[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5326837B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5326837B2
JP5326837B2 JP2009137460A JP2009137460A JP5326837B2 JP 5326837 B2 JP5326837 B2 JP 5326837B2 JP 2009137460 A JP2009137460 A JP 2009137460A JP 2009137460 A JP2009137460 A JP 2009137460A JP 5326837 B2 JP5326837 B2 JP 5326837B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
emitting device
transmitting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009137460A
Other languages
Japanese (ja)
Other versions
JP2010283281A (en
Inventor
俊介 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2009137460A priority Critical patent/JP5326837B2/en
Publication of JP2010283281A publication Critical patent/JP2010283281A/en
Application granted granted Critical
Publication of JP5326837B2 publication Critical patent/JP5326837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which is capable of efficiently extracting light emitted from a light emitting element and a wavelength conversion member, to the outside while reducing color unevenness due to difference in optical path length of light propagated in the wavelength conversion member and avoiding the reduction of reliability due to deterioration of an adhesive comprising a resin. <P>SOLUTION: The light emitting device includes: the light emitting element having a semiconductor element structure; a covering member which contains a light reflective material and exposes an emission surface of the light emitting element and covers a side surface of the light emitting element; and a light-transmissive member which is spaced from the light emitting element and has a light emitting surface and a light receiving surface for receiving light from the emission surface of the light emitting element, which face each other. The covering member is extended from the side surface of the light emitting element to the light-transmissive member in a spacing area between the light emitting element and the light-transmissive member, and this extending portion surrounds the spacing area, and a first reflecting surface is provided on a surface on the spacing area side. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、発光装置に関し、より詳細には発光素子を被覆する光反射性の被覆部材を備えた発光装置に関する。   The present invention relates to a light-emitting device, and more particularly to a light-emitting device including a light-reflective coating member that covers a light-emitting element.

近年、光源として発光ダイオード(Light Emitting Diode:LED)やレーザダイオード(Laser Diode:LD)等の半導体発光素子を搭載した発光装置が、各種の照明や表示装置に利用されている。特に、これら半導体発光素子は消費電力が低く長寿命であるため、電球や蛍光灯に代替可能な次世代照明の光源として注目を集めており、さらなる発光出力および発光効率の向上が求められている。また、自動車のヘッドライト等の投光照明のように、配光特性に優れ、高輝度で且つ信頼性の高い光源も求められている。   2. Description of the Related Art In recent years, light-emitting devices equipped with semiconductor light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs) as light sources have been used for various lighting and display devices. In particular, these semiconductor light-emitting elements are attracting attention as light sources for next-generation lighting that can replace light bulbs and fluorescent lamps because of their low power consumption and long life, and further improvements in light emission output and light emission efficiency are required. . There is also a need for a light source that has excellent light distribution characteristics, high brightness, and high reliability, such as floodlights such as automobile headlights.

例えば特許文献1に開示された発光装置は、光取出側に開口したケース内にLED素子が載置されており、そのケース内に光反射粒子を含有するコーティング材が充填され、LED素子における光取出面を除く外面領域は、このコーティング材でもって被覆されている。加えて、成形されたコーティング材の外面上に、LED素子の光取出面を覆うシート状の蛍光体層が配設されており、該蛍光体層の表面を光出射面としている。この蛍光体層は、LED素子からの一次光(青色光)を受けて励起されることにより、波長変換された二次光(黄色光)を放射するYAG等の蛍光体を含む樹脂からなり、一次光と二次光との混色によって光出射面から白色光を放出可能である。   For example, in the light emitting device disclosed in Patent Document 1, an LED element is placed in a case opened on the light extraction side, and a coating material containing light reflecting particles is filled in the case, so that light in the LED element is filled. The outer surface area excluding the extraction surface is covered with this coating material. In addition, a sheet-like phosphor layer covering the light extraction surface of the LED element is disposed on the outer surface of the molded coating material, and the surface of the phosphor layer is used as a light emission surface. This phosphor layer is made of a resin containing a phosphor such as YAG that emits wavelength-converted secondary light (yellow light) by receiving and exciting primary light (blue light) from the LED element, White light can be emitted from the light exit surface by mixing the primary light and the secondary light.

また例えば特許文献2には、LEDチップに光透過性の接着剤により蛍光体チップを固着したLEDチップ組立体を、リードフレームのカップ部や絶縁性基板上に実装し、光散乱剤を混合した保護層や封止樹脂により該LEDチップ組立体を封止した発光装置が開示されている。   For example, in Patent Document 2, an LED chip assembly in which a phosphor chip is fixed to an LED chip with a light-transmitting adhesive is mounted on a cup portion of an lead frame or an insulating substrate, and a light scattering agent is mixed. A light-emitting device in which the LED chip assembly is sealed with a protective layer or a sealing resin is disclosed.

特開2007−019096号公報JP 2007-019096 A 特開2002−141559号公報JP 2002-141559 A 特開2002−305328号公報JP 2002-305328 A

しかしながら、上記特許文献1に開示された発光装置では、LED素子から蛍光体層に入射される光の入射角によって、蛍光体層内を伝搬する光の光路長が異なり、高角度の光成分ほど蛍光体による波長変換量が相対的に大きくなる。このため、蛍光体層から発光される光の放射角度に依存して光の混色の割合が変化し、色ムラを生じる問題があった。   However, in the light emitting device disclosed in Patent Document 1, the optical path length of the light propagating in the phosphor layer differs depending on the incident angle of the light incident on the phosphor layer from the LED element. The amount of wavelength conversion by the phosphor is relatively large. For this reason, there is a problem in that the color mixture ratio of light changes depending on the emission angle of the light emitted from the phosphor layer, resulting in color unevenness.

また上記特許文献2に開示された発光装置では、LEDチップと蛍光体チップとを樹脂材料からなる接着剤を用いて固着しており、LEDチップや蛍光体チップが発する光や熱により接着剤が劣化することで、光損失や色度変化を生じるため、発光装置の信頼性が低下する問題があった。他方、接着剤を介さずにLEDチップと蛍光体チップとを離間させて配置すれば、このような問題を改善することができるが、蛍光体チップ表面での光反射が増大し、蛍光体チップへの光結合効率が低下して、発光装置の発光効率が悪化してしまう。さらに、LEDチップから出射されリードフレームのカップ部や絶縁性基板など実装基体に入射する光成分は、該実装基体による光吸収の影響を受け、外部に有効に取り出されず、光出力が低下する虞があった。   In the light emitting device disclosed in Patent Document 2, the LED chip and the phosphor chip are fixed using an adhesive made of a resin material, and the adhesive is applied by light or heat emitted from the LED chip or the phosphor chip. Deterioration causes light loss and chromaticity change, resulting in a problem that the reliability of the light emitting device is lowered. On the other hand, if the LED chip and the phosphor chip are arranged apart from each other without using an adhesive, such problems can be improved, but light reflection on the surface of the phosphor chip is increased, and the phosphor chip is increased. As a result, the light coupling efficiency of the light emitting device is deteriorated. In addition, light components emitted from the LED chip and incident on the mounting substrate such as the cup portion of the lead frame and the insulating substrate are affected by light absorption by the mounting substrate and are not effectively extracted to the outside, which may reduce the light output. was there.

そこで、本発明はかかる事情に鑑みてなされたものであり、蛍光体を含む波長変換部材内を伝搬する光路長差による色ムラを低減し、樹脂からなる接着剤の劣化による信頼性の低下を回避しながら、発光素子および波長変換部材から放出される光を効率良く外部に取り出すことができる発光装置を提供することを目的とする。   Therefore, the present invention has been made in view of such circumstances, reducing color unevenness due to a difference in optical path length propagating in a wavelength conversion member including a phosphor, and reducing reliability due to deterioration of an adhesive made of resin. It is an object of the present invention to provide a light emitting device that can efficiently extract light emitted from the light emitting element and the wavelength conversion member to the outside while avoiding the problem.

本発明は、下記(1)〜(14)の手段により上記課題を解決することができる。
(1) 半導体素子構造を有する発光素子と、光反射性材料を含有し、前記発光素子の出射面を露出して、該側面を被覆する被覆部材と、前記発光素子から離間され、互いに対向する発光面と、前記発光素子の出射表面からの光を受光する受光面と、を有する光透過部材と、を備え、前記被覆部材は、前記発光素子と前記光透過部材の離間領域において、前記発光素子の側面より前記光透過部材まで延在して、該延在部が前記離間領域を囲み、該離間領域側表面に第1の反射面を有する発光装置。
(2) 前記離間領域は空隙であって、前記第1の反射面は、前記被覆部材と空隙との界面に設けられる上記(1)に記載の発光装置。
(3) 前記第1の反射面は、凹面である上記(1)又は(2)に記載の発光装置。
(4) 前記第1の反射面は、凸曲面を有する請求項1又は2に記載の発光装置。
(5) 前記被覆部材は、前記光透過部材の側面を包囲する第2の反射面をその表面に有する上記(1)〜(4)のいずれか1つに記載の発光装置。
(6) 前記被覆部材は、前記光透過部材の側面を被覆し、前記第2の反射面は、前記被覆部材と前記光透過部材の側面との界面に設けられる上記(5)に記載の発光装置。
(7) 前記第2の反射面は、前記光透過部材の発光面より前方に延出した被覆部材の延出部の表面に設けられている上記(5)又は(6)に記載の発光装置。
(8) 半導体素子構造を有する発光素子と、光反射性材料を含有し、前記発光素子の出射面を露出して、該側面を被覆する被覆部材と、互いに対向する発光面と、前記発光素子の出射表面からの光を受光する受光面と、を有し、前記発光素子の出射面に接合する光透過部材と、を備え、前記被覆部材は、前記光透過部材の外側において、前記光透過部材の側面から前記発光面より前方に延出して、該延出部が前記発光面を包囲し、該発光面側表面と、前記光透過部材の側面とに第2の反射面を有する発光装置。
(9) 前記光透過部材の側面が、前記発光素子の外側の側面より、内側に設けられている上記(8)に記載の発光装置。
(10) 前記延出部は、該開口幅が前記発光面側より狭く、該延出部の前記第2の反射面が発光面に対面するように傾斜して、該発光面の前方を一部覆っている上記(7)〜(9)のいずれか1つに記載の発光装置。
(11) 前記延出部は、該開口幅が前記発光面側より広く、該延出部の前記第2の反射面が発光面より側方の外側に設けられている上記(7)〜(9)のいずれか1つに記載の発光装置。
(12) 前記光透過部材の発光面に接合し、該接合側に対向する表面の第2の発光面を備えた透光性部材を有し、前記延出部は、前記透光性部材の側面を被覆しており、該側面に前記第2の反射面が設けられている上記(10)又は(11)に記載の発光装置。
(13) 前記光透過部材は、前記発光素子に励起される波長変換部材である上記(1)〜(12)のいずれか1つに記載の発光装置。
(14) 前記波長変換部材は板状体である上記(13)に記載の発光装置。
The present invention can solve the above problems by the following means (1) to (14).
(1) A light-emitting element having a semiconductor element structure, a light-reflective material, a light-emitting element exposed surface, a covering member that covers the side surface, and a distance between the light-emitting element and facing each other A light-transmitting member having a light-emitting surface and a light-receiving surface that receives light from an emission surface of the light-emitting element, and the covering member is configured to emit the light in a separation region between the light-emitting element and the light-transmitting member. A light-emitting device that extends from a side surface of the element to the light transmission member, the extending portion surrounds the separation region, and has a first reflection surface on a surface of the separation region.
(2) The light emitting device according to (1), wherein the separation region is a gap, and the first reflection surface is provided at an interface between the covering member and the gap.
(3) The light emitting device according to (1) or (2), wherein the first reflecting surface is a concave surface.
(4) The light emitting device according to claim 1 or 2, wherein the first reflecting surface has a convex curved surface.
(5) The light emitting device according to any one of (1) to (4), wherein the covering member has a second reflecting surface surrounding a side surface of the light transmitting member on a surface thereof.
(6) The light emitting unit according to (5), wherein the covering member covers a side surface of the light transmitting member, and the second reflecting surface is provided at an interface between the covering member and the side surface of the light transmitting member. apparatus.
(7) The light emitting device according to (5) or (6), wherein the second reflecting surface is provided on a surface of an extending portion of the covering member that extends forward from the light emitting surface of the light transmitting member. .
(8) A light-emitting element having a semiconductor element structure, a light-reflective material, a light-emitting surface that exposes an emission surface of the light-emitting element and covers the side surface, a light-emitting surface facing each other, and the light-emitting element A light-transmitting surface that receives light from the light-emitting surface of the light-emitting element, and a light-transmitting member that is bonded to the light-emitting surface of the light-emitting element, and the covering member is disposed outside the light-transmitting member and transmits the light. A light emitting device that extends forward from the light emitting surface from a side surface of the member, the extending portion surrounds the light emitting surface, and has a second reflecting surface on the light emitting surface side surface and the side surface of the light transmitting member .
(9) The light emitting device according to (8), wherein a side surface of the light transmitting member is provided on an inner side than an outer side surface of the light emitting element.
(10) The extending portion is inclined such that the opening width is narrower than the light emitting surface side, and the second reflecting surface of the extending portion faces the light emitting surface, and the front of the light emitting surface is The light-emitting device according to any one of the above (7) to (9), which covers a part.
(11) The extending portion has the opening width wider than the light emitting surface side, and the second reflecting surface of the extending portion is provided on the outer side of the light emitting surface. 9) The light-emitting device according to any one of
(12) The light-transmitting member has a light-transmitting member that is bonded to the light-emitting surface of the light-transmitting member and has a second light-emitting surface on the surface facing the bonding side, The light-emitting device according to (10) or (11), wherein the side surface is covered and the second reflecting surface is provided on the side surface.
(13) The light emitting device according to any one of (1) to (12), wherein the light transmitting member is a wavelength conversion member excited by the light emitting element.
(14) The light emitting device according to (13), wherein the wavelength conversion member is a plate-like body.

本発明によれば、色ムラの少ない高出力発光が可能であり、高い発光効率と信頼性を合わせ持つ発光装置を提供することができる。   According to the present invention, it is possible to provide a light emitting device capable of high-output light emission with little color unevenness and having both high light emission efficiency and reliability.

本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのA−A断面における概略断面図(a)である。It is the schematic top view (b) of the light-emitting device which concerns on one embodiment of this invention, and the schematic sectional drawing (a) in the AA cross section. 本発明の一実施形態に係る発光装置の光源部周辺を説明する概略断面図である。It is a schematic sectional drawing explaining the light source part periphery of the light-emitting device which concerns on one Embodiment of this invention. 本発明の一実施の形態に係る発光素子の概略断面図である。It is a schematic sectional drawing of the light emitting element which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の概略上面図(b)と、そのA−A断面における概略断面図(a)と、その光源部周辺を説明する概略断面図(c)である。It is the schematic top view (b) of the light-emitting device which concerns on one embodiment of this invention, the schematic sectional drawing (a) in the AA cross section, and the schematic sectional drawing (c) explaining the light source part periphery. 本発明の一実施の形態に係る発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施形態に係る発光装置の光源部周辺を説明する概略断面図である。It is a schematic sectional drawing explaining the light source part periphery of the light-emitting device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る発光装置の光源部周辺を説明する概略断面図である。It is a schematic sectional drawing explaining the light source part periphery of the light-emitting device which concerns on one Embodiment of this invention.

以下、発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、本発明を以下のものに特定しない。特に、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、以下に記載されている実施の形態についても同様に、特に排除する記載が無い限りは各構成等を適宜組み合わせて適用できる。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light-emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described below are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. Similarly, the embodiments described below can be applied by appropriately combining the components and the like unless otherwise specified.

<実施の形態1>
図1は、本発明の実施の形態1に係る発光装置の概略図であり、図1(a)は概略上面図の図1(b)のA−Aにおける概略断面図であり、図2はその光源部周辺の概略断面図である。図1,2に示す例の発光装置は、主として、発光素子10と、発光素子から出射された光を透過する光透過部材20と、発光素子、光透過部材の一部を被覆する光反射性の被覆部材40,45と、から構成されている。
<Embodiment 1>
FIG. 1 is a schematic view of a light emitting device according to Embodiment 1 of the present invention, FIG. 1 (a) is a schematic cross-sectional view taken along line AA of FIG. 1 (b), and FIG. It is a schematic sectional drawing around the light source part. The light emitting device of the example shown in FIGS. 1 and 2 mainly includes a light emitting element 10, a light transmitting member 20 that transmits light emitted from the light emitting element, and a light reflecting property that covers a part of the light emitting element and the light transmitting member. Covering members 40 and 45.

