[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008086095A - Superconducting flywheel device for power storage - Google Patents

Superconducting flywheel device for power storage Download PDF

Info

Publication number
JP2008086095A
JP2008086095A JP2006261641A JP2006261641A JP2008086095A JP 2008086095 A JP2008086095 A JP 2008086095A JP 2006261641 A JP2006261641 A JP 2006261641A JP 2006261641 A JP2006261641 A JP 2006261641A JP 2008086095 A JP2008086095 A JP 2008086095A
Authority
JP
Japan
Prior art keywords
flywheel
superconducting
power storage
magnetic
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006261641A
Other languages
Japanese (ja)
Other versions
JP4937687B2 (en
Inventor
Hiroshi Kiyono
寛 清野
Masaru Nagashima
賢 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2006261641A priority Critical patent/JP4937687B2/en
Publication of JP2008086095A publication Critical patent/JP2008086095A/en
Application granted granted Critical
Publication of JP4937687B2 publication Critical patent/JP4937687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting flywheel device for power storage which can secure the safety by arranging magnetic bearing parts above and below a flywheel and also can improve the efficiency by separating a flywheel part and a vacuum vessel for cryogenic temperatures. <P>SOLUTION: The superconducting flywheel device for power storage, the rotating shaft of whose flywheel is supported by a magnetic bearing composed of a superconducting coil and a superconducting bulk body and which has a motor-generator, has a low vacuum vessel 11 for suppression of windage loss where the flywheel 13 is put. The rotating shaft 8 of the flywheel 13 is supported by magnetic bearings which are constituted of superconducting coils 4, 4' and superconducting bulk bodies 9, 9' being arranged pair by pair in the vacuum vessels 7, 7' for cryogenic temperatures arranged above and below across the flywheel 13. The connection between respective vacuum vessels is sealed with a magnetic seal unit which seals the circumference of the rotating shaft with an O-ring of magnetic fluid, and it also has a cooling chamber 15, which cools the motor-generator above the rotating shaft 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、余剰電力をフライホイールの運動エネルギーに変換して貯蔵するとともに、必要に応じて前記フライホイールに貯蔵されている運動エネルギーを電気エネルギーに変換して取り出すようにした、電力貯蔵用超電導フライホイール装置に係り、その超電導磁気軸受けの改良に関するものである。   The present invention relates to a superconducting power storage system that converts surplus power into kinetic energy of a flywheel and stores it, and converts kinetic energy stored in the flywheel into electrical energy and takes it out as necessary. The present invention relates to a flywheel device, and relates to an improvement of the superconducting magnetic bearing.

上記した超電導フライホイール電力貯蔵装置としては、例えば、下記特許文献1に開示されるようなものがあった。   As the above-described superconducting flywheel power storage device, for example, there is one disclosed in Patent Document 1 below.

図3はかかる従来の超電導フライホイール電力貯蔵装置の模式図である。   FIG. 3 is a schematic diagram of such a conventional superconducting flywheel power storage device.

この図に示すように、固定状態で配置される超電導コイル103と、これに対向させて浮上状態に配置される超電導バルク体104と、該超電導バルク体104と一体的に回転するフライホイール105とを収納した低温容器101を有し、かつ低温容器101内を真空排気するための排気装置109と、超電導コイル103をその臨界温度以下に冷却するための熱伝導型の冷却装置111と、フライホイール105に固設された回転軸106と発電・電動機112との接続・遮断を行うためのクラッチ装置113とを備えるようにしている。なお、図3において、102は冷却板、107は案内用超電導コイル、108は案内用超電導バルク体、110はHe圧縮機である。   As shown in this figure, a superconducting coil 103 arranged in a fixed state, a superconducting bulk body 104 arranged in a levitating state facing the coil, and a flywheel 105 rotating integrally with the superconducting bulk body 104, , An exhaust device 109 for evacuating the inside of the cryocontainer 101, a heat conduction type cooling device 111 for cooling the superconducting coil 103 below its critical temperature, and a flywheel A rotating shaft 106 fixed to 105 and a clutch device 113 for connecting / disconnecting the generator / motor 112 are provided. In FIG. 3, reference numeral 102 denotes a cooling plate, 107 denotes a guiding superconducting coil, 108 denotes a guiding superconducting bulk body, and 110 denotes a He compressor.

