[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016211208A - Manufacturing method of concrete barrier in channel - Google Patents

Manufacturing method of concrete barrier in channel Download PDF

Info

Publication number
JP2016211208A
JP2016211208A JP2015095037A JP2015095037A JP2016211208A JP 2016211208 A JP2016211208 A JP 2016211208A JP 2015095037 A JP2015095037 A JP 2015095037A JP 2015095037 A JP2015095037 A JP 2015095037A JP 2016211208 A JP2016211208 A JP 2016211208A
Authority
JP
Japan
Prior art keywords
downstream
flow path
upstream
fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015095037A
Other languages
Japanese (ja)
Other versions
JP6471037B2 (en
Inventor
永井 修
Osamu Nagai
修 永井
慎一 庄司
Shinichi Shoji
慎一 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARINE SANGYO KK
Toa Corp
Original Assignee
MARINE SANGYO KK
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARINE SANGYO KK, Toa Corp filed Critical MARINE SANGYO KK
Priority to JP2015095037A priority Critical patent/JP6471037B2/en
Publication of JP2016211208A publication Critical patent/JP2016211208A/en
Application granted granted Critical
Publication of JP6471037B2 publication Critical patent/JP6471037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Barrages (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a concrete barrier capable of reducing a channel cross section or blocking a channel in the channel that keeps fluid flow.SOLUTION: A fluid F flows from upstream to downstream in a channel C. A frame member 3 is fixed in the channel C so that a gap through which the fluid F flows is ensured. A pipe body 6 is fixed to the frame member 3 and extended in a flow direction. A sheathing board member 2b is temporarily disposed by a temporary part 7 so that the gap through which the fluid F flows is ensured. A downstream formwork 2 is constructed by releasing the temporary disposition of the sheathing member 4 and moving the sheathing member to downstream side and fixing the member to the frame member 3. At this time, the state where the fluid F flows from upstream to downstream through inside of the pipe body 6 is maintained. An upstream formwork is constructed at a position on upstream side of the downstream formwork 2, and concrete is installed between these formwork and cured to manufacture a concrete barrier 1.SELECTED DRAWING: Figure 3

Description

本発明は、流路内のコンクリート製隔壁の製造方法に関し、さらに詳しくは、流体の流れを維持した状態の流路内で、流路断面積を小さくする、または流路を塞ぐコンクリート製の隔壁を、流路断面積が大きな場合であっても軽労化を図りつつ効率的に製造できる流路内のコンクリート製隔壁の製造方法に関するものである。   The present invention relates to a method for manufacturing a concrete partition wall in a flow path, and more particularly, a concrete partition wall that reduces a cross-sectional area of a flow path or closes the flow path in a flow path in a state where a fluid flow is maintained. The present invention relates to a method for manufacturing a concrete partition wall in a flow path that can be efficiently manufactured while reducing the labor even if the flow path cross-sectional area is large.

従来、灌漑用水の配水管などに対して、その流路の閉塞や流路断面積の変更等を行う場合には、一旦、流路内の水位を低下させる、もしくは流路内の流体の流れを止めた状態で施工している。流体の流れをそのまま維持する必要がある場合には、作業現場の流路を迂回する仮設の迂回水路を設けて上流側の流体を下流側に流したり、ポンプ装置によって適宜、上流側の流体を吸い上げ下流側に排出するなどして対処する必要があった。   Conventionally, when blocking the flow path or changing the cross-sectional area of a water distribution pipe or the like for irrigation water, temporarily lower the water level in the flow path or flow the fluid in the flow path. It is installed in the state that stopped. If it is necessary to maintain the flow of the fluid as it is, a temporary bypass water channel that bypasses the flow path at the work site is provided to allow the upstream fluid to flow downstream, or the upstream fluid can be appropriately discharged by a pump device. It was necessary to take measures such as sucking up and discharging to the downstream side.

上記の問題に対して、流路内の流体の流れを止めることなく、流路に隔壁を製造する方法が提案されている(特許文献1参照)。この提案されている方法では、(1)隔壁を製造する位置周辺の地盤を掘削し、流路管を露出する工程、(2)掘削された地盤内に流路管を露出させた状態で断面凹字状にコンクリートを打設・養生し、ゲート駆体を形成する工程、(3)ゲート駆体内において流路管を切断し、ゲート駆体を介して流路を形成する工程、(4)ゲート駆体に扉枠を固定し、この扉枠に制水扉を取り付ける工程を行う。   In order to solve the above problem, a method of manufacturing a partition wall in a flow channel without stopping the flow of fluid in the flow channel has been proposed (see Patent Document 1). In this proposed method, (1) a step of excavating the ground around the position where the partition wall is manufactured and exposing the flow channel pipe, (2) a cross section with the flow channel tube exposed in the excavated ground A step of placing and curing concrete in a concave shape to form a gate drive, (3) a step of cutting a flow channel pipe in the gate drive and forming a flow path through the gate drive, (4) The door frame is fixed to the gate body, and a process of attaching a water control door to the door frame is performed.

この方法では、隔壁として機能する制水扉とは別にゲート駆体を設ける必要があるので、作業工数がその分だけ増加する。また、既に製造された制水扉を地上から水中に移設する際に、制水扉の広い面積が流れる流体から力を受けるので、これに対抗して移設するには多大な労力を要する。流路断面が大きくなるほど、制水扉の面積は大きくなり、流れによって受ける力が増大するとともに制御扉の重量も増大する。そのため、流路断面積が大きくなると、制水扉の移設には、工数および労力の更なる増加が必要になり、作業効率を向上させることが困難になる。   In this method, since it is necessary to provide a gate body separately from the water control door that functions as a partition wall, the number of work steps increases accordingly. Further, when a water control door that has already been manufactured is moved from the ground to the water, a large area of the water control door receives force from the flowing fluid. As the flow path cross section increases, the area of the water control door increases, and the force received by the flow increases and the weight of the control door also increases. For this reason, when the cross-sectional area of the flow path becomes large, the man-hours and labors need to be further increased in order to move the water control door, and it becomes difficult to improve the work efficiency.

特開平9−209339号公報JP-A-9-209339

本発明の目的は、流体の流れを維持した状態の流路内で、流路断面積を小さくする、または流路を塞ぐコンクリート製の隔壁を、流路断面積が大きな場合であっても軽労化を図りつつ効率的に製造できる流路内のコンクリート製隔壁の製造方法を提供することにある。   An object of the present invention is to reduce the cross-sectional area of the flow path in a flow path in a state where the flow of the fluid is maintained or to close a concrete partition wall closing the flow path even if the flow path cross-sectional area is large. An object of the present invention is to provide a method of manufacturing a concrete partition wall in a flow path that can be efficiently manufactured while reducing labor.

上記目的を達成するため本発明の流路内のコンクリート製隔壁の製造方法は、上流側から下流側に流体が流れている状態の流路内に、この流体の流れ方向に間隔をあけて下流側型枠および上流側型枠を構築し、これら型枠の間にコンクリートを打設して硬化させることにより隔壁を製造する流路内のコンクリート製隔壁の製造方法であって、前記下流側型枠を骨組み部材とせき板部材とで構成し、前記流体が上流側から下流側に流れるすき間を確保した状態で前記骨組み部材を前記流路内に固定し、次いで、前記骨組み部材に管体を固定して前記流れ方向に延設し、この管体の内部を通じて前記流体を上流側から下流側に流し、かつ、この管体の外周側で前記流体が上流側から下流側に流れるすき間を確保した状態で前記固定した骨組み部材の位置に前記せき板部材を配置し、次いで前記管体の内部を通じて前記流体を上流側から下流側に流す状態を維持しつつ、前記せき板部材により前記管体の外周側の前記流体が流れるすき間を塞いで、前記せき板部材を前記骨組み部材に固定することにより前記下流側型枠を構築し、次いで、構築した前記下流側型枠の上流側で前記管体の上流側開口よりも下流側の位置に前記上流側型枠を構築し、前記コンクリートを硬化させたコンクリート製隔壁に前記管体を上流側から下流側に貫通させて埋設することを特徴とする。   In order to achieve the above object, a method for producing a concrete partition wall in a flow channel according to the present invention is provided in a flow channel in a state where a fluid is flowing from an upstream side to a downstream side with a gap in the fluid flow direction. A method for producing a partition wall made of concrete in a flow path, in which a partition wall is manufactured by constructing a side mold and an upstream mold, and placing concrete between the molds and curing the concrete, wherein the downstream mold The frame is composed of a frame member and a plate member, and the frame member is fixed in the flow path in a state in which a gap flows from the upstream side to the downstream side, and then a tube body is attached to the frame member. It is fixed and extends in the flow direction, and the fluid flows from the upstream side to the downstream side through the inside of the tube body, and a clearance for the fluid to flow from the upstream side to the downstream side is secured on the outer peripheral side of the tube body. The fixed frame member in a fixed state A gap in which the fluid on the outer peripheral side of the tube is flowed by the plate member while maintaining the state where the fluid is flowed from the upstream side to the downstream side through the inside of the tube body. And constructing the downstream formwork by fixing the baffle member to the framework member, and then downstream of the upstream opening of the tubular body on the upstream side of the constructed downstream formwork The upstream formwork is constructed at the position, and the pipe body is embedded from the upstream side to the downstream side in a concrete partition wall obtained by hardening the concrete.

本発明によれば、下流側型枠を構築する際に、流体が上流側から下流側に流れるすき間を確保した状態にするので、流路断面積の縮小による流速の上昇を抑えることができる。また、骨組み部材、せき板部材および管体が流れによって受ける力を抑制できる。そのため、水中で作業を行なう潜水作業員の軽労化を図ることが可能になる。   According to the present invention, when the downstream formwork is constructed, a gap in which the fluid flows from the upstream side to the downstream side is ensured, so that an increase in the flow rate due to the reduction of the channel cross-sectional area can be suppressed. Moreover, the force which a framework member, a dam member, and a pipe body receive by a flow can be suppressed. For this reason, it is possible to reduce the labor of diving workers who work underwater.

