JP2016216298A - Production method of diamond - Google Patents
Production method of diamond Download PDFInfo
- Publication number
- JP2016216298A JP2016216298A JP2015102143A JP2015102143A JP2016216298A JP 2016216298 A JP2016216298 A JP 2016216298A JP 2015102143 A JP2015102143 A JP 2015102143A JP 2015102143 A JP2015102143 A JP 2015102143A JP 2016216298 A JP2016216298 A JP 2016216298A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- base material
- carbon
- layer
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 48
- 239000010432 diamond Substances 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 29
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 28
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 20
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 13
- 239000010439 graphite Substances 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 37
- 239000010949 copper Substances 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims 1
- 239000006104 solid solution Substances 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 5
- 238000004299 exfoliation Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、CVD(chemical vapor deposition)を用いたダイヤモンドの製造方法に関し、特にニッケル(Ni),銅(Cu),コバルト(Co)等の炭素を固溶する基材を用いたヘテロエピタキシャル成長法によるダイヤモンドの製造方法に係る。 The present invention relates to a method for producing diamond using CVD (chemical vapor deposition), and more particularly, to a heteroepitaxial growth method using a substrate in which carbon such as nickel (Ni), copper (Cu), cobalt (Co), etc. is dissolved. The present invention relates to a method for producing diamond.
ダイヤモンドの(111)結晶面等の格子定数と、例えばニッケルの(111)結晶面等の格子定数との差が小さく、ニッケルを基材にしたダイヤモンド膜のヘテロエピキシャル成長膜の報告が、例えば非特許文献1に報告されている。
しかし、ニッケルは炭素の固溶度が高く、例えば1600Kでの固溶限界は2.7at%である。
そのため化学気相成長温度ではダイヤモンドが浸食されてしまい、ダイヤモンドの連続膜は得られていなかった。
また、シリコン(Si)を基材に用いた場合に冷却過程で相互の熱収縮係数の差からダイヤモンド及びシリコンに湾曲等の変形が生じる問題があり、ダイヤモンドを自立化するにはSiをエッチングにより除去することとなりシリコン基板が消耗品となる問題もあった。
There is a small difference between the lattice constant of the (111) crystal plane of diamond and the lattice constant of the (111) crystal plane of nickel, for example, and a heteroepitaxial growth film of a diamond film based on nickel has been reported. It is reported in Non-Patent Document 1.
However, nickel has a high solid solubility of carbon. For example, the solid solubility limit at 1600 K is 2.7 at%.
Therefore, diamond was eroded at the chemical vapor deposition temperature, and a continuous diamond film was not obtained.
In addition, when silicon (Si) is used as a base material, there is a problem that the diamond and silicon are deformed due to a difference in thermal contraction coefficient in the cooling process. There is also a problem that the silicon substrate becomes a consumable because it is removed.
本発明は、ニッケル,銅,コバルト等を基材に用いた効率的なダイヤモンドの製造方法の提供を目的とする。 An object of the present invention is to provide an efficient method for producing diamond using nickel, copper, cobalt or the like as a base material.
本発明に係るダイヤモンドの製造方法は、ニッケル,銅,コバルトのうちいずれかの基材に炭素を固溶させるステップと、前記炭素が固溶された基材の表面にダイヤモンド層をエピタキシャル成長させるステップと、を有することを特徴とする。
本発明者らは、前記基材に炭素を固溶限界まで固溶させるか、あるいは固溶速度以上に炭素を供給すると、基材の表面にダイヤモンド層が安定してヘテロ成長することを見い出したことにより本発明に至ったものである。
したがって、前記ニッケル,銅,コバルトにはダイヤモンド層がヘテロ成長するものであれば、ニッケル合金,銅合金,コバルト合金も含まれる。
The method for producing diamond according to the present invention includes a step of solid-solving carbon in any one of nickel, copper, and cobalt, and a step of epitaxially growing a diamond layer on the surface of the base material in which the carbon is solid-solved. It is characterized by having.
The present inventors have found that when carbon is dissolved in the base material to the solid solution limit or when carbon is supplied at a rate higher than the solid solution rate, the diamond layer stably grows on the surface of the base material. This has led to the present invention.
Therefore, nickel alloy, copper alloy, and cobalt alloy are also included in the nickel, copper, and cobalt as long as the diamond layer is hetero-growth.
これらの基材に対する炭素の固溶限界濃度は温度依存性が高いため、基材の表面にダイヤモンド層を形成させた後に常温等まで冷却すると、基材中に固溶していた炭素は基材表面、即ち、ダイヤモンド層と基材との間に層状構造からなるグラファイト層として析出する。
よって本発明は、前記炭素が固溶された基材の表面にダイヤモンド層をエピタキシャル成長させた後に冷却するステップを有し、前記基材に固溶していた炭素を基材とダイヤモンド層との間にグラファイト層として析出させるステップと、を有する点にも特徴がある。
ここで基材の形状としては、プレート状の基板のみならず、立体的形状からなる基材も含まれる。
また、Si基板等の他の材料からなる基材の表面に上記金属の薄膜を形成したり、積層する場合も含まれる。
また、ニッケル,銅,コバルトの基材は、単結晶,多結晶を選択使用することもできる。
Since the solid solution limit concentration of carbon for these base materials is highly temperature dependent, when the diamond layer is formed on the surface of the base material and then cooled to room temperature etc., the carbon dissolved in the base material becomes the base material. It is deposited as a graphite layer having a layered structure on the surface, that is, between the diamond layer and the substrate.
Therefore, the present invention has a step of cooling after the diamond layer is epitaxially grown on the surface of the substrate in which the carbon is solid-dissolved, and the carbon solid-solved in the substrate is interposed between the substrate and the diamond layer. And a step of precipitating as a graphite layer.
Here, the shape of the base material includes not only a plate-shaped substrate but also a three-dimensional base material.
Moreover, the case where the said metal thin film is formed or laminated | stacked on the surface of the base material which consists of other materials, such as Si substrate, is also included.
The base material of nickel, copper, and cobalt can be selected from single crystal or polycrystal.
本発明においてダイヤモンド層をエピタキシャル成長させる手段としては、水素や希ガスをキャリアーに用い、炭素供給源として、メタン,エタン等の炭化水素,一酸化炭素,二酸化炭素及び水素の混合物等を用いたCVDを用いることができる。
CVDは熱CVD,プラズマCVD等が例として挙げられる。
As a means for epitaxially growing a diamond layer in the present invention, hydrogen or a rare gas is used as a carrier, and a carbon source is a CVD using a hydrocarbon such as methane or ethane, carbon monoxide, a mixture of carbon dioxide and hydrogen, or the like. Can be used.
Examples of CVD include thermal CVD and plasma CVD.
本発明はダイヤモンドと格子定数の不整合度が小さいニッケル等を基材にして、炭素源を固溶限度以上に供給、あるいはその固溶速度以上に速く炭素源を供給することでダイヤモンド層を効率的にエピタキシャル成長させることができる。
また、冷却過程において、ダイヤモンド層,グラファイト層及び基材との三層構造になるため、この柔らかいグラファイト層が緩衝膜となり、ダイヤモンド層にひずみが発生しにくい。
また、グラファイト層は層状構造であるため、この部分で容易に剥離が生じるため、自立型のダイヤモンドが容易に得られるとともに、基材の表面にグラファイト層が残っていてもCVD装置内で、このグラファイト層の炭素が基材に再度、固溶するため、繰り返しダイヤモンド成長基材として使用できる。
The present invention makes the diamond layer more efficient by supplying a carbon source above the solid solution limit or supplying a carbon source faster than its solid solution rate, using nickel or the like whose degree of mismatch of diamond and lattice constant is small as a base material. Can be epitaxially grown.
In addition, in the cooling process, a three-layer structure including a diamond layer, a graphite layer, and a base material is formed. Therefore, the soft graphite layer serves as a buffer film, and the diamond layer is unlikely to be distorted.
In addition, since the graphite layer has a layered structure, peeling easily occurs in this portion, so that self-supporting diamond can be easily obtained, and even if the graphite layer remains on the surface of the base material, Since the carbon of the graphite layer is again dissolved in the base material, it can be used repeatedly as a diamond growth base material.
本発明に係る製造例を以下ニッケル基材を例に説明するが、本発明はニッケル,銅及びコバルトのいずれかを基材として炭素を固溶するステップと、ダイヤモンド層をヘテロエピキシャル成長させるステップを有する限りにおいて本実施例に制限されない。 A production example according to the present invention will be described below using a nickel base as an example. The present invention includes a step of solid-solving carbon using any one of nickel, copper and cobalt as a base and a step of heteroepitaxially growing a diamond layer. However, the present invention is not limited to this example.
多結晶ニッケル基材の表面を水素プラズマ処理にてクリーニングした後に、下記条件にて炭素の固溶及びダイヤモンド核の形成処理を実施した。
<第1ステップ>
(1)CVD装置:球型共振器構造のマイクロ波(2.45GHz)プラズマCVD装置
(2)投入電力 :1500W
(3)圧力 : 20kPa
(4)水素ガスをキャリアーにして、体積濃度10%のメタンガスを炭素源供給する。
(5)処理時間 :2時間
次に下記の条件にて、ダイヤモンド層の形成処理を実施した。
<第2ステップ>
(1)装置はステップ1と同じ
(2)投入電力 :1500w
(3)圧力 :20kPa
(4)メタンガス体積濃度0.5%の水素ガスを供給する。
(5)処理時間 :25時間
<第3ステップ>
上記第2ステップで、ダイヤモンド/ニッケルは約1200Kの高温になっているので常温まで冷却する。
これにより、ニッケル中に固溶していた炭素がダイヤモンド層との間にグラファイト層として析出する。
<第4ステップ>
ダイヤモンド層とニッケル基材とを、その間のグラファイト層にて剥離し、自立型のダイヤモンド基板が得られた。
これらの第1ステップ〜第4ステップの流れを図1に模式的に示す。
After the surface of the polycrystalline nickel substrate was cleaned by hydrogen plasma treatment, carbon solid solution and diamond nucleus formation treatment were performed under the following conditions.
<First step>
(1) CVD device: Microwave (2.45 GHz) plasma CVD device with spherical resonator structure (2) Input power: 1500 W
(3) Pressure: 20 kPa
(4) Supply methane gas having a volume concentration of 10% as a carbon source using hydrogen gas as a carrier.
(5) Treatment time: 2 hours Next, the diamond layer was formed under the following conditions.
<Second step>
(1) The equipment is the same as step 1. (2) Input power: 1500w
(3) Pressure: 20 kPa
(4) Supply hydrogen gas with a methane gas volume concentration of 0.5%.
(5) Processing time: 25 hours <third step>
In the second step, diamond / nickel is at a high temperature of about 1200K, so it is cooled to room temperature.
As a result, the carbon solid-dissolved in the nickel is deposited as a graphite layer between the diamond layer.
<4th step>
The diamond layer and the nickel base were peeled off by the graphite layer therebetween, and a self-supporting diamond substrate was obtained.
The flow of these first step to fourth step is schematically shown in FIG.
上記にて得られたダイヤモンド層のレーザー顕微鏡写真を図2に示す。
ダイヤモンドの結晶粒が観察された。
このラマンスペクトルを図3に示し、ダイヤモンドであることが確認できた。
A laser micrograph of the diamond layer obtained above is shown in FIG.
Diamond crystal grains were observed.
This Raman spectrum is shown in FIG. 3 and confirmed to be diamond.