上記したように、従来の永久磁石を超電導コイル103に置き換えたことにより、超電導コイル103と超電導バルク体104との間により大きな電磁力を発生させることができる。つまり、電磁力は磁場の自乗に比例して増大するため、超電導コイル103により大きな磁場を生成することが、より大きな電磁力を発生させ、フライホイール105に対して強力な浮上力を得ることにつながる。   As described above, by replacing the conventional permanent magnet with the superconducting coil 103, a larger electromagnetic force can be generated between the superconducting coil 103 and the superconducting bulk body 104. That is, since the electromagnetic force increases in proportion to the square of the magnetic field, generating a large magnetic field by the superconducting coil 103 generates a larger electromagnetic force and obtains a strong levitation force on the flywheel 105. Connected.

また、均一磁場を大空間に実現することができる。   In addition, a uniform magnetic field can be realized in a large space.

さらに、軸受の空隙(エアギャップ)を増大させることができる。
特開2003−219581号公報
Furthermore, the air gap (air gap) of the bearing can be increased.
JP 2003-219581 A

しかしながら、上記した超電導フライホイール電力貯蔵装置によれば、ラジアルベアリングをフライホイールの下側にしか配置していないため、回転軸の上端が自由端となり軸振れが生じやすい。下側のラジアルベアリングを強固にしたとしても、剛体モードでの回転軸の倒れは抑えがたく、安定して回転させるのは容易ではない。さらに、極低温の冷却領域が広くなり、冷却のための大きなエネルギーを消費すことになり、効率が低下するなどという問題があった。   However, according to the above-described superconducting flywheel power storage device, since the radial bearing is disposed only on the lower side of the flywheel, the upper end of the rotating shaft becomes a free end and shaft runout easily occurs. Even if the lower radial bearing is strengthened, it is difficult to prevent the rotation shaft from falling down in the rigid body mode, and it is not easy to rotate it stably. Furthermore, there is a problem that the cryogenic cooling area is widened and a large amount of energy is consumed for cooling, resulting in a reduction in efficiency.

本発明は、上記状況に鑑みて、磁気軸受部分をフライホイールの上下に配置して安定性を確保するとともに、フライホイール部分と極低温用の真空容器を分離して効率の向上を図ることができる電力貯蔵用超電導フライホイール装置を提供することを目的とする。   In view of the above situation, the present invention can secure the stability by arranging the magnetic bearing portions above and below the flywheel, and can improve efficiency by separating the flywheel portion and the cryogenic vacuum vessel. An object of the present invention is to provide a superconducting flywheel device for power storage.

本発明は、上記目的を達成するために、
〔1〕フライホイールの回転軸を磁気軸受部で支持し、前記回転軸の上部に電動・発電機を有する電力貯蔵用超電導フライホイール装置において、風損抑制用低真空容器内に配置されるフライホイールと、このフライホイールを挟んで上下に配置される極低温用真空容器内に1組の超電導コイルと超電導バルク体から構成される磁気軸受部分を具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a superconducting flywheel device for power storage having a rotary shaft of a flywheel supported by a magnetic bearing portion and having an electric motor / generator above the rotary shaft, a fly placed in a low vacuum vessel for controlling windage loss A cryogenic vacuum vessel disposed above and below the wheel and the flywheel is provided with a magnetic bearing portion including a set of superconducting coils and a superconducting bulk body.

〔2〕上記〔1〕記載の電力貯蔵用超電導フライホイール装置において、前記極低温用真空容器とフライホイールの風損抑制用低真空容器との間に回転軸の周上を磁性流体のOリングでシールする磁気シールユニットを配置することを特徴とする。   [2] In the superconducting flywheel device for power storage as described in [1] above, an O-ring made of a magnetic fluid is disposed on the periphery of the rotating shaft between the cryogenic vacuum vessel and the low vacuum vessel for suppressing windage loss of the flywheel. A magnetic seal unit for sealing with is arranged.

〔3〕上記〔1〕記載の電力貯蔵用超電導フライホイール装置において、電動・発電機部分を容器で覆い、冷却室として低温のガスを循環させて冷却することを特徴とする。   [3] The superconducting flywheel device for power storage as described in [1] above, wherein the motor / generator part is covered with a container and cooled by circulating low-temperature gas as a cooling chamber.

〔4〕上記〔1〕記載の電力貯蔵用超電導フライホイール装置において、前記極低温用真空容器と電動・発電機の冷却室との間に回転軸の周上を磁性流体のOリングでシールする磁気シールユニットを配置することを特徴とする。   [4] In the superconducting flywheel device for power storage described in [1] above, the periphery of the rotating shaft is sealed with an O-ring of magnetic fluid between the cryogenic vacuum vessel and the cooling chamber of the motor / generator. A magnetic seal unit is arranged.

〔5〕上記〔2〕又は〔3〕記載の電力貯蔵用超電導フライホイール装置において、前記の回転軸の周上を磁性流体のOリングでシールする磁気シールユニットの外周部にベローズを配置することを特徴とする。   [5] In the superconducting flywheel device for power storage according to [2] or [3], a bellows is disposed on an outer periphery of a magnetic seal unit that seals the periphery of the rotating shaft with an O-ring of magnetic fluid. It is characterized by.

本発明によれば、以下のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

(1)磁気軸受をフライホイールの上下に配置するようにしたので、回転軸の回転安定性を確保することができる。   (1) Since the magnetic bearings are arranged above and below the flywheel, the rotational stability of the rotating shaft can be ensured.

(2)フライホイールと極低温用真空容器を分離して配置するようにしたので、極低温化のための領域をより限定することができ、冷却のための消費エネルギーの低減を図ることができ、電力貯蔵用超電導フライホイール装置の効率の向上を図ることができる。   (2) Since the flywheel and the cryogenic vacuum vessel are arranged separately, the region for cryogenic temperature can be further limited, and the energy consumption for cooling can be reduced. The efficiency of the superconducting flywheel device for power storage can be improved.

(3)回転軸の上端部に配置される電動・発電機の冷却室で温度上昇を抑制することができる。   (3) Temperature rise can be suppressed in the cooling chamber of the motor / generator disposed at the upper end of the rotating shaft.

(4)磁気シールは通常、回転軸と磁性流体との密着性を高めるために、回転軸と磁気シール用磁石とのギャップに高度な隙間管理が要求される。そのため、通常は回転軸と磁気シールのユニットとのはめあいはユニット部に設けたボールベアリングによって管理される。   (4) Normally, in order to improve the adhesion between the rotating shaft and the magnetic fluid, the magnetic seal requires a high degree of clearance management for the gap between the rotating shaft and the magnetic seal magnet. Therefore, the fit between the rotating shaft and the magnetic seal unit is usually managed by a ball bearing provided in the unit portion.

このようなシールユニットを複数個直列に配置すると、回転軸が複数箇所で支持され、不静定となる。このため組立て、調整に大きな労力を要する。さらにラジアル方向に回転抵抗が生じて効率が低下する。この問題に対して、磁気シールユニットの外周にベローズを配置したことで、磁気シールユニット部分での軸の拘束力は発生せず、よって回転抵抗もほとんど生じない。   When a plurality of such seal units are arranged in series, the rotation shaft is supported at a plurality of locations and becomes unstable. For this reason, great effort is required for assembly and adjustment. Further, rotational resistance is generated in the radial direction, and the efficiency is lowered. With respect to this problem, by arranging the bellows on the outer periphery of the magnetic seal unit, no shaft restraining force is generated at the magnetic seal unit portion, and therefore, no rotational resistance is generated.

本発明の電力貯蔵用超電導フライホイール装置は、風損抑制用低真空容器内に配置されるフライホイールと、このフライホイールを挟んで上下に配置される極低温用容器内に1組の超電導コイルと超電導バルク体から構成される磁気軸受部分を具備し、電動・発電機を冷却室に入れる。   A superconducting flywheel device for power storage according to the present invention includes a flywheel disposed in a low vacuum container for suppressing windage loss, and a set of superconducting coils in a cryogenic container disposed above and below the flywheel. And a magnetic bearing part composed of a superconducting bulk body, and the motor / generator is placed in the cooling chamber.

図1は本発明の第1実施例を示す電力貯蔵用超電導フライホイール装置の断面模式図である。   FIG. 1 is a schematic cross-sectional view of a superconducting flywheel device for power storage showing a first embodiment of the present invention.

この図において、1は架台、2, 2′は高真空状態の空間、3,3′は断熱荷重支持材、4,4′は超電導コイル、5,5′は冷凍機、6,6′は断熱シールド、7,7′は極低温用真空容器、8は回転軸、9,9′は超電導バルク体、10,10′,10″は回転軸の周上を磁性流体のOリングでシールする磁気シールユニット、11は風損抑制用低真空容器、12,12′は低真空容器シール用Oリング、13はフライホイール、14は電動・発電機で回転軸8の上端部に回転子14Aを直接取り付けるとともに、電機子14Bが配置される。15は電動・発電機の冷却室である。   In this figure, 1 is a frame, 2 and 2 'are high-vacuum spaces, 3 and 3' are adiabatic load supporting materials, 4 and 4 'are superconducting coils, 5 and 5' are refrigerators, and 6 and 6 'are Insulation shield, 7 and 7 'are cryogenic vacuum containers, 8 is a rotating shaft, 9 and 9' are superconducting bulk bodies, 10, 10 'and 10 "are sealed around the rotating shaft with an O-ring of magnetic fluid. A magnetic seal unit, 11 is a low vacuum vessel for windage damage suppression, 12 and 12 'are O-rings for low vacuum vessel sealing, 13 is a flywheel, 14 is an electric motor / generator, and a rotor 14A is provided at the upper end of the rotary shaft 8. In addition to direct mounting, an armature 14B is disposed, and 15 is a cooling chamber for the motor / generator.

上記したように、磁気軸受10,10′をフライホイール13の上下に配置する。また、フライホイール13用の風損抑制用低真空容器11と極低温用真空容器7,7′を分離して配置するようにしている。   As described above, the magnetic bearings 10 and 10 ′ are arranged above and below the flywheel 13. Further, the low vacuum vessel 11 for suppressing windage loss for the flywheel 13 and the cryogenic vacuum vessels 7 and 7 'are arranged separately.

したがって、磁気軸受10,10′をフライホイール13の上下に配置するようにしたので、回転軸8の回転安定性を確保することができる。   Therefore, since the magnetic bearings 10 and 10 ′ are arranged above and below the flywheel 13, the rotational stability of the rotating shaft 8 can be ensured.

また、フライホイール13と極低温用真空容器7,7′を分離して配置するようにしたので、極低温化のための領域をより限定することができ、冷却のための消費エネルギーの低減を図ることができ、電力貯蔵用超電導フライホイール装置の効率の向上を図ることができる。   Further, since the flywheel 13 and the cryogenic vacuum vessels 7 and 7 'are arranged separately, the region for cryogenic temperature can be further limited, and the energy consumption for cooling can be reduced. The efficiency of the superconducting flywheel device for power storage can be improved.

また、回転軸8の上端部に配置される電動・発電機14(回転子14A・電機子14B)を冷却室15で覆い、ここに冷却用の低温ガスを循環させることで電動・発電機14の温度上昇を抑制することができる。   Further, the motor / generator 14 (rotor 14A / armature 14B) disposed at the upper end portion of the rotating shaft 8 is covered with a cooling chamber 15, and a low-temperature gas for cooling is circulated in the motor / generator 14 thereby. Temperature rise can be suppressed.

図2は本発明の第2実施例を示す電力貯蔵用超電導フライホイール装置の断面模式図である。   FIG. 2 is a schematic cross-sectional view of a superconducting flywheel device for power storage showing a second embodiment of the present invention.

この実施例では、第1実施例に示した磁気シールユニット(磁気軸受)10,10′,10″の外周部にベローズ(可撓継手)21を付加して、フライホイール13の風損抑制用低真空容器11と磁気軸受10,10′,10″の極低温用真空容器7,7′との間、磁気軸受10,10′,10″の極低温用真空容器7と架台1との間を接続するようにしている。これによって回転軸8の駆動に対して磁気シールユニットが抵抗となることはない。なお、各真空容器の回転軸貫通部分は回転軸の周上を磁性流体のOリングでシールする。   In this embodiment, a bellows (flexible joint) 21 is added to the outer peripheral portion of the magnetic seal unit (magnetic bearing) 10, 10 ', 10 "shown in the first embodiment to suppress wind loss of the flywheel 13. Between the low vacuum vessel 11 and the cryogenic vacuum vessel 7, 7 ′ of the magnetic bearing 10, 10 ′, 10 ″, and between the cryogenic vacuum vessel 7 of the magnetic bearing 10, 10 ′, 10 ″ and the mount 1 As a result, the magnetic seal unit does not become a resistance against the driving of the rotating shaft 8. The rotating shaft penetrating portion of each vacuum vessel has a magnetic fluid O on the periphery of the rotating shaft. Seal with a ring.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.

本発明の電力貯蔵用超電導フライホイール装置は、安定性と効率を向上させる超電導フライホイール電力貯蔵装置として利用可能である。   The superconducting flywheel device for power storage of the present invention can be used as a superconducting flywheel power storage device that improves stability and efficiency.

本発明の第1実施例を示す電力貯蔵用超電導フライホイール装置の断面模式図である。It is a cross-sectional schematic diagram of the superconducting flywheel device for electric power storage which shows 1st Example of this invention. 本発明の第2実施例を示す電力貯蔵用超電導フライホイール装置の断面模式図である。It is a cross-sectional schematic diagram of the superconducting flywheel device for electric power storage which shows 2nd Example of this invention. 従来の超電導フライホイール電力貯蔵装置の断面模式図である。It is a cross-sectional schematic diagram of a conventional superconducting flywheel power storage device.

符号の説明Explanation of symbols

1 架台
2,2′ 高真空状態の空間
3,3′ 断熱荷重支持材
4,4′ 超電導コイル
5,5′ 冷凍機
6,6′ 断熱シールド
7,7′ 極低温用真空容器
8 回転軸
9,9′ 超電導バルク体
10,10′,10″ 磁気シールユニット(磁気軸受)
11 風損抑制用低真空容器
12,12′ 低真空容器シール用Oリング
13 フライホイール
14 電動・発電機
14A 回転子
14B 電機子
15 電動・発電機の冷却室
21 ベローズ(可撓継手)
DESCRIPTION OF SYMBOLS 1 Base 2, 2 'High vacuum state space 3, 3' Adiabatic load support material 4, 4 'Superconducting coil 5, 5' Refrigerator 6, 6 'Thermal shield 7, 7' Cryogenic vacuum vessel 8 Rotating shaft 9 , 9 'Superconducting bulk material 10, 10', 10 "Magnetic seal unit (magnetic bearing)
DESCRIPTION OF SYMBOLS 11 Low-vacuum container for windage loss 12,12 'O-ring for low-vacuum container seal 13 Flywheel 14 Electric motor / generator 14A Rotor 14B Armature 15 Cooling chamber of electric motor / generator 21 Bellows (flexible joint)

Claims (5)

フライホイールの回転軸を磁気軸受部で支持し、前記回転軸の上部に電動・発電機を有する電力貯蔵用超電導フライホイール装置において、
(a)風損抑制用低真空容器内に配置されるフライホイールと、
(b)該フライホイールを挟んで上下に配置される極低温用真空容器内に1組の超電導コイルと超電導バルク体から構成される磁気軸受部分を具備することを特徴とする電力貯蔵用超電導フライホイール装置。
In the superconducting flywheel device for power storage having a rotary shaft of the flywheel supported by a magnetic bearing portion and having an electric motor / generator on the rotary shaft,
(A) a flywheel disposed in a low vacuum vessel for windage damage suppression;
(B) A superconducting fly for power storage, comprising a pair of superconducting coils and a superconducting bulk body in a cryogenic vacuum vessel placed above and below the flywheel. Wheel device.
請求項1記載の電力貯蔵用超電導フライホイール装置において、前記極低温用真空容器とフライホイールの風損抑制用低真空容器との間に回転軸の周上を磁性流体のOリングでシールする磁気シールユニットを配置することを特徴とする電力貯蔵用超電導フライホイール装置。   2. The superconducting flywheel device for power storage according to claim 1, wherein a magnet that seals the periphery of the rotary shaft between the cryogenic vacuum vessel and the low vacuum vessel for suppressing windage loss of the flywheel with an O-ring of magnetic fluid. A superconducting flywheel device for power storage, comprising a seal unit. 請求項1記載の電力貯蔵用超電導フライホイール装置において、電動・発電機部分を容器で覆い、冷却室として低温のガスを循環させて冷却することを特徴とする電力貯蔵用超電導フライホイール装置。   2. The superconducting flywheel device for power storage according to claim 1, wherein the motor / generator portion is covered with a container and cooled by circulating low-temperature gas as a cooling chamber. 請求項1記載の電力貯蔵用超電導フライホイール装置において、前記極低温用真空容器と電動・発電機の冷却室との間に回転軸の周上を磁性流体のOリングでシールする磁気シールユニットを配置することを特徴とする電力貯蔵用超電導フライホイール装置。   2. The superconducting flywheel device for power storage according to claim 1, wherein a magnetic seal unit for sealing the periphery of the rotating shaft with an O-ring of magnetic fluid is provided between the cryogenic vacuum vessel and the cooling chamber of the motor / generator. A superconducting flywheel device for power storage, characterized by being arranged. 請求項2又は3記載の電力貯蔵用超電導フライホイール装置において、前記の回転軸の周上を磁性流体のOリングでシールする磁気シールユニットの外周部にベローズを配置することを特徴とする電力貯蔵用超電導フライホイール装置。   The superconducting flywheel device for power storage according to claim 2 or 3, wherein a bellows is disposed on an outer periphery of a magnetic seal unit for sealing the periphery of the rotating shaft with an O-ring of magnetic fluid. Superconducting flywheel device.
JP2006261641A 2006-09-27 2006-09-27 Superconducting flywheel device for power storage Expired - Fee Related JP4937687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261641A JP4937687B2 (en) 2006-09-27 2006-09-27 Superconducting flywheel device for power storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261641A JP4937687B2 (en) 2006-09-27 2006-09-27 Superconducting flywheel device for power storage

Publications (2)

Publication Number Publication Date
JP2008086095A true JP2008086095A (en) 2008-04-10
JP4937687B2 JP4937687B2 (en) 2012-05-23

Family

ID=39356381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261641A Expired - Fee Related JP4937687B2 (en) 2006-09-27 2006-09-27 Superconducting flywheel device for power storage

Country Status (1)

Country Link
JP (1) JP4937687B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239796A (en) * 2009-03-31 2010-10-21 Railway Technical Res Inst Superconductive flywheel electrical storage apparatus
US8134264B2 (en) 2008-10-31 2012-03-13 Korea Electric Power Corporation Large capacity hollow-type flywheel energy storage device
WO2013149625A1 (en) * 2012-04-03 2013-10-10 Babcock Noell Gmbh Device for producing, improving, and stabilizing the vacuum in the housing of a flywheel mass
JP2015080369A (en) * 2013-10-18 2015-04-23 公益財団法人鉄道総合技術研究所 Seal structure in power storage apparatus
WO2016055398A1 (en) * 2014-10-10 2016-04-14 Messer Industriegase Gmbh Device for improving the vacuum in the housing of a machine
JP2016211714A (en) * 2015-05-13 2016-12-15 公益財団法人鉄道総合技術研究所 Superconductive magnetic bearing for superconductive flywheel power storage system
CN111541335A (en) * 2020-05-27 2020-08-14 南京工业大学 Magnetic suspension flywheel energy storage device
CN115065200A (en) * 2022-08-18 2022-09-16 华驰动能(北京)科技有限公司 Liquid cooling energy storage flywheel with vacuum environment inside and energy storage equipment
CN115360849A (en) * 2022-10-21 2022-11-18 华驰动能(北京)科技有限公司 Flywheel energy storage system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018022935A1 (en) * 2016-07-29 2018-02-01 Amber Kinetics, Inc. Power electronics housing and packaging for flywheel energy storage systems
CN108869543B (en) * 2018-06-08 2019-10-29 中国科学院电工研究所 A kind of hybrid superconducting magnetic bearing system of flywheel energy storage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136825A (en) * 1998-08-28 2000-05-16 Koyo Seiko Co Ltd Starting method for superconducting bearing device
JP2002005165A (en) * 2000-06-22 2002-01-09 Railway Technical Res Inst Hybrid thrust bearing device using superconductive coil
JP2003020978A (en) * 2001-07-06 2003-01-24 Mazda Motor Corp Device and method for controlling exhaust emission of engine
JP2003239971A (en) * 2002-02-18 2003-08-27 Mitsubishi Heavy Ind Ltd Superconductivity magnetic bearing device and superconductivity flywheel device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136825A (en) * 1998-08-28 2000-05-16 Koyo Seiko Co Ltd Starting method for superconducting bearing device
JP2002005165A (en) * 2000-06-22 2002-01-09 Railway Technical Res Inst Hybrid thrust bearing device using superconductive coil
JP2003020978A (en) * 2001-07-06 2003-01-24 Mazda Motor Corp Device and method for controlling exhaust emission of engine
JP2003239971A (en) * 2002-02-18 2003-08-27 Mitsubishi Heavy Ind Ltd Superconductivity magnetic bearing device and superconductivity flywheel device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134264B2 (en) 2008-10-31 2012-03-13 Korea Electric Power Corporation Large capacity hollow-type flywheel energy storage device
JP2010239796A (en) * 2009-03-31 2010-10-21 Railway Technical Res Inst Superconductive flywheel electrical storage apparatus
WO2013149625A1 (en) * 2012-04-03 2013-10-10 Babcock Noell Gmbh Device for producing, improving, and stabilizing the vacuum in the housing of a flywheel mass
JP2015080369A (en) * 2013-10-18 2015-04-23 公益財団法人鉄道総合技術研究所 Seal structure in power storage apparatus
WO2016055398A1 (en) * 2014-10-10 2016-04-14 Messer Industriegase Gmbh Device for improving the vacuum in the housing of a machine
US10563644B2 (en) 2014-10-10 2020-02-18 Messer Industriegase Gmbh Device for improving the vacuum in the housing of a machine
JP2016211714A (en) * 2015-05-13 2016-12-15 公益財団法人鉄道総合技術研究所 Superconductive magnetic bearing for superconductive flywheel power storage system
CN111541335A (en) * 2020-05-27 2020-08-14 南京工业大学 Magnetic suspension flywheel energy storage device
CN115065200A (en) * 2022-08-18 2022-09-16 华驰动能(北京)科技有限公司 Liquid cooling energy storage flywheel with vacuum environment inside and energy storage equipment
CN115065200B (en) * 2022-08-18 2022-11-15 华驰动能(北京)科技有限公司 Liquid cooling energy storage flywheel with vacuum environment inside and energy storage equipment
CN115360849A (en) * 2022-10-21 2022-11-18 华驰动能(北京)科技有限公司 Flywheel energy storage system

Also Published As

Publication number Publication date
JP4937687B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4937687B2 (en) Superconducting flywheel device for power storage
JP3840182B2 (en) Magnetic bearing that supports rotating shaft using high Tc superconducting material
US9255495B2 (en) Magnetically-coupled damper for turbomachinery
US9534658B1 (en) Energy storage device
JP2003219581A (en) Superconducting flywheel power storage apparatus
KR101933030B1 (en) Scalable device and arrangement for storing and releasing energy
JP5275957B2 (en) Flywheel power storage device with superconducting magnetic bearing
JP2008151032A (en) Turbine unit for thermal power generation and thermal power generating system
JP2008304045A (en) Superconductive flywheel system
US10047823B1 (en) Energy storage device
JP3337440B2 (en) High temperature superconducting magnetic bearing device and high temperature superconducting flywheel device
JP5263820B2 (en) Pump device
JPH06233479A (en) Electric power storage apparatus
JP6665962B1 (en) Turbo compressor
US11060509B2 (en) Cooling system for a superconducting generator
JP2001343020A (en) Superconductive magnetic bearing and superconductive flywheel
JP6323641B2 (en) Seal structure in power storage device
RU2615607C1 (en) Mechanical energy storage with magnetic gearbox
JP6535210B2 (en) Superconducting Magnetic Bearing for Superconducting Flywheel Storage System
US20230378850A1 (en) Ceramic sleeve for a stator housing of an electrical machine
CN101783545A (en) Novel cooling system in flywheel energy storage system
JP2014190503A (en) Flywheel structure in power storage device
JP2003092857A (en) Microgasturbine generator
CN205160295U (en) Evaporation heat dissipation type permanent magnetism vortex flexible transmission device
JP2000120683A (en) Superconductive flywheel device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees