JP2016211714A - Superconductive magnetic bearing for superconductive flywheel power storage system - Google Patents
Superconductive magnetic bearing for superconductive flywheel power storage system Download PDFInfo
- Publication number
- JP2016211714A JP2016211714A JP2015098438A JP2015098438A JP2016211714A JP 2016211714 A JP2016211714 A JP 2016211714A JP 2015098438 A JP2015098438 A JP 2015098438A JP 2015098438 A JP2015098438 A JP 2015098438A JP 2016211714 A JP2016211714 A JP 2016211714A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- magnetic bearing
- storage system
- power storage
- flywheel power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Gasket Seals (AREA)
- Diaphragms And Bellows (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
【課題】冷凍機が停止した場合でも、一定時間、UPS機能を有するコイル電源によりSMBの機能を喪失することなく、フライホイールを浮上させことができる、超電導フライホイール蓄電システム用超電導磁気軸受を提供する。
【解決手段】超電導フライホイール蓄電システムにおける、液体窒素温度以下で電気抵抗がゼロとなる高温超電導線材を巻いて構成するステータコイル部8とその冷媒の希ガスヘリウムを収納する内槽容器4と、内槽容器4への熱侵入を最小にするための真空空間を維持する外槽容器5および冷凍機からなる超電導磁気軸受において、ステータコイル部8に隣接して保冷機構9を設けるようにした。
【選択図】図1Provided is a superconducting magnetic bearing for a superconducting flywheel power storage system, which can float a flywheel without losing the SMB function by a coil power supply having a UPS function for a certain period of time even when the refrigerator is stopped. To do.
In a superconducting flywheel power storage system, a stator coil portion 8 formed by winding a high-temperature superconducting wire that has an electric resistance of zero below a liquid nitrogen temperature, and an inner tank container 4 that stores the rare gas helium of the refrigerant, In the superconducting magnetic bearing including the outer tank container 5 and the refrigerator for maintaining the vacuum space for minimizing heat intrusion into the inner tank container 4, the cold insulation mechanism 9 is provided adjacent to the stator coil portion 8.
[Selection] Figure 1
Description
本発明は、超電導フライホイール蓄電システム用超電導磁気軸受(SMB)に関するものである。 The present invention relates to a superconducting magnetic bearing (SMB) for a superconducting flywheel power storage system.
従来の超電導磁気軸受でも、数トン級のフライホイールの大荷重を浮上させる強力な磁場を発生することは可能であった。 Even with conventional superconducting magnetic bearings, it was possible to generate a strong magnetic field that levitated a heavy load of a flywheel of several tons.
しかしながら、停電などで万一冷凍機が停止した場合の対策が講じられておらず、また、長期連続運転を前提にした低熱侵入化や振動対策が十分とは言えない といった問題があった。 However, no countermeasures have been taken in the event that the refrigerator is stopped due to a power failure or the like, and there has been a problem that low heat penetration and vibration countermeasures based on long-term continuous operation are not sufficient.
本発明は、上記状況に鑑みて、冷凍機が停止した場合でも、一定時間、無停電(UPS)機能を有するコイル電源によりSMBの機能を喪失することなく、フライホイールを浮上させことができる、超電導フライホイール蓄電システム用超電導磁気軸受を提供することを目的とする。 In view of the above situation, the present invention can float a flywheel without losing the function of SMB by a coil power supply having an uninterruptible power (UPS) function for a certain period of time even when the refrigerator is stopped. An object of the present invention is to provide a superconducting magnetic bearing for a superconducting flywheel power storage system.
本発明は、上記目的を達成するために、
〔1〕超電導フライホイール蓄電システム用超電導磁気軸受において、超電導フライホイール蓄電システムにおける、液体窒素温度以下で電気抵抗がゼロとなる高温超電導線材を巻いて構成するステータコイル部とその冷媒の希ガスヘリウムを収納する内槽容器と、この内槽容器への熱侵入を最小にするための真空空間を維持する外槽容器および冷凍機からなる超電導磁気軸受において、前記ステータコイル部に隣接して保冷機構を設けるようにしたことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a superconducting magnetic bearing for a superconducting flywheel power storage system, in the superconducting flywheel power storage system, a stator coil portion formed by winding a high-temperature superconducting wire having an electric resistance of zero below the liquid nitrogen temperature and the rare gas helium of the refrigerant In a superconducting magnetic bearing comprising an inner tank container for storing a vacuum, an outer tank container for maintaining a vacuum space for minimizing heat intrusion into the inner tank container, and a refrigerator, a cold insulation mechanism adjacent to the stator coil portion It is characterized by providing.
〔2〕上記〔1〕記載の超電導フライホイール蓄電システム用超電導磁気軸受において、前記保冷機構の主材料が銅または銅合金からなることを特徴とする。 [2] The superconducting magnetic bearing for a superconducting flywheel power storage system according to [1] above, wherein a main material of the cold insulation mechanism is made of copper or a copper alloy.
〔3〕上記〔1〕記載の超電導フライホイール蓄電システム用超電導磁気軸受において、前記保冷機構に隣接して電流リードの熱アンカーを接続したことを特徴とする。 [3] The superconducting magnetic bearing for a superconducting flywheel power storage system according to [1], wherein a thermal anchor of a current lead is connected adjacent to the cold insulation mechanism.
〔4〕上記〔1〕記載の超電導フライホイール蓄電システム用超電導磁気軸受において、前記内槽容器の内外の真空シールと熱伝達が両立可能なように、銅製の厚さ2mmのガスケットフランジ付き伝熱部材を組み込んだことを特徴とする。 [4] In the superconducting magnetic bearing for the superconducting flywheel power storage system according to [1] above, heat transfer with a gasket flange made of copper having a thickness of 2 mm made of copper so that both the inner and outer vacuum seals and heat transfer are compatible. It is characterized by incorporating a member.
〔5〕上記〔1〕記載の超電導フライホイール蓄電システム用超電導磁気軸受において、前記内槽容器の内外の真空シールと熱伝達が両立可能なように、SUS/銅またはSUS/アルミニウムからなる爆着材からなることを特徴とする。 [5] The superconducting magnetic bearing for the superconducting flywheel power storage system according to [1] above, wherein the inner vessel is made of SUS / copper or SUS / aluminum so that heat transfer can be achieved with an internal and external vacuum seal. It consists of materials.
〔6〕上記〔1〕記載の超電導フライホイール蓄電システム用超電導磁気軸受において、前記ステータコイルを構成するパンケーキと冷却板を相互に締結しかつ、ロータ側の超電導バルクとステータコイルの相互作用に伴い発生する荷重(反力)を常温部に伝達可能な機構を有することを特徴とする。 [6] In the superconducting magnetic bearing for the superconducting flywheel power storage system according to [1], the pancake and the cooling plate constituting the stator coil are fastened to each other, and the interaction between the superconducting bulk on the rotor side and the stator coil is achieved. It has a mechanism capable of transmitting the accompanying load (reaction force) to the room temperature part.
〔7〕上記〔6〕記載の超電導フライホイール蓄電システム用超電導磁気軸受において、前記ロータ側の超電導バルクとステータコイルの相互作用に伴い発生する荷重(反力)を常温部に伝達可能な機構の一部に低熱侵入かつ高強度な断熱部材を設置したことを特徴とする。 [7] In the superconducting magnetic bearing for a superconducting flywheel power storage system according to [6] above, a mechanism capable of transmitting a load (reaction force) generated due to the interaction between the superconducting bulk on the rotor side and the stator coil to the normal temperature part. It is characterized in that a heat insulating member with low heat penetration and high strength is installed in a part.
〔8〕上記〔7〕記載の超電導フライホイール蓄電システム用超電導磁気軸受において、前記断熱部材が直径7〜25μmのアルミナ繊維をエポキシ樹脂で固化させたロッド部材からなることを特徴とする。 [8] The superconducting magnetic bearing for a superconducting flywheel power storage system according to [7], wherein the heat insulating member is a rod member obtained by solidifying an alumina fiber having a diameter of 7 to 25 μm with an epoxy resin.
〔9〕上記〔1〕記載の超電導フライホイール蓄電システム用超電導磁気軸受において、ロータ部の周囲に2mm以下の離間空間を設けかつその外周部に溶接ベローズを配置したことを特徴とする。 [9] The superconducting magnetic bearing for a superconducting flywheel power storage system according to [1], wherein a space of 2 mm or less is provided around the rotor portion, and a welding bellows is disposed on the outer periphery thereof.
〔10〕上記〔1〕記載の超電導フライホイール蓄電システム用超電導磁気軸受において、前記外槽容器から断熱性の高い支持部材(振れ止め)を設置したことを特徴とする。 [10] The superconducting magnetic bearing for a superconducting flywheel power storage system according to [1] above, wherein a support member (anti-sway) having high heat insulation is installed from the outer tank container.
本発明によれば、停電などで万一冷凍機が停止しても、安全に数トン級のフライホイールの大荷重を支えつつソフトランディングさせ、回転を停止させることが可能になるなど、長期連続運転に対応可能な超電導磁気軸受を実現できる。 According to the present invention, even if the refrigerator stops due to a power failure or the like, it is possible to safely stop the rotation by soft landing while supporting the heavy load of a flywheel of several tons class, etc. A superconducting magnetic bearing that can be operated is realized.
本発明の超電導フライホイール蓄電システム用超電導磁気軸受は、超電導フライホイール蓄電システムにおける、液体窒素温度以下で電気抵抗がゼロとなる高温超電導線材を巻いて構成するステータコイル部とその冷媒の希ガスヘリウムを収納する内槽容器と、この内槽容器への熱侵入を最小にするための真空空間を維持する外槽容器および冷凍機からなる超電導磁気軸受において、前記ステータコイル部に隣接して保冷機構を設けるようにした。 A superconducting magnetic bearing for a superconducting flywheel power storage system according to the present invention includes a stator coil portion formed by winding a high-temperature superconducting wire that has an electric resistance of zero below a liquid nitrogen temperature in the superconducting flywheel power storage system, and a rare gas helium of the refrigerant. In a superconducting magnetic bearing comprising an inner tank container for storing a vacuum, an outer tank container for maintaining a vacuum space for minimizing heat intrusion into the inner tank container, and a refrigerator, a cold insulation mechanism adjacent to the stator coil portion It was made to provide.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
図1は本発明の実施例を示す超電導フライホイール蓄電システム用超電導磁気軸受の構成図、図2は超電導フライホイール蓄電システム用超電導磁気軸受の概略構成図、図3は超電導フライホイール蓄電システム用超電導磁気軸受の電流リード(PL)アンカー構成図、図4は超電導フライホイール蓄電システム用超電導磁気軸受のステーターコイルと保冷部材の説明図、図5は超電導フライホイール蓄電システム用超電導磁気軸受のICF(ガスケットフランジ付き伝熱部材)の熱コンタクト構成の説明図、図6は爆着材による熱コンタクト構成の説明図、図7は振れ止め機構構成の説明図である。 FIG. 1 is a configuration diagram of a superconducting magnetic bearing for a superconducting flywheel energy storage system according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of a superconducting magnetic bearing for a superconducting flywheel energy storage system, and FIG. FIG. 4 is an explanatory diagram of a stator coil and a cooling member of a superconducting magnetic bearing for a superconducting flywheel power storage system, and FIG. 5 is an ICF (gasket of a superconducting magnetic bearing for a superconducting flywheel power storage system. FIG. 6 is an explanatory diagram of a thermal contact configuration using an explosive material, and FIG. 7 is an explanatory diagram of an anti-sway mechanism configuration.
これらの図において、1はロータ部、2はベローズ継ぎ手、3は断熱ロッド、4は内槽容器、5は外槽容器、6は反力伝達機構、7は電流リード熱アンカー、8はステータコイル部、9は保冷機構、10はICF/爆着材、11は振れ止め機構、12は冷凍機である。 In these drawings, 1 is a rotor part, 2 is a bellows joint, 3 is a heat insulating rod, 4 is an inner tank container, 5 is an outer tank container, 6 is a reaction force transmission mechanism, 7 is a current lead thermal anchor, and 8 is a stator coil. , 9 is a cold insulation mechanism, 10 is an ICF / explosive material, 11 is a steadying mechanism, and 12 is a refrigerator.
また、図2において、13はコイル収納容器、14はコイル保冷部材、15はPL(+)15AとPL(−)15Bからなる電流リード(PL),16はPL真空端子、17はUPS付き常時通電電源、18は熱コンタクト部である。
また、図3において、20は保冷部材(銅、銅合金)、21は熱アンカー部材、22はPLアンカー、23は冷却板(伝熱フレキ)である。
また、図4において、8Aはコイル巻線部、8Bはステータコイル、8Cはコイルケースである。ここでは、ステータコイル8Bと銅製のコイル保冷部材14は積層し、ボルト等で相互締結される。
また、図5において、31はICF本体、32は真空シール固定フランジ、33は真空シール部、23Aは伝熱フレキ(冷凍機側)、23Bは伝熱フレキ(コイル側)である。ここでは、銅製ICFは真空分離と熱伝達を両立可能な構成を実現する。
また、図6において、アルミニウム24とSUS25とからなる爆着材は、真空分離と熱伝達を両立可能な構成を実現する。
また、図7において、41はFRPロッド(断熱部材)、42は皿バネ、43は真空シール(Oリング)、44は低温側接点部材、45はFRPパイプ(断熱部材)、46はロッド固定ナット、47は固定部材、48は真空キャップである。ここでは、振れ止め機構は、外槽から断熱しつつ内槽の振動低減を両立可能な構成を実現する。
In FIG. 2, 13 is a coil storage container, 14 is a coil cooling member, 15 is a current lead (PL) composed of PL (+) 15A and PL (−) 15B, 16 is a PL vacuum terminal, and 17 is always equipped with a UPS. An
In FIG. 3, 20 is a cold insulation member (copper, copper alloy), 21 is a heat anchor member, 22 is a PL anchor, and 23 is a cooling plate (heat transfer flexible).
In FIG. 4, 8A is a coil winding portion, 8B is a stator coil, and 8C is a coil case. Here, the
Further, in FIG. 5, 31 is an ICF main body, 32 is a vacuum seal fixing flange, 33 is a vacuum seal portion, 23A is a heat transfer flexible (refrigerator side), and 23B is a heat transfer flexible (coil side). Here, the copper ICF realizes a configuration capable of achieving both vacuum separation and heat transfer.
Further, in FIG. 6, the explosive material made of
In FIG. 7, 41 is an FRP rod (heat insulating member), 42 is a disc spring, 43 is a vacuum seal (O-ring), 44 is a low temperature side contact member, 45 is an FRP pipe (heat insulating member), and 46 is a rod fixing nut. , 47 is a fixing member, and 48 is a vacuum cap. Here, the steady rest mechanism realizes a configuration that can achieve both vibration reduction of the inner tank while insulating from the outer tank.
上記したように、本発明では、超電導フライホイール蓄電システムにおける、液体窒素温度以下で電気抵抗がゼロとなる高温超電導線材を巻いて構成するステータコイル部8とその冷媒の希ガスヘリウムを収納する内槽容器4と、この内槽容器4への熱侵入を最小にするための真空空間を維持する外槽容器5および冷凍機12からなる超電導磁気軸受において、前記ステータコイル部8に隣接して保冷機構9を設けるようにした。その保冷機構9の主材料は銅または銅合金からなる。
As described above, according to the present invention, in the superconducting flywheel power storage system, the
また、ステータコイル部8の保冷機構9に電流リード熱アンカー7を接続するようにした。
Further, the current lead
よって、ステータコイル構造において、万一冷凍機が停止した場合でも、ソフトランディングさせるのに必要な一定時間、UPS機能を有するコイル電源によりSMBの機能を喪失することなく、フライホイールを浮上させことができる。 Therefore, in the stator coil structure, even if the refrigerator stops, the flywheel can be levitated without losing the SMB function by the coil power supply having the UPS function for a certain time required for soft landing. it can.
また、ステータコイル部8とその冷媒の希ガスヘリウムを収納する内槽容器4において、内槽容器4の内外の真空シールと熱伝達が両立可能なように、銅製の厚さ2mmのガスケットフランジ付き伝熱部材10を組み込んだ。
In addition, in the inner tank container 4 that stores the
ステータコイル部8とその冷媒の希ガスヘリウムを収納する内槽容器4において、内槽容器4の内外の真空シールと熱伝達が両立可能なように、SUS/ アルミニウムからなる爆着材を有する。
The inner tank container 4 that stores the
ステータコイル部8とその冷媒の希ンケーキと冷却板を相互に締結しかつ、ロータ側の超電導バルクとステータコイル部8の相互作用に伴い発生する荷重(反力)を常温部に伝達可能な機構を有する。
A mechanism capable of mutually fastening the
ロータ側の超電導バルクとステータコイル部8の相互作用に伴い発生する荷重(反力)を常温部に伝達可能な機構の一部に低熱侵入かつ高強度な断熱部材を設置するようにした。つまり、ステータコイルに加わる反力伝達と低熱侵入を両立する構成とした。
A heat insulating member with low heat penetration and high strength is installed in a part of the mechanism capable of transmitting the load (reaction force) generated by the interaction between the superconducting bulk on the rotor side and the
断熱ロッド3(ロッド部材)は低熱侵入かつ高強度な断熱部材が直径7〜25μmのアルミナ繊維をエポキシ樹脂で固化させて製作した。よって、高断熱で高強度な断熱ロッド3を得ることができる。
The heat insulating rod 3 (rod member) was manufactured by solidifying an alumina fiber having a diameter of 7 to 25 μm with an epoxy resin, a heat insulating member having low heat penetration and high strength. Therefore, the
また、超電導磁気軸受ロータ(断熱シャフト)の低熱侵入を目的にしたラビリンス構造部材としてロータ部1の周囲に2mm以下の離間空間を設け、かつその外周部にベローズ継ぎ手(溶接ベローズ)2を配置するようにした。
Further, as a labyrinth structure member for the purpose of low heat penetration of the superconducting magnetic bearing rotor (heat insulating shaft), a space of 2 mm or less is provided around the
また、外槽容器5から断熱性の高い支持部材と熱収縮差を吸収可能なバネ部からなる振れ止め機構11を設置するようにした。このように、SMBのステータコイルを収納する内槽の振動対策も講じるようにした。
In addition, an
図8は本発明のSMB構成の保冷特性図であり、万一冷凍機が停止しても、図8に示すように2時間半近く運転可能である。 FIG. 8 is a cooling characteristic diagram of the SMB configuration of the present invention, and even if the refrigerator stops, it can be operated for nearly two and a half hours as shown in FIG.
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.
本発明の超電導フライホイール蓄電システム用超電導磁気軸受は、冷凍機が停止した場合でも、一定時間、UPS機能を有するコイル電源によりSMB機能を喪失することなく、フライホイールを浮上させことができ、超電導フライホイール蓄電システム用超電導磁気軸受として利用可能である。 The superconducting magnetic bearing for the superconducting flywheel power storage system of the present invention can float the flywheel without losing the SMB function by a coil power supply having a UPS function for a certain period of time even when the refrigerator is stopped. It can be used as a superconducting magnetic bearing for a flywheel power storage system.
1 ロータ部
2 ベローズ継ぎ手
3 断熱ロッド
4 内槽容器
5 外槽容器
6 反力伝達機構
7 電流リード熱アンカー
8 ステータコイル部
8A コイル巻線部
8B ステータコイル
8C コイルケース
9 保冷機構
10 ガスケットフランジ付き伝熱部材/爆着材からなる伝熱部材
11 振れ止め機構
12 冷凍機
13 コイル収納容器
14 コイル保冷部材
15 電流リード(PL)
15A PL(+)
15B PL(−)
16 PL真空端子
17 UPS付き常時通電電源
18 熱コンタクト部
20 保冷部材(銅、銅合金)
21 熱アンカー部材
22 PLアンカー
23 冷却板(伝熱フレキ)
23A 伝熱フレキ(冷凍機側)
23B 伝熱フレキ(コイル側)
24 アルミニウム
25 SUS
31 ICF本体
32 真空シール固定フランジ
33 真空シール部
41 FRPロッド(断熱部材)
42 皿バネ
43 真空シール(Oリング)
44 低温側接点部材
45 FRPパイプ(断熱部材)
46 ロッド固定ナット
47 固定部材
48 真空キャップ
DESCRIPTION OF
15A PL (+)
15B PL (-)
16
21
23A Heat transfer flexible (refrigerator side)
23B Heat transfer flexible (coil side)
24
31 ICF body 32 Vacuum seal fixing flange 33
42
44 Low temperature
46
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015098438A JP6535210B2 (en) | 2015-05-13 | 2015-05-13 | Superconducting Magnetic Bearing for Superconducting Flywheel Storage System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015098438A JP6535210B2 (en) | 2015-05-13 | 2015-05-13 | Superconducting Magnetic Bearing for Superconducting Flywheel Storage System |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016211714A true JP2016211714A (en) | 2016-12-15 |
JP6535210B2 JP6535210B2 (en) | 2019-06-26 |
Family
ID=57550733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015098438A Active JP6535210B2 (en) | 2015-05-13 | 2015-05-13 | Superconducting Magnetic Bearing for Superconducting Flywheel Storage System |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6535210B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117748815A (en) * | 2024-02-19 | 2024-03-22 | 中国科学院电工研究所 | Hollow shaft flywheel energy storage system based on hybrid superconducting magnetic bearing |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06132567A (en) * | 1992-10-20 | 1994-05-13 | Sumitomo Heavy Ind Ltd | Conduction cooling type superconducting magnet apparatus |
JPH06275875A (en) * | 1993-03-18 | 1994-09-30 | Sumitomo Heavy Ind Ltd | Conduction cooling-type superconducting electromagnet device |
JPH09312210A (en) * | 1996-03-18 | 1997-12-02 | Toshiba Corp | Cooling device and cooling method |
JP2001099156A (en) * | 1999-10-01 | 2001-04-10 | Mitsubishi Heavy Ind Ltd | High temperature superconducting magnetic bearing device and high temperature superconducting flywheel device |
JP2007188918A (en) * | 2006-01-11 | 2007-07-26 | Hitachi Ltd | Supports and structures |
JP2008086095A (en) * | 2006-09-27 | 2008-04-10 | Railway Technical Res Inst | Superconducting flywheel device for power storage |
JP2009054655A (en) * | 2007-08-23 | 2009-03-12 | Tokyo Electron Ltd | Vaporizer, material gas supply system using vaporizer and film depositing apparatus using the same |
JP2010081701A (en) * | 2008-09-25 | 2010-04-08 | Railway Technical Res Inst | Magnetically supporting device and method for designing this magnetically supporting device |
JP2012209381A (en) * | 2011-03-29 | 2012-10-25 | Toshiba Corp | Superconductive magnet device |
JP2013055311A (en) * | 2011-08-11 | 2013-03-21 | Fujikura Ltd | Oxide superconducting coil and superconducting apparatus and manufacturing method of oxide superconducting coil |
JP2013150499A (en) * | 2012-01-23 | 2013-08-01 | Railway Technical Research Institute | Vibration control structure of power storage apparatus |
JP2015083855A (en) * | 2013-10-25 | 2015-04-30 | 古河電気工業株式会社 | Superconductive magnetic bearing and cooling device |
JP2015173175A (en) * | 2014-03-11 | 2015-10-01 | 公益財団法人鉄道総合技術研究所 | Lead wire fixation structure and superconducting magnet in cryostat compatible with extremely low temperature |
-
2015
- 2015-05-13 JP JP2015098438A patent/JP6535210B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06132567A (en) * | 1992-10-20 | 1994-05-13 | Sumitomo Heavy Ind Ltd | Conduction cooling type superconducting magnet apparatus |
JPH06275875A (en) * | 1993-03-18 | 1994-09-30 | Sumitomo Heavy Ind Ltd | Conduction cooling-type superconducting electromagnet device |
JPH09312210A (en) * | 1996-03-18 | 1997-12-02 | Toshiba Corp | Cooling device and cooling method |
JP2001099156A (en) * | 1999-10-01 | 2001-04-10 | Mitsubishi Heavy Ind Ltd | High temperature superconducting magnetic bearing device and high temperature superconducting flywheel device |
JP2007188918A (en) * | 2006-01-11 | 2007-07-26 | Hitachi Ltd | Supports and structures |
JP2008086095A (en) * | 2006-09-27 | 2008-04-10 | Railway Technical Res Inst | Superconducting flywheel device for power storage |
JP2009054655A (en) * | 2007-08-23 | 2009-03-12 | Tokyo Electron Ltd | Vaporizer, material gas supply system using vaporizer and film depositing apparatus using the same |
JP2010081701A (en) * | 2008-09-25 | 2010-04-08 | Railway Technical Res Inst | Magnetically supporting device and method for designing this magnetically supporting device |
JP2012209381A (en) * | 2011-03-29 | 2012-10-25 | Toshiba Corp | Superconductive magnet device |
JP2013055311A (en) * | 2011-08-11 | 2013-03-21 | Fujikura Ltd | Oxide superconducting coil and superconducting apparatus and manufacturing method of oxide superconducting coil |
JP2013150499A (en) * | 2012-01-23 | 2013-08-01 | Railway Technical Research Institute | Vibration control structure of power storage apparatus |
JP2015083855A (en) * | 2013-10-25 | 2015-04-30 | 古河電気工業株式会社 | Superconductive magnetic bearing and cooling device |
JP2015173175A (en) * | 2014-03-11 | 2015-10-01 | 公益財団法人鉄道総合技術研究所 | Lead wire fixation structure and superconducting magnet in cryostat compatible with extremely low temperature |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117748815A (en) * | 2024-02-19 | 2024-03-22 | 中国科学院电工研究所 | Hollow shaft flywheel energy storage system based on hybrid superconducting magnetic bearing |
CN117748815B (en) * | 2024-02-19 | 2024-05-03 | 中国科学院电工研究所 | A hollow shaft flywheel energy storage system based on hybrid superconducting magnetic bearings |
Also Published As
Publication number | Publication date |
---|---|
JP6535210B2 (en) | 2019-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4937687B2 (en) | Superconducting flywheel device for power storage | |
JP6363329B2 (en) | Nested rotor open core flywheel | |
US8362860B2 (en) | Superconducting apparatus | |
Han et al. | Study of superconductor bearings for a 35 kWh superconductor flywheel energy storage system | |
US10077955B2 (en) | Superconducting electrical machine with double re-entrant ends for minimizing heat leak | |
US9899894B2 (en) | Scalable device and arrangement for storing and releasing energy | |
US10270311B2 (en) | Superconducting electrical machine with two part rotor with center shaft capable of handling bending loads | |
JP5420293B2 (en) | Superconducting flywheel power storage device | |
CN107645212B (en) | Superconducting energy storage device and control method thereof | |
JP2016211714A (en) | Superconductive magnetic bearing for superconductive flywheel power storage system | |
JP5275957B2 (en) | Flywheel power storage device with superconducting magnetic bearing | |
Fair et al. | Development of an HTS hydroelectric power generator for the hirschaid power station | |
US10079534B2 (en) | Superconducting electrical machine with rotor and stator having separate cryostats | |
JP3337440B2 (en) | High temperature superconducting magnetic bearing device and high temperature superconducting flywheel device | |
JP5037187B2 (en) | Vacuum insulated container for rotating bodies using magnetic levitation using high-temperature superconducting bulk material | |
JP2010050314A (en) | Frp cryostat | |
KR20190102968A (en) | Hermetically sealed housing | |
JP2001343020A (en) | Superconducting magnetic bearing and superconducting flywheel device | |
JP6239397B2 (en) | Superconducting conductor cooling structure | |
JP5337179B2 (en) | Superconducting device | |
US20150207365A1 (en) | Superconducting power generation system and associated method for generating power | |
JP2019193420A (en) | Superconducting motor | |
JP2013150499A (en) | Vibration control structure of power storage apparatus | |
JPS6254982A (en) | Cryostat | |
JP2013192331A (en) | Rotor of superconducting motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171205 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20171129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190531 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6535210 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |