JP5896470B2 - Method for producing AlN single crystal - Google Patents
Method for producing AlN single crystal Download PDFInfo
- Publication number
- JP5896470B2 JP5896470B2 JP2012252291A JP2012252291A JP5896470B2 JP 5896470 B2 JP5896470 B2 JP 5896470B2 JP 2012252291 A JP2012252291 A JP 2012252291A JP 2012252291 A JP2012252291 A JP 2012252291A JP 5896470 B2 JP5896470 B2 JP 5896470B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- aln single
- sapphire substrate
- substrate
- aln
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims description 86
- 238000004519 manufacturing process Methods 0.000 title description 10
- 239000000758 substrate Substances 0.000 claims description 88
- 229910052594 sapphire Inorganic materials 0.000 claims description 58
- 239000010980 sapphire Substances 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 24
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 150000002739 metals Chemical class 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 78
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- 229910018125 Al-Si Inorganic materials 0.000 description 8
- 229910018520 Al—Si Inorganic materials 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 230000001364 causal effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、AlN単結晶を製造する方法に関する。 The present invention relates to a method for producing an AlN single crystal.
AlN(窒化アルミニウム)は、バンドギャップが6.2[eV]と大きく、pn接合を実現することにより、紫外領域の発光ダイオードやレーザー等の新しい発光素子を作成する点で優位である。又、AlNは、大きなバンドギャップを有することにより、放射線下や高温下で動作する高耐圧の電力素子への適用が可能である。更に、AlNは、負の電子親和力を示すことにより、高効率の電子放出素子への適用も期待されている。このように優れた特性を有するAlNを発光素子や電力素子や電子放出素子等の素子として利用する場合には、半導体シリコンと同様に、単結晶ウエハとして使用することが望ましい。 AlN (aluminum nitride) has a large band gap of 6.2 [eV], and is superior in that a new light-emitting element such as a light-emitting diode or a laser in the ultraviolet region is produced by realizing a pn junction. In addition, AlN has a large band gap, so that it can be applied to a high-voltage power device that operates under radiation or high temperature. Furthermore, AlN is expected to be applied to a highly efficient electron-emitting device by exhibiting a negative electron affinity. When AlN having such excellent characteristics is used as an element such as a light-emitting element, a power element, or an electron-emitting element, it is desirable to use it as a single crystal wafer like semiconductor silicon.
AlN単結晶を製造する方法としては、縦型の成長炉を採用すると共に種結晶基板としてSiC基板を用い、SiC基板上にAlN単結晶を成長させる方法が開示されている(例えば特許文献1及び2参照)。又、種結晶基板として表面を窒化したサファイア基板を用い、表面を窒化したサファイア基板上にAlN単結晶をGa−Al溶液を用いた溶液法により成長させる方法も開示されている(例えば非特許文献1参照)。更に、種結晶基板として表面を窒化していないサファイア基板を用い、表面を窒化していないサファイア基板上にAlN単結晶を気相法(HVPE(Hydride Vapor Phase Epitaxy)法)により成長させる方法も開示されている(例えば非特許文献2参照)。 As a method for producing an AlN single crystal, there is disclosed a method in which a vertical growth furnace is employed, an SiC substrate is used as a seed crystal substrate, and an AlN single crystal is grown on the SiC substrate (for example, Patent Document 1 and 2). Further, a method is also disclosed in which a sapphire substrate having a nitrided surface is used as a seed crystal substrate, and an AlN single crystal is grown on the sapphire substrate having a nitrided surface by a solution method using a Ga—Al solution (for example, non-patent document). 1). Furthermore, a method is also disclosed in which a sapphire substrate having a non-nitrided surface is used as a seed crystal substrate, and an AlN single crystal is grown on the sapphire substrate having a non-nitrided surface by a vapor phase method (HVPE (Hydride Vapor Phase Epitaxy) method). (For example, see Non-Patent Document 2).
しかしながら、特許文献1及び2に開示されている方法では、種結晶基板として用いるSiC基板が高価であるので、AlN単結晶を安価に製造することができないという問題があった。又、縦型の成長炉を用いるので、AlN単結晶を水平方向に成長(ラテラル成長)させることができず、欠陥の少ない高品質なAlN単結晶を製造することができないという問題もあった。 However, the methods disclosed in Patent Documents 1 and 2 have a problem that an SiC substrate used as a seed crystal substrate is expensive, and thus an AlN single crystal cannot be manufactured at low cost. In addition, since a vertical growth furnace is used, there is a problem that an AlN single crystal cannot be grown in a horizontal direction (lateral growth), and a high-quality AlN single crystal with few defects cannot be manufactured.
非特許文献1に開示されている方法では、種結晶基板として用いる表面を窒化したサファイア基板がSiC基板と同様に高価であるので、AlN単結晶を安価に製造することができないという問題があった。非特許文献2に開示されている方法では、種結晶基板として用いる表面を窒化していないサファイア基板はSiC基板や表面を窒化したサファイア基板に比べて安価であるが、AlN単結晶を気相法により成長させるので、AlN単結晶を成長させる過程で塩素が混入する可能性があった。仮に塩素が混入すると、その混入した塩素を水素により除去する必要があり、その分、工程が複雑となり、コスト高になる。 The method disclosed in Non-Patent Document 1 has a problem that an AlN single crystal cannot be manufactured at low cost because a sapphire substrate with a nitrided surface used as a seed crystal substrate is as expensive as an SiC substrate. . In the method disclosed in Non-Patent Document 2, a sapphire substrate with a non-nitrided surface used as a seed crystal substrate is less expensive than a SiC substrate or a sapphire substrate with a nitrided surface, but an AlN single crystal is used as a vapor phase method. Therefore, there is a possibility that chlorine is mixed in the process of growing the AlN single crystal. If chlorine is mixed, it is necessary to remove the mixed chlorine with hydrogen, which complicates the process and increases the cost.
本発明は、上記した事情に鑑みてなされたものであり、その目的は、欠陥の少ない高品質なAlN単結晶を大きな成長速度で安価に製造することができるAlN単結晶の製造方法を提供することにある。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an AlN single crystal manufacturing method capable of manufacturing a high-quality AlN single crystal with few defects at a high growth rate at a low cost. There is.
請求項1に記載した発明によれば、炉内に配置された基板の基板面に対して平行方向に温度勾配を設けることが可能な横型の成長炉を用い、成分aがCr、Mn、Fe、Co、Cu及びNiから選択した1種以上の金属、成分bがSc、Ti、V、Y、Zr及びNbから選択した1種以上の金属、成分cがAl、成分dがSiであるabcd系合金の溶液と、表面を窒化していないサファイア基板とを用い、炉内に配置された前記サファイア基板の前記基板面に対して平行方向に温度勾配を設けた状態で前記サファイア基板上にAlN単結晶を溶液法により成長させ、AlN単結晶を製造する。
According to the invention described in claim 1, the horizontal growth furnace capable of providing a temperature gradient in a direction parallel to the substrate surface of the substrate disposed in the furnace is used, and the component a is Cr, Mn, Fe Abcd in which one or more metals selected from Co, Cu and Ni, component b is one or more metals selected from Sc, Ti, V, Y, Zr and Nb, component c is Al and component d is Si AlN is formed on the sapphire substrate in a state in which a temperature gradient is provided in a direction parallel to the substrate surface of the sapphire substrate placed in a furnace using a solution of a base alloy and a sapphire substrate having a non-nitrided surface. A single crystal is grown by a solution method to produce an AlN single crystal.
これにより、種結晶基板としてSiC基板や表面を窒化したサファイア基板に比べて安価な表面を窒化していないサファイア基板を用いるので、AlN単結晶を安価に製造することができる。又、サファイア基板上にAlN単結晶を溶液法により成長させ、更に横型の成長炉を用いるので、サファイア基板の表面の一部が部分的に溶解して凹部が生成されると共に、その凹部を覆うようにAlN単結晶を水平方向に成長させることができ、サファイア基板とAlN単結晶との間に空隙を形成することができる。その結果、その空隙によりサファイア基板とAlN単結晶との界面に発生する応力が緩和され、AlN単結晶中に発生する欠陥を低減することができ、欠陥の少ない高品質なAlN単結晶を製造することができる。 Thereby, since the sapphire substrate whose surface is not nitrided cheaper than the SiC substrate or the sapphire substrate whose surface is nitrided is used as the seed crystal substrate, the AlN single crystal can be manufactured at a low cost. Further, since an AlN single crystal is grown on the sapphire substrate by a solution method and a horizontal growth furnace is used, a part of the surface of the sapphire substrate is partially melted to form a recess, and the recess is covered. Thus, the AlN single crystal can be grown in the horizontal direction, and a gap can be formed between the sapphire substrate and the AlN single crystal. As a result, the stress generated at the interface between the sapphire substrate and the AlN single crystal is relieved by the voids, defects generated in the AlN single crystal can be reduced, and a high-quality AlN single crystal with few defects is manufactured. be able to.
以下、本発明の一実施形態について、図面を参照して説明する。図1に示すように、AlN単結晶の製造装置1は、横型の成長炉2であり、円筒状の石英管3と、石英管3の周囲に配置された加熱用の高周波コイル4とを有する。石英管3の内部には、カーボンヒータ5と、石英管3とカーボンヒータ5とを隔離するインシュレータ6とが配置されている。カーボンヒータ5にはアルミナボート7が配置可能になっている。アルミナボート7には凹部7aが形成されている。又、石英管3の内部にはアルゴンガス(Ar)や窒素ガス(N2)がガス管8から流入されるようになっている。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, an AlN single crystal manufacturing apparatus 1 is a horizontal growth furnace 2 and includes a cylindrical quartz tube 3 and a heating high-frequency coil 4 arranged around the quartz tube 3. . Inside the quartz tube 3, a carbon heater 5 and an insulator 6 that separates the quartz tube 3 and the carbon heater 5 are disposed. An alumina boat 7 can be disposed on the carbon heater 5. A concave portion 7 a is formed in the alumina boat 7. Argon gas (Ar) and nitrogen gas (N 2 ) are allowed to flow into the quartz tube 3 from the gas tube 8.
このように構成されたAlN単結晶の製造装置1を用い、窒化していないサファイア基板上にAlN単結晶を成長させる方法について説明する。最初に、アルミナボート7の凹部7aに、表面を窒化していないサファイア基板9を配置し、Cu−Ti−Al−Siを成分とする金属(合金)を配置する。尚、本実施形態では、サファイア基板9を凹部7aの一端側(図1では右側)に寄せて配置しているが、サファイア基板9を凹部7aの中央部に配置しても良い。サファイア基板9は、例えば(0001)面の30×5[mm]であり、Cu−Ti−Al−Siを成分とする金属は、その組成比が例えば57:3:10:30[at%]である。 A method for growing an AlN single crystal on a non-nitrided sapphire substrate using the thus configured AlN single crystal manufacturing apparatus 1 will be described. First, a sapphire substrate 9 whose surface is not nitrided is disposed in the recess 7a of the alumina boat 7, and a metal (alloy) containing Cu—Ti—Al—Si as a component is disposed. In the present embodiment, the sapphire substrate 9 is disposed close to one end side (right side in FIG. 1) of the recess 7a, but the sapphire substrate 9 may be disposed in the center of the recess 7a. The sapphire substrate 9 has a (0001) plane of 30 × 5 [mm], for example, and the composition ratio of the metal containing Cu—Ti—Al—Si is 57: 3: 10: 30 [at%], for example. It is.
次に、石英管3の内部(炉内)を所定圧力まで(例えば10−2[Torr]以下まで)真空引きした後に、図2に示すように、アルゴンガス(非酸化ガス)をガス管8から炉内に流しながら炉内の温度を1700[℃]まで昇温させる。次に、炉内の温度が1700[℃]まで達した後に、サファイア基板9及びCu−Ti−Al−Siを成分とする金属を配置したアルミナボート7をカーボンヒータ5上の所定位置に配置する。このとき、Cu−Ti−Al−Siを成分とする金属は、炉内の温度が1700[℃]まで達しているので、溶解して溶液10となり、その溶液10はサファイア基板9の基板面(上面)9a上に均一に分散する(図1参照)。 Next, after the inside of the quartz tube 3 (inside the furnace) is evacuated to a predetermined pressure (for example, 10 −2 [Torr] or less), as shown in FIG. The temperature in the furnace is raised to 1700 [° C.] while flowing into the furnace. Next, after the furnace temperature reaches 1700 [° C.], the sapphire substrate 9 and the alumina boat 7 on which the metal containing Cu—Ti—Al—Si is placed are placed at predetermined positions on the carbon heater 5. . At this time, the metal having Cu—Ti—Al—Si as a component reaches a temperature of 1700 [° C.] in the furnace, so it dissolves into a solution 10, and the solution 10 is a substrate surface ( Disperse uniformly on the upper surface 9a (see FIG. 1).
次に、炉内に流すガスをアルゴンガスから窒素ガスに切換え、窒素ガスをガス管8から例えば1[L/min]の流量で炉内に流して常圧の窒素雰囲気を形成する。窒素ガスを炉内に流してから炉内の温度を1700[℃]で5時間保持し、サファイア基板9上にAlN単結晶を成長させる。このとき、Cu−Ti−Al−Siを成分とする溶液10中のCuは、Alと窒素ガスとの反応を促進するようにAlを均質に分散させて溶解させるように作用する。又、Cu−Ti−Al−Siを成分とする溶液10中のTiは、常圧下でも窒素ガスが溶液10中に取り込まれるように作用する。そして、サファイア基板9上にAlN単結晶を5時間にわたって成長させた後に常温まで冷却し、サファイア基板9上に成長したAlN単結晶をアルミナボート7から取出す。このとき、サファイア基板9を研削等して除去すれば、AlN単結晶の自立基板(単結晶ウエハ)を製造することができる。 Next, the gas flowing into the furnace is switched from argon gas to nitrogen gas, and the nitrogen gas is flowed from the gas pipe 8 into the furnace at a flow rate of, for example, 1 [L / min] to form a normal pressure nitrogen atmosphere. After flowing nitrogen gas into the furnace, the temperature in the furnace is maintained at 1700 [° C.] for 5 hours to grow an AlN single crystal on the sapphire substrate 9. At this time, Cu in the solution 10 containing Cu-Ti-Al-Si as a component acts to uniformly disperse and dissolve Al so as to promote the reaction between Al and nitrogen gas. Further, Ti in the solution 10 containing Cu—Ti—Al—Si as a component acts so that nitrogen gas is taken into the solution 10 even under normal pressure. Then, an AlN single crystal is grown on the sapphire substrate 9 for 5 hours and then cooled to room temperature, and the AlN single crystal grown on the sapphire substrate 9 is taken out from the alumina boat 7. At this time, if the sapphire substrate 9 is removed by grinding or the like, an AlN single crystal free-standing substrate (single crystal wafer) can be manufactured.
上記した条件下では、図3(a)に示すように、平坦な表面を観察することができ、六角形の成長ステップを観察することができた。これらの結果より、AlN単結晶がサファイア基板9上に成長したことを示唆することができる。更に、XRD(X-Ray Diffraction)により、サファイア(0001)面基板9上にAlN(0001)面単結晶が成長していることを確かめることができた。AlN(0002)面回折のXRC半値全幅は414[arcsec]という比較的低い値であり、特開2008−44809号公報に準じた論文であるK.Kamei,et al.phys.Stat.sol.(c) 4 No.7,2211-2214(2007).に開示されているSiC基板上に成長したAlN単結晶のXRC半値全幅が632[arcsec]という値であることを考慮すると、本実施形態により製造したAlN単結晶は高品質であると言える。又、本実施形態により製造したAlN単結晶の転位密度は1×108[/cm2]であり、GaNの転位密度を考えると、発光素子として使用可能であると言える。又、図3(b)に示す断面SEM(Scanning Electron Microscope)画像より、本実施形態により製造したAlN単結晶の厚さは約400[nm]であった。又、図3(c)に示すように、サファイア基板9とAlN単結晶との界面に空隙(Void)が見られる部分もあった。 Under the conditions described above, as shown in FIG. 3A, a flat surface could be observed, and a hexagonal growth step could be observed. From these results, it can be suggested that the AlN single crystal has grown on the sapphire substrate 9. Furthermore, it was confirmed by XRD (X-Ray Diffraction) that an AlN (0001) plane single crystal was grown on the sapphire (0001) plane substrate 9. The XRC full width at half maximum of AlN (0002) plane diffraction is a relatively low value of 414 [arcsec], and is a paper according to K. Kamei, et al. Phys. Stat. Sol. c) In consideration of the fact that the full width at half maximum of XRC of the AlN single crystal grown on the SiC substrate disclosed in No. 7, 221-2214 (2007) is a value of 632 [arcsec]. It can be said that the manufactured AlN single crystal is of high quality. Moreover, the dislocation density of the AlN single crystal manufactured according to the present embodiment is 1 × 10 8 [/ cm 2 ], and it can be said that it can be used as a light emitting device in view of the dislocation density of GaN. From the cross-sectional SEM (Scanning Electron Microscope) image shown in FIG. 3B, the thickness of the AlN single crystal manufactured according to the present embodiment was about 400 [nm]. In addition, as shown in FIG. 3C, there was a portion where a void was found at the interface between the sapphire substrate 9 and the AlN single crystal.
これらの結果を勘案すると、以下の(1)乃至(4)に示す成長メカニズムを想定することができる。即ち、図4に示すように、
(1)サファイア基板9上にAlN単結晶11の核が生成する(核生成する)。
(2)サファイア基板9の一部が部分的に溶解し、サファイア基板9の基板面9aに凹部12が生成される。この場合、AlN単結晶11の核生成と、サファイア基板9の一部の部分的な溶解とは因果関係はなく、それらが同時に発生する場合もあり得るし、それらが前後に発生する場合もあり得る。
(3)核生成したAlN単結晶11が水平方向に成長(ラテラル成長)し、凹部12が覆われ、サファイア基板9とAlN単結晶11との界面に空隙13が形成される。
(4)AlN単結晶11の水平方向への成長が進み、AlN単結晶11がサファイア基板9の全面に形成される。このとき、(3)で説明したように、サファイア基板9とAlN単結晶11との界面に空隙13が形成されているので、その空隙13によりサファイア基板9とAlN単結晶11との界面に発生する応力が緩和され、AlN単結晶11中に発生する欠陥が低減され、その結果、高品質となる。又、空隙13が形成されることにより、AlN単結晶11をサファイア基板9から分離させることが容易となり、AlN単結晶の自立基板を容易に製造することも可能である。非特許文献2として示したKumagaiらは、表面を窒化していないサファイア基板を用い、AlN単結晶をHVPE(Hydride Vapor Phase Epitaxy)法により成長させ、本実施形態により製造したAlN単結晶と同程度の転位密度である1.5×108[/cm2]のAlN単結晶を製造した。しかしながら、HVPE法により製造したAlN単結晶は塩素が混入する可能性があり、その混入した塩素を水素により除去する必要があるので、本実施形態によりAlN単結晶を製造する方法は、非特許文献2として示したKumagaiらによる方法よりも工程が少ない点で優位である。
Considering these results, the growth mechanisms shown in the following (1) to (4) can be assumed. That is, as shown in FIG.
(1) Nuclei of the AlN single crystal 11 are generated (nucleated) on the sapphire substrate 9.
(2) A part of the sapphire substrate 9 is partially dissolved, and the recess 12 is generated on the substrate surface 9 a of the sapphire substrate 9. In this case, the nucleation of the AlN single crystal 11 and the partial dissolution of a part of the sapphire substrate 9 are not causal and may occur at the same time, or they may occur before and after. obtain.
(3) The nucleated AlN single crystal 11 grows in the horizontal direction (lateral growth), the recess 12 is covered, and a void 13 is formed at the interface between the sapphire substrate 9 and the AlN single crystal 11.
(4) The growth of the AlN single crystal 11 in the horizontal direction proceeds, and the AlN single crystal 11 is formed on the entire surface of the sapphire substrate 9. At this time, since the gap 13 is formed at the interface between the sapphire substrate 9 and the AlN single crystal 11 as described in (3), the gap 13 generates the gap at the interface between the sapphire substrate 9 and the AlN single crystal 11. The stress to be relieved is reduced, and defects generated in the AlN single crystal 11 are reduced, resulting in high quality. Further, since the gap 13 is formed, the AlN single crystal 11 can be easily separated from the sapphire substrate 9, and an AlN single crystal free-standing substrate can be easily manufactured. Kumagai et al. Shown as Non-Patent Document 2 use a sapphire substrate whose surface is not nitrided, grow an AlN single crystal by the HVPE (Hydride Vapor Phase Epitaxy) method, and have the same degree as the AlN single crystal manufactured by this embodiment. An AlN single crystal having a dislocation density of 1.5 × 10 8 [/ cm 2 ] was produced. However, since the AlN single crystal manufactured by the HVPE method may be mixed with chlorine, and it is necessary to remove the mixed chlorine with hydrogen, the method for manufacturing the AlN single crystal according to this embodiment is a non-patent document. This is advantageous in that it has fewer steps than the method by Kumagai et al.
ところで、AlN単結晶の製造装置1においては、炉内に温度分布が発生している。即ち、カーボンヒータ5は中央部で発熱量が相対的に大きく、端部で発熱量が相対的に小さい。そのため、本実施形態では、図1に示したように、サファイア基板9の一端側(図1では右側)がカーボンヒータ5の中央部に位置するようにアルミナボート7を配置すると、サファイア基板9は一端側で温度が相対的に高く、他端側(図1では左側)で温度が相対的に低くなる。一方、Cu−Ti−Al−Siを成分とする溶液10は、液体として対流しているので、サファイア基板9の基板面9aの全体にわたって均一な温度である。その結果、カーボンヒータ5の中央部から遠い領域は、サファイア基板9と溶液10との温度差が相対的に大きく、過飽和度が相対的に高い高温度勾配域となり(図1にて「ΔT1」にて示す)、一方、カーボンヒータ5の中央部に近い領域は、サファイア基板9と溶液10との温度差が相対的に小さく、過飽和度が相対的に低い低温度勾配域となる(図1にて「ΔT2」にて示す)。本実施形態では、50[℃/cm]の高温度勾配域では、図5(a)に示すように、島成長を観察することができ、一方、30[℃/cm]の低温度勾配域では、図5(b)に示すように、沿面成長を観察することができた。このように50[℃/cm]の高温度勾配域では、六角形の成長ステップを観察することができないが、30[℃/cm]の低温度勾配域では、六角形の成長ステップを観察することができたので、炉内に温度分布が発生している場合には、30[℃/cm]前後の温度勾配域がAlN単結晶11の成長に適していると言える。尚、本実施形態では、温度勾配が30〜50[℃/cm]の場合を説明したが、例えば温度勾配が30[℃/cm]以下でも、AlN単結晶11の成長に適していると想定することができる。 By the way, in the AlN single crystal manufacturing apparatus 1, a temperature distribution is generated in the furnace. That is, the calorific value of the carbon heater 5 is relatively large at the center, and the calorific value is relatively small at the end. Therefore, in this embodiment, as shown in FIG. 1, when the alumina boat 7 is arranged so that one end side (right side in FIG. 1) of the sapphire substrate 9 is located at the center of the carbon heater 5, the sapphire substrate 9 is The temperature is relatively high on one end side, and the temperature is relatively low on the other end side (left side in FIG. 1). On the other hand, the solution 10 containing Cu—Ti—Al—Si as a component convects as a liquid, and therefore has a uniform temperature over the entire substrate surface 9 a of the sapphire substrate 9. As a result, the region far from the center of the carbon heater 5 is a high temperature gradient region in which the temperature difference between the sapphire substrate 9 and the solution 10 is relatively large and the degree of supersaturation is relatively high (“ΔT1” in FIG. 1). On the other hand, the region near the center of the carbon heater 5 is a low temperature gradient region in which the temperature difference between the sapphire substrate 9 and the solution 10 is relatively small and the degree of supersaturation is relatively low (FIG. 1). And “ΔT2”). In this embodiment, in the high temperature gradient region of 50 [° C./cm], as shown in FIG. 5A, island growth can be observed, while on the other hand, the low temperature gradient region of 30 [° C./cm]. Then, as shown in FIG. 5B, creeping growth could be observed. Thus, the hexagonal growth step cannot be observed in the high temperature gradient region of 50 [° C./cm], but the hexagonal growth step is observed in the low temperature gradient region of 30 [° C./cm]. Therefore, when a temperature distribution is generated in the furnace, it can be said that a temperature gradient region around 30 [° C./cm] is suitable for the growth of the AlN single crystal 11. In the present embodiment, the case where the temperature gradient is 30 to 50 [° C./cm] has been described. However, for example, even if the temperature gradient is 30 [° C./cm] or less, it is assumed to be suitable for the growth of the AlN single crystal 11. can do.
以上に説明したように本実施形態によれば、横型の成長炉2を用い、Cu−Ti−Al−Siを成分とする溶液10と、表面を窒化していないサファイア基板9とを用い、サファイア基板9上にAlN単結晶11を溶液法により成長させ、AlN単結晶11を製造するようにした。種結晶基板としてSiC基板や表面を窒化したサファイア基板に比べて安価な表面を窒化していないサファイア基板9を用いるので、AlN単結晶11を安価に製造することができる。又、サファイア基板9上にAlN単結晶11を溶液法により成長させるので、気相法により成長させる場合に比べて成長速度を大きくすることができる。更に、横型の成長炉2を用いるので、サファイア基板9の表面の一部が部分的に溶解して凹部12が生成されると、その凹部12を覆うようにAlN単結晶11を水平方向に成長させることができ、サファイア基板9とAlN単結晶11との間に空隙13を形成することができる。その結果、その空隙13によりサファイア基板9とAlN単結晶11との界面に発生する応力が緩和され、AlN単結晶11中に発生する欠陥を低減することができ、欠陥の少ない高品質なAlN単結晶11を製造することができる。 As described above, according to the present embodiment, the horizontal growth furnace 2 is used, the solution 10 containing Cu—Ti—Al—Si as a component, and the sapphire substrate 9 whose surface is not nitrided, the sapphire. An AlN single crystal 11 was grown on the substrate 9 by a solution method to produce the AlN single crystal 11. Since the sapphire substrate 9 whose surface is not nitrided cheaper than the SiC substrate or the sapphire substrate whose surface is nitrided is used as the seed crystal substrate, the AlN single crystal 11 can be manufactured at a low cost. Moreover, since the AlN single crystal 11 is grown on the sapphire substrate 9 by the solution method, the growth rate can be increased as compared with the case where the AlN single crystal 11 is grown by the vapor phase method. Furthermore, since the horizontal growth furnace 2 is used, when a part of the surface of the sapphire substrate 9 is partially melted to form the recess 12, the AlN single crystal 11 is grown in the horizontal direction so as to cover the recess 12. The gap 13 can be formed between the sapphire substrate 9 and the AlN single crystal 11. As a result, the stress generated at the interface between the sapphire substrate 9 and the AlN single crystal 11 is relieved by the voids 13, and defects generated in the AlN single crystal 11 can be reduced. Crystal 11 can be produced.
又、サファイア基板9の基板面9aに対して平行方向に温度勾配を設けたので、所定の温度勾配域(本実施形態では30[℃/cm]前後の温度勾配域)でAlN単結晶11を良好に成長させることができる。更に、窒素ガスをサファイア基板9の基板面9aに流しながらAlN単結晶11を成長させるようにしたので、窒素ガスの流量を制御することで、AlN単結晶11の成長量(膜厚)を容易に制御することができる。 In addition, since the temperature gradient is provided in the direction parallel to the substrate surface 9a of the sapphire substrate 9, the AlN single crystal 11 is formed in a predetermined temperature gradient region (in this embodiment, a temperature gradient region around 30 [° C./cm]). It can grow well. Furthermore, since the AlN single crystal 11 is grown while flowing nitrogen gas through the substrate surface 9a of the sapphire substrate 9, the growth amount (film thickness) of the AlN single crystal 11 can be easily achieved by controlling the flow rate of the nitrogen gas. Can be controlled.
本発明は、上記した実施形態にのみ限定されるものではなく、以下のように変形又は拡張することができる。
成分aに相当する金属、即ち、Alと窒素ガスとの反応を促進するようにAlを均質に分散させて溶解させるように作用する金属は、Cr、Mn、Fe、Co、Cu及びNiから選択した1種以上の金属であれば良い。又、成分bに相当する金属、即ち、常圧下でも窒素ガスが溶液中に取り込まれるように作用する金属は、Sc、Ti、V、Y、Zr及びNbから選択した1種以上の金属であれば良い。
The present invention is not limited to the above-described embodiment, and can be modified or expanded as follows.
The metal corresponding to component a, ie, the metal that acts to uniformly disperse and dissolve Al so as to promote the reaction between Al and nitrogen gas, is selected from Cr, Mn, Fe, Co, Cu and Ni Any one or more kinds of metals may be used. The metal corresponding to component b, that is, the metal that acts so that nitrogen gas is taken into the solution even under normal pressure, may be one or more metals selected from Sc, Ti, V, Y, Zr and Nb. It ’s fine.
図面中、2は横型の成長炉、9はサファイア基板、9aは基板面、10は溶液、11はAlN単結晶である。 In the drawing, 2 is a horizontal growth furnace, 9 is a sapphire substrate, 9a is a substrate surface, 10 is a solution, and 11 is an AlN single crystal.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012252291A JP5896470B2 (en) | 2012-11-16 | 2012-11-16 | Method for producing AlN single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012252291A JP5896470B2 (en) | 2012-11-16 | 2012-11-16 | Method for producing AlN single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014101235A JP2014101235A (en) | 2014-06-05 |
JP5896470B2 true JP5896470B2 (en) | 2016-03-30 |
Family
ID=51024104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012252291A Active JP5896470B2 (en) | 2012-11-16 | 2012-11-16 | Method for producing AlN single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5896470B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6534030B2 (en) * | 2014-08-28 | 2019-06-26 | 国立大学法人名古屋大学 | Method of preparing AlN single crystal |
JP6503819B2 (en) | 2015-03-23 | 2019-04-24 | Tdk株式会社 | Alumina substrate |
JP6986024B2 (en) * | 2016-10-28 | 2021-12-22 | 日本碍子株式会社 | Composite boards and functional elements |
CN108277526A (en) * | 2017-12-29 | 2018-07-13 | 苏州奥趋光电技术有限公司 | A method of passing through physical vapor transport growing aluminum nitride monocrystalline |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4151528B2 (en) * | 2003-09-08 | 2008-09-17 | 住友金属工業株式会社 | Method for producing AlN single crystal |
JP4591183B2 (en) * | 2005-04-26 | 2010-12-01 | 住友金属工業株式会社 | Method for producing AlN single crystal |
JP5441762B2 (en) * | 2010-03-02 | 2014-03-12 | 国立大学法人東京農工大学 | Manufacturing method of laminate |
-
2012
- 2012-11-16 JP JP2012252291A patent/JP5896470B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014101235A (en) | 2014-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5562641B2 (en) | Micropipe-free silicon carbide and method for producing the same | |
JP4117156B2 (en) | Method for manufacturing group III nitride semiconductor substrate | |
JP5653598B2 (en) | Low-bottom dislocation bulk-grown SiC wafer | |
JP4647525B2 (en) | Method for producing group III nitride crystal | |
JP5068423B2 (en) | Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof | |
JP5186733B2 (en) | AlN crystal growth method | |
JP2005119921A (en) | Group iii nitride semiconductor substrate and method for producing the same | |
JP2007294518A (en) | Nitride semiconductor substrate and its manufacturing method and epitaxial substrate for nitride semiconductor light-emitting device | |
JP2008069067A (en) | Method for producing gallium nitride single crystal thick film | |
JP5896470B2 (en) | Method for producing AlN single crystal | |
JP4431647B2 (en) | Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide | |
JP2012197190A (en) | METHOD FOR PRODUCING SELF-STANDING SUBSTRATE, AlN SELF-STANDING SUBSTRATE AND GROUP III NITRIDE SEMICONDUCTOR DEVICE | |
JP2005041710A (en) | Silicon carbide single crystal, silicon carbide single crystal wafer, and method for manufacturing silicon carbide single crystal | |
JP4768759B2 (en) | Group III nitride semiconductor substrate | |
CN106169497A (en) | Silicon carbide substrate and the manufacture method of silicon carbide substrate | |
JP2010077023A (en) | Silicon carbide single crystal and method of manufacturing the same | |
JP2013211442A (en) | Method for manufacturing nitride semiconductor epitaxial wafer | |
JP2005104829A (en) | Highly crystalline aluminum nitride laminated substrate and its producing method | |
JP2005203418A (en) | Nitride compound semiconductor substrate and its manufacturing method | |
TW201448272A (en) | Method and device of manufacturing GaN self-supporting substrate | |
JP5252495B2 (en) | Method for producing aluminum nitride single crystal | |
JP7194407B2 (en) | Single crystal manufacturing method | |
JP2010132491A (en) | Method for growing group iii nitride crystal | |
JP2020200223A (en) | Production method and production apparatus of group iii element nitride crystal | |
JP2012041203A (en) | Substrate attached with cubic silicon carbide film, and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5896470 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |