[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016216298A - Production method of diamond - Google Patents

Production method of diamond Download PDF

Info

Publication number
JP2016216298A
JP2016216298A JP2015102143A JP2015102143A JP2016216298A JP 2016216298 A JP2016216298 A JP 2016216298A JP 2015102143 A JP2015102143 A JP 2015102143A JP 2015102143 A JP2015102143 A JP 2015102143A JP 2016216298 A JP2016216298 A JP 2016216298A
Authority
JP
Japan
Prior art keywords
diamond
base material
carbon
layer
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015102143A
Other languages
Japanese (ja)
Other versions
JP6561402B2 (en
Inventor
規夫 徳田
Norio Tokuda
規夫 徳田
孝夫 猪熊
Takao Iguma
孝夫 猪熊
槙哉 伊藤
Shnya Ito
槙哉 伊藤
修 有屋田
Osamu Ariyada
修 有屋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
ARIOS Inc
Original Assignee
Kanazawa University NUC
ARIOS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC, ARIOS Inc filed Critical Kanazawa University NUC
Priority to JP2015102143A priority Critical patent/JP6561402B2/en
Publication of JP2016216298A publication Critical patent/JP2016216298A/en
Application granted granted Critical
Publication of JP6561402B2 publication Critical patent/JP6561402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an efficient production method of a diamond by a heteroepitaxial growth method using Ni, Cu, Co or the like for a base material.SOLUTION: The production method of the diamond includes: a step for making carbon solid-solution on any of Ni, Cu or Co; and a step for making a diamond layer epitaxial growth on the surface of the substrate on which solid-solution on the carbon is performed. When the diamond layer is cooled to a room temperature after forming it on the surface of the base material, as a solid-solution limit density of the carbon for such base material has high temperature dependency, the carbon on which solid-solution is performed in the substrate is precipitated as a graphite layer comprising a layer structure on the base material surface, that is, between the diamond layer and the base material. This soft graphite layer becomes a buffer film, distortion is hard to occur in the diamond layer, and exfoliation easily occurs in this part, and thereby, self-supporting diamond is easily obtained.SELECTED DRAWING: Figure 1

Description

本発明は、CVD(chemical vapor deposition)を用いたダイヤモンドの製造方法に関し、特にニッケル(Ni),銅(Cu),コバルト(Co)等の炭素を固溶する基材を用いたヘテロエピタキシャル成長法によるダイヤモンドの製造方法に係る。   The present invention relates to a method for producing diamond using CVD (chemical vapor deposition), and more particularly, to a heteroepitaxial growth method using a substrate in which carbon such as nickel (Ni), copper (Cu), cobalt (Co), etc. is dissolved. The present invention relates to a method for producing diamond.

ダイヤモンドの(111)結晶面等の格子定数と、例えばニッケルの(111)結晶面等の格子定数との差が小さく、ニッケルを基材にしたダイヤモンド膜のヘテロエピキシャル成長膜の報告が、例えば非特許文献1に報告されている。
しかし、ニッケルは炭素の固溶度が高く、例えば1600Kでの固溶限界は2.7at%である。
そのため化学気相成長温度ではダイヤモンドが浸食されてしまい、ダイヤモンドの連続膜は得られていなかった。
また、シリコン(Si)を基材に用いた場合に冷却過程で相互の熱収縮係数の差からダイヤモンド及びシリコンに湾曲等の変形が生じる問題があり、ダイヤモンドを自立化するにはSiをエッチングにより除去することとなりシリコン基板が消耗品となる問題もあった。
There is a small difference between the lattice constant of the (111) crystal plane of diamond and the lattice constant of the (111) crystal plane of nickel, for example, and a heteroepitaxial growth film of a diamond film based on nickel has been reported. It is reported in Non-Patent Document 1.
However, nickel has a high solid solubility of carbon. For example, the solid solubility limit at 1600 K is 2.7 at%.
Therefore, diamond was eroded at the chemical vapor deposition temperature, and a continuous diamond film was not obtained.
In addition, when silicon (Si) is used as a base material, there is a problem that the diamond and silicon are deformed due to a difference in thermal contraction coefficient in the cooling process. There is also a problem that the silicon substrate becomes a consumable because it is removed.

T.Suzuki and A.Argoitia,Phys.Stat.Sal.A 154(1996)239.T.A. Suzuki and A.M. Argoitia, Phys. Stat. Sal. A 154 (1996) 239.

本発明は、ニッケル,銅,コバルト等を基材に用いた効率的なダイヤモンドの製造方法の提供を目的とする。   An object of the present invention is to provide an efficient method for producing diamond using nickel, copper, cobalt or the like as a base material.

本発明に係るダイヤモンドの製造方法は、ニッケル,銅,コバルトのうちいずれかの基材に炭素を固溶させるステップと、前記炭素が固溶された基材の表面にダイヤモンド層をエピタキシャル成長させるステップと、を有することを特徴とする。
本発明者らは、前記基材に炭素を固溶限界まで固溶させるか、あるいは固溶速度以上に炭素を供給すると、基材の表面にダイヤモンド層が安定してヘテロ成長することを見い出したことにより本発明に至ったものである。
したがって、前記ニッケル,銅,コバルトにはダイヤモンド層がヘテロ成長するものであれば、ニッケル合金,銅合金,コバルト合金も含まれる。
The method for producing diamond according to the present invention includes a step of solid-solving carbon in any one of nickel, copper, and cobalt, and a step of epitaxially growing a diamond layer on the surface of the base material in which the carbon is solid-solved. It is characterized by having.
The present inventors have found that when carbon is dissolved in the base material to the solid solution limit or when carbon is supplied at a rate higher than the solid solution rate, the diamond layer stably grows on the surface of the base material. This has led to the present invention.
Therefore, nickel alloy, copper alloy, and cobalt alloy are also included in the nickel, copper, and cobalt as long as the diamond layer is hetero-growth.

これらの基材に対する炭素の固溶限界濃度は温度依存性が高いため、基材の表面にダイヤモンド層を形成させた後に常温等まで冷却すると、基材中に固溶していた炭素は基材表面、即ち、ダイヤモンド層と基材との間に層状構造からなるグラファイト層として析出する。
よって本発明は、前記炭素が固溶された基材の表面にダイヤモンド層をエピタキシャル成長させた後に冷却するステップを有し、前記基材に固溶していた炭素を基材とダイヤモンド層との間にグラファイト層として析出させるステップと、を有する点にも特徴がある。
ここで基材の形状としては、プレート状の基板のみならず、立体的形状からなる基材も含まれる。
また、Si基板等の他の材料からなる基材の表面に上記金属の薄膜を形成したり、積層する場合も含まれる。
また、ニッケル,銅,コバルトの基材は、単結晶,多結晶を選択使用することもできる。
Since the solid solution limit concentration of carbon for these base materials is highly temperature dependent, when the diamond layer is formed on the surface of the base material and then cooled to room temperature etc., the carbon dissolved in the base material becomes the base material. It is deposited as a graphite layer having a layered structure on the surface, that is, between the diamond layer and the substrate.
Therefore, the present invention has a step of cooling after the diamond layer is epitaxially grown on the surface of the substrate in which the carbon is solid-dissolved, and the carbon solid-solved in the substrate is interposed between the substrate and the diamond layer. And a step of precipitating as a graphite layer.
Here, the shape of the base material includes not only a plate-shaped substrate but also a three-dimensional base material.
Moreover, the case where the said metal thin film is formed or laminated | stacked on the surface of the base material which consists of other materials, such as Si substrate, is also included.
The base material of nickel, copper, and cobalt can be selected from single crystal or polycrystal.

本発明においてダイヤモンド層をエピタキシャル成長させる手段としては、水素や希ガスをキャリアーに用い、炭素供給源として、メタン,エタン等の炭化水素,一酸化炭素,二酸化炭素及び水素の混合物等を用いたCVDを用いることができる。
CVDは熱CVD,プラズマCVD等が例として挙げられる。
As a means for epitaxially growing a diamond layer in the present invention, hydrogen or a rare gas is used as a carrier, and a carbon source is a CVD using a hydrocarbon such as methane or ethane, carbon monoxide, a mixture of carbon dioxide and hydrogen, or the like. Can be used.
Examples of CVD include thermal CVD and plasma CVD.