本発明において、第1ステップのニッケル基材に炭素を固溶させ、表面にダイヤモンド核を形成するための条件は減圧条件、プラズマの出力条件等にて炭素源の濃度を調整することになるが、体積濃度でメタン濃度5〜20%程度の高濃度が好ましく、第2ステップでのメタン濃度は0.1〜5%程度の相対的に低濃度が好ましい。 In the present invention, the conditions for dissolving carbon in the nickel base in the first step and forming diamond nuclei on the surface are such that the concentration of the carbon source is adjusted under reduced pressure conditions, plasma output conditions, etc. A high concentration such as a methane concentration of about 5 to 20% in volume concentration is preferable, and a relatively low concentration of about 0.1 to 5% is preferable for the methane concentration in the second step.
上記第4ステップにて剥離したグラファイト/ニッケル基材はCVD装置内に投入し、第1ステップにそのまま使用できた。 The graphite / nickel base material peeled in the fourth step was put into a CVD apparatus and could be used as it was in the first step.
Claims (2)
前記基材に固溶していた炭素を基材とダイヤモンド層との間にグラファイト層として析出させるステップと、を有することを特徴とするダイヤモンド製造方法。 Cooling after the diamond layer is epitaxially grown on the surface of the substrate in which the carbon is dissolved,
Depositing carbon dissolved in the base material as a graphite layer between the base material and the diamond layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015102143A JP6561402B2 (en) | 2015-05-19 | 2015-05-19 | Diamond manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015102143A JP6561402B2 (en) | 2015-05-19 | 2015-05-19 | Diamond manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016216298A true JP2016216298A (en) | 2016-12-22 |
JP6561402B2 JP6561402B2 (en) | 2019-08-21 |
Family
ID=57580131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015102143A Active JP6561402B2 (en) | 2015-05-19 | 2015-05-19 | Diamond manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6561402B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021155309A (en) * | 2020-03-30 | 2021-10-07 | 住友金属鉱山株式会社 | Deposition support substrate, manufacturing method of deposition support substrate, deposition method of polycrystalline film and manufacturing method of polycrystalline substrate |
WO2024166491A1 (en) * | 2023-02-10 | 2024-08-15 | 国立大学法人金沢大学 | Nickel substrate and method for manufacturing diamond substrate using same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03197388A (en) * | 1989-02-16 | 1991-08-28 | De Beers Ind Diamond Div Ltd | Process for diamond growth |
JPH05270977A (en) * | 1992-03-26 | 1993-10-19 | Canon Inc | Plate diamond crystal and its formation |
JPH0769792A (en) * | 1993-08-30 | 1995-03-14 | Canon Inc | Method for epitaxial growth of diamond crystal and method for selective epitacial growth |
JPH0782083A (en) * | 1993-09-17 | 1995-03-28 | Kobe Steel Ltd | Method for forming diamond thin film having high orientation |
US5449531A (en) * | 1992-11-09 | 1995-09-12 | North Carolina State University | Method of fabricating oriented diamond films on nondiamond substrates and related structures |
JPH0948693A (en) * | 1995-08-04 | 1997-02-18 | Kobe Steel Ltd | Method for forming diamond single crystal film |
WO2008013108A1 (en) * | 2006-07-27 | 2008-01-31 | National Institute Of Advanced Industrial Science And Technology | Process for producing single-crystal substrate with off angle |
JP2013159513A (en) * | 2012-02-03 | 2013-08-19 | Yokogawa Electric Corp | Multilayer structure and method of manufacturing the same |
-
2015
- 2015-05-19 JP JP2015102143A patent/JP6561402B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03197388A (en) * | 1989-02-16 | 1991-08-28 | De Beers Ind Diamond Div Ltd | Process for diamond growth |
JPH05270977A (en) * | 1992-03-26 | 1993-10-19 | Canon Inc | Plate diamond crystal and its formation |
US5449531A (en) * | 1992-11-09 | 1995-09-12 | North Carolina State University | Method of fabricating oriented diamond films on nondiamond substrates and related structures |
JPH0769792A (en) * | 1993-08-30 | 1995-03-14 | Canon Inc | Method for epitaxial growth of diamond crystal and method for selective epitacial growth |
JPH0782083A (en) * | 1993-09-17 | 1995-03-28 | Kobe Steel Ltd | Method for forming diamond thin film having high orientation |
JPH0948693A (en) * | 1995-08-04 | 1997-02-18 | Kobe Steel Ltd | Method for forming diamond single crystal film |
WO2008013108A1 (en) * | 2006-07-27 | 2008-01-31 | National Institute Of Advanced Industrial Science And Technology | Process for producing single-crystal substrate with off angle |
JP2013159513A (en) * | 2012-02-03 | 2013-08-19 | Yokogawa Electric Corp | Multilayer structure and method of manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021155309A (en) * | 2020-03-30 | 2021-10-07 | 住友金属鉱山株式会社 | Deposition support substrate, manufacturing method of deposition support substrate, deposition method of polycrystalline film and manufacturing method of polycrystalline substrate |
JP7322783B2 (en) | 2020-03-30 | 2023-08-08 | 住友金属鉱山株式会社 | Film formation support substrate, method for producing film formation support substrate, method for forming polycrystalline film, and method for producing polycrystalline substrate |
WO2024166491A1 (en) * | 2023-02-10 | 2024-08-15 | 国立大学法人金沢大学 | Nickel substrate and method for manufacturing diamond substrate using same |
Also Published As
Publication number | Publication date |
---|---|
JP6561402B2 (en) | 2019-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105914139B (en) | A kind of method of self-organizing nucleation extension GaN material on graphene | |
Aida et al. | Fabrication of freestanding heteroepitaxial diamond substrate via micropatterns and microneedles | |
TWI466823B (en) | Snowflake-like graphene and a method of synthesizing the same | |
JP2012167001A (en) | Method for producing aluminum nitride crystal | |
Wang et al. | Graphene-assisted molecular beam epitaxy of AlN for AlGaN deep-ultraviolet light-emitting diodes | |
JP2007331955A (en) | Method for producing diamond | |
JP2013067549A (en) | Method for forming thin film | |
Das et al. | Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition | |
JP6561402B2 (en) | Diamond manufacturing method | |
JP2010251599A (en) | Single crystal diamond substrate | |
CN110616454B (en) | Method for vertical heteroepitaxy monocrystal metal film based on monocrystal two-dimensional material/monocrystal copper | |
JP2009018975A (en) | Manufacturing method of nonpolar plane group iii nitride single crystal | |
JP5962332B2 (en) | Graphene growth method | |
WO2013038623A1 (en) | Method for producing graphene, and graphene | |
JP4494856B2 (en) | Seed crystal for silicon carbide single crystal growth, method for producing the same, and crystal growth method using the same | |
JP5896470B2 (en) | Method for producing AlN single crystal | |
Kolhep et al. | Epitaxial growth of highly textured ZnO thin films on Si using an AlN buffer layer by atomic layer deposition | |
JP5850489B2 (en) | Method for producing SiC single crystal | |
JP2005104829A (en) | Highly crystalline aluminum nitride laminated substrate and its producing method | |
WO2018047844A1 (en) | Method for producing gallium nitride laminate | |
JP5545567B2 (en) | Base material for single crystal diamond growth and method for producing single crystal diamond | |
KR20150000362A (en) | Method of preparing single crystal graphene films | |
TWI755508B (en) | Group iii nitride semiconductor substrate and method of manufacturing group iii nitride semiconductor substrate | |
JP2010270000A (en) | Silicon carbide raw material for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same | |
WO2024166491A1 (en) | Nickel substrate and method for manufacturing diamond substrate using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180524 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6561402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |