light emitting layer and the p-type semiconductor layer which is the second nitride semiconductor layer 4 are epitaxially grown in this order. Then, a part of the n-type layer 2 is exposed to form an n-type pad electrode, which is the first electrode 7, and a light-transmitting conductive layer 5 such as ITO is formed on almost the entire surface of the p-type layer 4. 6, a p-type pad electrode is formed. Further, the protective film 8 is provided by exposing the surfaces of the n-type and p-type pad electrodes 6 and 7 and covering the semiconductor layer. Note that the n-type pad electrode 7 may be formed through a light-transmitting conductive layer as in the p-type. The growth substrate 1 includes C-plane sapphire, R-plane and A-plane, an insulating substrate such as spinel (MgAl 2 O 4 ), silicon carbide (6H, 4H, 3C), Si, ZnS, ZnO, GaAs. There are semiconductor conductive substrates such as GaN and AlN. As an example of a nitride semiconductor, in addition to In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1), B, P, and As may be mixed crystals. . The n-type and p-type semiconductor layers 2 and 4 are not particularly limited to a single layer or multiple layers, and the active layer 3 preferably has a single (SQW) or multiple quantum well structure (MQW). As an example of the blue light emitting element structure 11, an n-type semiconductor layer such as Si-doped GaN is formed on a sapphire substrate via a nitride semiconductor underlayer such as a buffer layer, for example, a low-temperature growth thin film GaN and a GaN layer. N-type contact layer and GaN / InGaN n-type multilayer film layer, followed by InGaN / GaN MQW active layer, and p-type semiconductor layer, for example, Mg-doped InGaN / AlGaN p-type multilayer film layer And a p-type contact layer of Mg-doped GaN.

(光透過部材)
また図1の発光装置100は、発光素子10からの光を透過する光透過部材20を備える。光透過部材20は、通過する光の少なくとも一部を波長変換可能な波長変換材料を有する光変換部材であることが好ましい。例えば実施例のように、光源からの一次光が、光透過部材20中の波長変換材料としての蛍光体を励起することで、一次光と異なった波長を持つ二次光が得られ、さらに一次光との混色により、所望の色相を有する出射光を実現できる。
(Light transmission member)
The light emitting device 100 of FIG. 1 includes a light transmitting member 20 that transmits light from the light emitting element 10. The light transmission member 20 is preferably a light conversion member having a wavelength conversion material capable of converting the wavelength of at least part of the light passing therethrough. For example, as in the embodiment, the primary light from the light source excites the phosphor as the wavelength conversion material in the light transmitting member 20 to obtain secondary light having a wavelength different from that of the primary light. Outgoing light having a desired hue can be realized by color mixing with light.

上述の通り、実施の形態1の光透過部材20は、表面21(発光面90)からの平面視において発光素子10を内包し、その側面が、発光素子10の側面(端面)よりも外方に突出し、発光素子10の出射面より幅広な受光面22でもって導光部材を介して光学的に接続されるため損失が少ない。なお、光透過部材の側面の発光素子の側面に対する突出長さは、発光素子の厚さに比して、例えば0.25倍以上5倍以下であり、具体的には0.5倍以上2倍以下である。例として、実施例1の発光装置においては、光透過部材20の終端に約50μmの幅で突出している。このほか、後述の実施の形態3に示すように、光透過部材の側面が、発光素子の側面よりも内側に位置する、つまり発光素子の出射面が突出させる形態でもよく、この例のように光透過部材の受光面22を発光素子10の出射面より小さくした形態であってもよい。この形態であれば、その突出長さは、光透過部材の厚さに比して、例えば0.25倍以上5倍以下であり、具体的には0.5倍以上2倍以下である。発光素子に対して発光領域を絞ることで相対的に輝度が高められ、また混色の均一化が図れ、色ムラが低減される。また、光透過部材20の側面が発光素子10の側面と略同一面上に位置する形態であれば、光透過部材の外縁部において、発光素子10からの光量が不足して色ムラが発生しやすくなるのを抑制できる。   As described above, the light transmissive member 20 according to the first embodiment includes the light emitting element 10 in a plan view from the surface 21 (light emitting surface 90), and the side surface is outward from the side surface (end surface) of the light emitting element 10. The light receiving surface 22 is wider than the light emitting surface of the light emitting element 10 and is optically connected through the light guide member, so that there is little loss. The protruding length of the side surface of the light transmitting member with respect to the side surface of the light emitting element is, for example, not less than 0.25 times and not more than 5 times the thickness of the light emitting element, specifically 0.5 times or more and 2 times. Is less than double. As an example, in the light emitting device of Example 1, the light transmitting member 20 protrudes to the end with a width of about 50 μm. In addition, as shown in a third embodiment to be described later, the side surface of the light transmitting member may be positioned on the inner side of the side surface of the light emitting element, that is, the light emitting element may protrude from the emission surface. The light receiving surface 22 of the light transmitting member may be smaller than the light emitting surface of the light emitting element 10. If it is this form, the protrusion length is 0.25 times or more and 5 times or less, for example, compared with the thickness of the light transmissive member, specifically, 0.5 times or more and 2 times or less. By narrowing the light emitting region with respect to the light emitting element, the luminance is relatively increased, the color mixture is made uniform, and the color unevenness is reduced. Further, if the side surface of the light transmitting member 20 is located on the same plane as the side surface of the light emitting element 10, the amount of light from the light emitting element 10 is insufficient at the outer edge portion of the light transmitting member, resulting in color unevenness. It can suppress becoming easy.

ここで、光透過部材20の母材となる透光性材料としては、下記被覆部材40と同様な材料を用いることができ、例えば樹脂、又はガラスなどの無機物を用いることができる。変換機能を備えない場合も、蛍光体を除いて、又はそれに置換して、光変換の光透過部材と同様の材料を用いることが好ましい。また、表面21、受光面22は、実施例のように光透過部材が板状である場合には、両面とも略平坦な面であること、更には対向する両面が互いに略平行であることが本発明の導光部材を介した光結合の効率が高まり、また接合が容易となり好ましい。一方で、板状に限らず、全体又は一部に曲面を有する形態、凹凸面などの面状の形態など、種々の形状若しくは形態、例えば集光、分散するための形状、例えばレンズ状などのような光学的な形状とすることもできる。また、波長変換機能として、発光素子の一次光とその変換光(二次光)の混色光を発光する他に、例えば発光素子の紫外光による変換光、若しくは複数の変換光による混色光のように、一次光から変換された二次光を主に出射する発光装置とすることもできる。   Here, as a translucent material used as a base material of the light transmissive member 20, the material similar to the following coating member 40 can be used, for example, inorganic substances, such as resin or glass, can be used. Even when the conversion function is not provided, it is preferable to use the same material as the light transmission member for light conversion, excluding or replacing the phosphor. Further, when the light transmitting member is plate-like as in the embodiment, both the front surface 21 and the light receiving surface 22 are substantially flat surfaces, and furthermore, both opposing surfaces are substantially parallel to each other. The efficiency of optical coupling through the light guide member of the present invention is increased, and joining is facilitated, which is preferable. On the other hand, it is not limited to a plate shape, but various shapes or forms such as a shape having a curved surface in whole or in part, a surface shape such as an uneven surface, for example, a shape for condensing and dispersing, for example, a lens shape, etc. Such an optical shape can also be used. Further, as a wavelength conversion function, in addition to emitting primary light of the light emitting element and mixed light of the converted light (secondary light), for example, converted light by ultraviolet light of the light emitting element or mixed light by a plurality of converted lights In addition, a light-emitting device that mainly emits secondary light converted from primary light can be used.

波長変換機能を備えた光透過部材20は、具体的にガラス板、それに光変換部材を備えたもの、あるいは光変換部材の蛍光体結晶若しくはその相を有する単結晶体、多結晶体、アモルファス体、セラミック体、あるいは蛍光体結晶粒子による、それと適宜付加された透光性材料との焼結体、凝集体、多孔質性材料、それらに透光性材料、例えば透光性樹脂を混入、含浸したもの、あるいは蛍光体粒子を含有する透光性部材、例えば透光性樹脂の成形体等から構成される。なお、光透過部材20は、樹脂等の有機材料よりも無機材料で構成されることが耐熱性の観点からは好ましい。具体的には蛍光体を含有する透光性の無機材料からなることが好ましく、特に蛍光体と無機物(結合材、バインダー)との焼結体、あるいは蛍光体からなる焼結体や結晶とすることで信頼性が高まる。なお、実施例のYAGの蛍光体を用いる場合、YAGの単結晶や高純度の焼結体のほか、アルミナ(Al)を結合材とするYAG/アルミナの焼結体、ガラスを結合材とした焼結体が信頼性の観点から好ましい。また、光透過部材20を板状とすることで、面状に構成される発光素子10の出射面との結合効率が良く、光透過部材20の主面とが略平行になるよう容易に位置合わせできる。加えて、光透過部材20の厚みを略一定とすることで、通過する光の波長変換量を略均一として混色の割合を安定させ、発光面90の部位における色むらを抑止できる。このため、1つの光透過部材20に複数の発光素子10を搭載する場合において、個々の発光素子10の配置に起因する発光面90内の輝度や色度の分布にむらが少なく略均一で高輝度の発光を得ることができる。なお、波長変換機能を備えた光透過部材20の厚みは、発光効率や色度調整において、10μm以上500μm以下であることが好ましく、さらには50μm以上300μm以下であることがより好ましい。 The light transmissive member 20 having the wavelength conversion function is specifically a glass plate, a material provided with the light conversion member, or a phosphor crystal of the light conversion member or a single crystal, a polycrystal, or an amorphous material having a phase thereof. Sintered body, aggregate, porous material, and translucent material such as translucent resin, impregnated with ceramic body or phosphor crystal particles and appropriately added translucent material Or a translucent member containing phosphor particles, such as a molded body of translucent resin. In addition, it is preferable from a heat resistant viewpoint that the light transmissive member 20 is comprised with an inorganic material rather than organic materials, such as resin. Specifically, it is preferably made of a translucent inorganic material containing a phosphor, and in particular, a sintered body of a phosphor and an inorganic substance (binding material, binder), or a sintered body or crystal made of a phosphor. This increases reliability. In addition, when using the YAG phosphor of the example, in addition to YAG single crystals and high-purity sintered bodies, YAG / alumina sintered bodies using alumina (Al 2 O 3 ) as a binder, and glass are bonded. A sintered body as a material is preferable from the viewpoint of reliability. Further, by forming the light transmitting member 20 in a plate shape, the coupling efficiency with the emission surface of the light emitting element 10 configured in a planar shape is good, and the light transmitting member 20 can be easily positioned so as to be substantially parallel to the main surface of the light transmitting member 20. Can be combined. In addition, by making the thickness of the light transmissive member 20 substantially constant, the wavelength conversion amount of the light passing therethrough can be made substantially uniform, the ratio of color mixing can be stabilized, and color unevenness at the site of the light emitting surface 90 can be suppressed. Therefore, in the case where a plurality of light emitting elements 10 are mounted on one light transmitting member 20, there is little unevenness in luminance and chromaticity distribution in the light emitting surface 90 due to the arrangement of the individual light emitting elements 10, and it is substantially uniform and high. Luminous light emission can be obtained. Note that the thickness of the light transmitting member 20 having a wavelength conversion function is preferably 10 μm or more and 500 μm or less, and more preferably 50 μm or more and 300 μm or less, in terms of light emission efficiency and chromaticity adjustment.

波長変換部材は、青色発光素子と好適に組み合わせて白色発光とでき、波長変換部材に用いられる代表的な蛍光体としては、ガーネット構造のセリウムで付括されたYAG系蛍光体(イットリウム・アルミニウム・ガーネット)及びLAG系蛍光体(ルテチウム・アルミニウム・ガーネット)が挙げられ、特に、高輝度且つ長時間の使用時においては(Re1−xSm(Al1−yGa12:Ce(0≦x<1、0≦y≦1、但し、Reは、Y、Gd、La、Luからなる群より選択される少なくとも一種の元素である。)等が好ましい。またYAG、LAG、BAM、BAM:Mn、(Zn、Cd)Zn:Cu、CCA、SCA、SCESN、SESN、CESN、CASBN及びCaAlSiN:Euからなる群から選択される少なくとも1種を含む蛍光体が使用できる。波長変換部材は、光透過部材の他に、例えば光透過部材と発光素子との間、その結合部材中、発光素子と被覆部材との間、にも設けることもできる。光透過部材、波長変換部材及び焼結体も同様に発光装置中に配置できる。黄〜赤色発光を有する窒化物系蛍光体等を用いて赤味成分を増し、平均演色評価数Raの高い照明や電球色LED等を実現することもできる。具体的には、発光素子の発光波長に合わせてCIEの色度図上の色度点の異なる蛍光体の量を調整し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させることができる。その他に、近紫外〜可視光を黄色〜赤色域に変換する窒化物蛍光体、酸窒化物蛍光体、珪酸塩蛍光体を用いることができる。例えば、LSiO:Eu(Lはアルカリ土類金属)、特に(SrMae1−xSiO:Eu(MaeはCa、Baなどのアルカリ土類金属)などが挙げられる。窒化物系蛍光体、オキシナイトライド(酸窒化物)蛍光体としては、Sr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O−N:Euなどがあり、アルカリ土類窒化ケイ素蛍光体としては、一般式LSi:Eu、一般式LSi(2/3x+4/3y):Eu若しくはLSi(2/3x+4/3y−2/3z):Eu(Lは、Sr、Ca、SrとCaのいずれか)で表される。 The wavelength conversion member can be suitably combined with a blue light emitting element to emit white light. As a typical phosphor used for the wavelength conversion member, a YAG phosphor (yttrium, aluminum, garnet) and LAG-based phosphor (lutetium aluminum garnet) can be mentioned, in particular, at the time of high luminance and long-term use (Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12 : Ce (0 ≦ x <1, 0 ≦ y ≦ 1, where Re is at least one element selected from the group consisting of Y, Gd, La, and Lu). In addition, phosphor including at least one selected from the group consisting of YAG, LAG, BAM, BAM: Mn, (Zn, Cd) Zn: Cu, CCA, SCA, SCESN, SESN, CESN, CASBN and CaAlSiN 3 : Eu Can be used. In addition to the light transmissive member, the wavelength conversion member can also be provided, for example, between the light transmissive member and the light emitting element, and between the light emitting element and the covering member in the coupling member. Similarly, the light transmitting member, the wavelength converting member, and the sintered body can be disposed in the light emitting device. It is also possible to increase the reddish component using a nitride-based phosphor having yellow to red light emission, and to realize illumination with high average color rendering index Ra, light bulb color LED, and the like. Specifically, by adjusting the amount of phosphors having different chromaticity points on the CIE chromaticity diagram according to the light emission wavelength of the light emitting device, the phosphors are connected with each other on the chromaticity diagram. Any point can be made to emit light. In addition, nitride phosphors, oxynitride phosphors, and silicate phosphors that convert near-ultraviolet to visible light into a yellow to red region can be used. For example, L 2 SiO 4 : Eu (L is an alkaline earth metal), particularly (Sr x Mae 1-x ) 2 SiO 4 : Eu (Mae is an alkaline earth metal such as Ca and Ba), and the like. Examples of nitride phosphors and oxynitride (oxynitride) phosphors include Sr—Ca—Si—N: Eu, Ca—Si—N: Eu, Sr—Si—N: Eu, and Sr—Ca—Si. —O—N: Eu, Ca—Si—O—N: Eu, Sr—Si—O—N: Eu, and the like. As the alkaline earth silicon nitride phosphor, the general formula LSi 2 O 2 N 2 : Eu , general formula L x Si y N (2 / 3x + 4 / 3y): Eu or L x Si y O z N ( 2 / 3x + 4 / 3y-2 / 3z): Eu (L is, Sr, Ca, Sr, and Ca Any).

(被覆部材)
被覆部材40は、図1に示すように、光透過部材20の一部を被覆し、具体的には光透過部材20の側面の少なくとも一部を被覆する。そして、本発明においては、被覆部材が素子等から垂下され、光の漏れ経路の形成を防ぐことから、基板、更にはそれに設けられた配線より、被覆部材の反射率が高いことが好ましい。また、光反射材料を含有する被覆部材40は、その基材は透光性の樹脂材料が好ましく、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることができる。また、これらの樹脂を少なくとも一種以上含むハイブリッド樹脂等、耐候性に優れた被覆部材も利用できる。さらに、ガラス、シリカゲル等の耐光性に優れた無機物を用いることもできる。また、樹脂材料を成形することで、所望の形状に成形でき、また所望領域を被覆でき、本発明では光源部の発光素子、導光部材、光透過部材の表面、特にその側面を被覆して形成できる。また、その発光面側の表面も同様に所望形状とでき、図示するような平坦な面状の他、凹や凸の曲面とできる。実施の形態1では耐熱性・耐候性の観点から被覆部材としてシリコーン樹脂を使用する。
(Coating member)
As shown in FIG. 1, the covering member 40 covers a part of the light transmitting member 20, and specifically covers at least a part of the side surface of the light transmitting member 20. In the present invention, since the covering member is suspended from the element or the like to prevent the formation of a light leakage path, it is preferable that the reflectance of the covering member is higher than that of the substrate and the wiring provided thereon. The covering member 40 containing the light reflecting material is preferably a translucent resin material for the base material, and preferably uses a silicone resin composition, a modified silicone resin composition, etc., an epoxy resin composition, An insulating resin composition having translucency such as a modified epoxy resin composition and an acrylic resin composition can be used. A covering member having excellent weather resistance, such as a hybrid resin containing at least one of these resins, can also be used. Furthermore, inorganic materials having excellent light resistance such as glass and silica gel can be used. Further, by molding a resin material, it can be molded into a desired shape and a desired region can be covered. In the present invention, the surface of the light emitting element, the light guide member, and the light transmitting member of the light source section, particularly the side surfaces thereof are covered. Can be formed. In addition, the surface on the light emitting surface side can also have a desired shape, and can be a concave or convex curved surface in addition to a flat surface shape as illustrated. In the first embodiment, a silicone resin is used as a covering member from the viewpoint of heat resistance and weather resistance.

また、被覆部材40は、上記基材中に少なくとも1種類の光反射性材料45を含有してなる。光反射性材料45を含有することで、被覆部材40の反射率が高まり、更に好適には低吸収性の粒子を用いると、光吸収、損失が低減され、光散乱性を備えた被覆部材とできる。被覆部材40中に含有される光反射性材料45は、Ti、Zr、Nb、Al、Siからなる群から選択される1種の酸化物、若しくはAlN、MgFの少なくとも1種であり、具体的にはTiO、ZrO、Nb、Al、MgF、AlN、SiOよりなる群から選択される少なくとも1種である。光反射性材料の粒子が、Ti、Zr、Nb、Alからなる群から選択される1種の酸化物であることで、材料の高い反射性及び低吸収性とでき、基材、特に透光性樹脂との屈折率差を高められ、好ましい。また、被覆部材40は、上記光反射性材料による成形体でもって構成することもでき、具体的には上記粒子を凝集した凝集体、焼結体、などの多孔質材料とすることもでき、その他に、ゾル・ゲル法による成形体でもよく、上記光反射性材料と多孔質内の空気との屈折率差を大きくし、光反射性を高められるため、また無機材料で構成できるため、好ましい。一方、上記樹脂などの母材を備えた被覆部材と比較すると、所望の形状に成形すること及びその被覆領域の制御性が良く、また封止性能、気密性能を高めること、ができ、本発明では上記母材を備えた被覆部材とする方が好ましい。また、両者の被覆部材の特性を考慮して、両者の複合的な成形体とでき、例えば、多孔質成形体の外表面側に樹脂を含浸させ、発光素子側の内表面側では多孔質とした構造とできる。このように、被覆部材若しくはそれによる包囲体は、内部領域と外部とが連通されたり、気体透過性であったりしてもよく、少なくとも光が漏れ出さない形態であれば良い。 The covering member 40 includes at least one light reflective material 45 in the base material. By including the light reflective material 45, the reflectance of the covering member 40 is increased, and more preferably, when a low-absorbing particle is used, light absorption and loss are reduced, and the covering member having light scattering properties it can. The light reflective material 45 contained in the covering member 40 is one oxide selected from the group consisting of Ti, Zr, Nb, Al, and Si, or at least one of AlN and MgF. Is at least one selected from the group consisting of TiO 2 , ZrO 2 , Nb 2 O 5 , Al 2 O 3 , MgF, AlN, and SiO 2 . Since the light-reflective material particles are one kind of oxide selected from the group consisting of Ti, Zr, Nb, and Al, the material can be made highly reflective and low-absorbent. The difference in refractive index with the functional resin is increased, which is preferable. The covering member 40 can also be constituted by a molded body made of the light reflecting material, specifically, a porous material such as an aggregate obtained by agglomerating the particles or a sintered body, In addition, a molded body by a sol-gel method may be used, which is preferable because the difference in refractive index between the light reflecting material and the air in the porous body can be increased, and the light reflecting property can be increased. . On the other hand, compared with a covering member provided with a base material such as the resin, it can be molded into a desired shape and controllability of the covering region is good, and sealing performance and airtightness can be improved. Then, it is preferable to use a covering member provided with the base material. Also, considering the characteristics of both covering members, a composite molded body of both can be formed. For example, the outer surface side of the porous molded body is impregnated with resin, and the inner surface side of the light emitting element side is porous. The structure can be made. As described above, the covering member or the surrounding body may be configured such that the inner region communicates with the outside or is gas permeable and at least does not leak light.

上述した母材中に光反射性材料45を含有する被覆部材40では、その含有濃度、密度により光の漏れ出す深さが異なるため、発光装置形状、大きさに応じて、適宜濃度、密度を調整すると良い。例えば比較的小さな発光装置で肉厚を小さくする場合は、高濃度の光反射性材料45を備えることが好ましい。一方で、光反射性材料45を含有する被覆部材40の原料の調製、その原料の塗布、成形などの製造過程において、それに適したようにその濃度を調整する。上記多孔質体についても同様である。一例として、実施例の場合には、光反射性材料45の含有濃度は20重量パーセント濃度(wt%)以上、その肉厚は20μm以上とするのが好適であり、発光面90から高輝度で指向性の高い放出光が得られ、適度な粘性で被覆部材によるアンダーフィルの形成など容易にできる。また、光反射性材料の濃度を高くすれば被覆部材の熱拡散性を高めることができる。   In the covering member 40 containing the light reflective material 45 in the base material described above, the depth at which light leaks differs depending on the concentration and density of the covering member 40. Therefore, the concentration and density are appropriately set according to the shape and size of the light emitting device. Adjust it. For example, when the thickness is reduced with a relatively small light emitting device, it is preferable to provide the light-reflecting material 45 with a high concentration. On the other hand, in the manufacturing process such as the preparation of the covering member 40 containing the light reflecting material 45, the application of the raw material, and the molding, the concentration is adjusted so as to be suitable for it. The same applies to the porous body. As an example, in the case of the embodiment, it is preferable that the concentration of the light-reflecting material 45 is 20 weight percent (wt%) or more, and the thickness is 20 μm or more. The emitted light with high directivity can be obtained, and the underfill can be easily formed by the covering member with an appropriate viscosity. Moreover, if the density | concentration of a light reflective material is made high, the thermal diffusibility of a coating | coated member can be improved.

被覆部材の形成領域は、光透過部材20における少なくとも側面に被覆部材40を設け、好ましくは発光素子の側面も被覆し、更に好ましくは、光透過部材及び発光素子を含む光源部において発光面を露出させてその他を被覆し、導光部材30を介する場合も同様である。これにより、光透過部材の側面から光が漏れ出すのを回避でき、その側面からの比較的強度の大きい、また光り変換部材を有する場合は色味差を有する光を抑止して、放射光の指向性を良好にし、輝度ムラ、色ムラを低減できる。また、各部材、素子の側面を被覆して、光取り出し方向側へ制限することで、指向性、輝度を高められる。また、光透過部材20が波長変換材料を含有する場合には、この波長変換材料の発熱が特に著しいため、それを改善できる。光透過部材20の側面が被覆部材40により被覆され、かつ表面21が露出されていれば、その外面形状は特に限定されず、図1に示すように表出面が光透過部材の表面21よりも窪んだ構造でもよい。この発光面90が突出することで被覆部材40による遮光を回避でき、また略同一面でもよく、所望の表面とできる。実施の形態1において、被覆部材40は受光面22の一部も被覆し、図示するように、発光素子10の周囲を、具体的に光透過部材の受光面22において発光素子10との対向域を除く領域を、被覆する。この構成により、図2に観るように、受光面22において、光学的な接続領域(接合領域31)と、導光部材(被覆領域32,33)を介して被覆される被覆領域とが設けられる。また、被覆領域で、光透過部材の受光面22側へと進行した光を光取り出し側へと反射させ、基板50での光吸収などによる一次光の光損失を抑制できる。図5,8に示すように、複数の発光素子10が1つの光透過部材20に接合される場合には、その発光素子間(第2の被覆領域34)についても被覆部材40が充填されて、受光面22の離間領域を被覆することが好ましい。接合領域の光変換部材の熱に対し、この構成により上記離間領域の放熱性を高めることができ、上述のように光透過部材の突出部、第1の被覆領域32においても同様に好ましい。   The covering member forming region is provided with a covering member 40 on at least the side surface of the light transmitting member 20, preferably also covering the side surface of the light emitting element, and more preferably, the light emitting surface is exposed in the light source unit including the light transmitting member and the light emitting element. The same applies to the case where the other is covered and the light guide member 30 is interposed. As a result, it is possible to avoid light leaking from the side surface of the light transmitting member, and when having a relatively high intensity light from the side surface, and having a light conversion member, light having a color difference is suppressed and The directivity can be improved, and luminance unevenness and color unevenness can be reduced. Moreover, the directivity and the brightness can be improved by covering the side surfaces of the respective members and elements and restricting them to the light extraction direction side. In addition, when the light transmitting member 20 contains a wavelength conversion material, the heat generation of the wavelength conversion material is particularly significant, which can be improved. If the side surface of the light transmitting member 20 is covered with the covering member 40 and the surface 21 is exposed, the outer surface shape is not particularly limited, and the exposed surface is more than the surface 21 of the light transmitting member as shown in FIG. A recessed structure may be used. By projecting the light emitting surface 90, light shielding by the covering member 40 can be avoided, and substantially the same surface may be used, and a desired surface can be obtained. In the first embodiment, the covering member 40 also covers a part of the light receiving surface 22, and as shown in the drawing, the periphery of the light emitting element 10 is specifically opposed to the light emitting element 10 on the light receiving surface 22 of the light transmitting member. The area except for is covered. With this configuration, as shown in FIG. 2, the light receiving surface 22 is provided with an optical connection region (joining region 31) and a covering region covered through the light guide member (covering regions 32 and 33). . Further, in the covering region, the light traveling toward the light receiving surface 22 side of the light transmitting member is reflected toward the light extraction side, and the light loss of the primary light due to light absorption or the like at the substrate 50 can be suppressed. As shown in FIGS. 5 and 8, when a plurality of light emitting elements 10 are joined to one light transmitting member 20, the covering member 40 is also filled between the light emitting elements (second covering region 34). It is preferable to cover the separated area of the light receiving surface 22. With respect to the heat of the light conversion member in the joining region, this configuration can enhance the heat dissipation property of the separation region, which is also preferable in the protruding portion of the light transmission member and the first covering region 32 as described above.

(添加部材)
また、被覆部材40には、光反射性材料45、光変換部材の他、粘度増量剤等を適宜添加することができ、これによって所望の発光色、それら部材若しくは装置表面の色、例えば高コントラスト化の為の黒色など、また所望の指向特性を有する発光装置が得られる。同様に不要な波長をカットするフィルター材として各種着色剤を添加できる。他の部材、また導光部材、封止部材、光透過部材などの光透過性材料も同様である。
(Additive components)
In addition to the light-reflective material 45 and the light conversion member, a viscosity extender or the like can be appropriately added to the covering member 40, whereby a desired emission color, color of these members or the surface of the device, for example, high contrast Thus, a light emitting device having a desired directional characteristic such as black for conversion to black can be obtained. Similarly, various colorants can be added as filter materials for cutting unnecessary wavelengths. The same applies to other members, and light transmissive materials such as a light guide member, a sealing member, and a light transmissive member.

(導光部材)
導光部材30は、発光素子10と光透過部材20との間に介在して双方の部材を固着する接着剤に用いられる。この導光部材は、透光性を有して、発光素子10の出射光を光透過部材側へ導光でき、双方の部材を光学的に結合できる材質が好ましい。その材料としては上記各部材に用いられる樹脂材料が挙げられ、シリコーン樹脂やエポキシ樹脂など透光性の熱硬化性樹脂がよく、シリコーン樹脂は耐熱性、耐光性に優れるため好ましい。また、シリコーン樹脂を使用すれば、上記フッ素系離型剤の効果が高いため好ましい。さらに、ジメチル系シリコーン樹脂であれば高温耐性など信頼性において優れ、フェニル系シリコーン樹脂であれば屈折率を高くして発光素子10からの光の取り出し効率を高めることができる。
(Light guide member)
The light guide member 30 is used as an adhesive that is interposed between the light emitting element 10 and the light transmitting member 20 and fixes both members. The light guide member is preferably made of a material having translucency so that the light emitted from the light emitting element 10 can be guided to the light transmissive member side and both the members can be optically coupled. Examples of the material include resin materials used for the above-described members, and a translucent thermosetting resin such as a silicone resin or an epoxy resin is preferable. A silicone resin is preferable because it is excellent in heat resistance and light resistance. In addition, it is preferable to use a silicone resin because the effect of the fluorine-based mold release agent is high. Furthermore, if it is a dimethyl-type silicone resin, it is excellent in reliability, such as high temperature tolerance, and if it is a phenyl-type silicone resin, the refractive index can be made high and the extraction efficiency of the light from the light emitting element 10 can be improved.

(実装基板50)
一方、図1の発光装置100において、上記の発光素子10が実装される基板50は、少なくとも表面が素子の電極と接続される配線51を形成したものが利用でき、また外部接続用の配線52などが設けられても良い。基板の材料は、例として窒化アルミニウム(AlN)で構成され、単結晶、多結晶、焼結基板、他の材料としてアルミナ等のセラミック、ガラス、Si等の半金属あるいは金属基板、またそれらの積層体、複合体が使用でき、金属性、セラミックは放熱性が高いため好ましい。なお、基板50は配線が無くてもよく、例えば図4の素子で成長基板側を実装して素子の電極を装置の電極にワイヤー接続する形態、光透過部材に配線を設けて接続する形態でもでもよい。また、図示する発光装置のように、被覆部材40が実装基板50の上に設けられる形態の他、実装基板50の外側側面も覆う形態でもよい。また実装基板50は、少なくともその表面が高反射性材料で構成されることが好ましい。図1,2に示すように、発光素子10は、導電性接着材60により配線51上に接着されて外部と電気的に接続される。導電性接着材60は、半田、Agペースト、Auバンプなどが利用できる。
(Mounting board 50)
On the other hand, in the light-emitting device 100 of FIG. 1, the substrate 50 on which the light-emitting element 10 is mounted can use a substrate at least having a wiring 51 connected to the electrode of the element, and an external connection wiring 52. Etc. may be provided. The substrate material is, for example, aluminum nitride (AlN), single crystal, polycrystal, sintered substrate, other materials such as ceramics such as alumina, glass, semi-metal or metal substrates such as Si, and laminates thereof. Bodies and composites can be used, and metallic and ceramic materials are preferred because of their high heat dissipation. Note that the substrate 50 may not have wiring. For example, in the form in which the growth substrate side is mounted with the element of FIG. 4 and the electrode of the element is wire-connected to the electrode of the apparatus, or the light-transmitting member is provided with wiring. But you can. Moreover, the form which covers the outer side surface of the mounting board | substrate 50 other than the form in which the coating | coated member 40 is provided on the mounting board | substrate 50 like the light-emitting device to show in figure may be sufficient. Further, it is preferable that at least the surface of the mounting substrate 50 is made of a highly reflective material. As shown in FIGS. 1 and 2, the light emitting element 10 is bonded onto the wiring 51 by a conductive adhesive 60 and is electrically connected to the outside. As the conductive adhesive 60, solder, Ag paste, Au bump, or the like can be used.

(枠体、積層基板、基材)
図1に示す発光装置100は、枠体55を有し、被覆部材40の保持部材である。枠体55は、セラミックや樹脂などで形成することができる。光反射性の高いアルミナが好ましいが、表面に反射膜を形成すればこれに限らない。樹脂であれば、スクリーン印刷等を用いるほか、成形体を実装基板に接着してもよい。また、被覆部材40と同様に光反射性材料を用いるなどして、反射率を高くすると好ましい。また、上記添加部材同様に、枠体を目的に応じて着色してもよい。なお、この枠体は、被覆部材を充填又は成形後に、取り外すこともできる。また、枠体として、積層基板56、基材などでキャビティ構造を有する装置基体など、発光素子の実装基板に一体に形成されている形態でもよい。
(Frame body, laminated substrate, base material)
The light emitting device 100 shown in FIG. 1 has a frame 55 and is a holding member for the covering member 40. The frame body 55 can be formed of ceramic, resin, or the like. Alumina having high light reflectivity is preferable, but not limited to this as long as a reflective film is formed on the surface. If it is resin, besides using screen printing or the like, the molded body may be bonded to the mounting substrate. Further, it is preferable to increase the reflectance by using a light reflective material as in the covering member 40. Moreover, you may color a frame according to the objective like the said addition member. In addition, this frame can also be removed after filling or forming the covering member. Further, the frame body may be formed integrally with the mounting substrate of the light emitting element, such as a laminated substrate 56, a base of a device base having a cavity structure, or the like.

(発光装置の製造方法)
図1に示される例の発光装置100の製造方法の一例として以下に説明する。まず、実装基板50上または発光素子10にバンプ60を形成しフリップチップ実装する。この例では個片化前の基板50上で、1つの発光装置に対応する領域に1個のLEDチップを並べて実装する。次に、発光素子10の出射面側(サファイア基板裏面あるいはLLOで基板除去した場合であれば窒化物半導体露出面)に、導光部材30を塗布して、光透過部材20を積層し、その樹脂30を熱硬化して接合する。次に、発光素子10の周囲に立設された枠体55内に、光透過部材20の側面を被覆するように、ディスペンサ(液体定量吐出装置)等により、被覆部材40を構成する樹脂をポッティングする。滴下された樹脂40は、表面張力によって発光素子10、光透過部材20の側面を這い上がり被覆し、表面21より枠体55に向かって低くなる傾斜表面が形成される。また、樹脂40の表出面を表面21と略同一面となるよう平坦化してもよい。そして、樹脂40を硬化させた後、所定の位置でダイシングを行い、所望の大きさに切り出して発光装置100を得る。
(Method for manufacturing light emitting device)
An example of a method for manufacturing the light emitting device 100 shown in FIG. 1 will be described below. First, bumps 60 are formed on the mounting substrate 50 or on the light emitting element 10 and are flip-chip mounted. In this example, one LED chip is mounted side by side in a region corresponding to one light emitting device on the substrate 50 before separation. Next, the light guide member 30 is applied to the light emission surface side of the light emitting element 10 (the back surface of the sapphire substrate or the nitride semiconductor exposed surface if the substrate is removed by LLO), and the light transmitting member 20 is laminated. The resin 30 is thermoset and bonded. Next, a resin constituting the covering member 40 is potted by a dispenser (liquid metering discharge device) or the like so as to cover the side surface of the light transmitting member 20 in the frame 55 standing around the light emitting element 10. To do. The dropped resin 40 scoops up and covers the side surfaces of the light emitting element 10 and the light transmitting member 20 by surface tension, and forms an inclined surface that becomes lower from the surface 21 toward the frame body 55. Further, the exposed surface of the resin 40 may be flattened so as to be substantially flush with the surface 21. Then, after the resin 40 is cured, dicing is performed at a predetermined position, and the light emitting device 100 is obtained by cutting into a desired size.

(実施の形態2)
図5(a)は、本発明の実施の形態2に係る発光装置200の概略断面図であり、図5(b)はその光源部周辺を説明するための概略断面図である。発光装置200において、発光素子10の個数および導光部材30の構造を除く他の構成については、上述の実施の形態1と実質上同様であり、したがって同様の構成については同一の符号を付して適宜説明を省略する。
(Embodiment 2)
FIG. 5A is a schematic cross-sectional view of the light-emitting device 200 according to Embodiment 2 of the present invention, and FIG. 5B is a schematic cross-sectional view for explaining the periphery of the light source unit. In the light emitting device 200, the configuration other than the number of the light emitting elements 10 and the structure of the light guide member 30 is substantially the same as that of the above-described first embodiment, and therefore the same configuration is denoted by the same reference numeral. The description will be omitted as appropriate.

本発明の発光装置において、1つの光透過部材20に接合される発光素子10の個数は特に限定されない。実施の形態1の単数に対して、発光素子10を複数とすることで、光透過部材、発光面の大きさ、形状に応じて、また所望の発光特性とするために、複数の発光素子を適宜配置でき、また個別に駆動させることもでき、所望形状、発光特性の発光面が得られ好ましい。なお、複数の発光素子10を搭載する場合、互いに適度に離間して設けられ、またこの離間距離は、発光装置の配光特性、放熱性、並びに発光素子の実装精度を考慮して適宜決めることができ、例えば、発光素子の寸法に比して10%以内とする。このほか、複数の発光素子10は互いに結合されていてもよい。また、本実施の形態では、2つを列状に並べているが、これに限らず、格子状配置など、また規則的、不規則的など、種々の配置が可能であり、好適には各素子間を略等間隔で配置して強度分布を小さくすると良い。   In the light emitting device of the present invention, the number of light emitting elements 10 bonded to one light transmitting member 20 is not particularly limited. By using a plurality of light-emitting elements 10 relative to the single element of Embodiment 1, a plurality of light-emitting elements are used in accordance with the size and shape of the light-transmitting member and the light-emitting surface, and to obtain desired light-emitting characteristics. It can be arranged appropriately and can be driven individually, which is preferable because a light emitting surface having a desired shape and light emission characteristics can be obtained. When a plurality of light emitting elements 10 are mounted, the light emitting elements 10 are provided at an appropriate distance from each other, and the distance is appropriately determined in consideration of the light distribution characteristics of the light emitting device, heat dissipation, and the mounting accuracy of the light emitting elements. For example, it is within 10% of the dimension of the light emitting element. In addition, the plurality of light emitting elements 10 may be coupled to each other. In the present embodiment, the two are arranged in a line, but the present invention is not limited to this, and various arrangements such as a lattice arrangement, regular, irregular, etc. are possible, and preferably each element. It is preferable to arrange the intervals at substantially equal intervals to reduce the intensity distribution.

発光装置200は、実装基板50上に複数(図中は2個)の発光素子10が互いに離間されて実装されており、その複数の発光素子10を包含する大きさの受光面22を有する光透過部材20が、その上に導光部材30を介して接合されている。なお、この発光装置200では、枠体は基板50に積層されてキャビティ構造を有する基体56となっており、また、上面側の実装素子用の配線層51とそれに電気的に接続され、外部接続用の配線層52が基体56下面側にも設けられている。   In the light emitting device 200, a plurality of (two in the drawing) light emitting elements 10 are mounted on the mounting substrate 50 so as to be separated from each other, and light having a light receiving surface 22 having a size including the plurality of light emitting elements 10. The transmission member 20 is joined to the light transmission member 20 via the light guide member 30. In this light emitting device 200, the frame body is a base body 56 having a cavity structure laminated on the substrate 50, and is electrically connected to the wiring layer 51 for the mounting element on the upper surface side, and external connection A wiring layer 52 is also provided on the lower surface side of the substrate 56.

このような発光装置200において、接合領域31は、光透過部材の受光面22と各発光素子10の出射面との対向領域に各々設けられる。また、上述した第1の被覆領域32は、複数の発光素子の中で、受光面内で外側に配置される発光素子10で、その外側に面した側面に設けられ、また受光面22の周縁部を突出表面として被覆し、その外表面に第1の反射面33が設けられて、発光素子10から側方に出射される光を光透過部材の受光面22側に反射し、導光することができる。また、この例では、図示していないが、受光面の一端部に複数の発光素子が配置され、その端部側の側面に第1の被覆領域、第1反射面が各々設けられるが、それが各素子単位で分離されていても良い。好ましくは互いに接合され、1つの第1の被覆領域、第1反射面が共通であると良く、それが形成される程度に近接して配置されると良い。この時、素子間で、凹みが設けられた第1の被覆領域で有っても良い。   In such a light emitting device 200, the bonding regions 31 are provided in regions facing the light receiving surface 22 of the light transmitting member and the light emitting surface of each light emitting element 10. The first covering region 32 described above is a light emitting element 10 disposed outside the light receiving surface among the plurality of light emitting elements, and is provided on a side surface facing the outside, and the periphery of the light receiving surface 22. The first reflection surface 33 is provided on the outer surface of the light-emitting element 10 so that the light emitted from the light-emitting element 10 is reflected to the light-receiving surface 22 side of the light transmission member and guided. be able to. In this example, although not shown, a plurality of light emitting elements are arranged at one end portion of the light receiving surface, and a first covering region and a first reflecting surface are provided on the side surface on the end portion side. May be separated for each element. Preferably, the first covering region and the first reflecting surface are joined together, and are arranged close to each other so that they are formed. At this time, it may be a first covering region provided with a recess between the elements.

また、1つの光透過部材20の受光面22側に複数個の発光素子10を接合する場合、導光部材30は、隣接する発光素子に挟まれた離間領域においても垂下し、すなわち隣接する発光素子10の互いに対向する側面の一部と、該素子に挟まれた受光面22の一部と、を接合領域31から延在して被覆する第2の被覆領域34を有する。この第2の被覆領域34は通常、隣接する発光素子10の互いに対向する側面同士を接続するように設けられる。また、この第2の被覆領域34の外表面も、発光素子10の実装面より光透過部材20側に位置していることにより、すなわち実装基板から導光部材が分離されることで、基板50に導光、漏洩して吸収されることを防止できる。そして、この第2の被覆領域34の外表面に、発光素子10から出射される光を受光面22側に反射させる第2の反射面35が設けられている。このように、1つの光透過部材20の受光面22に複数の発光素子10が搭載される発光装置において、導光部材30の第2の反射面35により、複数の発光素子10から側方、その離間領域に出射される光を良好に取り出し、光透過部材の受光面22側に反射して光透過部材20に光結合できる。また、この第2の反射面35についても、実施の形態1の発光装置100における第1の反射面と同様の傾斜面を有することが好ましい。特に、図示するように、素子間で1つの凸曲面であると、離間領域において好適に各素子からの出射光を反射して、相互に混合させることができ好ましい。   Further, when a plurality of light emitting elements 10 are bonded to the light receiving surface 22 side of one light transmitting member 20, the light guide member 30 also hangs down in a separated region sandwiched between adjacent light emitting elements, that is, adjacent light emission. A second covering region 34 that extends from the bonding region 31 and covers a part of the side surfaces of the element 10 facing each other and a part of the light receiving surface 22 sandwiched between the elements is provided. The second covering region 34 is usually provided so as to connect the mutually facing side surfaces of the adjacent light emitting elements 10. Further, the outer surface of the second covering region 34 is also positioned on the light transmitting member 20 side from the mounting surface of the light emitting element 10, that is, the light guide member is separated from the mounting substrate, whereby the substrate 50. Can be prevented from being absorbed by leaking light. A second reflecting surface 35 that reflects the light emitted from the light emitting element 10 toward the light receiving surface 22 is provided on the outer surface of the second covering region 34. As described above, in the light emitting device in which the plurality of light emitting elements 10 are mounted on the light receiving surface 22 of one light transmitting member 20, the second reflecting surface 35 of the light guide member 30 laterally extends from the plurality of light emitting elements 10. The light emitted to the separated region can be taken out well, reflected to the light receiving surface 22 side of the light transmitting member, and optically coupled to the light transmitting member 20. Also, the second reflecting surface 35 preferably has an inclined surface similar to the first reflecting surface in the light emitting device 100 of the first embodiment. In particular, as shown in the figure, it is preferable that one convex curved surface is provided between the elements because the outgoing light from each element is preferably reflected in the separated region and can be mixed with each other.

なお、第2の反射面35は、光透過部材の受光面22からの距離が、その発光素子10における各出射面より遠くに設けられていることが好ましい。これにより、図8(実施の形態5)のように出射面より受光面の近くに反射面35、又は上記凸曲面の突端が設けられる場合、出射面と受光面との間に設けられる場合に比べて、各発光素子10の出射光を広範に拡散して導光することができ、離間領域における光束の低下を軽減し、したがって、各発光素子10の配置及びその配光に起因する輝度むら、色度むらを低減することができ、発光面内の輝度を均一化することができる。他方、図8に見るような前者の場合は、各発光素子を分離しやすく、輝度むらが大きくなるが、光取り出し効率を高められ、それを利用する場合には好ましい。   In addition, it is preferable that the 2nd reflective surface 35 is provided in the distance from the light-receiving surface 22 of a light transmissive member far from each output surface in the light emitting element 10. FIG. As a result, as shown in FIG. 8 (Embodiment 5), when the reflecting surface 35 or the protruding end of the convex curved surface is provided closer to the light receiving surface than the light emitting surface, it is provided between the light emitting surface and the light receiving surface. In comparison, the light emitted from each light-emitting element 10 can be diffused and guided extensively, and the reduction of the luminous flux in the separated region can be reduced. Therefore, the luminance unevenness caused by the arrangement of each light-emitting element 10 and its light distribution is reduced. Further, the chromaticity unevenness can be reduced, and the luminance in the light emitting surface can be made uniform. On the other hand, in the former case as shown in FIG. 8, the light emitting elements are easily separated and the luminance unevenness is increased, but the light extraction efficiency can be increased, which is preferable.

また、複数の発光素子10は、少なくとも1組が、実装ズレなどにより出射面の高さが異なり、その各発光素子の出射面から光透過部材の受光面22までの距離が互いに異なように、導光部材を介在させると良い。これにより、1つの発光素子10からその隣接する発光素子10への光入射を低減し、発光素子10内での光吸収による光束の損失を抑えることができる。このような形態は、発光素子10を実装基板50上に接着させる導電性接着材60の厚みなどにより調整することができる。   In addition, at least one set of the plurality of light emitting elements 10 has different emission surface heights due to mounting misalignment or the like, and the distance from the emission surface of each light emitting element to the light receiving surface 22 of the light transmitting member is different from each other. A light guide member may be interposed. Thereby, light incidence from one light emitting element 10 to the adjacent light emitting element 10 can be reduced, and loss of light flux due to light absorption in the light emitting element 10 can be suppressed. Such a form can be adjusted by the thickness of the conductive adhesive 60 that adheres the light emitting element 10 onto the mounting substrate 50.

第2の反射面35は、第1の反射面同様に、導光部材30と隣接する発光素子10に挟まれた被覆部材40との界面に設けられていることが好ましい。隣接する発光素子に挟まれた離間領域は、実装基板50上には、配線などの金属膜が形成されず基板表面が露出される場合も多く、光吸収を生じやすいため、少なくともこの基板の表面が被覆部材により被覆されていることが好ましく、被覆部材40が充填され、第2の反射面35が被覆部材40との界面に設けられていることが更に好ましい。また、上述のように、離間領域に充填された被覆部材40と第2の反射面35との間に空隙が設けられた形態でもよい。   Like the first reflective surface, the second reflective surface 35 is preferably provided at the interface between the light guide member 30 and the covering member 40 sandwiched between the adjacent light emitting elements 10. The separation region sandwiched between adjacent light emitting elements often exposes the surface of the substrate without forming a metal film such as wiring on the mounting substrate 50, and is liable to absorb light, so at least the surface of this substrate Is preferably covered with a covering member, more preferably the covering member 40 is filled, and the second reflecting surface 35 is provided at the interface with the covering member 40. Further, as described above, a mode in which a gap is provided between the covering member 40 filled in the separation region and the second reflecting surface 35 may be employed.

(実施の形態3)
図6は、本発明の実施の形態3に係る発光装置の光源部周辺を説明する概略断面図である。この発光装置において、発光素子10と光透過部材20との大きさの関係および導光部材30の構造を除く他の構成については、上述の実施の形態1と同様であり、したがって同様の構成については同一の符号を付して適宜説明を省略する。図6に示す例の発光装置において、光透過部材の受光面22は、発光素子10の出射面より小さく、出射面の一部が受光面22より外側に突出している。言い換えれば、光透過部材20の側面は発光素子10の側面より内側に位置している。このような発光装置は、発光装置の発光面90を比較的小さい光放出の窓部として、放出光の輝度を高めることができる。すなわち、上述の実施の形態1,2と異なり、導光部材が発光素子の突出表面と、その突出した端部より内側に設けられた光透過部材の側面とに延在されて、その領域を被覆している。
(Embodiment 3)
FIG. 6 is a schematic cross-sectional view illustrating the periphery of the light source unit of the light-emitting device according to Embodiment 3 of the present invention. In this light emitting device, the configuration other than the relationship between the size of the light emitting element 10 and the light transmitting member 20 and the structure of the light guide member 30 is the same as that of the above-described first embodiment. Are denoted by the same reference numerals, and description thereof will be omitted as appropriate. In the light emitting device of the example shown in FIG. 6, the light receiving surface 22 of the light transmitting member is smaller than the light emitting surface of the light emitting element 10, and a part of the light emitting surface protrudes outside the light receiving surface 22. In other words, the side surface of the light transmissive member 20 is located inside the side surface of the light emitting element 10. Such a light emitting device can increase the luminance of emitted light by using the light emitting surface 90 of the light emitting device as a relatively small light emitting window. That is, unlike the above-described first and second embodiments, the light guide member extends to the protruding surface of the light emitting element and the side surface of the light transmitting member provided on the inner side of the protruding end, and the region is It is covered.

本実施形態の発光装置において、導光部材30は、発光素子10の出射面の光透過部材との対向領域と、光透過部材の受光面22と、を接合する接合領域31を有する。また、導光部材30は、この接合領域31から延在して、光透過部材20の側面に這い上がり、光透過部材20の側面を被覆する第1の被覆領域32を有している。この光透過部材20の側面を被覆する第1の被覆領域32は、発光素子10の出射光を反射して集光し、特にその端部の光を反射して、光透過部材20側に導光することができる。また、この第1の被覆領域32の外表面も、発光素子10の実装面より光透過部材20側に位置していることにより、実装基板50への光の漏洩を防止できる。ここで、第1の被覆領域32の被覆部材40側に面する外表面、すなわち第1の被覆領域32の光透過部材の側面と対向する外表面は、発光素子10の出射光を光透過部材20側に反射させる第1の反射面33を有している。したがって、第1の被覆領域32に透過された光は、第1の反射面33により光透過部材20側に反射されて、該反射光が光透過部材20に光結合し、発光面90から装置外部へ放出される。このように、発光素子10から光透過部材の受光面22側に出射される光を、光透過部材に効率良く光結合させることにより、発光素子10から出射される光の利用効率を高めることができる。   In the light emitting device of the present embodiment, the light guide member 30 has a joint region 31 that joins the region of the light emitting element 10 facing the light transmissive member and the light receiving surface 22 of the light transmissive member. In addition, the light guide member 30 includes a first covering region 32 that extends from the joining region 31, climbs to the side surface of the light transmitting member 20, and covers the side surface of the light transmitting member 20. The first covering region 32 that covers the side surface of the light transmitting member 20 reflects and collects the light emitted from the light emitting element 10, particularly reflects the light at the end thereof, and guides it to the light transmitting member 20 side. Can be light. Further, since the outer surface of the first covering region 32 is also located closer to the light transmission member 20 than the mounting surface of the light emitting element 10, light leakage to the mounting substrate 50 can be prevented. Here, the outer surface facing the covering member 40 side of the first covering region 32, that is, the outer surface facing the side surface of the light transmitting member of the first covering region 32, emits light emitted from the light emitting element 10 to the light transmitting member. It has the 1st reflective surface 33 reflected in 20 side. Therefore, the light transmitted to the first covering region 32 is reflected to the light transmitting member 20 side by the first reflecting surface 33, and the reflected light is optically coupled to the light transmitting member 20, so Released to the outside. As described above, by efficiently coupling the light emitted from the light emitting element 10 to the light receiving surface 22 side of the light transmitting member with the light transmitting member, the utilization efficiency of the light emitted from the light emitting element 10 can be improved. it can.

本実施の形態の発光装置における第1の反射面33も、実施の形態1,2の発光装置100における第1の反射面33と同様の界面の構成とすることができ、また同様に、特に被覆部材40との界面に設けられていることが好ましい。また、第1の被覆領域32の光透過部材20の側面と対向する外表面は、該側面から発光素子10の出射面側に傾斜した傾斜面であるで、第1の反射面33も同様に傾斜した傾斜面となり、光透過部材20側に良好に反射させることができ好ましい。さらに、この傾斜面は平面であってもよいが、上述したように接合領域31に向かって凸な凸曲面であることで第1の反射面33の表面積を増大でき、光の反射効率を高めることができるので好ましい。   The first reflecting surface 33 in the light emitting device according to the present embodiment can also have the same interface configuration as the first reflecting surface 33 in the light emitting device 100 according to the first and second embodiments. It is preferably provided at the interface with the covering member 40. Further, the outer surface of the first covering region 32 that faces the side surface of the light transmitting member 20 is an inclined surface that is inclined from the side surface toward the light emitting surface of the light emitting element 10, and the first reflecting surface 33 is also the same. An inclined surface is preferable, which can be favorably reflected toward the light transmitting member 20 side. Furthermore, although this inclined surface may be a flat surface, the surface area of the first reflecting surface 33 can be increased by being a convex curved surface convex toward the bonding region 31 as described above, and the light reflection efficiency is increased. This is preferable.

一方、図6に示す例の発光装置において、発光素子10の側面は導光部材30から露出されており、光反射性の被覆部材40により被覆されていることが好ましい。このように、導光部材30の外表面が、発光素子10の出射面と光透過部材20の側面とを接続するように設けられることにより、導光部材30が発光素子10の側面も被覆する場合に比べて、導光部材30の外表面の外側への膨らみを抑えることができる。したがって、導光部材30の外表面で反射される光の光透過部材20までの光路長を短くすることができ、導光部材30内での光吸収を低減し、光透過部材20への光結合効率を高めることができる。また、光透過部材20側への光反射に適した形状、傾斜角を有する第1の反射面33を形成しやすくなり、第1の反射面33による反射効率を高めることができる。   On the other hand, in the light emitting device of the example shown in FIG. 6, it is preferable that the side surface of the light emitting element 10 is exposed from the light guide member 30 and is covered with a light reflective coating member 40. As described above, the light guide member 30 covers the side surface of the light emitting element 10 by providing the outer surface of the light guide member 30 so as to connect the emission surface of the light emitting element 10 and the side surface of the light transmitting member 20. Compared to the case, the outward swelling of the outer surface of the light guide member 30 can be suppressed. Therefore, the optical path length to the light transmission member 20 of the light reflected by the outer surface of the light guide member 30 can be shortened, light absorption in the light guide member 30 is reduced, and the light to the light transmission member 20 is reduced. The coupling efficiency can be increased. Moreover, it becomes easy to form the 1st reflective surface 33 which has the shape suitable for the light reflection to the light transmissive member 20 side, and an inclination angle, and the reflective efficiency by the 1st reflective surface 33 can be improved.

(実施の形態4)
図7は、本発明の実施の形態4に係る発光装置の光源部周辺を説明する概略断面図である。図7に示す例において、導光部材30の形態、並びに光透過部材の表面21の形状を除く他の構成については、上述の実施の形態1と実質上同様であり、したがって同様の構成については同一の符号を付して適宜説明を省略する。図7に示す例の発光装置において、光透過部材の受光面22は、発光素子10の出射面より大きく、受光面22の一部が発光素子10の出射面より外側に突出している。そして、導光部材30は、光透過部材の受光面22の発光素子との対向領域と、発光素子10の出射面と、を接合する接合領域31を有し、また接合領域31から延在して光透過部材20の突出部の受光面22を被覆し、発光素子10の実装面より光透過部材20側に外表面を有する第3の被覆領域37を有している。また発光素子10の側面及び光透過部材20の側面は、導光部材30から露出されている。そして、この第3の被覆領域37の外表面は、発光素子10から出射される光を、光透過部材20の受光面22側に反射させる第3の反射面38を有している。ここで、第3の被覆領域、第3の反射面は、それぞれ上述の第1の被覆領域、第1の反射面の一形態である。
(Embodiment 4)
FIG. 7 is a schematic cross-sectional view illustrating the periphery of the light source unit of the light-emitting device according to Embodiment 4 of the present invention. In the example shown in FIG. 7, the configuration of the light guide member 30 and the configuration other than the shape of the surface 21 of the light transmission member are substantially the same as those of the above-described first embodiment. The same reference numerals are given and description thereof is omitted as appropriate. In the light emitting device of the example shown in FIG. 7, the light receiving surface 22 of the light transmitting member is larger than the light emitting surface of the light emitting element 10, and a part of the light receiving surface 22 protrudes outside the light emitting surface of the light emitting element 10. The light guide member 30 has a joining region 31 that joins a region facing the light emitting element of the light receiving surface 22 of the light transmissive member and the emission surface of the light emitting element 10, and extends from the joining region 31. Thus, the light receiving surface 22 of the projecting portion of the light transmitting member 20 is covered, and a third covering region 37 having an outer surface on the light transmitting member 20 side from the mounting surface of the light emitting element 10 is provided. Further, the side surface of the light emitting element 10 and the side surface of the light transmitting member 20 are exposed from the light guide member 30. The outer surface of the third covering region 37 has a third reflecting surface 38 that reflects the light emitted from the light emitting element 10 toward the light receiving surface 22 of the light transmitting member 20. Here, the 3rd covering field and the 3rd reflective surface are one form of the above-mentioned 1st covering field and the 1st reflective surface, respectively.

第3の被覆領域37の外表面は、発光素子10の出射面の終端から光透過部材20の突出部の受光面22側に傾斜した傾斜面であることが好ましい。これにより、第3の反射面38が発光素子10の出射面の端部から光透過部材20の突出部の受光面22側に傾斜した傾斜面となり、発光素子10の出射光、光透過部材からの反射光、発光を光透過部材の受光面22側に良好に反射させることができる。さらに、この傾斜面は平面であってもよいが、接合領域31に向かって凸な凸曲面であることで、平面である場合に比して第3の反射面38の表面積を増大でき、光の反射効率を高めることができるので好ましい。また、第3の反射面38は、実施の形態1の第1の反射面33と同様に、被覆部材40との界面に設けられていることが好ましいが、空隙により被覆部材40とが離間されてもよいし、金属膜や誘電体多層膜を設けて形成することもできる。   The outer surface of the third covering region 37 is preferably an inclined surface inclined from the end of the emission surface of the light emitting element 10 toward the light receiving surface 22 side of the protruding portion of the light transmitting member 20. As a result, the third reflecting surface 38 becomes an inclined surface inclined from the end of the emitting surface of the light emitting element 10 toward the light receiving surface 22 side of the protruding portion of the light transmitting member 20, and from the emitted light of the light emitting element 10 and the light transmitting member. The reflected light and the emitted light can be favorably reflected on the light receiving surface 22 side of the light transmitting member. Further, the inclined surface may be a flat surface, but by being a convex curved surface that is convex toward the bonding region 31, the surface area of the third reflecting surface 38 can be increased as compared with the case of being a flat surface. This is preferable because the reflection efficiency can be increased. The third reflecting surface 38 is preferably provided at the interface with the covering member 40 as with the first reflecting surface 33 of the first embodiment, but is separated from the covering member 40 by a gap. Alternatively, a metal film or a dielectric multilayer film may be provided.

このような導光部材30でもって、発光素子10と光透過部材20とを接合することにより、接合領域31だけで発光素子10と光透過部材20とを接合する場合に比して、発光素子10の出射光を好適に結合することができ、発光面内の輝度や色度分布の均一化を図ることができる。このような導光部材30の導光機能は、光透過部材20の側面に対する発光素子10の側面の突出長さに依るため、例えば上述の範囲とするとよい。このような導光部材30の被覆形態は、導光部材の量、突出幅、表面積を適宜調整することで達成でき、また発光素子10の側面の略全域に離型剤を塗布し発光素子10の側面への導光部材30の垂下を妨げることにより達成できる。光透過部材20の側面にも離型剤を塗布しても良く、高精度に作製できる。この例では、発光素子の側面が露出されるため、実施の形態1,2のように側面が被覆されないことで、戻り光、変換光に対して導光部材による素子への再入光を抑えることができ、すなわち、導光部材と発光素子との接触面積を最小にして、結合効率を高められる。また、図7に示す例で光透過部材の表面23は凹凸面となっており、光透過部材20を透過する光を該凹凸により散乱させ、光透過部材20からの光の取り出し効率の向上、また輝度むらや色むらの低減、均一な配光を図ることができる。特に、複数の発光素子10を搭載する場合には、そのことに起因する輝度むら、色むらが低減されるので好ましい。このような凹凸は、光透過部材の表面に研磨、ドライエッチング、ウエットエッチングなどの処理を形成でき、不規則な凹凸構造のほか、規則的なパターンの凹凸構造も形成できる。また、このような凹凸構造は、光透過部材の表面だけでなく、受光面、さらに光路上にある各部材の表面に設けて同様な効果を得ることができ、特に導光部材との界面若しくはそれと接する部材の表面、例えば、基板1の半導体層11側表面に設けてもよく、実施例では詳述していないがそのような構造を用いている。   By joining the light emitting element 10 and the light transmitting member 20 with such a light guide member 30, the light emitting element is compared with the case where the light emitting element 10 and the light transmitting member 20 are joined only by the joining region 31. Ten outgoing lights can be suitably combined, and the luminance and chromaticity distribution in the light emitting surface can be made uniform. Such a light guide function of the light guide member 30 depends on the protruding length of the side surface of the light emitting element 10 with respect to the side surface of the light transmissive member 20, and may be in the above-described range, for example. Such a covering form of the light guide member 30 can be achieved by appropriately adjusting the amount of the light guide member, the protruding width, and the surface area, and a light-emitting element 10 is obtained by applying a release agent over substantially the entire side surface of the light-emitting element 10. This can be achieved by preventing the light guide member 30 from drooping to the side surface. A release agent may be applied also to the side surface of the light transmitting member 20 and can be manufactured with high accuracy. In this example, since the side surface of the light emitting element is exposed, the side surface is not covered as in the first and second embodiments, thereby suppressing re-entry light to the element by the light guide member with respect to return light and converted light. In other words, the contact area between the light guide member and the light emitting element can be minimized to increase the coupling efficiency. Further, in the example shown in FIG. 7, the surface 23 of the light transmitting member is an uneven surface, and the light transmitted through the light transmitting member 20 is scattered by the unevenness to improve the light extraction efficiency from the light transmitting member 20. In addition, luminance unevenness and color unevenness can be reduced and uniform light distribution can be achieved. In particular, it is preferable to mount a plurality of light emitting elements 10 because luminance unevenness and color unevenness due to the light emitting element 10 are reduced. Such unevenness can form a treatment such as polishing, dry etching, wet etching, etc. on the surface of the light transmission member, and can also form an uneven structure with a regular pattern in addition to an irregular uneven structure. Further, such a concavo-convex structure can be provided not only on the surface of the light transmitting member but also on the light receiving surface and further on the surface of each member on the optical path, and in particular, the interface with the light guide member or It may be provided on the surface of a member in contact therewith, for example, the surface of the substrate 1 on the semiconductor layer 11 side, and such a structure is used although not described in detail in the embodiments.

(変形例)
なお、上述の実施の形態1〜4では、主として発光素子及び光透過部材のいずれか一方が、他方に内包される、つまり他方の内側にある場合について記述したが、本発明の発光装置における発光素子と光透過部材の関係は、この形態に限られず、一方が、他方より外側に突出した突出部を少なくとも部分的に有していればよい。例えば、発光素子を構成する側面のうちの1つ、あるいは1つの側面の一部が、光透過部材を構成する側面から外側に突出して、他の側面が互いに略同一面となる、又は光透過部材が突出しているような形態でもよく、またその逆の形態でもよい。このような形態では、その突出した1つの側面又はその側面の一部に第1の被覆領域が設けられる。また、上面視において、発光素子及び光透過部材のいずれか一方の両側に突出部が設けられる形態であってもよい。このような形態の場合、突出部を有する領域の断面において、実施の形態1及び実施の形態2で説明した第1の被覆領域32の少なくとも一方が設けられる。また、発光素子が複数の場合には、各素子でそれぞれ発光素子と光透過部材に第1の被覆領域が設けられて混在することもある。好適には、いずれか一方に第1の被覆領域が設けられる形態、すなわち第1,3の実施形態のいずれかとすることがその導光部材の機能上好ましく、またその一部側面に略同一面が混在しても良い。更に好ましくは、光透過部材の外周全体で発光素子との間で第1の被覆領域がいずれかの形態で統一されていると良い。これは、発光面内の輝度および色度にむらを低減できるためであり、発光素子及び光透過部材のいずれか一方の側面が他方より内側に内包されていることが最も好ましい。
(Modification)
In the first to fourth embodiments described above, the case where either one of the light emitting element and the light transmitting member is mainly included in the other, that is, inside the other is described. However, the light emission in the light emitting device of the present invention is described. The relationship between the element and the light transmission member is not limited to this form, and one of the elements only needs to have at least a part of the protrusion protruding outward from the other. For example, one of the side surfaces constituting the light emitting element, or a part of one side surface protrudes outward from the side surface constituting the light transmitting member, and the other side surfaces are substantially flush with each other, or transmits light. The form may be such that the member protrudes, or vice versa. In such a form, the 1st coating area | region is provided in the one side surface which protruded, or a part of the side surface. Further, in a top view, a form in which protrusions are provided on either side of either the light emitting element or the light transmitting member may be employed. In such a form, at least one of the first covering regions 32 described in the first and second embodiments is provided in the cross section of the region having the protrusions. In addition, when there are a plurality of light emitting elements, the first covering region may be provided in the light emitting element and the light transmission member in each element, and may be mixed. Preferably, it is preferable that one of the first and third embodiments be provided with a first covering region on either one, that is, from the viewpoint of the function of the light guide member. May be mixed. More preferably, the first covering region may be unified in any form with the light emitting element over the entire outer periphery of the light transmitting member. This is because unevenness in luminance and chromaticity in the light emitting surface can be reduced, and it is most preferable that one of the side surfaces of the light emitting element and the light transmitting member is included inside the other.

以上説明したように、本発明における導光部材は、発光素子と光透過部材の表面と、その間に設けられ、両者を光結合させ、それにより複合光源を形成するものであり、その素子と部材間で、それらが対向する接合領域と、一方の突出表面、又はそれとその端部より内側に設けられた他方の端面は、その接合領域から延在して被覆した上記第1の被覆領域と、が設けられる。導光部材は、具体的には、樹脂材料を用い、接着剤としても利用するため、上述した通り、突出表面を設けることで、接合領域からその表面まで濡れて広がり、また、その突出表面から更に他方の端部となる側面にまで濡れて広がっても良い。このように、導光部材はその作製時、具体的には樹脂硬化前に、各表面への樹脂の濡れを利用しているため、先ず、その材料の量及びその塗布方法と、上記突出表面の突出幅、面積で制御し、それに加えて、離型剤を用いて他の領域への広がりを制御できる。従って、導光部材の具体的な形態としては、接合領域においてその肉厚は、光透過部材より小さく、更に成長基板より小さくして、複合光源を小さくし、その結合効率を高めることが好ましい。また、その時の突出幅は、発光素子又は光透過部材の肉厚に比して0.25倍〜5倍程度とすることで製造時の制御が容易で、好適な素子からの光の拡散、集光ができる。上述の通り、実施の形態1,3に示すように、一方の突出部から他方の端部を被覆する場合は、突出部側の端部は露出されていることが好ましく、被覆される場合に比して、光源の広がりを抑えて、本発明の各特性の向上を図ることができ好ましい。また、被覆する場合には、上記他方の端部のそれより薄肉であると、その影響を小さくでき、また後述の被覆部材と同様な効果が期待でき好ましい。   As described above, the light guide member in the present invention is provided between the surface of the light emitting element and the light transmitting member, and optically couples both to thereby form a composite light source. The first covering region that extends from the bonding region and covers the bonding region where they face each other, and one protruding surface, or the other end surface provided on the inner side of the protruding surface, Is provided. Specifically, since the light guide member uses a resin material and is also used as an adhesive, as described above, by providing a projecting surface, the light guide member wets and spreads from the joining region to the surface, and from the projecting surface. Furthermore, it may be wetted and spread to the side surface serving as the other end. Thus, since the light guide member utilizes wetness of the resin to each surface at the time of production, specifically before resin curing, first, the amount of the material, the application method, and the protruding surface In addition to controlling the width and area of the protrusion, the spread to other regions can be controlled using a release agent. Therefore, as a specific form of the light guide member, it is preferable that the thickness of the light-guiding member is smaller than that of the light transmitting member and smaller than that of the growth substrate to reduce the composite light source and increase the coupling efficiency. In addition, the protrusion width at that time can be easily controlled at the time of manufacture by setting the thickness of the light emitting element or the light transmitting member to about 0.25 to 5 times, diffusion of light from a suitable element, Condensation is possible. As described above, as shown in the first and third embodiments, when covering the other end from one projecting portion, it is preferable that the end on the projecting portion side is exposed. In comparison, the characteristics of the present invention can be improved by suppressing the spread of the light source, which is preferable. Further, in the case of coating, it is preferable that the thickness is thinner than that of the other end portion because the influence can be reduced and the same effect as a coating member described later can be expected.

また、突出表面の被覆領域は、上述の通り、図7に示すように接合領域より薄肉にすると好ましいが、素子側面を離型処理して露出させ、厚肉にしても、本発明の効果を期待できる。第1,3の実施の形態に観るように、素子側面の被覆領域により、各種特性が影響を受けるが、半導体層11と異なる異種材料の透光性基板1を有する場合には、その基板を被覆することで、導光部材と同様に、光透過部材と素子間の光伝搬領域として、その導光部材の機能を補助させることができ好ましい。特に、光変換部材の場合には変換光の成分もその領域に含まれるため、色度むら、配向性に効果がある。また、基板1が除去された素子では、出射面からの光成分が側面よりも極めて多くなるため、素子側面が露出されても良い。上述の通り、被覆部材があることで、複合光源への光閉じ込め、発光面からの光放出、及びその結合における導光部材の機能を補助できるが、金属膜や誘電体多層膜のような反射膜でも代用できる。実施例のように、光反射材料を有する場合には、基材中に光がしみ出すため、被覆内部よりも光源の光が広がることになり、これにより、光の拡散、集光の効率が高められ、更に、発光特性、輝度ムラ、指向性に好適に、特に導光部材の機能に相乗的に寄与し、好ましい。また、光変換部材の場合にも、色むら、配向性に好適に寄与して好ましく、更に、その側面が被覆されることで、表面21と色、波長成分比の異なり、比較的高い、側面発光を抑えられ好ましい。   Further, as described above, the covering area of the protruding surface is preferably thinner than the joining area as shown in FIG. 7, but the effect of the present invention can be obtained even if the element side surface is exposed by releasing the mold and exposed. I can expect. As seen in the first and third embodiments, various characteristics are affected by the covering region on the side surface of the element. However, when the translucent substrate 1 made of a different material from the semiconductor layer 11 is provided, the substrate is By covering, it is possible to assist the function of the light guide member as a light propagation region between the light transmitting member and the element, similarly to the light guide member. In particular, in the case of a light conversion member, since the component of the converted light is also included in the region, the chromaticity unevenness and the orientation are effective. Further, in the element from which the substrate 1 has been removed, the light component from the emission surface is much larger than the side surface, so that the element side surface may be exposed. As described above, the presence of the covering member can assist the light confinement function in the composite light source, the light emission from the light emitting surface, and the coupling of the light guiding member, but reflection such as a metal film or a dielectric multilayer film. A membrane can be substituted. In the case of having a light reflecting material as in the embodiment, the light oozes out into the base material, so that the light of the light source spreads more than the inside of the coating, thereby improving the efficiency of light diffusion and light collection. Further, it is preferable because it is suitable for light emission characteristics, luminance unevenness, and directivity, and particularly contributes synergistically to the function of the light guide member. Also in the case of a light conversion member, it is preferable that it contributes favorably to color unevenness and orientation, and the side surface is coated, so that the surface 21 is different from the color and wavelength component ratio, and the side surface is relatively high. It is preferable because emission can be suppressed.

また、発光素子10及び光透過部材20,24のいずれか突出部を有するほうの部材は、他方の部材と対向する側の表面と該表面から連続する側面とに明確な境界がなくてもよい。例えば、実施の形態1の発光装置100において、光透過部材20の受光面22と側面とが一体化されて1つの曲面、例えば球面又はその一部により構成されていてもよい。さらに、光透過部材の受光面22と発光素子10の出射面とを熱圧着による結晶接合等により直接接合して、突出部に第1の被覆領域を有し、複数の発光素子を有する場合にはその素子間に第2の被覆領域を有する導光部材30を形成することもできる。   In addition, the member having the protruding portion of either the light emitting element 10 or the light transmitting members 20 and 24 may have no clear boundary between the surface facing the other member and the side surface continuous from the surface. . For example, in the light emitting device 100 of the first embodiment, the light receiving surface 22 and the side surface of the light transmitting member 20 may be integrated to form a single curved surface, for example, a spherical surface or a part thereof. Further, when the light receiving surface 22 of the light transmitting member and the light emitting surface of the light emitting element 10 are directly bonded by crystal bonding or the like by thermocompression bonding, the protrusion has the first covering region, and has a plurality of light emitting elements. Can also form a light guide member 30 having a second covering region between the elements.

(実施の形態5)
図8は、本発明の実施の形態5に係る発光装置300の概略断面図であり、発光装置300において、上述の実施の形態1乃至4と実質上同様の構成については同一の符号を付して適宜説明を省略する。図8に示す例は、光反射性材料45を含有する被覆部材40により発光素子10及び光透過部材20を被覆して、光透過部材20の表面21を発光面とする面発光型の光源を形成し、その光源を覆って、更に被覆部材の一部を覆って、半球状の光学レンズとなる封止部材80を設けたものである。この発光装置300は、実装基板50の上面側の配線パターン51上に複数(図中は2個)の発光素子10がフリップチップ実装されており、その上に1つの光透過部材20が導光部材30により接合されている。なお、実施の形態1で見る枠体は、この例では被覆部材40を成形後に除去しており、被覆部材40の側面が外部に露出されて発光装置の外表面を構成している。光透過部材の受光面22の断面の幅は、最も外側に位置する発光素子10の各外側の側面間の距離より小さく、言い換えれば、複数の発光素子が設けられる領域の幅より小さい。また、最外郭に位置する発光素子10の側面は、光透過部材20の側面より外側に突出している。そして、導光部材30は、隣接する発光素子に挟まれた離間領域には、実施の形態2と同様の第2の被覆領域及び第2の反射面35を有し、光透過部材20の側面と最外郭に位置する発光素子10の出射面の突出部とを接続する領域に実施の形態3と同様の第1の被覆領域及び第1の反射面33を有している。
(Embodiment 5)
FIG. 8 is a schematic cross-sectional view of a light emitting device 300 according to Embodiment 5 of the present invention. In the light emitting device 300, components substantially similar to those of Embodiments 1 to 4 described above are denoted by the same reference numerals. The description will be omitted as appropriate. In the example shown in FIG. 8, a surface-emitting light source in which the light emitting element 10 and the light transmitting member 20 are covered with a covering member 40 containing a light reflecting material 45 and the surface 21 of the light transmitting member 20 is a light emitting surface. The sealing member 80 which is formed and covers the light source and further covers a part of the covering member to be a hemispherical optical lens is provided. In the light emitting device 300, a plurality of (two in the drawing) light emitting elements 10 are flip-chip mounted on a wiring pattern 51 on the upper surface side of the mounting substrate 50, and one light transmitting member 20 guides light. The members 30 are joined. In this example, the frame body viewed in the first embodiment has the covering member 40 removed after molding, and the side surface of the covering member 40 is exposed to the outside to constitute the outer surface of the light emitting device. The width of the cross section of the light receiving surface 22 of the light transmitting member is smaller than the distance between the outer side surfaces of the light emitting element 10 located on the outermost side, in other words, smaller than the width of the region where the plurality of light emitting elements are provided. Further, the side surface of the light emitting element 10 located at the outermost portion protrudes outward from the side surface of the light transmitting member 20. And the light guide member 30 has the 2nd coating | covering area | region similar to Embodiment 2, and the 2nd reflective surface 35 in the isolation | separation area | region pinched | interposed between adjacent light emitting elements, The side surface of the light transmissive member 20 The first covering region and the first reflecting surface 33 are the same as those in the third embodiment in the region connecting the light emitting element 10 located on the outermost surface and the projecting portion of the emitting surface.

このような発光装置300の構成によれば、導光部材30の第1及び第2の被覆領域、第1及び第2の反射面33,35により、発光素子10から出射される光を光透過部材20へ効率良く結合することができ、また光透過部材20から封止部材80へ光を効率良く取り出すことができ、より高出力の発光装置が得られる。また、光学レンズ80により、光透過部材の表面21における配光特性よりその放出光は誇張される或いは変化するが、本発明の導光部材30により、光の輝度、色度のむらを均一化できるため、配光特性に優れた発光装置が得られる。さらに、該封止部材80は、光透過部材の表面21と被覆部材40の表面の一部を連続して被覆しており、封止部材80の光を、被覆部材40表面で反射させ外部に効率良く取り出せ、被覆部材40の発光側の表面を光透過部材20の側面から基板50側に傾斜した凹面とすることで、光が拡散され、発光装置の放出光を広い配向とできる。このように本発明の発光装置には、発光面の光透過部材表面に光学部材を接合して、所望の発光特性とすることができる。   According to such a configuration of the light emitting device 300, light emitted from the light emitting element 10 is transmitted through the first and second covering regions of the light guide member 30 and the first and second reflecting surfaces 33 and 35. The light can be efficiently coupled to the member 20 and light can be efficiently extracted from the light transmitting member 20 to the sealing member 80, so that a light-emitting device with higher output can be obtained. Further, the emitted light is exaggerated or changed by the optical lens 80 due to the light distribution characteristics on the surface 21 of the light transmitting member, but the light guide member 30 of the present invention can make the brightness and chromaticity unevenness uniform. Therefore, a light emitting device having excellent light distribution characteristics can be obtained. Further, the sealing member 80 continuously covers a part of the surface 21 of the light transmitting member and the surface of the covering member 40, and reflects the light of the sealing member 80 on the surface of the covering member 40 to the outside. By making the surface of the covering member 40 light-emitting side concave and inclined from the side surface of the light transmitting member 20 to the substrate 50 side, light can be diffused and light emitted from the light-emitting device can be oriented widely. As described above, in the light emitting device of the present invention, an optical member can be bonded to the light transmitting surface of the light emitting surface to obtain desired light emission characteristics.

(封止部材)
ここで、封止部材80は、光透過部材より屈折率が低いと、その表面21と接合して光の取り出し効率を向上させることができる。封止部材80の発光側の表面は目的に応じて種々の形状に形成することができる。例えば図8に示すように、発光側の表面を球面状(半球面状)のレンズ形状、凸曲面とすることで、光透過部材の発光に対し効率良く外部に取り出すことができる。また、これに限らず、種々の光学素子、所望形状の光学部材とでき、凹レンズ形状、放物曲面、先端が平坦な凸形状とでき、また凹凸面として光を散乱させてもよい。
(Sealing member)
Here, when the refractive index of the sealing member 80 is lower than that of the light transmitting member, the sealing member 80 can be bonded to the surface 21 to improve the light extraction efficiency. The surface on the light emitting side of the sealing member 80 can be formed in various shapes according to the purpose. For example, as shown in FIG. 8, when the light emitting surface has a spherical (hemispherical) lens shape and a convex curved surface, it can be efficiently extracted to the outside with respect to light emission of the light transmitting member. Further, the present invention is not limited to this, and various optical elements and optical members having desired shapes can be used. A concave lens shape, a parabolic curved surface, a convex shape with a flat tip can be formed, and light can be scattered as an uneven surface.

封止部材80は、上述の被覆部材30の基材、導光部材と同様に、例えばエポキシ樹脂、シリコーン樹脂、変成シリコーン樹脂、ユリア樹脂、ウレタン樹脂、アクリル樹脂、ポリカーボネイト樹脂、ポリイミド樹脂などの樹脂材料を用いて形成することができる。また、封止部材80は、発光素子10や光透過部材20を保護する封止材としての役割も果たすため、耐候性、耐熱性、硬度に優れる材料が好ましく、上記のなかではエポキシ樹脂、又は硬質のシリコーン樹脂が好ましい。このほか、ガラスを用いてもよい。さらに、封止部材80に、上述のような蛍光体、及び/又はTiOなどの光散乱粒子、及び/又は石英ガラス等のフィラーなどを適宜添加することができる。封止部材80は圧縮成形、トランスファー成形などにより形成する。 The sealing member 80 is a resin such as an epoxy resin, a silicone resin, a modified silicone resin, a urea resin, a urethane resin, an acrylic resin, a polycarbonate resin, or a polyimide resin, as with the base material and the light guide member of the covering member 30 described above. It can be formed using a material. Further, since the sealing member 80 also serves as a sealing material for protecting the light emitting element 10 and the light transmitting member 20, a material excellent in weather resistance, heat resistance, and hardness is preferable. Among these, an epoxy resin, or A hard silicone resin is preferred. In addition, glass may be used. Furthermore, the phosphor as described above and / or light scattering particles such as TiO 2 and / or a filler such as quartz glass can be appropriately added to the sealing member 80. The sealing member 80 is formed by compression molding, transfer molding, or the like.

(実施の形態6)
図9は、本発明の実施の形態6に係る発光装置400の概略断面図であり、上述の実施の形態1,2と実質上同様の構成については同一の符号を付して適宜説明を省略する。図9に示す例の発光装置400において、凹部を有する実装基体(パッケージ)56の底部の略中央に発光素子10がフリップチップ実装されている。その実装部は、実装基体56の一部であるが、サブマウントであってもよい。発光素子10上には、導光部材30を介して光透過部材24が載置され、接合されている。そして、凹部が封止部材84で充填されて、発光装置400の発光面82となる表面を有する光変換部材81により、凹部が閉蓋されている。光透過部材24、光変換部材81は、それぞれ上述の光透過部材、上述の光透過部材20が波長変換材料を含有する場合と同様の構成とすることができ、封止部材も実施の形態5と同様の構成、例えば透光性樹脂で構成できる。特にこの例では、光透過部材24に波長変換材料を含まずともよく、図示するような板状の他、集光、拡散可能な光学素子でも良く、光散乱材を混合してもよい。また、凹部の内面から実装部の凸部側面を被覆するように、凹曲面の表面を有する反射膜が設けられ、各部材24,84に向かって反射・集光させることができる。ここでは、この反射膜を、上記光反射性材料46を含有する被覆部材41により形成して、上述した樹脂の這い上がりにより凹曲反射面としている。なお、被覆部材41は、その表面に被覆部材41の代替としてAgやAl等高反射性の金属膜を形成してもよいし、上述のような蛍光体を含有する光変換部材を設けてもよいし、被覆部材を設けず、従来のように実装基体の内面を反射面とする形態でも良い。また凹部内は、封止部材84に光変換部材が含有されても良く、気密封止、大気であっても良く、また上記部材81は、部材24同様に光変換部材を含有しない部材でも良い。すなわち、各部材24,41,81,84のいずれかに光変換部材を設けて変換光を含む発光装置とでき、いずれにも含まれずに発光素子の発光を取り出す発光装置とすることもできる。
(Embodiment 6)
FIG. 9 is a schematic cross-sectional view of a light-emitting device 400 according to Embodiment 6 of the present invention. Components that are substantially the same as those of Embodiments 1 and 2 described above are denoted by the same reference numerals and description thereof is omitted as appropriate. To do. In the light emitting device 400 of the example shown in FIG. 9, the light emitting element 10 is flip-chip mounted at substantially the center of the bottom of a mounting substrate (package) 56 having a recess. The mounting portion is a part of the mounting base 56, but may be a submount. On the light emitting element 10, a light transmission member 24 is placed and bonded via a light guide member 30. Then, the recess is filled with the sealing member 84, and the recess is closed by the light conversion member 81 having a surface that becomes the light emitting surface 82 of the light emitting device 400. The light transmitting member 24 and the light converting member 81 can be configured in the same manner as in the case where the above light transmitting member and the above light transmitting member 20 contain a wavelength conversion material, respectively, and the sealing member is also in the fifth embodiment. For example, it can be composed of a translucent resin. In particular, in this example, the light transmitting member 24 may not include a wavelength conversion material, and may be a concentrating or diffusing optical element in addition to a plate shape as illustrated, or a light scattering material may be mixed. Further, a reflective film having a concave curved surface is provided so as to cover the convex portion side surface of the mounting portion from the inner surface of the concave portion, and can be reflected and condensed toward the members 24 and 84. Here, this reflecting film is formed by the covering member 41 containing the light reflecting material 46, and is formed into a concave reflecting surface by the above-described resin creeping. The covering member 41 may be formed with a highly reflective metal film such as Ag or Al on the surface thereof instead of the covering member 41, or may be provided with a light conversion member containing a phosphor as described above. Alternatively, the cover member may not be provided, and the inner surface of the mounting substrate may be a reflective surface as in the prior art. Further, in the concave portion, the light conversion member may be contained in the sealing member 84, airtight sealing or air may be used, and the member 81 may be a member that does not contain the light conversion member like the member 24. . That is, it is possible to provide a light-emitting device that includes converted light by providing a light conversion member in any one of the members 24, 41, 81, and 84, and can also be a light-emitting device that extracts light emitted from the light-emitting element without being included in any of them.

このような発光装置400においても、上記実施の形態2と同様に、導光部材30は上述の接合領域31と第1の被覆領域と第1の反射面33を有し、凹部内は封止部材84で充填されるため、第1の被覆領域の外表面は透光性の封止部材との界面を成しており、第1の反射面33はその界面に設けられている。すなわち、導光部材と封止部材とに屈折率差を設けると、その界面反射を利用でき、第1の被覆領域側を高屈折率にすると反射率を高くでき好ましく、気密封止の場合も同様である。発光素子10から光は全方位に拡散されて放出されるが、その一部の光成分を、第1の反射面33の内面により光透過部材24の受光面26側に光を反射させてその発光面25から出射させ、一部を凹部で反射させ、光透過部材81から取り出すことができる。したがって、発光素子10の光を光透過部材24で集光させて表面25から放出し、正面方向、発光面82の輝度を高め、凹部内での光の拡散を抑制して光吸収を低減することができる。また第2の反射面35及びその第2の被覆領域も同様である。   In such a light emitting device 400 as well, as in the second embodiment, the light guide member 30 includes the above-described joining region 31, the first covering region, and the first reflecting surface 33, and the inside of the recess is sealed. Since it is filled with the member 84, the outer surface of the first covering region forms an interface with the translucent sealing member, and the first reflecting surface 33 is provided at the interface. That is, if a difference in refractive index is provided between the light guide member and the sealing member, the interface reflection can be used, and if the first covering region side is set to a high refractive index, the reflectance can be increased. It is the same. Light is emitted from the light emitting element 10 by being diffused in all directions, and a part of the light component is reflected by the inner surface of the first reflecting surface 33 toward the light receiving surface 26 side of the light transmitting member 24 and the light is reflected. The light can be emitted from the light emitting surface 25, a part of the light can be reflected by the concave portion, and taken out from the light transmitting member 81. Therefore, the light of the light emitting element 10 is condensed by the light transmitting member 24 and emitted from the surface 25, the brightness of the light emitting surface 82 is increased in the front direction, and the light diffusion in the recess is suppressed to reduce the light absorption. be able to. The same applies to the second reflecting surface 35 and the second covering region.

さらに、発光素子10が光反射性の被覆部材40に被覆されていない本実施の形態4の場合には、発光素子10の側面に設けられる第1及び第2の被覆領域の被覆範囲は、実施の形態1と同様、又は実施の形態1より広範なほうが好ましい。発光素子10側面の導光部材30による被覆範囲が広ければ、発光素子10から導光部材30内への光の取り出し効率を高められ、さらに第1及び第2の反射面33,35の表面積を増大でき、光透過部材20への光の結合効率を高められる。但し、上述のように、実装基体56での光吸収による光の損失を回避するため、導光部材30は、発光素子10の実装面より光透過部材20側に位置する外表面を有し、実装基体56の表面と離間されていることが好ましい。   Further, in the case of the fourth embodiment in which the light emitting element 10 is not covered with the light reflective covering member 40, the covering range of the first and second covering regions provided on the side surface of the light emitting element 10 is As in the first embodiment, or wider than the first embodiment is preferable. If the area covered by the light guide member 30 on the side surface of the light emitting element 10 is wide, the light extraction efficiency from the light emitting element 10 into the light guide member 30 can be increased, and the surface areas of the first and second reflecting surfaces 33 and 35 can be increased. The coupling efficiency of light to the light transmission member 20 can be increased. However, as described above, in order to avoid light loss due to light absorption by the mounting base 56, the light guide member 30 has an outer surface located on the light transmitting member 20 side from the mounting surface of the light emitting element 10, It is preferable to be separated from the surface of the mounting substrate 56.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

(実施例1)
実施例1の発光装置の光源部は、図5に示すように、AlNのセラミックス基板50の配線51上に、発光素子10として約1mm×1mmの略正方形のLEDチップ(サファイア基板10上に窒化物半導体11が積層された構造で発光波長455nm)2個をフリップチップ実装し、その上に板状の光変換部材である光透過部材20としてYAGとアルミナ(Al)との焼結体、この表面21及び受光面22の外形は約1.1mm×2.2mmの略矩形状であり、厚みは約150μm、を1枚載置し、導光部材30により互いに接合する。このとき、導光部材30となるシリコーン樹脂は、各LEDの出射面(基板1の裏面)上に適量をピンセットで塗布し、その上に光透過部材20をピンセットで載置し、発光素子10の側面の一部に垂下させ、150℃のオーブン内で60分間樹脂を熱硬化し、図示するように2つのLEDが光透過部材の受光面に内包されるように接着する。このようにして、導光部材30に、LEDと光透過部材間の接合領域31と、LEDの光源の外側の側面を被覆する第1の被覆領域32と、LED間の内側の側面を被覆する第2の被覆領域34が形成され、この時、LED側面は、基板と、半導体層11の一部又は略全部に導光部材が形成される。そして、図1に示すように、基板50の配線51上にLEDを実装し、発光素子10及び光透過部材20を包囲する枠体の内側の凹所に被覆部材40を充填し、光透過部材20の表面21が発光面として露出される状態、発光素子10および光透過部材20が被覆部材40により被包し、図8に示すように枠体を除去して発光装置を得る。ここで、被覆部材40は、粒径約270nmのTiOの微粒子である光反射性材料45を約23重量パーセント濃度で含有するシリコーン樹脂である。この実施例1の発光装置は、電流350mAで駆動させると、光束約167[lm](色度y値約0.339)、最大輝度6086[cd/cm]、平均輝度3524[cd/cm]で発光する、高光束かつ高輝度のものが得られる。
Example 1
As shown in FIG. 5, the light source unit of the light emitting device of Example 1 has a substantially square LED chip of about 1 mm × 1 mm (nitrided on the sapphire substrate 10) as the light emitting element 10 on the wiring 51 of the ceramic substrate 50 of AlN. Flip-chip mounting of two light emitting wavelengths (455 nm) in a structure in which a physical semiconductor 11 is laminated, and sintering of YAG and alumina (Al 2 O 3 ) as a light transmitting member 20 which is a plate-like light conversion member thereon The outer shape of the body, the surface 21 and the light receiving surface 22 is approximately 1.1 mm × 2.2 mm, and a thickness of approximately 150 μm is placed thereon and joined together by the light guide member 30. At this time, an appropriate amount of the silicone resin used as the light guide member 30 is applied on the emission surface of each LED (the back surface of the substrate 1) with tweezers, and the light transmitting member 20 is placed thereon with tweezers. The resin is heat-cured for 60 minutes in an oven at 150 ° C., and two LEDs are bonded so as to be included in the light receiving surface of the light transmitting member as shown in the figure. In this way, the light guide member 30 is covered with the joining region 31 between the LED and the light transmitting member, the first covering region 32 covering the outer side surface of the LED light source, and the inner side surface between the LEDs. A second covering region 34 is formed, and at this time, a light guide member is formed on the LED side surface on the substrate and part or substantially all of the semiconductor layer 11. Then, as shown in FIG. 1, the LED is mounted on the wiring 51 of the substrate 50, and the covering member 40 is filled in the recess inside the frame body that surrounds the light emitting element 10 and the light transmitting member 20. In a state where the surface 21 of 20 is exposed as a light emitting surface, the light emitting element 10 and the light transmitting member 20 are encapsulated by a covering member 40, and the frame is removed as shown in FIG. 8 to obtain a light emitting device. Here, the covering member 40 is a silicone resin containing the light reflecting material 45 which is a fine particle of TiO 2 having a particle diameter of about 270 nm at a concentration of about 23 weight percent. When the light-emitting device of Example 1 is driven at a current of 350 mA, the luminous flux is about 167 [lm] (chromaticity y value is about 0.339), the maximum luminance is 6086 [cd / cm 2 ], and the average luminance is 3524 [cd / cm]. 2 ], which emits light with high luminous flux and high brightness.

(実施例2)
実施例2の発光装置は、図6に示すように、1つの発光素子の出射面に1つの光透過部材の受光面が内包される形態であり、実施例1における発光素子を、1つのサファイア基板上に6つの素子構造が設けられた約1mm×6.5mmの略矩形状の1個のLEDチップ10とし、さらに光透過部材20を約0.8mm×6.3mmの略矩形状として、実施例1と同様に発光装置を作製する。なお、光透過部材20の載置時に、軽く押圧して、導光部材30を光透過部材20の側面の一部に這い上がらせ第1の被覆領域32を形成する。この実施例2の発光装置は、電流700mAで駆動させると、光束約740[lm](色度y値約0.280)、最大輝度4629[cd/cm]、平均輝度4123[cd/cm]で発光する、高光束かつ高輝度のものが得られる。
(Example 2)
As shown in FIG. 6, the light emitting device of Example 2 has a configuration in which the light receiving surface of one light transmitting member is included in the light emitting surface of one light emitting element. A single LED chip 10 having a substantially rectangular shape of about 1 mm × 6.5 mm provided with six element structures on a substrate, and a light transmitting member 20 having a substantially rectangular shape of about 0.8 mm × 6.3 mm, A light emitting device is manufactured in the same manner as in Example 1. When the light transmitting member 20 is placed, the first covering region 32 is formed by lightly pressing the light guiding member 30 over a part of the side surface of the light transmitting member 20. When the light-emitting device of Example 2 is driven at a current of 700 mA, the luminous flux is about 740 [lm] (chromaticity y value is about 0.280), the maximum luminance is 4629 [cd / cm 2 ], and the average luminance is 4123 [cd / cm]. 2 ], which emits light with high luminous flux and high brightness.

本発明の発光装置は、照明用光源、LEDディスプレイ、液晶表示装置などのバックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。   The light emitting device of the present invention can be suitably used for backlight light sources such as illumination light sources, LED displays, liquid crystal display devices, traffic lights, illumination switches, various sensors, various indicators, and the like.

10…発光素子(1…成長基板、2…第1導電型(n型)半導体層、3…活性層、4…第2導電型(p型)半導体層、5…透光性導電層、6…第2の電極(p側パッド電極)、7…第1の電極(n側パッド電極)、8…保護膜、11…素子構造)
20,24…光透過部材(21,23,25…表面、22,26…受光面)
30…導光部材(31…接合領域、32…第1の被覆領域、33…第1の反射面、34…第2の被覆領域、35…第2の反射面、37…第3の被覆領域、38…第3の反射面)、40,41…被覆部材、45,46…光反射性材料
50…実装基板(51,52…配線、55…枠体、56…積層基板又は基材)、60…導電性接着材
DESCRIPTION OF SYMBOLS 10 ... Light emitting element (1 ... Growth substrate, 2 ... 1st conductivity type (n-type) semiconductor layer, 3 ... Active layer, 4 ... 2nd conductivity type (p-type) semiconductor layer, 5 ... Translucent conductive layer, 6 ... 2nd electrode (p-side pad electrode), 7 ... 1st electrode (n-side pad electrode), 8 ... Protective film, 11 ... Element structure)
20, 24 ... Light transmission member (21, 23, 25 ... surface, 22, 26 ... light receiving surface)
DESCRIPTION OF SYMBOLS 30 ... Light guide member (31 ... Joining area | region, 32 ... 1st coating | covering area | region, 33 ... 1st reflective surface, 34 ... 2nd coating | coated area, 35 ... 2nd reflective surface, 37 ... 3rd coating | covering area | region , 38 ... third reflecting surface), 40, 41 ... covering member, 45, 46 ... light reflective material 50 ... mounting board (51, 52 ... wiring, 55 ... frame, 56 ... laminated board or base material), 60. Conductive adhesive

Claims (3)

発光装置の発光面と受光面を有する光透過部材と、
該受光面に対向する出射面を備えて、前記光透過部材に接合される発光素子と、
前記発光素子表面から前記光透過部材表面まで延在して設けられて、前記発光素子からの出射光を前記光透過部材に導光する導光部材と、を備え、
前記導光部材は、
前記発光素子の出射面と前記光透過部材の受光面を互いに対向させて接合する接合領域と、
前記接合領域より延在して、該接合領域より外側に突出された前記発光素子及び光透過部材の一方の表面を被覆する第1の被覆領域と、
を有すると共に、
前記出射光を前記光透過部材側に反射させる第1の反射面が、前記第1の被覆領域の外表面に設けられている発光装置。
A light transmissive member having a light emitting surface and a light receiving surface of the light emitting device;
A light emitting element having an emission surface facing the light receiving surface and bonded to the light transmission member;
A light guide member that extends from the light emitting element surface to the light transmitting member surface and guides light emitted from the light emitting element to the light transmitting member, and
The light guide member is
A bonding region for bonding the light emitting surface of the light emitting element and the light receiving surface of the light transmitting member to face each other;
A first covering region extending from the bonding region and covering one surface of the light emitting element and the light transmitting member protruding outward from the bonding region;
And having
A light emitting device in which a first reflecting surface for reflecting the emitted light toward the light transmitting member is provided on an outer surface of the first covering region.
前記発光装置は、光反射材料を有する被覆部材を備え、該被覆部材が、前記導光部材の表面を覆い、前記発光面を露出させて前記発光素子及び光透過部材の表面を被覆する請求項1記載の発光装置。   The light emitting device includes a covering member having a light reflecting material, and the covering member covers a surface of the light guide member and exposes the light emitting surface to cover the surfaces of the light emitting element and the light transmitting member. The light emitting device according to 1. 前記光透過部材は、前記発光素子の出射光で励起される波長変換部材である請求項1又は2に記載の発光装置。   The light-emitting device according to claim 1, wherein the light transmission member is a wavelength conversion member that is excited by light emitted from the light-emitting element.
JP2016197770A 2016-10-06 2016-10-06 Light emitting device Active JP6222325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197770A JP6222325B2 (en) 2016-10-06 2016-10-06 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197770A JP6222325B2 (en) 2016-10-06 2016-10-06 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015105264A Division JP6020657B2 (en) 2015-05-25 2015-05-25 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017192350A Division JP6665143B2 (en) 2017-10-02 2017-10-02 Light emitting device manufacturing method

Publications (2)

Publication Number Publication Date
JP2016225664A true JP2016225664A (en) 2016-12-28
JP6222325B2 JP6222325B2 (en) 2017-11-01

Family

ID=57748705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197770A Active JP6222325B2 (en) 2016-10-06 2016-10-06 Light emitting device

Country Status (1)

Country Link
JP (1) JP6222325B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210098982A (en) 2018-12-04 2021-08-11 제이엔씨 주식회사 Condensation curable resin composition, cured product, molded article and semiconductor device
US11189758B2 (en) 2018-07-24 2021-11-30 Nichia Corporation Light-emitting device
WO2022065284A1 (en) * 2020-09-24 2022-03-31 スタンレー電気株式会社 Semiconductor light emitting device and semiconductor light emitting module
WO2022264982A1 (en) * 2021-06-14 2022-12-22 ローム株式会社 Insulation module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028182A (en) * 2006-07-21 2008-02-07 Toshiba Lighting & Technology Corp Lighting device
US20080203911A1 (en) * 2005-04-29 2008-08-28 Koninklijke Philips Electronics N.V. Light Source With Glass Housing
JP2008277592A (en) * 2007-04-28 2008-11-13 Nichia Corp Nitride semiconductor light emitting element, light emitting device having the same and method of manufacturing nitride semiconductor light emitting element
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080203911A1 (en) * 2005-04-29 2008-08-28 Koninklijke Philips Electronics N.V. Light Source With Glass Housing
JP2008028182A (en) * 2006-07-21 2008-02-07 Toshiba Lighting & Technology Corp Lighting device
JP2008277592A (en) * 2007-04-28 2008-11-13 Nichia Corp Nitride semiconductor light emitting element, light emitting device having the same and method of manufacturing nitride semiconductor light emitting element
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11189758B2 (en) 2018-07-24 2021-11-30 Nichia Corporation Light-emitting device
KR20210098982A (en) 2018-12-04 2021-08-11 제이엔씨 주식회사 Condensation curable resin composition, cured product, molded article and semiconductor device
WO2022065284A1 (en) * 2020-09-24 2022-03-31 スタンレー電気株式会社 Semiconductor light emitting device and semiconductor light emitting module
WO2022264982A1 (en) * 2021-06-14 2022-12-22 ローム株式会社 Insulation module

Also Published As

Publication number Publication date
JP6222325B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP5326705B2 (en) Light emitting device
JP5799988B2 (en) Light emitting device
JP6020657B2 (en) Light emitting device
JP5689225B2 (en) Light emitting device
JP5326837B2 (en) Light emitting device
JP5463901B2 (en) Light emitting device
JP5701502B2 (en) Light emitting device
JP2010157638A (en) Light emitting device, and method of manufacturing the same
JP5610036B2 (en) Light emitting device
JP5967269B2 (en) Light emitting device
JP2015099940A (en) Light-emitting device
JP2015026871A (en) Light emitting device
JP6665143B2 (en) Light emitting device manufacturing method
JP6222325B2 (en) Light emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP5761391B2 (en) Light emitting device
JP6680302B2 (en) Light emitting device
JP5931006B2 (en) Light emitting device
JP2024083405A (en) Light-emitting device
JP6825636B2 (en) Light emitting device
JP6274240B2 (en) Light emitting device
JP2016189488A (en) Light emitting device
JP7071680B2 (en) Light emitting device
JP7545085B2 (en) Light-emitting device
JP7299537B2 (en) light emitting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6222325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250