本発明はダイヤモンドと格子定数の不整合度が小さいニッケル等を基材にして、炭素源を固溶限度以上に供給、あるいはその固溶速度以上に速く炭素源を供給することでダイヤモンド層を効率的にエピタキシャル成長させることができる。
また、冷却過程において、ダイヤモンド層,グラファイト層及び基材との三層構造になるため、この柔らかいグラファイト層が緩衝膜となり、ダイヤモンド層にひずみが発生しにくい。
また、グラファイト層は層状構造であるため、この部分で容易に剥離が生じるため、自立型のダイヤモンドが容易に得られるとともに、基材の表面にグラファイト層が残っていてもCVD装置内で、このグラファイト層の炭素が基材に再度、固溶するため、繰り返しダイヤモンド成長基材として使用できる。
The present invention makes the diamond layer more efficient by supplying a carbon source above the solid solution limit or supplying a carbon source faster than its solid solution rate, using nickel or the like whose degree of mismatch of diamond and lattice constant is small as a base material. Can be epitaxially grown.
In addition, in the cooling process, a three-layer structure including a diamond layer, a graphite layer, and a base material is formed. Therefore, the soft graphite layer serves as a buffer film, and the diamond layer is unlikely to be distorted.
In addition, since the graphite layer has a layered structure, peeling easily occurs in this portion, so that self-supporting diamond can be easily obtained, and even if the graphite layer remains on the surface of the base material, Since the carbon of the graphite layer is again dissolved in the base material, it can be used repeatedly as a diamond growth base material.

本発明に係るダイヤモンドの製造方法のプロセスを模式的に示す。The process of the manufacturing method of the diamond which concerns on this invention is shown typically. 本発明に係る製造方法にて得られたダイヤモンドのレーザー顕微鏡像を示す。The laser microscope image of the diamond obtained with the manufacturing method concerning this invention is shown. 本発明に係る製造方法にて得られたダイヤモンドのラマンスペクトルチャートを示す。The Raman spectrum chart of the diamond obtained by the manufacturing method concerning the present invention is shown.

本発明に係る製造例を以下ニッケル基材を例に説明するが、本発明はニッケル,銅及びコバルトのいずれかを基材として炭素を固溶するステップと、ダイヤモンド層をヘテロエピキシャル成長させるステップを有する限りにおいて本実施例に制限されない。   A production example according to the present invention will be described below using a nickel base as an example. The present invention includes a step of solid-solving carbon using any one of nickel, copper and cobalt as a base and a step of heteroepitaxially growing a diamond layer. However, the present invention is not limited to this example.

多結晶ニッケル基材の表面を水素プラズマ処理にてクリーニングした後に、下記条件にて炭素の固溶及びダイヤモンド核の形成処理を実施した。
<第1ステップ>
(1)CVD装置:球型共振器構造のマイクロ波(2.45GHz)プラズマCVD装置
(2)投入電力 :1500W
(3)圧力 : 20kPa
(4)水素ガスをキャリアーにして、体積濃度10%のメタンガスを炭素源供給する。
(5)処理時間 :2時間
次に下記の条件にて、ダイヤモンド層の形成処理を実施した。
<第2ステップ>
(1)装置はステップ1と同じ
(2)投入電力 :1500w
(3)圧力 :20kPa
(4)メタンガス体積濃度0.5%の水素ガスを供給する。
(5)処理時間 :25時間
<第3ステップ>
上記第2ステップで、ダイヤモンド/ニッケルは約1200Kの高温になっているので常温まで冷却する。
これにより、ニッケル中に固溶していた炭素がダイヤモンド層との間にグラファイト層として析出する。
<第4ステップ>
ダイヤモンド層とニッケル基材とを、その間のグラファイト層にて剥離し、自立型のダイヤモンド基板が得られた。
これらの第1ステップ〜第4ステップの流れを図1に模式的に示す。
After the surface of the polycrystalline nickel substrate was cleaned by hydrogen plasma treatment, carbon solid solution and diamond nucleus formation treatment were performed under the following conditions.
<First step>
(1) CVD device: Microwave (2.45 GHz) plasma CVD device with spherical resonator structure (2) Input power: 1500 W
(3) Pressure: 20 kPa
(4) Supply methane gas having a volume concentration of 10% as a carbon source using hydrogen gas as a carrier.
(5) Treatment time: 2 hours Next, the diamond layer was formed under the following conditions.
<Second step>
(1) The equipment is the same as step 1. (2) Input power: 1500w
(3) Pressure: 20 kPa
(4) Supply hydrogen gas with a methane gas volume concentration of 0.5%.
(5) Processing time: 25 hours <third step>
In the second step, diamond / nickel is at a high temperature of about 1200K, so it is cooled to room temperature.
As a result, the carbon solid-dissolved in the nickel is deposited as a graphite layer between the diamond layer.
<4th step>
The diamond layer and the nickel base were peeled off by the graphite layer therebetween, and a self-supporting diamond substrate was obtained.
The flow of these first step to fourth step is schematically shown in FIG.

上記にて得られたダイヤモンド層のレーザー顕微鏡写真を図2に示す。
ダイヤモンドの結晶粒が観察された。
このラマンスペクトルを図3に示し、ダイヤモンドであることが確認できた。
A laser micrograph of the diamond layer obtained above is shown in FIG.
Diamond crystal grains were observed.
This Raman spectrum is shown in FIG. 3 and confirmed to be diamond.

本発明において、第1ステップのニッケル基材に炭素を固溶させ、表面にダイヤモンド核を形成するための条件は減圧条件、プラズマの出力条件等にて炭素源の濃度を調整することになるが、体積濃度でメタン濃度5〜20%程度の高濃度が好ましく、第2ステップでのメタン濃度は0.1〜5%程度の相対的に低濃度が好ましい。   In the present invention, the conditions for dissolving carbon in the nickel base in the first step and forming diamond nuclei on the surface are such that the concentration of the carbon source is adjusted under reduced pressure conditions, plasma output conditions, etc. A high concentration such as a methane concentration of about 5 to 20% in volume concentration is preferable, and a relatively low concentration of about 0.1 to 5% is preferable for the methane concentration in the second step.

上記第4ステップにて剥離したグラファイト/ニッケル基材はCVD装置内に投入し、第1ステップにそのまま使用できた。   The graphite / nickel base material peeled in the fourth step was put into a CVD apparatus and could be used as it was in the first step.

Claims (2)

ニッケル,銅,コバルトのうちいずれかの基材に炭素を固溶させるステップと、前記炭素が固溶された基材の表面にダイヤモンド層をエピタキシャル成長させるステップと、を有することを特徴とするダイヤモンドの製造方法。   And a step of solid-dissolving carbon in a base material of nickel, copper, or cobalt, and a step of epitaxially growing a diamond layer on the surface of the base material in which the carbon is solid-dissolved. Production method. 前記炭素が固溶された基材の表面にダイヤモンド層をエピタキシャル成長させた後に冷却するステップを有し、
前記基材に固溶していた炭素を基材とダイヤモンド層との間にグラファイト層として析出させるステップと、を有することを特徴とするダイヤモンド製造方法。
Cooling after the diamond layer is epitaxially grown on the surface of the substrate in which the carbon is dissolved,
Depositing carbon dissolved in the base material as a graphite layer between the base material and the diamond layer.
JP2015102143A 2015-05-19 2015-05-19 Diamond manufacturing method Active JP6561402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102143A JP6561402B2 (en) 2015-05-19 2015-05-19 Diamond manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102143A JP6561402B2 (en) 2015-05-19 2015-05-19 Diamond manufacturing method

Publications (2)

Publication Number Publication Date
JP2016216298A true JP2016216298A (en) 2016-12-22
JP6561402B2 JP6561402B2 (en) 2019-08-21

Family

ID=57580131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102143A Active JP6561402B2 (en) 2015-05-19 2015-05-19 Diamond manufacturing method

Country Status (1)

Country Link
JP (1) JP6561402B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155309A (en) * 2020-03-30 2021-10-07 住友金属鉱山株式会社 Deposition support substrate, manufacturing method of deposition support substrate, deposition method of polycrystalline film and manufacturing method of polycrystalline substrate
WO2024166491A1 (en) * 2023-02-10 2024-08-15 国立大学法人金沢大学 Nickel substrate and method for manufacturing diamond substrate using same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197388A (en) * 1989-02-16 1991-08-28 De Beers Ind Diamond Div Ltd Process for diamond growth
JPH05270977A (en) * 1992-03-26 1993-10-19 Canon Inc Plate diamond crystal and its formation
JPH0769792A (en) * 1993-08-30 1995-03-14 Canon Inc Method for epitaxial growth of diamond crystal and method for selective epitacial growth
JPH0782083A (en) * 1993-09-17 1995-03-28 Kobe Steel Ltd Method for forming diamond thin film having high orientation
US5449531A (en) * 1992-11-09 1995-09-12 North Carolina State University Method of fabricating oriented diamond films on nondiamond substrates and related structures
JPH0948693A (en) * 1995-08-04 1997-02-18 Kobe Steel Ltd Method for forming diamond single crystal film
WO2008013108A1 (en) * 2006-07-27 2008-01-31 National Institute Of Advanced Industrial Science And Technology Process for producing single-crystal substrate with off angle
JP2013159513A (en) * 2012-02-03 2013-08-19 Yokogawa Electric Corp Multilayer structure and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03197388A (en) * 1989-02-16 1991-08-28 De Beers Ind Diamond Div Ltd Process for diamond growth
JPH05270977A (en) * 1992-03-26 1993-10-19 Canon Inc Plate diamond crystal and its formation
US5449531A (en) * 1992-11-09 1995-09-12 North Carolina State University Method of fabricating oriented diamond films on nondiamond substrates and related structures
JPH0769792A (en) * 1993-08-30 1995-03-14 Canon Inc Method for epitaxial growth of diamond crystal and method for selective epitacial growth
JPH0782083A (en) * 1993-09-17 1995-03-28 Kobe Steel Ltd Method for forming diamond thin film having high orientation
JPH0948693A (en) * 1995-08-04 1997-02-18 Kobe Steel Ltd Method for forming diamond single crystal film
WO2008013108A1 (en) * 2006-07-27 2008-01-31 National Institute Of Advanced Industrial Science And Technology Process for producing single-crystal substrate with off angle
JP2013159513A (en) * 2012-02-03 2013-08-19 Yokogawa Electric Corp Multilayer structure and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155309A (en) * 2020-03-30 2021-10-07 住友金属鉱山株式会社 Deposition support substrate, manufacturing method of deposition support substrate, deposition method of polycrystalline film and manufacturing method of polycrystalline substrate
JP7322783B2 (en) 2020-03-30 2023-08-08 住友金属鉱山株式会社 Film formation support substrate, method for producing film formation support substrate, method for forming polycrystalline film, and method for producing polycrystalline substrate
WO2024166491A1 (en) * 2023-02-10 2024-08-15 国立大学法人金沢大学 Nickel substrate and method for manufacturing diamond substrate using same

Also Published As

Publication number Publication date
JP6561402B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
CN105914139B (en) A kind of method of self-organizing nucleation extension GaN material on graphene
Aida et al. Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles
TWI466823B (en) Snowflake-like graphene and a method of synthesizing the same
JP2012167001A (en) Method for producing aluminum nitride crystal
Wang et al. Graphene-assisted molecular beam epitaxy of AlN for AlGaN deep-ultraviolet light-emitting diodes
JP2007331955A (en) Method for producing diamond
JP2013067549A (en) Method for forming thin film
Das et al. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition
JP6561402B2 (en) Diamond manufacturing method
JP2010251599A (en) Single crystal diamond substrate
CN110616454B (en) Method for vertical heteroepitaxy monocrystal metal film based on monocrystal two-dimensional material/monocrystal copper
JP2009018975A (en) Manufacturing method of nonpolar plane group iii nitride single crystal
JP5962332B2 (en) Graphene growth method
WO2013038623A1 (en) Method for producing graphene, and graphene
JP4494856B2 (en) Seed crystal for silicon carbide single crystal growth, method for producing the same, and crystal growth method using the same
JP5896470B2 (en) Method for producing AlN single crystal
Kolhep et al. Epitaxial growth of highly textured ZnO thin films on Si using an AlN buffer layer by atomic layer deposition
JP5850489B2 (en) Method for producing SiC single crystal
JP2005104829A (en) Highly crystalline aluminum nitride laminated substrate and its producing method
WO2018047844A1 (en) Method for producing gallium nitride laminate
JP5545567B2 (en) Base material for single crystal diamond growth and method for producing single crystal diamond
KR20150000362A (en) Method of preparing single crystal graphene films
TWI755508B (en) Group iii nitride semiconductor substrate and method of manufacturing group iii nitride semiconductor substrate
JP2010270000A (en) Silicon carbide raw material for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
WO2024166491A1 (en) Nickel substrate and method for manufacturing diamond substrate using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190704

R150 Certificate of patent or registration of utility model

Ref document number: 6561402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250