発光素子10は、基板上に設けられた半導体素子構造を備え、基板の裏面を上面として実装基板50の配線55上に導電性接着材60により1個フリップチップ実装されている。また実装基板50上には、その発光素子10を包囲するように、第1の枠体51と、さらにその外側に第1の枠体51より高い第2の枠体52と、が設けられている。そして、その第1の枠体51の内側には、光反射性材料46を含有する被覆部材40が充填され、発光素子10の基板の裏面を光出射面として露出させて、発光素子10の周部が該被覆部材40に被覆されている。これにより、発光素子10から側方や下方に出射される光は、光反射性の被覆部材40によって素子の内部に反射され、効率良く該基板の裏面から取り出すことができる。   The light emitting element 10 has a semiconductor element structure provided on a substrate, and one flip chip is mounted on the wiring 55 of the mounting substrate 50 by a conductive adhesive 60 with the back surface of the substrate as an upper surface. On the mounting substrate 50, a first frame 51 and a second frame 52 higher than the first frame 51 are provided outside the first frame 51 so as to surround the light emitting element 10. Yes. Then, the inside of the first frame 51 is filled with a covering member 40 containing a light reflective material 46, and the back surface of the substrate of the light emitting element 10 is exposed as a light emitting surface, and the periphery of the light emitting element 10 is exposed. The portion is covered with the covering member 40. Thereby, the light emitted from the light emitting element 10 to the side or downward is reflected inside the element by the light-reflective coating member 40 and can be efficiently extracted from the back surface of the substrate.

第1の枠体51上には、互いに対向する表面21(発光面90)および受光面22を有する1枚の板状の光透過部材20が載置され第1の枠体51を閉蓋し、受光面22と発光素子10の出射面との間に離間領域30が設けられている。この光透過部材20は、第1の枠体51により発光素子10と離間して配置されており、発光素子10から出射される光を受光面22で受光、透過し、表面21より装置外部に放出する。また光透過部材20は、発光素子10から出射された光を一次光として、該一次光に励起されその波長変換光である二次光を放出可能な蛍光体を含有する波長変換部材であってもよい。   On the first frame 51, a single plate-like light transmitting member 20 having a surface 21 (light emitting surface 90) and a light receiving surface 22 facing each other is placed, and the first frame 51 is closed. A separation region 30 is provided between the light receiving surface 22 and the light emitting surface of the light emitting element 10. The light transmitting member 20 is disposed apart from the light emitting element 10 by the first frame 51, receives and transmits the light emitted from the light emitting element 10 by the light receiving surface 22, and passes the surface 21 to the outside of the apparatus. discharge. The light transmissive member 20 is a wavelength conversion member containing a phosphor that can emit light emitted from the light emitting element 10 as primary light and emit secondary light that is excited by the primary light and is wavelength-converted light. Also good.

また被覆部材40は、第1の枠体51の内壁を該枠体上面まで這い上がって形成され、素子の外側で裏面から前方に伸びて、素子の側面から上面に延在している。図のように光透過部材の受光面22に当接されると良い。さらに、その表面に第1の反射面31が設けられている。この第1の反射面31は、凹曲面となっており、平面である場合に比して反射面の面積が増え反射効率を向上でき、また、発光素子10より幅広な光透過部材20の受光面22に対して好適に光を反射させて光結合させることができる。すなわち、離間領域30が、受光面22と出射面に加えて、被覆部材40、その第1の反射面31で囲まれた構造を有し、発光素子10と光透過部材20とが離間されることによる光結合効率の低下を抑え、さらに被覆部材40による散乱作用で、色ムラ、輝度ムラを好適に改善できる。   The covering member 40 is formed by scooping up the inner wall of the first frame 51 to the upper surface of the frame, extends from the back surface to the front outside the element, and extends from the side surface of the element to the upper surface. As shown in the drawing, it is preferable to contact the light receiving surface 22 of the light transmitting member. Furthermore, the 1st reflective surface 31 is provided in the surface. The first reflecting surface 31 is a concave curved surface, and the area of the reflecting surface is increased and the reflection efficiency can be improved as compared to a flat surface, and the light receiving member 20 having a wider width than the light emitting element 10 can receive light. Light can be suitably reflected and coupled to the surface 22. That is, the separation region 30 has a structure surrounded by the covering member 40 and the first reflection surface 31 in addition to the light receiving surface 22 and the emission surface, and the light emitting element 10 and the light transmission member 20 are separated from each other. Accordingly, it is possible to suppress the decrease in optical coupling efficiency due to the above, and to suitably improve the color unevenness and the brightness unevenness by the scattering action by the covering member 40.

この発光素子10の周囲に設けられた第1の反射面31により、基板の裏面の出射面から高角度方向に出射された光は、第1の枠体51の内壁表面への入射による光吸収の影響を受けずに、光透過部材の受光面22側に反射され、光結合する。また第1の反射面31による光の散乱作用によって、光透過部材の受光面22への入射角を低減することができる。よって、特に第1の反射面31に対向する光透過部材20の周縁部において光透過部材20への入射角が低減され、光透過部材20が波長変換部材である場合には、波長変換部材内の光路長差に起因して発生する色ムラを低減することができる。また、光透過部材の受光面22で反射された光(戻り光)、受光面22から放出した二次光の一部も第1の反射面31に入射され、同様に光透過部材の受光面22側に反射・散乱させ、再度受光面22に入射させることができ、光透過部材20への光結合効率を高めることができる。   Light emitted in a high angle direction from the exit surface on the back surface of the substrate by the first reflecting surface 31 provided around the light emitting element 10 is absorbed by the incidence on the inner wall surface of the first frame 51. Without being influenced by the light, it is reflected to the light receiving surface 22 side of the light transmitting member and optically couples. Further, the incident angle of the light transmitting member on the light receiving surface 22 can be reduced by the light scattering action of the first reflecting surface 31. Therefore, particularly when the incident angle to the light transmission member 20 is reduced at the peripheral portion of the light transmission member 20 facing the first reflection surface 31, and the light transmission member 20 is a wavelength conversion member, Color unevenness caused by the difference in optical path length can be reduced. Further, the light reflected by the light receiving surface 22 of the light transmitting member (return light) and a part of the secondary light emitted from the light receiving surface 22 are also incident on the first reflecting surface 31, and similarly, the light receiving surface of the light transmitting member. The light can be reflected and scattered on the side 22 and can be incident again on the light receiving surface 22, and the light coupling efficiency to the light transmitting member 20 can be increased.

また、本実施の形態1において、光透過部材の受光面22と発光素子10との間の離間領域30は空隙となっており、第1の反射面31は被覆部材30と、その空隙、空隙中の空気などの気体との界面に設けられている。一般的に樹脂材料で構成される接着剤などを介さず、発光素子10と光透過部材20とが空隙30により離間されて配置されていることで、光や熱によって接着剤、さらに光透過部材20が劣化し、信頼性が低下することを回避することができる。空隙30により離間されている場合、光透過部材の受光面22での光反射が増加するが、第1の反射面31によって戻り光を再び反射させることにより、光透過部材20への光結合効率の低下を抑制することができる。従って、第1の反射面31が、発光素子10の出射面より光反射率が高いことが好ましく、さらに光散乱作用が高いことが好ましい。   Further, in the first embodiment, the separation region 30 between the light receiving surface 22 of the light transmitting member and the light emitting element 10 is a gap, and the first reflecting surface 31 is the covering member 30, the gap, and the gap. It is provided at the interface with gas such as air. In general, the light emitting element 10 and the light transmitting member 20 are arranged apart from each other by a gap 30 without using an adhesive composed of a resin material. It can be avoided that 20 deteriorates and the reliability decreases. When separated by the gap 30, the light reflection at the light receiving surface 22 of the light transmissive member increases, but the return light is reflected again by the first reflective surface 31, so that the light coupling efficiency to the light transmissive member 20 is increased. Can be suppressed. Therefore, it is preferable that the first reflection surface 31 has a higher light reflectance than the emission surface of the light emitting element 10, and further it is preferable that the light scattering action is higher.

さらに、第1の枠体51と第2の枠体52の間には、上記と同様に光反射性の被覆部材45が充填されており、その表面に第2の反射面32が設けられている。本実施の形態1において、被覆部材45は、光透過部材の表面21を露出して、光透過部材20の側面を被覆しており、第2の反射面32aが光透過部材20の側面と被覆部材45の界面に設けられている。これにより、光透過部材20の側面から側方に漏れ出す光を上方に反射させ、高輝度の発光を実現することができる。また光透過部材20が波長変換部材である場合、その周縁部、側方では、発光素子10からの一次光成分が不足し波長変換された二次光成分が多い光が放出される虞があるが、このような側方への光を第2の反射面32により内部に反射させることで、一次光と二次光の混色を促進し、色ムラを低減することができる。また光透過部材20の側面を被覆し、表面21を露出させることで、該発光装置100の主たる光取り出しの窓部(発光面90)とする面発光型の発光装置が形成され、光透過部材の表面21の形状に依存して、該発光装置100の配光を制御することができる。   Further, a light-reflective coating member 45 is filled between the first frame 51 and the second frame 52 in the same manner as described above, and the second reflection surface 32 is provided on the surface thereof. Yes. In the first embodiment, the covering member 45 exposes the surface 21 of the light transmitting member to cover the side surface of the light transmitting member 20, and the second reflecting surface 32a covers the side surface of the light transmitting member 20. It is provided at the interface of the member 45. Thereby, the light which leaks to the side from the side surface of the light transmission member 20 is reflected upward, and high-luminance light emission can be realized. Further, when the light transmitting member 20 is a wavelength conversion member, there is a risk that light having a large amount of the secondary light component that has undergone wavelength conversion due to shortage of the primary light component from the light emitting element 10 may be emitted from the periphery and the side. However, by reflecting such lateral light to the inside by the second reflecting surface 32, color mixing of the primary light and the secondary light can be promoted, and color unevenness can be reduced. Further, by covering the side surface of the light transmitting member 20 and exposing the surface 21, a surface light emitting type light emitting device serving as a main light extraction window portion (light emitting surface 90) of the light emitting device 100 is formed. Depending on the shape of the surface 21, the light distribution of the light emitting device 100 can be controlled.

また被覆部材45は、第2の枠体52の内壁を該枠体の上面近傍まで這い上がって形成され、光透過部材20と第2の枠体52との間、すなわち光透過部材20の外側で、その発光面90より前方に延出した延出部を有しており、第2の反射面32はその延出部の表面まで形成されている。これにより、光透過部材の発光面90より高角度に放出される光を上方に反射させ、発光装置100の正面輝度をさらに高めることができる。なお、この延出部の第2の反射面32bは凹曲面であって、凸曲面である場合より比較的広い配光を得ることができる。また、上述のように光透過部材20が波長変換部材である場合、高角度の一次光ほど波長変換部材中を伝搬する光路長が長くなり波長変換量が大きくなるため、発光面90からの高角度の出射光は二次光成分が多くなる虞があるが、この延出部の表面に形成される第2の反射面32bにより装置内側に散乱させることで、一次光と二次光の混色を促進し、さらに色ムラを低減することができる。   The covering member 45 is formed by scooping up the inner wall of the second frame 52 to the vicinity of the upper surface of the frame, and between the light transmitting member 20 and the second frame 52, that is, outside the light transmitting member 20. Thus, it has an extending portion extending forward from the light emitting surface 90, and the second reflecting surface 32 is formed up to the surface of the extending portion. Thereby, the light emitted at a higher angle than the light emitting surface 90 of the light transmitting member can be reflected upward, and the front luminance of the light emitting device 100 can be further increased. Note that the second reflecting surface 32b of the extending portion is a concave curved surface, and a relatively wide light distribution can be obtained as compared with the case of the convex curved surface. Further, when the light transmitting member 20 is a wavelength conversion member as described above, the higher the primary light, the longer the optical path length that propagates through the wavelength conversion member and the greater the wavelength conversion amount. The emitted light at an angle may have a large amount of secondary light component, but by scattering the light to the inside of the apparatus by the second reflecting surface 32b formed on the surface of the extending portion, the mixed color of the primary light and the secondary light And color unevenness can be further reduced.

以上、説明したように、本発明の発光装置は、凹部を備えた被覆部材とその凹部の底に、被覆部材に少なくとも側面が被覆された光源部の発光素子があり、その凹部内、それを閉じる蓋のように閉蓋した光透過部材が設けられて、複合的な光源部となっている。その複合光源部内の離間領域内、すなわち光源部と光透過部材とで挟まれた領域の周囲側面を被覆部材で包囲して、第1の反射面で囲まれた領域内において、光源から取り出された光、また光透過部材から光源側に放出された一次光、二次光が、各部材と第1の反射面で互いに重畳し、また反射面による集光作用により、所望の発光特性、特に配向性、色度分布、輝度分布の光を複合光源の発光面である光透過部材の表面から取り出す構造となっている。従って、後述するように光反射性材料を備えた透明部材の被覆部材であると、反射作用に、散乱作用が加わるため、その機能をより高めることができる。さらに、その複合光源から取り出された光、すなわち光透過部材の外側に取り出された光に対して、それを反射する第2の反射面となる被覆部材が付加的に設けられると、上記各特性の制御性が高められる。従って、第1,2の反射面は、一体の被覆部材で形成されても良く、各実施形態で説明するように、個々に成形したものでも良い。   As described above, the light-emitting device of the present invention has a light-emitting element of a light source unit in which at least a side surface is coated on a covering member at the bottom of the covering member having the concave portion and the concave portion. A light-transmitting member that is closed like a closing lid is provided to form a composite light source unit. In the separated area in the composite light source part, that is, the peripheral side surface of the area sandwiched between the light source part and the light transmitting member is surrounded by the covering member, and is taken out from the light source in the area surrounded by the first reflecting surface. The primary light and secondary light emitted from the light transmitting member to the light source side are superimposed on each other and the first reflecting surface, and desired light emission characteristics, In this structure, light of orientation, chromaticity distribution, and luminance distribution is extracted from the surface of the light transmitting member that is the light emitting surface of the composite light source. Therefore, since it is a covering member of a transparent member provided with a light-reflective material as will be described later, the scattering function is added to the reflecting action, so that the function can be further enhanced. Further, when a covering member serving as a second reflecting surface for reflecting the light extracted from the composite light source, that is, the light extracted outside the light transmitting member, is additionally provided, each of the above characteristics. Controllability is improved. Therefore, the first and second reflecting surfaces may be formed of an integral covering member, or may be individually molded as described in each embodiment.

一方、実施形態6,7、図8,9に観るように、光源部に波長変換部材などの光透過部材が内包され、すなわち発光素子と光透過部材が、直接、あるいは接着剤などを介して、互いに接合され、複合光源部が一体的なものとすることもできる。この場合は、光源部より前方に突出した被覆部材の反射面は、上記複合光源の外側に設けられる第2の反射面と同様なものとなる。すなわち、上述したように、光源部近傍において、被覆部材、上記光源部側の第1の反射面と同様に、反射、集光、散乱作用により、所望の発光特性を得ることができる。さらに、光源部に内包された光透過部材に代えて、別の透光性部材を用いて、所望形状の被覆部材の延出部、その第2の反射面を設けて、所望の発光面の形状、発光特性を得ることができる。具体的には、実施形態5,6のように、光源部より幅の狭い放出口を備えた被覆部材の延出部、またその透光性部材とすることができる。他方、放出側が幅広となる形状とすることもでき、上記透光性部材を用いることで、上述した離間領域と同様に、その部材内で光が重畳されて、所望の発光をその透光性部材表面の第2の発光面から取り出すことができる。   On the other hand, as seen in the sixth and seventh embodiments and FIGS. 8 and 9, the light source includes a light transmitting member such as a wavelength conversion member, that is, the light emitting element and the light transmitting member are directly or via an adhesive or the like. The composite light source units may be integrated with each other. In this case, the reflection surface of the covering member protruding forward from the light source unit is the same as the second reflection surface provided outside the composite light source. That is, as described above, in the vicinity of the light source unit, desired light emission characteristics can be obtained by the reflection, condensing, and scattering actions, similarly to the covering member and the first reflection surface on the light source unit side. Further, instead of the light transmissive member included in the light source unit, another light transmissive member is used to provide an extended portion of the covering member having a desired shape, its second reflecting surface, and a desired light emitting surface. Shape and light emission characteristics can be obtained. Specifically, as in the fifth and sixth embodiments, the extending portion of the covering member having a narrower emission port than the light source portion, and the translucent member thereof can be used. On the other hand, the emission side can also be formed in a wide shape. By using the translucent member, light is superimposed in the member in the same manner as the above-described separated region, and desired light emission is transmitted through the translucent member. It can be taken out from the second light emitting surface of the member surface.

次に、本発明の発光装置の各構成部材について、以下に詳述する。   Next, each component of the light emitting device of the present invention will be described in detail below.

(発光素子)
発光素子10は公知のもの、具体的には半導体発光素子を利用でき、特にGaN系化合物半導体であれば、蛍光物質を効率良く励起できる短波長の可視光や紫外光が発光可能であるため好ましい。具体的な発光ピーク波長は240nm以上560nm以下、好ましくは380nm以上470nm以下である。なお、このほか、ZnSe系、InGaAs系、AlInGaP系半導体の発光素子でもよい。
(Light emitting element)
The light-emitting element 10 can be a known element, specifically a semiconductor light-emitting element, and is particularly preferably a GaN-based compound semiconductor because it can emit visible light and ultraviolet light having a short wavelength that can excite a fluorescent substance efficiently. . A specific emission peak wavelength is 240 nm or more and 560 nm or less, preferably 380 nm or more and 470 nm or less. In addition, a light emitting element of ZnSe, InGaAs, or AlInGaP semiconductor may be used.

(発光素子構造)
半導体層による発光素子構造11は、図3に例示するように少なくとも第1導電型(n型)層2と第2導電型(p型)層4とにより構成され、更にその間に活性層3を有する構造が好ましい。また、電極構造は、一方の主面側に第1導電型(負)、第2導電型(正)の両電極6,7が設けられる同一面側電極構造が好ましいが、半導体層の各主面に対向して電極が各々設けられる対向電極構造でも良い。発光素子10の実装形態も、例えば上記同一面側電極構造では、電極形成面を実装面として、それに対向する基板1側を主な出射面とするフリップチップ実装が、その出射面と光透過部材20との光学的な接続上好ましい。この他、電極形成面側を主な出射面として、その上に光透過部材を結合する実装、フェイスアップ実装、また配線構造を備えた光透過部材にフリップチップ実装、上記対向電極構造で光透過部材と実装基板に接続すること、ができ、好ましくは発光素子と光透過部材に配線、電極を備えない実施例の実装が良い。なお、半導体層11の成長基板1は、発光素子構造を構成しない場合には除去してもよく、成長基板が除去された半導体層に、支持基板、例えば導電性基板または別の透光性部材・基板を接着した構造とすることもできる。この支持基板に光透過部材20を用いることもでき、その他、ガラス、樹脂などの光透過部材により半導体層が接着・被覆されて、支持された構造の素子でもよい。成長基板の除去は、例えば支持体、装置又はサブマウントに実装又は保持して、剥離、研磨、若しくはLLO(Laser Lift Off)で実施できる。また、発光素子10は光反射構造を有することができ、具体的には、半導体層11の互いに対向する2つの主面の内、光取り出し側(出射面側)と対向する他方の主面を光反射側(図1における下側)とし、この光反射側の半導体層内や電極などに光反射構造を設けることができる。光反射構造の例として、半導体層内に多層膜反射層が設ける構造、あるいは半導体層の上にAg、Al等の光反射性の高い金属膜や誘電体多層膜を有する電極、反射層を設けた構造がある。
(Light emitting element structure)
As illustrated in FIG. 3, the light-emitting element structure 11 formed of a semiconductor layer is composed of at least a first conductivity type (n-type) layer 2 and a second conductivity type (p-type) layer 4, and further, an active layer 3 is interposed therebetween. The structure which has is preferable. The electrode structure is preferably the same surface side electrode structure in which both the first conductivity type (negative) and the second conductivity type (positive) electrodes 6 and 7 are provided on one main surface side. A counter electrode structure in which electrodes are provided to face each other may be used. As for the mounting form of the light emitting element 10, for example, in the same surface side electrode structure, flip chip mounting in which the electrode forming surface is the mounting surface and the substrate 1 side facing it is the main emitting surface is the emitting surface and the light transmitting member. 20 is preferable in terms of optical connection. In addition to this, the electrode forming surface side is the main emission surface, and the light transmission member is mounted on it, face-up mounting, flip chip mounting on the light transmission member with wiring structure, and light transmission with the above-mentioned counter electrode structure It is possible to connect the member and the mounting substrate, and it is preferable to mount the embodiment in which the light emitting element and the light transmitting member are not provided with wiring and electrodes. Note that the growth substrate 1 of the semiconductor layer 11 may be removed when the light emitting element structure is not formed, and a support substrate such as a conductive substrate or another translucent member is added to the semiconductor layer from which the growth substrate has been removed. -It is also possible to have a structure in which substrates are bonded. The light transmitting member 20 can also be used for the supporting substrate, and other elements having a structure in which the semiconductor layer is bonded and covered with a light transmitting member such as glass or resin may be used. The removal of the growth substrate can be performed by peeling, polishing, or LLO (Laser Lift Off) by mounting or holding the growth substrate on a support, device, or submount, for example. In addition, the light emitting element 10 can have a light reflecting structure. Specifically, of the two main surfaces of the semiconductor layer 11 facing each other, the other main surface facing the light extraction side (emission surface side) is formed. The light reflection side (the lower side in FIG. 1) can be provided, and a light reflection structure can be provided in the semiconductor layer on this light reflection side or in an electrode. As an example of the light reflecting structure, a structure in which a multilayer reflective layer is provided in the semiconductor layer, or an electrode having a highly light reflective metal film such as Ag or Al or a dielectric multilayer film, or a reflective layer is provided on the semiconductor layer. There is a structure.

(窒化物半導体発光素子)
発光素子10の一例として、図3の窒化物半導体の発光素子10では、成長基板1であるC面サファイア基板の上に、第1の窒化物半導体層2であるn型半導体層、活性層3である発光層、第2の窒化物半導体層4であるp型半導体層が順にエピタキシャル成長されている。そして、n型層2の一部が露出されて第1の電極7であるn型パッド電極を形成し、p型層4のほぼ全面にITO等の透光性導電層5、第2の電極6であるp型パッド電極が形成されている。さらに、保護膜8をn型、p型パッド電極6,7の表面を露出し、半導体層を被覆して設けられる。なお、n型パッド電極7は、p型同様に透光性導電層を介して形成してもよい。成長基板1は、C面サファイアの他、R面、及びA面、スピネル(MgAl24)のような絶縁性基板、また炭化珪素(6H、4H、3C)、Si、ZnS、ZnO、GaAs、GaNやAlN等の半導体の導電性基板がある。窒化物半導体の例としては、一般式がInxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)の他、BやP、Asを混晶してもよい。また、n型、p型半導体層2,4は、単層、多層を特に限定されず、活性層3は単一(SQW)又は多重量子井戸構造(MQW)が好ましい。青色発光の素子構造11の例としては、サファイア基板上に、バッファ層などの窒化物半導体の下地層、例えば低温成長薄膜GaNとGaN層、を介して、n型半導体層として、例えばSiドープGaNのn型コンタクト層とGaN/InGaNのn型多層膜層が積層され、続いてInGaN/GaNのMQWの活性層、更にp型半導体層として、例えばMgドープのInGaN/AlGaNのp型多層膜層とMgドープGaNのp型コンタクト層が積層された構造がある。
(Nitride semiconductor light emitting device)
As an example of the light emitting element 10, in the nitride semiconductor light emitting element 10 of FIG. 3, an n-type semiconductor layer that is the first nitride semiconductor layer 2 and the active layer 3 are formed on the C-plane sapphire substrate that is the growth substrate 1. The light emitting layer and the p-type semiconductor layer which is the second nitride semiconductor layer 4 are epitaxially grown in this order. Then, a part of the n-type layer 2 is exposed to form an n-type pad electrode, which is the first electrode 7, and a light-transmitting conductive layer 5 such as ITO is formed on almost the entire surface of the p-type layer 4. 6, a p-type pad electrode is formed. Further, the protective film 8 is provided by exposing the surfaces of the n-type and p-type pad electrodes 6 and 7 and covering the semiconductor layer. Note that the n-type pad electrode 7 may be formed through a light-transmitting conductive layer as in the p-type. The growth substrate 1 includes C-plane sapphire, R-plane and A-plane, an insulating substrate such as spinel (MgAl 2 O 4 ), silicon carbide (6H, 4H, 3C), Si, ZnS, ZnO, GaAs. There are semiconductor conductive substrates such as GaN and AlN. Examples of the nitride semiconductor, the general formula In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) of the other, B and P, may be mixed with As. The n-type and p-type semiconductor layers 2 and 4 are not particularly limited to a single layer or multiple layers, and the active layer 3 preferably has a single (SQW) or multiple quantum well structure (MQW). As an example of the blue light emitting element structure 11, an n-type semiconductor layer such as Si-doped GaN is formed on a sapphire substrate via a nitride semiconductor underlayer such as a buffer layer, for example, a low-temperature growth thin film GaN and a GaN layer. N-type contact layer and GaN / InGaN n-type multilayer film layer, followed by InGaN / GaN MQW active layer, and p-type semiconductor layer, for example, Mg-doped InGaN / AlGaN p-type multilayer film layer And a p-type contact layer of Mg-doped GaN.

(光透過部材)
また図1の発光装置100は、発光素子10からの光を透過する光透過部材20を備える。光透過部材20は、通過する光の少なくとも一部を波長変換可能な波長変換材料を有する光変換部材であることが好ましい。例えば実施例のように、光源からの一次光が、光透過部材20中の波長変換材料としての蛍光体を励起することで、一次光と異なった波長を持つ二次光が得られ、さらに一次光との混色により、所望の色相を有する出射光を実現できる。
(Light transmission member)
The light emitting device 100 of FIG. 1 includes a light transmitting member 20 that transmits light from the light emitting element 10. The light transmission member 20 is preferably a light conversion member having a wavelength conversion material capable of converting the wavelength of at least part of the light passing therethrough. For example, as in the embodiment, the primary light from the light source excites the phosphor as the wavelength conversion material in the light transmitting member 20 to obtain secondary light having a wavelength different from that of the primary light. Outgoing light having a desired hue can be realized by color mixing with light.

上述の通り、実施の形態1の光透過部材20は、表面21(発光面90)からの平面視において発光素子10を内包し、その側面が、発光素子10の側面(端面)よりも外方に突出し、発光素子10の出射面より幅広な受光面22でもって発光素子10と光学的に接続されるため損失が少ない。このほか、後述の実施の形態6,7に示すように、光透過部材20の側面が、発光素子10の側面よりも内側に位置する、つまり発光素子10の出射面が突出される形態でもよく、この例のように光透過部材の受光面22を発光素子10の出射面より小さくした形態であってもよい。発光素子に対して発光領域を絞ることで相対的に輝度が高められ、また混色の均一化が図れ、色ムラが低減される。また、光透過部材20の側面が発光素子10の側面と略同一面上に位置する形態であれば、光透過部材の外縁部において、発光素子10からの光量が不足して色ムラが発生しやすくなるのを抑制できる。   As described above, the light transmissive member 20 according to the first embodiment includes the light emitting element 10 in a plan view from the surface 21 (light emitting surface 90), and the side surface is outward from the side surface (end surface) of the light emitting element 10. The light receiving surface 22 is wider than the light emitting surface of the light emitting element 10 and is optically connected to the light emitting element 10 so that there is little loss. In addition, as shown in Embodiments 6 and 7 to be described later, the side surface of the light transmitting member 20 may be positioned inside the side surface of the light emitting element 10, that is, the emission surface of the light emitting element 10 may protrude. As in this example, the light receiving surface 22 of the light transmitting member may be smaller than the light emitting surface of the light emitting element 10. By narrowing the light emitting region with respect to the light emitting element, the luminance is relatively increased, the color mixture is made uniform, and the color unevenness is reduced. Further, if the side surface of the light transmitting member 20 is located on the same plane as the side surface of the light emitting element 10, the amount of light from the light emitting element 10 is insufficient at the outer edge portion of the light transmitting member, resulting in color unevenness. It can suppress becoming easy.

ここで、光透過部材20の母材となる透光性材料としては、下記被覆部材40と同様な材料を用いることができ、例えば樹脂、又はガラスなどの無機物を用いることができる。変換機能を備えない場合も、蛍光体を除いて、又はそれに置換して、光変換の光透過部材と同様の材料を用いることが好ましい。また、表面21、受光面22は、実施例のように光透過部材が板状である場合には、両面とも略平坦な面であること、更には対向する両面が互いに略平行であることが本発明の導光部材を介した光結合の効率が高まり、また接合が容易となり好ましい。一方で、板状に限らず、全体又は一部に曲面を有する形態、凹凸面などの面状の形態など、種々の形状若しくは形態、例えば集光、分散するための形状、例えばレンズ状などのような光学的な形状とすることもできる。また、波長変換機能として、発光素子の一次光とその変換光(二次光)の混色光を発光する他に、例えば発光素子の紫外光による変換光、若しくは複数の変換光による混色光のように、一次光から変換された二次光を主に出射する発光装置とすることもできる。   Here, as a translucent material used as a base material of the light transmissive member 20, the material similar to the following coating member 40 can be used, for example, inorganic substances, such as resin or glass, can be used. Even when the conversion function is not provided, it is preferable to use the same material as the light transmission member for light conversion, excluding or replacing the phosphor. Further, when the light transmitting member is plate-like as in the embodiment, both the front surface 21 and the light receiving surface 22 are substantially flat surfaces, and furthermore, both opposing surfaces are substantially parallel to each other. The efficiency of optical coupling through the light guide member of the present invention is increased, and joining is facilitated, which is preferable. On the other hand, it is not limited to a plate shape, but various shapes or forms such as a shape having a curved surface in whole or in part, a surface shape such as an uneven surface, for example, a shape for condensing and dispersing, for example, a lens shape, etc. Such an optical shape can also be used. Further, as a wavelength conversion function, in addition to emitting primary light of the light emitting element and mixed light of the converted light (secondary light), for example, converted light by ultraviolet light of the light emitting element or mixed light by a plurality of converted lights In addition, a light-emitting device that mainly emits secondary light converted from primary light can be used.

波長変換機能を備えた光透過部材20は、具体的にガラス板、それに光変換部材を備えたもの、あるいは光変換部材の蛍光体結晶若しくはその相を有する単結晶体、多結晶体、アモルファス体、セラミック体、あるいは蛍光体結晶粒子による、それと適宜付加された透光性材料との焼結体、凝集体、多孔質性材料、それらに透光性材料、例えば透光性樹脂を混入、含浸したもの、あるいは蛍光体粒子を含有する透光性部材、例えば透光性樹脂の成形体等から構成される。なお、光透過部材20は、樹脂等の有機材料よりも無機材料で構成されることが耐熱性の観点からは好ましい。具体的には蛍光体を含有する透光性の無機材料からなることが好ましく、特に蛍光体と無機物(結合材、バインダー)との焼結体、あるいは蛍光体からなる焼結体や結晶とすることで信頼性が高まる。なお、実施例のYAGの蛍光体を用いる場合、YAGの単結晶や高純度の焼結体のほか、アルミナ(Al23)を結合材とするYAG/アルミナの焼結体、ガラスを結合材とした焼結体が信頼性の観点から好ましい。また、光透過部材20を板状とすることで、面状に構成される発光素子10の出射面との結合効率が良く、光透過部材20の主面とが略平行になるよう容易に位置合わせできる。加えて、光透過部材20の厚みを略一定とすることで、通過する光の波長変換量を略均一として混色の割合を安定させ、発光面90の部位における色むらを抑止できる。このため、1つの光透過部材20に複数の発光素子10を搭載する場合において、個々の発光素子10の配置に起因する発光面90内の輝度や色度の分布にむらが少なく略均一で高輝度の発光を得ることができる。なお、波長変換機能を備えた光透過部材20の厚みは、発光効率や色度調整において、10μm以上500μm以下であることが好ましく、さらには50μm以上300μm以下であることがより好ましい。 The light transmissive member 20 having the wavelength conversion function is specifically a glass plate, a material provided with the light conversion member, or a phosphor crystal of the light conversion member or a single crystal, a polycrystal, or an amorphous material having a phase thereof. Sintered body, aggregate, porous material, and translucent material such as translucent resin, impregnated with ceramic body or phosphor crystal particles and appropriately added translucent material Or a translucent member containing phosphor particles, such as a molded body of translucent resin. In addition, it is preferable from a heat resistant viewpoint that the light transmissive member 20 is comprised with an inorganic material rather than organic materials, such as resin. Specifically, it is preferably made of a translucent inorganic material containing a phosphor, and in particular, a sintered body of a phosphor and an inorganic substance (binding material, binder), or a sintered body or crystal made of a phosphor. This increases reliability. In addition, when using the YAG phosphor of the example, in addition to YAG single crystals and high-purity sintered bodies, YAG / alumina sintered bodies using alumina (Al 2 O 3 ) as a binder, and glass are bonded. A sintered body as a material is preferable from the viewpoint of reliability. Further, by forming the light transmitting member 20 in a plate shape, the coupling efficiency with the emission surface of the light emitting element 10 configured in a planar shape is good, and the light transmitting member 20 can be easily positioned so as to be substantially parallel to the main surface of the light transmitting member 20. Can be combined. In addition, by making the thickness of the light transmissive member 20 substantially constant, the wavelength conversion amount of the light passing therethrough can be made substantially uniform, the ratio of color mixing can be stabilized, and color unevenness at the site of the light emitting surface 90 can be suppressed. Therefore, in the case where a plurality of light emitting elements 10 are mounted on one light transmitting member 20, there is little unevenness in luminance and chromaticity distribution in the light emitting surface 90 due to the arrangement of the individual light emitting elements 10, and it is substantially uniform and high. Luminous light emission can be obtained. Note that the thickness of the light transmitting member 20 having a wavelength conversion function is preferably 10 μm or more and 500 μm or less, and more preferably 50 μm or more and 300 μm or less, in terms of light emission efficiency and chromaticity adjustment.

波長変換部材は、青色発光素子と好適に組み合わせて白色発光とでき、波長変換部材に用いられる代表的な蛍光体としては、ガーネット構造のセリウムで付括されたYAG系蛍光体(イットリウム・アルミニウム・ガーネット)及びLAG系蛍光体(ルテチウム・アルミニウム・ガーネット)が挙げられ、特に、高輝度且つ長時間の使用時においては(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y、Gd、La、Luからなる群より選択される少なくとも一種の元素である。)等が好ましい。またYAG、LAG、BAM、BAM:Mn、(Zn、Cd)Zn:Cu、CCA、SCA、SCESN、SESN、CESN、CASBN及びCaAlSiN3:Euからなる群から選択される少なくとも1種を含む蛍光体が使用できる。波長変換部材は、光透過部材の他に、例えば光透過部材と発光素子との間、その結合部材中、発光素子と被覆部材との間、にも設けることもできる。光透過部材、波長変換部材及び焼結体も同様に発光装置中に配置できる。黄〜赤色発光を有する窒化物系蛍光体等を用いて赤味成分を増し、平均演色評価数Raの高い照明や電球色LED等を実現することもできる。具体的には、発光素子の発光波長に合わせてCIEの色度図上の色度点の異なる蛍光体の量を調整し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させることができる。その他に、近紫外〜可視光を黄色〜赤色域に変換する窒化物蛍光体、酸窒化物蛍光体、珪酸塩蛍光体を用いることができる。例えば、L2SiO4:Eu(Lはアルカリ土類金属)、特に(SrxMae1-x2SiO4:Eu(MaeはCa、Baなどのアルカリ土類金属)などが挙げられる。窒化物系蛍光体、オキシナイトライド(酸窒化物)蛍光体としては、Sr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O−N:Euなどがあり、アルカリ土類窒化ケイ素蛍光体としては、一般式LSi222:Eu、一般式LxSiy(2/3x+4/3y):Eu若しくはLxSiyz(2/3x+4/3y-2/3z):Eu(Lは、Sr、Ca、SrとCaのいずれか)で表される。 The wavelength conversion member can be suitably combined with a blue light emitting element to emit white light. As a typical phosphor used for the wavelength conversion member, a YAG phosphor (yttrium, aluminum, Garnet) and LAG-based phosphors (lutetium, aluminum, garnet). In particular, (Re 1-x Sm x ) 3 (Al 1-y Ga y ) 5 O 12 in high brightness and long time use. : Ce (0 ≦ x <1, 0 ≦ y ≦ 1, where Re is at least one element selected from the group consisting of Y, Gd, La, and Lu). Further, a phosphor containing at least one selected from the group consisting of YAG, LAG, BAM, BAM: Mn, (Zn, Cd) Zn: Cu, CCA, SCA, SCESN, SESN, CESN, CASBN, and CaAlSiN 3 : Eu. Can be used. In addition to the light transmissive member, the wavelength conversion member can also be provided, for example, between the light transmissive member and the light emitting element, and between the light emitting element and the covering member in the coupling member. Similarly, the light transmitting member, the wavelength converting member, and the sintered body can be disposed in the light emitting device. It is also possible to increase the reddish component using a nitride-based phosphor having yellow to red light emission, and to realize illumination with high average color rendering index Ra, light bulb color LED, and the like. Specifically, by adjusting the amount of phosphors having different chromaticity points on the CIE chromaticity diagram according to the light emission wavelength of the light emitting device, the phosphors are connected with each other on the chromaticity diagram. Any point can be made to emit light. In addition, nitride phosphors, oxynitride phosphors, and silicate phosphors that convert near-ultraviolet to visible light into a yellow to red region can be used. For example, L 2 SiO 4 : Eu (L is an alkaline earth metal), particularly (Sr x Mae 1-x ) 2 SiO 4 : Eu (Mae is an alkaline earth metal such as Ca and Ba) and the like. Examples of nitride phosphors and oxynitride (oxynitride) phosphors include Sr—Ca—Si—N: Eu, Ca—Si—N: Eu, Sr—Si—N: Eu, and Sr—Ca—Si. —O—N: Eu, Ca—Si—O—N: Eu, Sr—Si—O—N: Eu, and the like. As the alkaline earth silicon nitride phosphor, the general formula LSi 2 O 2 N 2 : Eu , general formula L x Si y N (2 / 3x + 4 / 3y): Eu or L x Si y O z N ( 2 / 3x + 4 / 3y-2 / 3z): Eu (L is, Sr, Ca, One of Sr and Ca).

(被覆部材)
被覆部材40,45は、図1に示すように、発光素子10、光透過部材20の一部を被覆する。そして、本発明においては、被覆部材が素子等から垂下され、光の漏れ経路の形成を防ぐことから、実装基板、更にはそれに設けられた配線より、被覆部材の反射率が高いことが好ましい。また、光反射材料46,47を含有する被覆部材40,45は、その基材は透光性の樹脂材料が好ましく、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることができる。また、これらの樹脂を少なくとも一種以上含むハイブリッド樹脂等、耐候性に優れた被覆部材も利用できる。さらに、ガラス、シリカゲル等の耐光性に優れた無機物を用いることもできる。また、樹脂材料を成形することで、所望の形状に成形でき、また所望領域を被覆でき、本発明では光源部の発光素子、光透過部材の表面、特にその側面を被覆して形成できる。また、その発光面側の表面も同様に所望形状とでき、図示するような平坦な面状の他、凹や凸の曲面とできる。実施の形態1では耐熱性・耐候性の観点から被覆部材としてシリコーン樹脂を使用する。
(Coating member)
The covering members 40 and 45 cover a part of the light emitting element 10 and the light transmitting member 20 as shown in FIG. In the present invention, since the covering member hangs down from the element or the like and prevents the formation of a light leakage path, it is preferable that the reflectance of the covering member is higher than that of the mounting substrate and the wiring provided thereon. In addition, the covering members 40 and 45 containing the light reflecting materials 46 and 47 are preferably made of a translucent resin material for the base material, preferably a silicone resin composition, a modified silicone resin composition, etc. An insulating resin composition having translucency such as an epoxy resin composition, a modified epoxy resin composition, and an acrylic resin composition can be used. A covering member having excellent weather resistance, such as a hybrid resin containing at least one of these resins, can also be used. Furthermore, inorganic materials having excellent light resistance such as glass and silica gel can be used. Further, by molding the resin material, it can be formed into a desired shape, and a desired region can be covered. In the present invention, the surface of the light emitting element of the light source unit and the light transmitting member, particularly the side surface thereof can be covered. In addition, the surface on the light emitting surface side can also have a desired shape, and can be a concave or convex curved surface in addition to a flat surface shape as illustrated. In the first embodiment, a silicone resin is used as a covering member from the viewpoint of heat resistance and weather resistance.

また、被覆部材40,45は、上記基材中に少なくとも1種類の光反射性材料46,47を含有してなる。光反射性材料46,47を含有することで、被覆部材40,45の反射率が高まり、更に好適には低吸収性の粒子を用いると、光吸収、損失が低減され、光散乱性を備えた被覆部材とできる。被覆部材40,45中に含有される光反射性材料46,47は、Ti、Zr、Nb、Al、Siからなる群から選択される1種の酸化物、若しくはAlN、MgFの少なくとも1種であり、具体的にはTiO2、ZrO2、Nb25、Al23、MgF、AlN、SiO2よりなる群から選択される少なくとも1種である。光反射性材料の粒子が、Ti、Zr、Nb、Alからなる群から選択される1種の酸化物であることで、材料の高い反射性及び低吸収性とでき、基材、特に透光性樹脂との屈折率差を高められ、好ましい。また、被覆部材40,45は、上記光反射性材料による成形体でもって構成することもでき、具体的には上記粒子を凝集した凝集体、焼結体、などの多孔質材料とすることもでき、その他に、ゾル・ゲル法による成形体でもよく、上記光反射性材料と多孔質内の空気との屈折率差を大きくし、光反射性を高められるため、また無機材料で構成できるため、好ましい。一方、上記樹脂などの母材を備えた被覆部材と比較すると、所望の形状に成形すること及びその被覆領域の制御性が良く、また封止性能、気密性能を高めること、ができ、本発明では上記母材を備えた被覆部材とする方が好ましい。また、両者の被覆部材の特性を考慮して、両者の複合的な成形体とでき、例えば、多孔質成形体の外表面側に樹脂を含浸させ、発光素子側の内表面側では多孔質とした構造とできる。このように、被覆部材若しくはそれによる包囲体は、内部領域と外部とが連通されたり、気体透過性であったりしてもよく、少なくとも光が漏れ出さない形態であれば良い。 The covering members 40 and 45 contain at least one kind of light reflecting material 46 and 47 in the base material. By including the light reflecting materials 46 and 47, the reflectivity of the covering members 40 and 45 is increased, and more preferably, when low-absorbing particles are used, light absorption and loss are reduced, and light scattering is provided. A covering member can be formed. The light-reflective materials 46 and 47 contained in the covering members 40 and 45 are at least one oxide selected from the group consisting of Ti, Zr, Nb, Al, and Si, or at least one of AlN and MgF. Specifically, it is at least one selected from the group consisting of TiO 2 , ZrO 2 , Nb 2 O 5 , Al 2 O 3 , MgF, AlN, and SiO 2 . Since the light-reflective material particles are one kind of oxide selected from the group consisting of Ti, Zr, Nb, and Al, the material can be made highly reflective and low-absorbent. The difference in refractive index with the functional resin is increased, which is preferable. The covering members 40 and 45 can also be formed of a molded body made of the light reflecting material. Specifically, the covering members 40 and 45 may be made of a porous material such as an aggregate obtained by agglomerating the particles or a sintered body. In addition, a molded body by the sol-gel method may be used, because the difference in refractive index between the light reflective material and the air in the porous layer can be increased, and the light reflectivity can be increased. ,preferable. On the other hand, compared with a covering member provided with a base material such as the resin, it can be molded into a desired shape and controllability of the covering region is good, and sealing performance and airtightness can be improved. Then, it is preferable to use a covering member provided with the base material. Also, considering the characteristics of both covering members, a composite molded body of both can be formed. For example, the outer surface side of the porous molded body is impregnated with resin, and the inner surface side of the light emitting element side is porous. The structure can be made. As described above, the covering member or the surrounding body may be configured such that the inner region communicates with the outside or is gas permeable and at least does not leak light.

上述した母材中に光反射性材料46,47を含有する被覆部材40,45では、その含有濃度、密度により光の漏れ出す深さが異なるため、発光装置形状、大きさに応じて、適宜濃度、密度を調整すると良い。例えば比較的小さな発光装置で肉厚を小さくする場合は、高濃度の光反射性材料46,47を備えることが好ましい。一方で、光反射性材料46,47を含有する被覆部材40,45の原料の調製、その原料の塗布、成形などの製造過程において、それに適したようにその濃度を調整する。上記多孔質体についても同様である。一例として、実施例の場合には、光反射性材料46,47の含有濃度は20重量パーセント濃度(wt%)以上、その肉厚は20μm以上とするのが好適であり、発光面90から高輝度で指向性の高い放出光が得られ、適度な粘性で被覆部材によるアンダーフィルの形成など容易にできる。また、光反射性材料の濃度を高くすれば被覆部材の熱拡散性を高めることができる。   In the covering members 40 and 45 containing the light-reflective materials 46 and 47 in the base material described above, the depth at which light leaks differs depending on the concentration and density of the materials. The density and density should be adjusted. For example, when the wall thickness is reduced with a relatively small light emitting device, it is preferable to provide high-concentration light reflecting materials 46 and 47. On the other hand, the concentration of the covering members 40 and 45 containing the light-reflective materials 46 and 47 is adjusted so as to be suitable for the manufacturing process such as preparation of the covering members 40 and 45, application of the raw materials, and molding. The same applies to the porous body. As an example, in the case of the example, it is preferable that the concentration of the light-reflective materials 46 and 47 is 20 weight percent (wt%) or more, and the thickness is 20 μm or more. Luminous and highly directional emitted light can be obtained, and underfill can be easily formed with a covering member with an appropriate viscosity. Moreover, if the density | concentration of a light reflective material is made high, the thermal diffusibility of a coating | coated member can be improved.

被覆部材の形成領域は、発光素子10における少なくとも側面に被覆部材40を設け、好ましくは光透過部材20の側面も被覆し、更に好ましくは、光透過部材及び発光素子を含む光源部において発光面を露出させてその他を被覆する。これにより、光透過部材の側面から光が漏れ出すのを回避でき、その側面からの比較的強度の大きい、また光変換部材を有する場合は色味差を有する光を抑止して、放射光の指向性を良好にし、輝度ムラ、色ムラを低減できる。また、各部材、素子の側面を被覆して、光取り出し方向側へ制限することで、指向性、輝度を高められる。また、光透過部材20が波長変換材料を含有する場合には、この波長変換材料の発熱が特に著しいため、それを改善できる。光透過部材20の側面が被覆部材45により被覆され、かつ表面21が露出されていれば、その外面形状は特に限定されない。また図8に示すように、複数の発光素子10が1つの光透過部材20に接合される場合には、その発光素子間についても被覆部材40が充填されて、受光面22の離間領域を被覆することが好ましい。接合領域の光変換部材の熱に対し、この構成により上記離間領域の放熱性を高めることができる。   In the formation region of the covering member, the covering member 40 is provided on at least the side surface of the light emitting element 10, preferably also covers the side surface of the light transmitting member 20, and more preferably, the light emitting surface is provided in the light source unit including the light transmitting member and the light emitting element. Expose and coat others. As a result, light can be prevented from leaking from the side surface of the light transmitting member, and if the light converting member has a relatively high intensity from the side surface, light having a color difference can be suppressed, and radiation light can be prevented. The directivity can be improved, and luminance unevenness and color unevenness can be reduced. Moreover, the directivity and the brightness can be improved by covering the side surfaces of the respective members and elements and restricting them to the light extraction direction side. In addition, when the light transmitting member 20 contains a wavelength conversion material, the heat generation of the wavelength conversion material is particularly significant, which can be improved. If the side surface of the light transmitting member 20 is covered with the covering member 45 and the surface 21 is exposed, the outer surface shape is not particularly limited. As shown in FIG. 8, when a plurality of light emitting elements 10 are joined to one light transmitting member 20, a covering member 40 is also filled between the light emitting elements to cover the separated area of the light receiving surface 22. It is preferable to do. With respect to the heat of the light conversion member in the joining region, this configuration can enhance the heat dissipation of the separation region.

(添加部材)
また、被覆部材40,45には、光反射性材料46,47、光変換部材の他、粘度増量剤等を適宜添加することができ、これによって所望の発光色、それら部材若しくは装置表面の色、例えば高コントラスト化の為の黒色など、また所望の指向特性を有する発光装置が得られる。同様に不要な波長をカットするフィルター材として各種着色剤を添加できる。他の部材、また導光部材、封止部材、光透過部材などの光透過性材料も同様である。
(Additive components)
In addition to the light-reflective materials 46 and 47 and the light conversion member, a viscosity extender or the like can be added as appropriate to the covering members 40 and 45, so that the desired light emission color, the color of these members or the device surface can be obtained. For example, a light emitting device having desired directivity characteristics such as black for increasing the contrast can be obtained. Similarly, various colorants can be added as filter materials for cutting unnecessary wavelengths. The same applies to other members, and light transmissive materials such as a light guide member, a sealing member, and a light transmissive member.

(実装基板50)
一方、図1の発光装置100において、上記の発光素子10が実装される基板50は、少なくとも表面が素子の電極と接続される配線55を形成したものが利用でき、また図4(a)に示すように外部接続用の配線(56)などが設けられても良い。基板の材料は、例として窒化アルミニウム(AlN)で構成され、単結晶、多結晶、焼結基板、他の材料としてアルミナ等のセラミック、ガラス、Si等の半金属あるいは金属基板、またそれらの積層体、複合体が使用でき、金属性、セラミックは放熱性が高いため好ましい。なお、基板50は配線が無くてもよく、例えば図3の素子で成長基板側を実装して素子の電極を装置の電極にワイヤー接続する形態、光透過部材に配線を設けて接続する形態でもでもよい。また、図示する発光装置のように、被覆部材40,45が実装基板50の上に設けられる形態の他、実装基板50の外側側面も覆う形態でもよい。また実装基板50は、少なくともその表面が高反射性材料で構成されることが好ましい。図1,2に示すように、発光素子10は、導電性接着材60により配線55上に接着されて外部と電気的に接続される。導電性接着材60は、半田、Agペースト、Auバンプなどが利用できる。
(Mounting board 50)
On the other hand, in the light-emitting device 100 of FIG. 1, the substrate 50 on which the light-emitting element 10 is mounted can use a substrate at least having a wiring 55 connected to the electrode of the element, as shown in FIG. As shown, a wiring (56) for external connection may be provided. The substrate material is, for example, aluminum nitride (AlN), single crystal, polycrystal, sintered substrate, other materials such as ceramics such as alumina, glass, semi-metal or metal substrates such as Si, and laminates thereof. Bodies and composites can be used, and metallic and ceramic materials are preferred because of their high heat dissipation. The substrate 50 may not have wiring. For example, the growth substrate side may be mounted with the element of FIG. 3 and the element electrode may be wire-connected to the electrode of the apparatus, or the light-transmitting member may be wired and connected. But you can. Moreover, the form which covers the outer side surface of the mounting board | substrate 50 other than the form in which the coating | coated members 40 and 45 are provided on the mounting board | substrate 50 like the light-emitting device to show in figure may be sufficient. Further, it is preferable that at least the surface of the mounting substrate 50 is made of a highly reflective material. As shown in FIGS. 1 and 2, the light emitting element 10 is bonded onto the wiring 55 by a conductive adhesive 60 and is electrically connected to the outside. As the conductive adhesive 60, solder, Ag paste, Au bump, or the like can be used.

(枠体)
図1に示す発光装置100は、枠体51,52を有し、これらは被覆部材40,45の保持部材としても機能する。枠体51,52は、セラミックや樹脂などで形成することができる。光反射性の高いアルミナが好ましいが、表面に反射膜を形成すればこれに限らない。樹脂であれば、スクリーン印刷等を用いるほか、成形体を実装基板に接着してもよい。また、被覆部材40,45と同様に光反射性材料を用いるなどして、反射率を高くすると好ましい。また、上記添加部材同様に、枠体を目的に応じて着色してもよい。なお、この枠体は、被覆部材を充填又は成形後に、取り外すこともできる。また、枠体として、積層基板、基材などでキャビティ構造を有する装置基体など、発光素子の実装基板に一体に形成されている形態でもよい。
(Frame)
The light emitting device 100 shown in FIG. 1 has frames 51 and 52, which also function as holding members for the covering members 40 and 45. The frames 51 and 52 can be formed of ceramic or resin. Alumina having high light reflectivity is preferable, but not limited to this as long as a reflective film is formed on the surface. If it is resin, besides using screen printing or the like, the molded body may be bonded to the mounting substrate. Further, it is preferable to increase the reflectance by using a light reflective material as in the case of the covering members 40 and 45. Moreover, you may color a frame according to the objective like the said addition member. In addition, this frame can also be removed after filling or forming the covering member. Further, the frame body may be formed integrally with the mounting substrate of the light emitting element, such as a laminated substrate, an apparatus base having a cavity structure with a base material, and the like.

(発光装置の製造方法)
図1に示される例の発光装置100の製造方法の一例として以下に説明する。まず、実装基板50上または発光素子10に導電性接着材60を形成しフリップチップ実装する。この例では個片化前の基板50上で、1つの発光装置に対応する領域に1個の発光素子10を並べて実装する。次に、発光素子10の周囲に立設された第1の枠体51(発光素子10の出射面(成長基板裏面あるいはLLOで基板除去した場合であれば窒化物半導体露出面)の高さより高い)内に、光透過部材20の側面を被覆するように、ディスペンサ(液体定量吐出装置)等により、被覆部材40を構成する樹脂をポッティングする。滴下された樹脂40は、表面張力によって発光素子10の側面および第1の枠体51の内壁を這い上がり被覆し、発光素子10の出射面より第1の枠体51の上面に向かって高くなる傾斜表面が形成される。次に、第1の枠体51上に光透過部材20を載置する。そして、第1の枠体の周囲に立設された第2の枠体52(第1の枠体より高い)内に、同様に被覆部材45を構成する樹脂をポッティングする。滴下された樹脂45は、表面張力によって光透過部材20の側面および第2の枠体52の内壁を這い上がり被覆し、表面21より第2の枠体52の上面に向かって高くなる傾斜表面が形成される。最後に、樹脂40,45を硬化させた後、所定の位置でダイシングを行い、所望の大きさに切り出して発光装置100を得る。
(Method for manufacturing light emitting device)
An example of a method for manufacturing the light emitting device 100 shown in FIG. 1 will be described below. First, the conductive adhesive 60 is formed on the mounting substrate 50 or the light emitting element 10 and is flip-chip mounted. In this example, one light emitting element 10 is mounted side by side in a region corresponding to one light emitting device on the substrate 50 before separation. Next, the height of the first frame 51 standing up around the light emitting element 10 (the emission surface of the light emitting element 10 (or the nitride semiconductor exposed surface if the substrate is removed by the growth substrate rear surface or LLO)) is higher. ), The resin constituting the covering member 40 is potted by a dispenser (liquid fixed quantity discharge device) or the like so as to cover the side surface of the light transmitting member 20. The dropped resin 40 scoops up and covers the side surface of the light emitting element 10 and the inner wall of the first frame body 51 by surface tension, and becomes higher from the emission surface of the light emitting element 10 toward the upper surface of the first frame body 51. An inclined surface is formed. Next, the light transmission member 20 is placed on the first frame 51. And the resin which comprises the coating | coated member 45 is similarly potted in the 2nd frame 52 (it is higher than a 1st frame) standingly arranged around the 1st frame. The dropped resin 45 scoops and covers the side surface of the light transmission member 20 and the inner wall of the second frame body 52 by surface tension, and has an inclined surface that becomes higher from the surface 21 toward the upper surface of the second frame body 52. It is formed. Finally, after the resins 40 and 45 are cured, dicing is performed at a predetermined position, and the light emitting device 100 is obtained by cutting out to a desired size.

<実施の形態2>
図4は、本発明の実施の形態2に係る発光装置の概略図であり、図4(a)は概略上面図の図4(b)のA−Aにおける概略断面図であり、図4(c)はその光源部周辺の概略断面図である。図4に示す例の発光装置において、上述の実施の形態1と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 2>
4 is a schematic view of a light emitting device according to Embodiment 2 of the present invention, FIG. 4 (a) is a schematic cross-sectional view taken along line AA of FIG. 4 (b), and FIG. c) is a schematic sectional view of the periphery of the light source section. In the light emitting device of the example shown in FIG. 4, the same reference numerals are given to substantially the same configurations as those of the above-described first embodiment, and description thereof will be omitted as appropriate.

図4に示す例の発光装置200は、外部に開口した第2の凹部58内に該第2の凹部より口径の小さい第1の凹部57が設けられたキャビティ構造を有する装置基体59を備え、その第1の凹部57の底部に設けられた配線55上に複数(図中では2個)の発光素子10がフリップ実装されている。第2の凹部58の底部には、互いに対向する表面21(発光面90)と受光面22とを有する1枚の板状の光透過部材20が載置されており、第1の凹部57を閉蓋している。そして、第1の凹部57内に、光反射性材料46を含有する被覆部材40が充填され、発光素子10の基板の裏面を露出させて発光素子10の周部が該被覆部材40に被覆されている。またその第1の凹部57内の被覆部材40は、第1の凹部57の内壁を該第1の凹部57の上面(第2の凹部底面)まで這い上がって形成され、発光素子10の側面から上面まで、素子の外側に、また出射面の前方に延在している。また、図のように光透過部材の受光面22に当接しても良い。そして、その表面に第1の反射面31が設けられている。   The light emitting device 200 of the example shown in FIG. 4 includes a device base 59 having a cavity structure in which a first recess 57 having a smaller diameter than the second recess is provided in a second recess 58 opened to the outside. A plurality of (two in the drawing) light emitting elements 10 are flip-mounted on the wiring 55 provided at the bottom of the first recess 57. A plate-like light transmitting member 20 having a surface 21 (light emitting surface 90) and a light receiving surface 22 facing each other is placed on the bottom of the second recess 58. The lid is closed. The first concave portion 57 is filled with the covering member 40 containing the light reflective material 46, the back surface of the substrate of the light emitting element 10 is exposed, and the peripheral portion of the light emitting element 10 is covered with the covering member 40. ing. The covering member 40 in the first recess 57 is formed by crawling up the inner wall of the first recess 57 to the upper surface (second recess bottom surface) of the first recess 57, and from the side surface of the light emitting element 10. It extends to the top surface, outside the element, and in front of the exit surface. Moreover, you may contact | abut to the light-receiving surface 22 of a light transmissive member like a figure. And the 1st reflective surface 31 is provided in the surface.

この第1の反射面31によって、上述のように、光透過部材の受光面22に対して高角度に入射する光成分を反射、散乱させ、低角度の入射光成分を増やすことができ、光透過部材20への光結合効率を高め、また波長変換部材内の光路長差により発生する色ムラを低減することができる。また本実施の形態2において、第1の反射面31は凸曲面となっており、平面である場合に比して反射面の面積が増え、凹曲面の場合に比べて光透過部材20の中央部への集光作用が強く、低角度の入射光成分を増やしながら、装置正面方向の輝度を高めることができる。   As described above, the first reflecting surface 31 can reflect and scatter light components incident on the light receiving surface 22 of the light transmitting member at a high angle, and increase the incident light components at a low angle. The optical coupling efficiency to the transmissive member 20 can be increased, and color unevenness caused by the optical path length difference in the wavelength conversion member can be reduced. Further, in the second embodiment, the first reflecting surface 31 is a convex curved surface, and the area of the reflecting surface is increased as compared with the case where it is a flat surface, and the center of the light transmitting member 20 is compared with the case where it is a concave curved surface. The effect of condensing light on the part is strong, and the luminance in the front direction of the apparatus can be increased while increasing the incident light component at a low angle.

また図4(c)に示すように、被覆部材40は、隣接する発光素子10の間に位置する離間領域にも充填されている。このように複数の発光素子10を被覆部材40により被覆して、その出射光および第1の反射面31による反射光を光透過部材20に光結合させることで、光束を高めることができる。また光透過部材20の周縁部において、1つの発光素子10から側方つまり他方の発光素子10側に出射される高角度の光成分を第1の反射面31により反射、散乱して光透過部材の受光面22に結合させることができる。したがって、光透過部材の受光面22の面積が大きくなっても、発光素子10からの一次光成分の不足しやすい周縁部の光量を補って、色ムラの発生を低減することができる。さらに、光透過部材20が波長変換部材である場合には、1つの発光素子10から出射される高角度の光成分と、他方の発光素子10から出射される低角度の光成分とを混合することができ、さらに素子間の被覆部材40表面の反射も加わって、すなわち離間領域30内で各発光素子10の光が好適に混合される。それにより、光透過部材の受光面22の幅広い領域で光が重畳し、入射光の角度成分を補填し合って光路長差による色ムラを低減することができ、さらに受光面22から離間領域30に放出される一次光、二次光も同様に離間領域30内で互いに混合される。   Further, as shown in FIG. 4C, the covering member 40 is also filled in a separation region located between the adjacent light emitting elements 10. In this way, by covering the plurality of light emitting elements 10 with the covering member 40 and optically coupling the emitted light and the reflected light from the first reflecting surface 31 to the light transmitting member 20, the luminous flux can be increased. In addition, the light transmitting member 20 reflects and scatters a high-angle light component emitted from one light emitting element 10 to the side, that is, the other light emitting element 10 side, by the first reflecting surface 31 at the peripheral portion of the light transmitting member 20. Can be coupled to the light receiving surface 22. Therefore, even when the area of the light receiving surface 22 of the light transmitting member is increased, the amount of light at the peripheral portion where the primary light component from the light emitting element 10 is likely to be insufficient can be compensated to reduce the occurrence of color unevenness. Further, when the light transmitting member 20 is a wavelength conversion member, a high angle light component emitted from one light emitting element 10 and a low angle light component emitted from the other light emitting element 10 are mixed. In addition, the reflection of the surface of the covering member 40 between the elements is also added, that is, the light of each light emitting element 10 is suitably mixed in the separation region 30. As a result, light is superimposed over a wide area of the light receiving surface 22 of the light transmitting member, the angle component of the incident light can be compensated for, and color unevenness due to the optical path length difference can be reduced. Similarly, the primary light and the secondary light emitted to each other are mixed with each other in the separation region 30.

さらに本実施の形態2では、第2の凹部58に設けられた被覆部材45は、第2の凹部58の内壁を這い上がって形成され、また光透過部材20の側面を露出させ、さらには図のように光透過部材20から離間して、光透過部材20を包囲するように形成されている。第2の反射面32は、この被覆部材45の表面に、光透過部材20の側面に対向するように設けられ、第1の実施形態の第2の反射面32に比べて、比較的広い配光を実現することができる。   Further, in the second embodiment, the covering member 45 provided in the second recess 58 is formed by scooping up the inner wall of the second recess 58, and also exposes the side surface of the light transmission member 20, and further, FIG. In this manner, the light transmitting member 20 is formed so as to be separated from the light transmitting member 20. The second reflecting surface 32 is provided on the surface of the covering member 45 so as to face the side surface of the light transmitting member 20, and has a relatively wide arrangement compared to the second reflecting surface 32 of the first embodiment. Light can be realized.

なお図4(a)および(b)に示すように、光透過部材20および被覆部材45の表面の一部を被覆するように、封止部材70を設けることもできる。このような発光装置では、封止部材70により光透過部材の表面21との界面における屈折率差が緩和されて光透過部材の表面21から光を効率良く取り出すことができる。そのうえ、第1および第2の反射面31,32によって高角度の光成分が低減されているため、色ムラが少なく、また封止部材70の内面に対して全反射角を超える入射角の光成分が低減され、扁形であっても高い透過率が得られるので、高い発光効率を有しながら装置の薄型化を図ることができる。   As shown in FIGS. 4A and 4B, the sealing member 70 can be provided so as to cover part of the surfaces of the light transmitting member 20 and the covering member 45. In such a light emitting device, the refractive index difference at the interface with the surface 21 of the light transmitting member is relaxed by the sealing member 70, and light can be efficiently extracted from the surface 21 of the light transmitting member. In addition, since the light component at a high angle is reduced by the first and second reflecting surfaces 31 and 32, there is little color unevenness, and light having an incident angle exceeding the total reflection angle with respect to the inner surface of the sealing member 70. Since components are reduced and a high transmittance can be obtained even in a flat shape, the device can be thinned while having high luminous efficiency.

(封止部材)
ここで、封止部材70の光取り出し側の表面は目的に応じて種々の形状に形成することができる。例えば図4(a)および(b)に点線で示すように、光取り出し側の表面を球面状(半球面状)のレンズ形状、凸曲面とすることで、光透過部材20の発光に対し効率良く外部に取り出すことができる。また、これに限らず、種々の光学素子、所望形状の光学部材とでき、凹レンズ形状、放物曲面、先端が平坦な凸形状とでき、また凹凸面として光を散乱させてもよい。
(Sealing member)
Here, the surface of the sealing member 70 on the light extraction side can be formed in various shapes according to the purpose. For example, as shown by the dotted lines in FIGS. 4A and 4B, the light extraction side surface has a spherical (hemispherical) lens shape and a convex curved surface, so that the light transmission member 20 can efficiently emit light. It can be taken out well. Further, the present invention is not limited to this, and various optical elements and optical members having a desired shape can be formed. A concave lens shape, a parabolic surface, a convex shape with a flat tip can be formed, and light can be scattered as an uneven surface.

封止部材70は、光透過部材20より屈折率が低いと、その表面と接合して光の取り出し効率を向上させることができる。この封止部材70は、上述の被覆部材40,45の基材と同様に、例えばエポキシ樹脂、シリコーン樹脂、変成シリコーン樹脂、ユリア樹脂、ウレタン樹脂、アクリル樹脂、ポリカーボネイト樹脂、ポリイミド樹脂などの樹脂材料を用いて形成することができる。また封止部材70は、発光素子10や光透過部材20を保護する封止材としての役割も果たすため、耐候性、耐熱性、硬度に優れる材料が好ましく、上記のなかではエポキシ樹脂、又は硬質のシリコーン樹脂が好ましい。このほか、ガラスを用いてもよい。さらに、封止部材70に、上述のような蛍光体、及び/又はTiO2などの光散乱粒子、及び/又は石英ガラス等のフィラーなどを適宜添加することができる。なお封止部材は圧縮成形、トランスファー成形、ポッティングなどにより形成する。 If the refractive index of the sealing member 70 is lower than that of the light transmitting member 20, the sealing member 70 can be bonded to the surface to improve the light extraction efficiency. This sealing member 70 is a resin material such as an epoxy resin, a silicone resin, a modified silicone resin, a urea resin, a urethane resin, an acrylic resin, a polycarbonate resin, a polyimide resin, and the like, similar to the base material of the covering members 40 and 45 described above. Can be used. Moreover, since the sealing member 70 also plays a role as a sealing material for protecting the light emitting element 10 and the light transmitting member 20, a material excellent in weather resistance, heat resistance, and hardness is preferable. Among these, an epoxy resin or a hard material is preferable. The silicone resin is preferred. In addition, glass may be used. Furthermore, the phosphor as described above and / or light scattering particles such as TiO 2 and / or a filler such as quartz glass can be appropriately added to the sealing member 70. The sealing member is formed by compression molding, transfer molding, potting, or the like.

<実施の形態3>
図5は、本発明の実施の形態3に係る発光装置の概略断面図である。図5に示す例の発光装置において、上述の実施の形態1と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 3>
FIG. 5 is a schematic cross-sectional view of a light-emitting device according to Embodiment 3 of the present invention. In the light emitting device of the example shown in FIG. 5, the same reference numerals are given to substantially the same configurations as those of the first embodiment described above, and description thereof will be omitted as appropriate.

図5に示す例の発光装置300は、実装基板50の配線55上に複数(図中では2個)の発光素子10が互いに直列接続されてフリップチップ実装されており、駆動電圧を大きくすることができる。また上述の実施の形態1と同様に、第1の枠体51内に被覆部材40が充填されて、各発光素子10の基板の裏面を露出して各発光素子10の周部が被覆されており、第1の枠体51の内壁を這い上がるように形成されて、その表面に第1の反射面31が設けられている。発光素子10の間の領域においても被覆部材が充填されている。   In the light emitting device 300 of the example shown in FIG. 5, a plurality of (two in the drawing) light emitting elements 10 are connected in series to each other on the wiring 55 of the mounting substrate 50 and flip-chip mounted to increase the driving voltage. Can do. Similarly to the first embodiment described above, the covering member 40 is filled in the first frame 51, the back surface of the substrate of each light emitting element 10 is exposed, and the peripheral portion of each light emitting element 10 is covered. The first frame 51 is formed so as to scoop up the inner wall, and the first reflecting surface 31 is provided on the surface thereof. The covering member is also filled in the region between the light emitting elements 10.

また、第1の枠体51の外側に形成される被覆部材45の表面は、下方(実装基板)側に形成されている。言い換えれば、被覆部材45は、光透過部材20の側面を被覆しながら、外側から光透過部材20の側面に這い上がるように形成されており、光透過部材20から連続する被覆部材45の表面は凹曲面となっている。このような形態は、第1の実施の形態における第2の枠体52に第1の枠体51より低い枠体を用いて被覆部材45を充填、硬化させた後、第2の枠体52を除去することで作製することができる。したがって、この場合、第2の反射面32は光透過部材30の側面と被覆部材45の界面にのみ設けられている。このように被覆部材45の表面が、光透過部材20の外側で、その側方に向かって、その発光面90の後方側に傾斜しており、発光面90から放出される光が遮光されることがなく、高い光束と広い配光を得ることができる。またこの例では光透過部材20が枠体51より側方に突出するような幅を有しており、さらに高い光束と広い配光が得られる。   Further, the surface of the covering member 45 formed outside the first frame 51 is formed on the lower side (mounting substrate) side. In other words, the covering member 45 is formed so as to creep up from the outside to the side surface of the light transmitting member 20 while covering the side surface of the light transmitting member 20, and the surface of the covering member 45 continuous from the light transmitting member 20 is It is a concave curved surface. In such a form, the second frame body 52 in the first embodiment is filled and cured with the covering member 45 using a frame body lower than the first frame body 51, and then the second frame body 52. It can produce by removing. Therefore, in this case, the second reflecting surface 32 is provided only at the interface between the side surface of the light transmitting member 30 and the covering member 45. In this way, the surface of the covering member 45 is inclined to the rear side of the light emitting surface 90 toward the side outside the light transmitting member 20, and the light emitted from the light emitting surface 90 is shielded. In this way, a high luminous flux and a wide light distribution can be obtained. In this example, the light transmitting member 20 has such a width that it protrudes laterally from the frame body 51, so that a higher luminous flux and a wider light distribution can be obtained.

<実施の形態4>
図6は、本発明の実施の形態4に係る発光装置の概略断面図である。図6に示す例の発光装置において、上述の実施の形態1と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 4>
FIG. 6 is a schematic cross-sectional view of a light-emitting device according to Embodiment 4 of the present invention. In the light emitting device of the example shown in FIG. 6, components substantially similar to those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted as appropriate.

図6に示す例の発光装置400において、枠体等を有し凹部が設けられた装置基体(50,51)の凹部内の配線55上に複数(図中では2個)の発光素子10がフリップチップ実装されている。その凹部内側に被覆部材40が充填されており、この被覆部材40は、発光素子10の基板の裏面を各々露出して各発光素子10の周部を被覆し、その凹部内壁を這い上がるように形成されて、素子外側に向かって基板の裏面より前方に延出した形状で、その表面は発光素子10の基板の裏面をその底面に含む凹部を形成している。光透過部材20は、被覆部材40により形成された凹部内に設置されており、その受光面側の周縁部が被覆部材40の表面に当接している。よって、光透過部材20は、被覆部材40による凹部の一部、すなわちその凹部で被覆部材40より窪んだ発光素子領域を閉蓋し、発光素子10と離間されており、発光素子10との離間領域30には空隙が設けられ、該離間領域30における凹部内面に第1の反射面31が設けられている。   In the light emitting device 400 of the example shown in FIG. 6, a plurality (two in the drawing) of light emitting elements 10 are formed on the wiring 55 in the concave portion of the device base body (50, 51) having a frame or the like and provided with the concave portion. Flip chip mounting. The inside of the recess is filled with a covering member 40. The covering member 40 exposes the back surface of the substrate of the light emitting element 10 so as to cover the peripheral portion of each light emitting element 10 and scoop up the inner wall of the recess. The surface is formed and extends forward from the back surface of the substrate toward the outside of the device, and the surface forms a recess including the back surface of the substrate of the light emitting device 10 at the bottom surface. The light transmissive member 20 is installed in a recess formed by the covering member 40, and the peripheral edge portion on the light receiving surface side is in contact with the surface of the covering member 40. Therefore, the light transmitting member 20 closes a part of the concave portion formed by the covering member 40, that is, the light emitting element region recessed from the covering member 40 by the concave portion, and is separated from the light emitting element 10. A space is provided in the region 30, and a first reflecting surface 31 is provided on the inner surface of the recessed portion in the separated region 30.

さらに、光透過部材20の側面を被覆するように、被覆部材45が光透過部材20の周囲に充填されており、光透過部材20を固定すると共に、光透過部材20の側面からの光の放出を防止している。第2の反射面32は、少なくとも被覆部材45と光透過部材20の側面との界面(32a)に設けられ、さらに実施形態2の第1の反射面31と同様に、即から延出した凸曲面の第2の反射面32bも有している。なお、それより外側の被覆部材45の表面は、図のように略平坦であるが、実施形態1のように発光面90より前方に延出させてもよいし、実施形態3のように下垂させてもよい。   Further, a covering member 45 is filled around the light transmitting member 20 so as to cover the side surface of the light transmitting member 20, and the light transmitting member 20 is fixed and light is emitted from the side surface of the light transmitting member 20. Is preventing. The second reflecting surface 32 is provided at least on the interface (32a) between the covering member 45 and the side surface of the light transmissive member 20, and similarly to the first reflecting surface 31 of the second embodiment, the second reflecting surface 32 extends from the instant. It also has a curved second reflecting surface 32b. The outer surface of the covering member 45 is substantially flat as shown in the figure, but may be extended forward from the light emitting surface 90 as in the first embodiment, or may be suspended as in the third embodiment. You may let them.

なお本実施の形態4において、図6に点線で示すように、被覆部材を成形、硬化後に、枠体に加えて、さらに実装基板を除去してもよく、被覆部材自体が発光装置400の基体を成すことになる。またこの場合には、被覆部材からなる基体の裏面に、発光素子10上の各電極に接合した配線55を残して露出させ、外部接続端子として発光素子10に給電可能とする。このような発光装置400は、上述のように、光透過部材20への光結合効率を維持しながら、高い信頼性を有し、色ムラの発生を抑制することができ、そのうえ基体そのものが発光素子10を被覆する被覆部材により構成されているため、装置の薄型化、小型化が図れ、発光装置の汎用性を向上させることができる。   In the fourth embodiment, as shown by a dotted line in FIG. 6, after the covering member is molded and cured, the mounting substrate may be further removed in addition to the frame, and the covering member itself is the base of the light emitting device 400. Will be made. Further, in this case, the wiring 55 bonded to each electrode on the light emitting element 10 is left exposed on the back surface of the substrate made of the covering member so that the light emitting element 10 can be fed as an external connection terminal. As described above, the light emitting device 400 has high reliability while suppressing the optical coupling efficiency to the light transmitting member 20, can suppress the occurrence of color unevenness, and the substrate itself emits light. Since it is comprised by the coating | coated member which coat | covers the element 10, thickness reduction and size reduction of an apparatus can be achieved and the versatility of a light-emitting device can be improved.

このような発光装置は、例えば支持基板上に発光素子を載置して、被覆部材を塗布して成形体とし、予め離型剤等により表面処理するなどして、その支持基板から剥がして、光源部が埋め込まれた被覆部材の成形体を取り出す方法により実現できる。また、光源部の配線構造は、上述したようにその出射領域側表面を支持基板と対向して載置し、発光素子の電極、またその上の導体として、剥離後に成膜、めっき、バンプなどで導電体を形成し、上記被覆部材を形成してもよく、配線側表面を支持基板に対向して載置し、予め発光素子側、支持基板側又はその両方に、上記導電体又は支持基板上の配線層、それらを組み合わせた導電体を設けた後、剥離して配線を支持基板から分離してもよい。   Such a light emitting device, for example, by placing a light emitting element on a support substrate, applying a covering member to form a molded body, and performing surface treatment with a release agent or the like in advance, is peeled off from the support substrate, This can be realized by a method of taking out the molded body of the covering member in which the light source part is embedded. In addition, the wiring structure of the light source part is mounted with the surface of the emission region facing the support substrate as described above, and as a light emitting element electrode and a conductor thereon, film formation, plating, bump, etc. after peeling The conductor may be formed by forming the above-mentioned covering member, the wiring side surface is placed facing the support substrate, and the conductor or support substrate is previously placed on the light emitting element side, the support substrate side or both. After providing the upper wiring layer and a conductor combining them, the wiring may be separated from the support substrate by peeling.

<実施の形態5>
図7は、本発明の実施の形態5に係る発光装置を説明するための概略断面図である。図7に示す例の発光装置において、上述の実施の形態1と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 5>
FIG. 7 is a schematic cross-sectional view for explaining the light emitting device according to Embodiment 5 of the present invention. In the light emitting device of the example shown in FIG. 7, the same reference numerals are given to substantially the same configurations as those of the above-described first embodiment, and description thereof will be omitted as appropriate.

図7に示す例の発光装置は、上述の実施の形態4と同様に、実装基板の枠体内の配線55上に1個の発光素子10がフリップチップ実装されており、被覆部材40は、発光素子10の周部を被覆して発光素子10の基板の裏面をその底面に含む凹部をその表面に形成している。光透過部材20は、この被覆部材40により形成された凹部の表面にその受光面22側の周縁部を当接させて載置している。よって、光透過部材20は、被覆部材40による凹部の一部を閉蓋し、発光素子10とは離間されており、発光素子10との離間領域30における被覆部材40の凹部内面に第1の反射面が設けられている。ここで、発光素子10と光透過部材30との離間領域30は、上述のように空隙としてもよく、その変形例として後述する実施形態7のように、被覆部材40による凹部内に透光性部材(35)を設けて、光透過部材20をその透光性部材(35)上に接合してもよい。これにより、発光素子10の基板の裏面との界面、並びに光透過部材の受光面22との界面における屈折率差が緩和されて、光透過部材20への光結合効率を高めることができる。   In the light emitting device of the example shown in FIG. 7, as in the above-described fourth embodiment, one light emitting element 10 is flip-chip mounted on the wiring 55 in the frame of the mounting substrate, and the covering member 40 emits light. A recess that covers the periphery of the element 10 and includes the back surface of the substrate of the light emitting element 10 on the bottom surface is formed on the surface. The light transmitting member 20 is placed with the peripheral portion on the light receiving surface 22 side in contact with the surface of the recess formed by the covering member 40. Therefore, the light transmitting member 20 closes a part of the concave portion formed by the covering member 40 and is separated from the light emitting element 10, and the first inner surface of the concave portion of the covering member 40 in the separation region 30 from the light emitting element 10 is provided. A reflective surface is provided. Here, the separation region 30 between the light emitting element 10 and the light transmissive member 30 may be a gap as described above, and as a modified example thereof, as in a seventh embodiment to be described later, the light transmissive property is formed in the concave portion by the covering member 40. A member (35) may be provided, and the light transmitting member 20 may be bonded onto the light transmitting member (35). Thereby, the refractive index difference in the interface with the back surface of the substrate of the light emitting element 10 and the interface with the light receiving surface 22 of the light transmitting member is relaxed, and the optical coupling efficiency to the light transmitting member 20 can be increased.

また図7に示す例の発光装置では、互いに対向する上面および底面を有する別の透光性部材71を、底面側を接合面として光透過部材20の上に接合して、その透光性部材71の側面および光透過部材20の側面を被覆部材45により被覆している。これにより、この発光装置は、透光性部材71の上面を主たる光取り出しの窓部とする面発光型の発光装置となっている。   Further, in the light emitting device of the example shown in FIG. 7, another translucent member 71 having a top surface and a bottom surface facing each other is joined on the light transmissive member 20 with the bottom surface side as a joint surface, and the translucent member. The side surface of 71 and the side surface of the light transmitting member 20 are covered with a covering member 45. Thus, this light emitting device is a surface light emitting type light emitting device in which the upper surface of the translucent member 71 is the main light extraction window.

(透光性部材)
このような透光性部材71は、透光性を有して、発光素子10の出射光を光取り出し側へ導光でき、双方の部材を光学的に結合できる材質が好ましい。光透過部材、実施の形態2の封止部材70と同様の材料により、具体的には透明樹脂、ガラスにより構成することができ、例えば光透過部材20の形状に合わせた底面及び上面が四角形の錐体形状の透明樹脂を成形、加工して作製する。さらに具体的な材料としては、シリコーン樹脂やエポキシ樹脂など透光性の熱硬化性樹脂がよく、シリコーン樹脂は耐熱性、耐光性に優れるため好ましい。また、シリコーン樹脂を使用すれば、上記フッ素系離型剤の効果が高いため好ましい。さらに、ジメチル系シリコーン樹脂であれば高温耐性など信頼性において優れ、フェニル系シリコーン樹脂であれば屈折率を高くして発光素子10からの光の取り出し効率を高めることができる。また後述の実施の形態7のように、発光素子10と光透過部材20との間に介在して双方の部材を固着する接着剤35として用いることもできる。
(Translucent member)
Such a translucent member 71 is preferably made of a material having translucency so that the emitted light of the light emitting element 10 can be guided to the light extraction side and both the members can be optically coupled. The light transmissive member can be made of the same material as the sealing member 70 of the second embodiment, specifically, a transparent resin or glass. For example, the bottom surface and the top surface of the light transmissive member 20 have a rectangular shape. A cone-shaped transparent resin is formed and processed. Further, as a specific material, a light-transmitting thermosetting resin such as a silicone resin or an epoxy resin is preferable, and a silicone resin is preferable because it is excellent in heat resistance and light resistance. In addition, it is preferable to use a silicone resin because the effect of the fluorine-based mold release agent is high. Furthermore, if it is a dimethyl-type silicone resin, it is excellent in reliability, such as high temperature tolerance, and if it is a phenyl-type silicone resin, the refractive index can be made high and the extraction efficiency of the light from the light emitting element 10 can be improved. Further, as in the seventh embodiment described later, it can be used as an adhesive 35 that is interposed between the light emitting element 10 and the light transmitting member 20 and fixes both members.

第2の反射面は、透光性部材71の側面および光透過部材20の側面と被覆部材45との界面に連続して設けられている。また底面の大きさは、光透過部材の発光面90の大きさと略同じであり、上面は底面より小さくなっており、透光性部材71の側面は上方に先細る傾斜面となっている。したがって、透光性部材71の側面との界面に設けられる第2の反射面は、内側に向かって傾斜しており、光透過部材の発光面90から上方に出射される光を中央に向かって集光するように反射させることができ、高輝度の発光が得ることができ、また一次光と二次光の混色が促進され色ムラが低減される。   The second reflecting surface is continuously provided on the side surface of the translucent member 71 and the interface between the side surface of the light transmitting member 20 and the covering member 45. Further, the size of the bottom surface is substantially the same as the size of the light emitting surface 90 of the light transmitting member, the top surface is smaller than the bottom surface, and the side surface of the light transmitting member 71 is an inclined surface that tapers upward. Accordingly, the second reflecting surface provided at the interface with the side surface of the translucent member 71 is inclined inward, and the light emitted upward from the light emitting surface 90 of the light transmitting member is directed toward the center. The light can be reflected so as to be condensed, light emission with high luminance can be obtained, and the color mixture of the primary light and the secondary light is promoted to reduce color unevenness.

なお、図7に示す例の発光装置において、光透過部材の表面23は凹凸面23Aとなっており、該凹凸面23Aにより光を散乱させて、光の取り出し効率を高めながら輝度ムラを低減し、また一次光と二次光の重畳が促進され色ムラの発生を低減して、略均一な配光を得ることができる。このような凹凸面23Aは、研磨、ドライエッチング、ウエットエッチングなどの処理により形成でき、不規則な凹凸構造のほか、規則的なパターンの凹凸構造も形成できる。また、このような凹凸構造23Aは、光透過部材の表面23だけでなく、受光面22、さらに光路上にある各部材の表面に設けて同様な効果を得ることができ、例えば発光素子10の基板の半導体素子構造側の表面に設けてもよく、実施の形態1では詳述していないが、図2(図中の1A)に示すような構造としてもよい。   In the light emitting device of the example shown in FIG. 7, the surface 23 of the light transmitting member is an uneven surface 23A, and light is scattered by the uneven surface 23A to reduce luminance unevenness while improving the light extraction efficiency. In addition, the superimposition of the primary light and the secondary light is promoted to reduce the occurrence of color unevenness, and a substantially uniform light distribution can be obtained. Such a concavo-convex surface 23A can be formed by a process such as polishing, dry etching, wet etching, etc., and an irregular concavo-convex structure can be formed in addition to an irregular concavo-convex structure. Further, such a concavo-convex structure 23A can be provided not only on the surface 23 of the light transmitting member but also on the light receiving surface 22 and further on the surface of each member on the optical path. It may be provided on the surface of the substrate on the semiconductor element structure side, and although not described in detail in Embodiment 1, a structure as shown in FIG. 2 (1A in the drawing) may be used.

<実施の形態6>
図8は、本発明の実施の形態6に係る発光装置を説明するための概略断面図である。図8に示す例の発光装置において、上述の実施の形態1,3と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 6>
FIG. 8 is a schematic cross-sectional view for explaining the light emitting device according to Embodiment 6 of the present invention. In the light emitting device of the example shown in FIG. 8, the same reference numerals are given to the substantially same configurations as those of the first and third embodiments, and the description will be omitted as appropriate.

図8に示す例の発光装置500は、上述の実施の形態5と同様に、実装基板50の枠体内の配線55上に2個の発光素子10がフリップチップ実装されており、被覆部材40は、発光素子10の側面などの周部と、その発光素子10の基板に接合した光透過部材20の側面を被覆している。光透過部材20は、透光性の接着剤を介して(不図示)発光素子10に接着し、また、発光素子10の外側の側面より内側に、その端部が設けられ、すなわち、発光素子、複数の発光素子の領域に内包されている。よって、光源部は上述した離間領域30を実質的に有さずに素子10と接合されたものとなっている。その光源付近の第2の反射面32bは、実施形態1と同様に、光源部の光透過部材20の側方の外側で、被覆部材40がその発光面90より前方に延出して、延出部が設けられ、その内側表面に設けられる。尚、枠体は実施形態3と同様に被覆部材40の成形後に除去している。図示するように、被覆部材40は、光源部を底部として、凹部を形成しており、その凹部内壁に当たる第2の反射面32bでもって、実施形態1と同様に、光源部からの光、特に発光面90からの高角度成分を好適に反射して、高角度成分を光軸側に集光して、放射角の狭い高指向性の発光とできる。また波長変換部材を用いた場合の色ムラ、特に高角度側のそれを被覆部材40の乱反射により、好適に改善できる。また、実施の形態1に比して、光源部内で発光素子10と光透過部材20が接合されているため、高出力化、高輝度化が望める。   In the light emitting device 500 of the example shown in FIG. 8, the two light emitting elements 10 are flip-chip mounted on the wiring 55 in the frame of the mounting substrate 50 as in the above-described fifth embodiment, and the covering member 40 is The peripheral portion such as the side surface of the light emitting element 10 and the side surface of the light transmitting member 20 bonded to the substrate of the light emitting element 10 are covered. The light transmitting member 20 is bonded to the light emitting element 10 via a light transmitting adhesive (not shown), and its end is provided on the inner side of the outer side surface of the light emitting element 10, that is, the light emitting element. And are included in the region of the plurality of light emitting elements. Therefore, the light source unit is joined to the element 10 without substantially having the above-described separation region 30. The second reflecting surface 32b in the vicinity of the light source extends from the light emitting surface 90 in front of the light emitting surface 90 on the outer side of the light transmitting member 20 of the light source unit, as in the first embodiment. Part is provided and provided on the inner surface thereof. The frame is removed after the covering member 40 is formed, as in the third embodiment. As shown in the figure, the covering member 40 forms a recess with the light source portion as the bottom, and with the second reflecting surface 32b that hits the inner wall of the recess, the light from the light source portion, particularly the embodiment 1, The high angle component from the light emitting surface 90 is suitably reflected, and the high angle component is condensed on the optical axis side, so that the light can be emitted with high directivity with a narrow emission angle. Further, the color unevenness when using the wavelength conversion member, particularly on the high angle side, can be preferably improved by the irregular reflection of the covering member 40. Compared with Embodiment 1, since the light emitting element 10 and the light transmission member 20 are joined in the light source unit, higher output and higher luminance can be expected.

上述したように、被覆部材40表面、本実施形態の凹部に、封止部材70で封止して、図9のように、例えば延出部上端と略一致する略平坦な表面(第2の発光面91)として、その封止領域を透光性部材領域として、上記離間領域30と同様に好適な光の重畳により所望の発光特性を得ることもできる。また、その凹部の凹曲面を利用して、その上に、それに適合する光学レンズ、例えばコリメートレンズや、光学部材を成形して、所望の指向性とでき、また光ファイバを、光源部をコア領域に、クラッド領域を被覆部材に対応して、接合させることもできる。   As described above, the surface of the covering member 40, the concave portion of the present embodiment, is sealed with the sealing member 70, and, for example, as shown in FIG. As the light emitting surface 91), the sealing region can be used as a translucent member region, and desired light emission characteristics can be obtained by superimposing suitable light in the same manner as the separation region 30. In addition, by using the concave curved surface of the concave portion, an optical lens suitable for it, for example, a collimating lens or an optical member can be molded to obtain a desired directivity. The clad region can be bonded to the region corresponding to the covering member.

<実施の形態7>
図9は、本発明の実施の形態7に係る発光装置を説明するための概略断面図である。図9に示す例の発光装置において、上述の実施の形態5と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 7>
FIG. 9 is a schematic cross-sectional view for explaining the light-emitting device according to Embodiment 7 of the present invention. In the light emitting device of the example shown in FIG. 9, the substantially same configuration as that of the above-described fifth embodiment is denoted by the same reference numeral, and description thereof is omitted as appropriate.

本実施の形態において、実施の形態6と同様に光源部を形成し、実施の形態5と同様に光透過部材20の上に、透光性部材71を設けて、その表面を第2の発光面91としており、被覆部材40はその側面を覆って、延出部を形成し、その内壁側、すなわち透光性部材71との界面に第2の反射面32bを形成している。光源部内の発光素子10と光透過部材20は、実施の形態6同様に発光素子10の側面が光透過部材20より突出して、光透過部材20が素子10、その基板の出射面内に内包された構造となっている。さらに、その光源、すなわち光透過部材20上に接合された透光性部材71も同様に、光透過部材20より幅狭で、その発光面90に内包され、また実施の形態5と同様にその幅は第2の発光面91側より発光面90側が幅広となる構造である。このように、発光素子10から第2の発光面91に向かって、各部材が順次、小さくなる構造とすることで、上記実施の形態6における第2の発光面側91への集光効果を高めることができる。   In the present embodiment, a light source part is formed in the same manner as in the sixth embodiment, and a light transmissive member 71 is provided on the light transmissive member 20 in the same manner as in the fifth embodiment, and the surface thereof is subjected to the second light emission. The covering member 40 covers the side surface of the covering member 40 to form an extending portion, and the second reflecting surface 32b is formed on the inner wall side thereof, that is, on the interface with the translucent member 71. As in the sixth embodiment, the light emitting element 10 and the light transmitting member 20 in the light source section have the side surfaces of the light emitting element 10 projecting from the light transmitting member 20, and the light transmitting member 20 is included in the output surface of the element 10 and its substrate. It has a structure. Further, the light source, that is, the translucent member 71 bonded onto the light transmissive member 20 is similarly narrower than the light transmissive member 20 and is included in the light emitting surface 90, and the light source is similar to the fifth embodiment. The width is such that the light emitting surface 90 side is wider than the second light emitting surface 91 side. As described above, the structure in which the respective members are sequentially reduced from the light emitting element 10 toward the second light emitting surface 91 allows the condensing effect to the second light emitting surface side 91 in the sixth embodiment. Can be increased.

この変形例として、それとは逆に、放出口となる透光性部材71表面(第2の発光面91)の幅、延出部の開口幅を、発光面90側より幅広とすることができる。この場合、開口した構造であるため、光取り出し効率を高められ、また、光源サイズの大型化が可能となる。   As a modification, on the contrary, the width of the surface of the translucent member 71 (second light emitting surface 91) serving as an emission port and the opening width of the extending portion can be wider than the light emitting surface 90 side. . In this case, since it is an open structure, the light extraction efficiency can be increased, and the size of the light source can be increased.

このように、透光性部材71を有する場合には、上述した離間領域30と同様に、その部材内への光の閉じ込めによる、光の重畳効果が得られ、輝度ムラ、色ムラを好適に抑制できる。さらに、透光性部材71中にフィラーなどの拡散粒子、光反射材料を混入することで、さらにそれを改善でき、その場合、被覆部材40より、その光反射材料の濃度を小さくすると良い。一方で、例えば、被覆部材40の成形後に、第2の反射面32bの傾斜が小さければ、透光性部材71を抜き取ることができ、これにより、延出部で包囲された内部を実施の形態1〜4同様に外気とできる。このように、延出部、その表面の第2の反射面32bで囲まれただけの領域としても、その延出部の開口幅に応じて、上記集光、散乱効果を得ることができ、透光性部材71を用いる場合に比して、その包囲領域への光閉じ込めが小さくなるため、高光束化が可能となる。   As described above, when the translucent member 71 is provided, similarly to the above-described separation region 30, a light superimposing effect can be obtained by confining light in the member, and uneven luminance and uneven color can be suitably obtained. Can be suppressed. Furthermore, it can be further improved by mixing diffusing particles such as a filler and a light reflecting material in the translucent member 71. In this case, the concentration of the light reflecting material is preferably smaller than that of the covering member 40. On the other hand, for example, if the inclination of the second reflecting surface 32b is small after the covering member 40 is formed, the translucent member 71 can be extracted, and thereby the inside surrounded by the extending portion is described in the embodiment. It can be outside air like 1-4. In this way, the extension part, even as a region only surrounded by the second reflection surface 32b on the surface, according to the opening width of the extension part, it is possible to obtain the light collection and scattering effect, Compared with the case where the translucent member 71 is used, light confinement in the surrounding region is reduced, so that a high luminous flux can be achieved.

また、光透過部材20が波長変換部材である場合、その厚さ並びに含有する蛍光体の粒径や濃度などが、装置出射光の色度に及ぼす影響は大きい。そのため、光透過部材20のみにより装置出射光を制御するよりも、光透過部材20の厚さや形状により装置出射光の色度や光束を制御し、別途光透過部材20に接合させた封止部材70や透光性部材71あるいは上記のような包囲領域により装置出射光の配光を制御するといった、各部材・領域に機能、役割を分担させることで、装置出射光を好適に制御することが可能となる。さらに、このような封止部材70や透光性部材71が光透過部材20を含む光源部とともに被覆部材により包囲又は被覆されること、あるいは上記のような被覆部材による包囲領域が形成されること、によって、比較的簡便に、光透過部材20から光を該部材・領域に効率良く光結合できるとともに、該部材・領域による光の制御機能を高めることができる。   Further, when the light transmitting member 20 is a wavelength conversion member, the thickness and the particle size or concentration of the phosphor contained therein have a great influence on the chromaticity of the light emitted from the apparatus. Therefore, rather than controlling the light emitted from the apparatus only by the light transmissive member 20, the sealing member that controls the chromaticity and light flux of the light emitted from the apparatus by the thickness and shape of the light transmissive member 20 and is joined to the light transmissive member 20 separately. It is possible to control the light emitted from the apparatus suitably by assigning the function and role to each member / region, such as controlling the light distribution of the light emitted from the apparatus by 70, the translucent member 71 or the surrounding area as described above. It becomes possible. Furthermore, such a sealing member 70 and the translucent member 71 are surrounded or covered by a covering member together with the light source part including the light transmitting member 20, or an enclosing region by the covering member as described above is formed. Thus, light can be efficiently coupled to the member / region from the light transmitting member 20 in a relatively simple manner, and the light control function by the member / region can be enhanced.

<実施例1>
以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。
<Example 1>
Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

実施例1の発光装置は、図1に示すように、AlNのセラミックス基板50の配線55上に、発光素子10として約1mm×1mmの略正方形のLEDチップ(サファイア基板上に窒化物半導体が積層された構造で発光波長455nm、厚さ約90μm)が1個フリップチップ実装されている。セラミックス基板50上には、LEDチップ10を包囲する高さ約150μmの第1の枠体51が設けられている。その第1の枠体51の内側には、粒径約270nmのTiO2の微粒子である光反射性材料46を約23重量パーセント濃度で含有するシリコーン樹脂の被覆部材40が充填されており、LEDチップ10のサファイア基板の裏面が露出される状態に、LEDチップ10が被覆部材40でもって被覆されている。また被覆部材40はLEDチップ10から第1の枠体51の内壁を該枠体51の上面まで緩やかに這い上がって、凹曲面からなる第1の反射面31がその表面に形成されている。そして、第1の枠体51上には、板状の光透過部材20としてYAGの蛍光体とアルミナ(Al23)との焼結体である蛍光体板(この表面21及び受光面22の外形は約7.4mm×3.3mmの略矩形状であり、厚さは約120μm)が1枚載置されており、第1の枠体51を閉蓋している。この蛍光体板20は、第1の枠体51の内壁を這い上がった被覆部材40に当接しており、LEDチップ10と蛍光体板20との離間領域30には空隙が設けられている。さらに、セラミック基板50上には第1の枠体51を包囲するように該第1の枠体51より背の高い第2の枠体55が設けられている。この第2の枠体55の内側には、上記と同様の被覆部材45が充填されており、該被覆部材45は、蛍光体板20の表面21を発光面90として露出し蛍光体板20の側面を被覆して、また第2の枠体52の内壁を該枠体52の上面近傍まで緩やかに這い上がっている。これにより、被覆部材45と蛍光体板20の側面との界面およびその上方に延出した凹曲面からなる第2の反射面32が、その被覆部材45の表面に形成されている。 As shown in FIG. 1, the light emitting device of Example 1 has a substantially square LED chip of about 1 mm × 1 mm as a light emitting element 10 on a wiring 55 of an AlN ceramic substrate 50 (a nitride semiconductor is laminated on a sapphire substrate). In this structure, one light emitting wavelength of 455 nm and a thickness of about 90 μm is flip-chip mounted. A first frame 51 having a height of about 150 μm is provided on the ceramic substrate 50 to surround the LED chip 10. The inside of the first frame 51 is filled with a silicone resin coating member 40 containing a light-reflective material 46, which is a fine particle of TiO 2 having a particle size of about 270 nm, at a concentration of about 23 weight percent. The LED chip 10 is covered with the covering member 40 so that the back surface of the sapphire substrate of the chip 10 is exposed. Further, the covering member 40 gently crawls up from the LED chip 10 to the inner wall of the first frame 51 to the upper surface of the frame 51, and a first reflecting surface 31 having a concave curved surface is formed on the surface. On the first frame 51, a phosphor plate (this surface 21 and light receiving surface 22) that is a sintered body of YAG phosphor and alumina (Al 2 O 3 ) as the plate-like light transmitting member 20. The outer shape is a substantially rectangular shape of about 7.4 mm × 3.3 mm and the thickness is about 120 μm), and the first frame 51 is closed. The phosphor plate 20 is in contact with the covering member 40 scooping up the inner wall of the first frame 51, and a gap 30 is provided in the separation region 30 between the LED chip 10 and the phosphor plate 20. Further, a second frame body 55 that is taller than the first frame body 51 is provided on the ceramic substrate 50 so as to surround the first frame body 51. The inside of the second frame 55 is filled with a covering member 45 similar to the above, and the covering member 45 exposes the surface 21 of the phosphor plate 20 as the light emitting surface 90 and The side walls are covered and the inner wall of the second frame 52 is gently crawled up to the vicinity of the upper surface of the frame 52. As a result, the second reflecting surface 32 is formed on the surface of the covering member 45, which is composed of an interface between the covering member 45 and the side surface of the phosphor plate 20 and a concave curved surface extending upward.

以上により、実施例1では、実施の形態1とほぼ同様の効果を奏する発光装置を提供することができる。   As described above, Example 1 can provide a light-emitting device that exhibits substantially the same effect as that of Embodiment 1.

本発明の発光装置は、照明用光源、LEDディスプレイ、液晶表示装置などのバックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用することができる。   The light-emitting device of the present invention can be suitably used for backlight sources such as illumination light sources, LED displays, liquid crystal display devices, traffic lights, illumination switches, various sensors, various indicators, and the like.

10…発光素子(1…成長基板、2…第1導電型(n型)半導体層、3…活性層、4…第2導電型(p型)半導体層、5…透光性導電層、6…第2の電極(p側パッド電極)、7…第1の電極(n側パッド電極)、8…保護膜、11…素子構造)
20…光透過部材(21,23…表面、22…受光面、23A…凹凸面・凹凸構造)
30…離間領域・空隙
31…第1の反射面
32…第2の反射面
40(第1),45(第2)…被覆部材(46(第1),47(第2)…光反射性材料)
50…実装基板(51,52…枠体、55、56…配線、57、58…凹部、59…装置基体)
60…導電性接着材
70…封止部材
71…透光性部材
90…発光面
91…第2の発光面
DESCRIPTION OF SYMBOLS 10 ... Light emitting element (1 ... Growth substrate, 2 ... 1st conductivity type (n-type) semiconductor layer, 3 ... Active layer, 4 ... 2nd conductivity type (p-type) semiconductor layer, 5 ... Translucent conductive layer, 6 ... 2nd electrode (p-side pad electrode), 7 ... 1st electrode (n-side pad electrode), 8 ... Protective film, 11 ... Element structure)
20 ... light transmission member (21, 23 ... surface, 22 ... light receiving surface, 23A ... concave / concave structure)
30 ... separation region / gap 31 ... first reflecting surface 32 ... second reflecting surface 40 (first), 45 (second) ... covering member (46 (first), 47 (second) ... light reflectivity material)
50 ... Mounting substrate (51, 52 ... Frame, 55, 56 ... Wiring, 57, 58 ... Recess, 59 ... Device base)
60 ... conductive adhesive 70 ... sealing member 71 ... translucent member 90 ... light emitting surface 91 ... second light emitting surface

Claims (12)

半導体素子構造を有する発光素子と、
光反射性材料を含有し、前記発光素子の出射面を露出して、該側面を被覆する被覆部材と、
前記発光素子から離間され、互いに対向する発光面と、前記発光素子の出射表面からの光を受光する受光面と、を有する光透過部材と、を備え、
前記被覆部材は、前記発光素子と前記光透過部材の離間領域において、前記発光素子の側面より前記光透過部材まで延在して、該延在部が前記離間領域を囲み、該離間領域側表面に第1の反射面を有する発光装置。
A light emitting device having a semiconductor device structure;
A coating member containing a light reflective material, exposing an emission surface of the light emitting element, and covering the side surface;
A light-transmitting member having a light-emitting surface spaced from the light-emitting element and facing each other, and a light-receiving surface that receives light from an emission surface of the light-emitting element,
The covering member extends from a side surface of the light emitting element to the light transmitting member in a separation region of the light emitting element and the light transmission member, and the extending portion surrounds the separation region, and the surface of the separation region side A light emitting device having a first reflecting surface.
前記離間領域は空隙であって、前記第1の反射面は、前記被覆部材と空隙との界面に設けられる請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the separation region is a gap, and the first reflecting surface is provided at an interface between the covering member and the gap. 前記第1の反射面は、凹面である請求項1又は2に記載の発光装置。   The light emitting device according to claim 1, wherein the first reflecting surface is a concave surface. 前記第1の反射面は、凸曲面を有する請求項1又は2に記載の発光装置。   The light emitting device according to claim 1, wherein the first reflecting surface has a convex curved surface. 前記被覆部材は、前記光透過部材の側面を包囲する第2の反射面をその表面に有する請求項1乃至4のいずれか1項に記載の発光装置。   5. The light emitting device according to claim 1, wherein the covering member has a second reflecting surface on a surface thereof surrounding a side surface of the light transmitting member. 前記被覆部材は、前記光透過部材の側面を被覆し、
前記第2の反射面は、前記被覆部材と前記光透過部材の側面との界面に設けられる請求項5に記載の発光装置。
The covering member covers a side surface of the light transmitting member;
The light emitting device according to claim 5, wherein the second reflecting surface is provided at an interface between the covering member and a side surface of the light transmitting member.
前記第2の反射面は、前記光透過部材の発光面より前方に延出した被覆部材の延出部の表面に設けられている請求項5又は6に記載の発光装置。   The light emitting device according to claim 5, wherein the second reflecting surface is provided on a surface of an extending portion of the covering member that extends forward from the light emitting surface of the light transmitting member. 前記延出部は、該開口幅が前記発光面側より狭く、該延出部の前記第2の反射面が発光面に対面するように傾斜して、該発光面の前方を一部覆っている請求項7に記載の発光装置。 The extension part is inclined so that the opening width is narrower than the light emitting surface side, and the second reflecting surface of the extension part faces the light emitting surface, and partially covers the front of the light emitting surface. The light emitting device according to claim 7 . 前記延出部は、該開口幅が前記発光面側より広く、該延出部の前記第2の反射面が発光面より側方の外側に設けられている請求項7に記載の発光装置。 8. The light emitting device according to claim 7, wherein the extension portion has an opening width wider than the light emitting surface side, and the second reflecting surface of the extension portion is provided outside the side of the light emitting surface. 前記光透過部材の発光面に接合し、該接合側に対向する表面の第2の発光面を備えた透光性部材を有し、
前記延出部は、前記透光性部材の側面を被覆しており、該側面に前記第2の反射面が設けられている請求項9又は10に記載の発光装置。
A light-transmitting member that is bonded to the light-emitting surface of the light-transmitting member and includes a second light-emitting surface on the surface facing the bonding side;
The light emitting device according to claim 9 or 10, wherein the extending portion covers a side surface of the translucent member, and the second reflecting surface is provided on the side surface.
前記光透過部材は、前記発光素子に励起される波長変換部材である請求項1乃至10のいずれか1項に記載の発光装置。 The light transmitting member, the light emitting device according to any one of claims 1 to 10 wherein the wavelength conversion member is excited to the light emitting element. 前記波長変換部材は板状体である請求項11に記載の発光装置。 The light emitting device according to claim 11 , wherein the wavelength conversion member is a plate-like body.
JP2009137460A 2009-06-08 2009-06-08 Light emitting device Active JP5326837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137460A JP5326837B2 (en) 2009-06-08 2009-06-08 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137460A JP5326837B2 (en) 2009-06-08 2009-06-08 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013116992A Division JP5610036B2 (en) 2013-06-03 2013-06-03 Light emitting device

Publications (2)

Publication Number Publication Date
JP2010283281A JP2010283281A (en) 2010-12-16
JP5326837B2 true JP5326837B2 (en) 2013-10-30

Family

ID=43539743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137460A Active JP5326837B2 (en) 2009-06-08 2009-06-08 Light emitting device

Country Status (1)

Country Link
JP (1) JP5326837B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198548A1 (en) * 2016-05-20 2017-11-23 Osram Opto Semiconductors Gmbh Radiation-emitting component
WO2019234185A1 (en) * 2018-06-07 2019-12-12 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120217862A1 (en) * 2010-12-24 2012-08-30 Panasonic Corporation Light bulb shaped lamp and lighting apparatus
CN202721174U (en) 2010-12-27 2013-02-06 松下电器产业株式会社 Light emitting device, and lamp
JP4926303B1 (en) * 2010-12-27 2012-05-09 パナソニック株式会社 Light emitting device and lamp
KR101798884B1 (en) * 2011-05-18 2017-11-17 삼성전자주식회사 Light emitting device assembly and head light including the same
JP2013012559A (en) * 2011-06-29 2013-01-17 Nichia Chem Ind Ltd Manufacturing method of light emitting element
JP2013077798A (en) * 2011-09-14 2013-04-25 Toyoda Gosei Co Ltd Glass sealing led lamp and manufacturing method of the same
JP5965800B2 (en) * 2011-09-30 2016-08-10 市光工業株式会社 Manufacturing method of semiconductor light source for vehicular lamp
JP2013110199A (en) * 2011-11-18 2013-06-06 Citizen Electronics Co Ltd Led light-emitting device
JPWO2014081042A1 (en) * 2012-11-26 2017-01-05 シチズン電子株式会社 Light emitting device
JP6056117B2 (en) * 2012-12-06 2017-01-11 スタンレー電気株式会社 Light emitting device and vehicle lamp
JP6146735B2 (en) * 2013-03-27 2017-06-14 スタンレー電気株式会社 Semiconductor light emitting device
US9287472B2 (en) 2013-06-27 2016-03-15 Nichia Corporation Light emitting device and method of manufacturing the same
JP6523597B2 (en) 2013-09-30 2019-06-05 日亜化学工業株式会社 Light emitting device
JP6253949B2 (en) * 2013-10-25 2017-12-27 シチズン電子株式会社 LED light emitting device
JP6244906B2 (en) 2013-12-27 2017-12-13 日亜化学工業株式会社 Semiconductor light emitting device
JP6477001B2 (en) 2014-03-14 2019-03-06 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6582382B2 (en) * 2014-09-26 2019-10-02 日亜化学工業株式会社 Method for manufacturing light emitting device
JP6940784B2 (en) * 2014-09-26 2021-09-29 日亜化学工業株式会社 Manufacturing method of light emitting device
JP6424738B2 (en) * 2015-05-26 2018-11-21 日亜化学工業株式会社 Light emitting device and method of manufacturing light emitting device
CN111864034A (en) 2015-05-29 2020-10-30 日亚化学工业株式会社 Light emitting device
JP6554914B2 (en) 2015-06-01 2019-08-07 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6179555B2 (en) 2015-06-01 2017-08-16 日亜化学工業株式会社 Light emitting device
JP6142902B2 (en) * 2015-07-23 2017-06-07 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6217705B2 (en) 2015-07-28 2017-10-25 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6337859B2 (en) * 2015-09-08 2018-06-06 日亜化学工業株式会社 Light emitting device
JP6249002B2 (en) 2015-09-30 2017-12-20 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2016028461A (en) * 2015-11-27 2016-02-25 シチズン電子株式会社 LED light-emitting device
JP2017183427A (en) * 2016-03-29 2017-10-05 豊田合成株式会社 Light-emitting device
JP6724639B2 (en) 2016-08-01 2020-07-15 日亜化学工業株式会社 Light emitting device
JP6455495B2 (en) 2016-09-28 2019-01-23 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6579159B2 (en) * 2016-10-19 2019-09-25 日亜化学工業株式会社 Light emitting device
US10330852B2 (en) 2016-10-19 2019-06-25 Nichia Corporation Light-emitting device
DE102017125413A1 (en) 2016-11-01 2018-05-03 Nichia Corporation Light emitting device and method for its production
JP6520996B2 (en) * 2016-11-01 2019-05-29 日亜化学工業株式会社 Light emitting device and method of manufacturing the same
JP6789778B2 (en) * 2016-11-25 2020-11-25 スタンレー電気株式会社 Semiconductor light emitting device and its manufacturing method
JP6982233B2 (en) 2017-05-30 2021-12-17 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP6928244B2 (en) 2017-08-22 2021-09-01 日亜化学工業株式会社 Light emitting device
JP6460189B2 (en) * 2017-09-06 2019-01-30 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6733646B2 (en) 2017-11-30 2020-08-05 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
KR20190074233A (en) * 2017-12-19 2019-06-27 서울반도체 주식회사 Light emitting device and light emitting module including the sam
JP6521119B2 (en) * 2018-02-19 2019-05-29 日亜化学工業株式会社 Light emitting device
JP6940776B2 (en) * 2018-11-05 2021-09-29 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP6784287B2 (en) * 2018-12-27 2020-11-11 日亜化学工業株式会社 Light emitting device and its manufacturing method
JP7057508B2 (en) 2019-03-28 2022-04-20 日亜化学工業株式会社 Light emitting device
JP7257247B2 (en) * 2019-05-16 2023-04-13 スタンレー電気株式会社 light emitting device
JP7105415B2 (en) 2020-02-20 2022-07-25 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
US11521956B2 (en) 2020-03-31 2022-12-06 Nichia Corporation Method of manufacturing light-emitting device
KR102607323B1 (en) 2020-08-28 2023-11-29 니치아 카가쿠 고교 가부시키가이샤 Light emitting device
JP2023139780A (en) * 2022-03-22 2023-10-04 スタンレー電気株式会社 Light-emitting device and method for manufacturing light-emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788109B2 (en) * 2003-10-28 2011-10-05 パナソニック電工株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2005310911A (en) * 2004-04-19 2005-11-04 Kyocera Corp Package for housing light emitting element, light emitting device, and lighting apparatus
JP2007123777A (en) * 2005-10-31 2007-05-17 Sharp Corp Semiconductor light-emitting apparatus
EP2216834B1 (en) * 2007-11-29 2017-03-15 Nichia Corporation Light-emitting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017198548A1 (en) * 2016-05-20 2017-11-23 Osram Opto Semiconductors Gmbh Radiation-emitting component
US10727386B2 (en) 2016-05-20 2020-07-28 Osram Oled Gmbh Radiation-emitting component
WO2019234185A1 (en) * 2018-06-07 2019-12-12 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component

Also Published As

Publication number Publication date
JP2010283281A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5326837B2 (en) Light emitting device
JP5326705B2 (en) Light emitting device
JP5689225B2 (en) Light emitting device
JP5463901B2 (en) Light emitting device
JP5521325B2 (en) Light emitting device and manufacturing method thereof
JP5799988B2 (en) Light emitting device
JP5610036B2 (en) Light emitting device
JP5701502B2 (en) Light emitting device
JP6020657B2 (en) Light emitting device
JP5967269B2 (en) Light emitting device
JP6015734B2 (en) Light emitting device
JP2015099940A (en) Light-emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP6665143B2 (en) Light emitting device manufacturing method
JP5761391B2 (en) Light emitting device
JP6222325B2 (en) Light emitting device
JP6680302B2 (en) Light emitting device
JP5931006B2 (en) Light emitting device
JP2024083405A (en) Light-emitting device
JP6274240B2 (en) Light emitting device
JP6825636B2 (en) Light emitting device
JP2016189488A (en) Light emitting device
JP7071680B2 (en) Light emitting device
JP7299537B2 (en) light emitting device
JP7011196B2 (en) Luminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Ref document number: 5326837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250