下流側型枠を構築した後は、管体を通じて流体が上流側から下流側に流れる。これにより、下流側型枠から管体の上流側開口までの範囲は、流体が淀んだ状態になって流体の影響を受け難くなる。この範囲に上流側型枠を構築するので、過大な労力なく作業を行なうことができる。   After the downstream formwork is constructed, the fluid flows from the upstream side to the downstream side through the tube. Thereby, the range from the downstream mold form to the upstream opening of the tube body is in a state where the fluid is stagnated and is not easily affected by the fluid. Since the upstream formwork is constructed in this range, the work can be performed without excessive labor.

下流側型枠と上流側型枠との間に打設したコンクリートが硬化することで管体を上流側から下流側に貫通させた隔壁が完成する。このように現場でコンクリートを打設して隔壁を製造するので、流路断面積が大きな流路であっても、流路の大きさや形状に合致した隔壁を製造することができる。   The concrete placed between the downstream formwork and the upstream formwork is hardened to complete a partition wall that penetrates the pipe body from the upstream side to the downstream side. Thus, since the concrete is cast on site to manufacture the partition wall, the partition wall matching the size and shape of the channel can be manufactured even for a channel having a large channel cross-sectional area.

例えば、前記管体の外周側で前記流体が上流側から下流側に流れるすき間を確保した状態で前記固定した骨組み部材の上流側で管体の上流側開口よりも下流側の所定位置に前記せき板部材を前記仮設部によって仮配置し、次いで、仮設部によるせき板部材の仮配置を解除してせき板部材を下流側に移動させて骨組み部材の位置に配置する。この場合は、せき板部材を仮配置する作業を管体の外周側の流体が流れるすき間を確保した状態で行うので、せき板部材が流れによって受ける力を抑制できる。また、仮配置を解除したせき板部材を流体の流れにのせて下流側に移動させて骨組み部材の位置に配置できるので、労力を軽減するには有利になる。   For example, in the state in which a clearance for the fluid to flow from the upstream side to the downstream side is secured on the outer peripheral side of the tubular body, the dam is positioned at a predetermined position on the upstream side of the fixed frame member and downstream of the upstream opening of the tubular body. The plate member is temporarily arranged by the temporary portion, and then the temporary arrangement of the plate member by the temporary portion is released, and the plate member is moved downstream to be arranged at the position of the skeleton member. In this case, the work of temporarily arranging the slat plate member is performed in a state in which a gap through which the fluid on the outer peripheral side of the tubular body flows is secured, so that the force received by the slat plate member due to the flow can be suppressed. Further, since the dam plate member whose provisional arrangement has been released can be moved to the downstream side in the fluid flow and arranged at the position of the skeleton member, it is advantageous in reducing labor.

例えば、前記下流側型枠が複数枚の前記せき板部材を備える構成にする。この構成にすると、地上から流路内に部材を搬入する経路が狭い場合でもせき板部材を搬入することができる。また、それぞれのせき板部材が流れによって受ける力を小さくできる。   For example, the downstream mold is provided with a plurality of the plate members. With this configuration, it is possible to carry in the board member even when the route for carrying the member into the flow path from the ground is narrow. Moreover, the force which each dam member receives by a flow can be made small.

例えば、前記下流側型枠が1枚の螺旋状に形成された前記せき板部材を備える構成にすることもできる。この構成にすると、仮配置および仮配置を解除する作業を1枚のせき板部材に対して行えばよいので作業工数を低減できる。   For example, the downstream mold can be configured to include the dam member formed in a single spiral shape. If it is set as this structure, since the operation | work which cancels | releases temporary arrangement | positioning and temporary arrangement | positioning should just be performed with respect to one piece of board member, an operation man-hour can be reduced.

例えば、前記下流側型枠が複数枚の前記せき板部材を備え、前記管体の外周側で前記流体が上流側から下流側に流れるすき間を確保した状態にする際には、管体に取り付けられたそれぞれのせき板部材の一方表面を管体の外周面に対向させた状態にすることもできる。この場合は、管体に取り付けたせき板部材の流路に対する横断面が小さくなるので、せき板部材の影響による流路の流れの変化が小さくなる。そのため、水中作業の軽労化に寄与する。   For example, when the downstream mold is provided with a plurality of the plate members, and the clearance is secured on the outer peripheral side of the tube, the fluid flows from the upstream side to the downstream side. It is also possible to make a state in which one surface of each of the resulting plate members is opposed to the outer peripheral surface of the tubular body. In this case, since the cross section with respect to the flow path of the dam member attached to the tubular body becomes smaller, the change in the flow of the flow path due to the influence of the dam member becomes smaller. Therefore, it contributes to lightening of underwater work.

例えば、前記下流側型枠が複数枚の前記せき板部材を備え、前記管体の外周側で前記流体が上流側から下流側に流れるすき間を確保した状態にする際には、管体に取り付けられてこの管体を中心にして周方向に移動可能なこれらせき板部材を流路を横断する向きにして互いに重ねた状態にする。この場合も、管体に取り付けたせき板部材の流路に対する横断面が小さくなるので、せき板部材の影響による流路の流れの変化が小さくなる。そのため、水中作業の軽労化に寄与する。   For example, when the downstream mold is provided with a plurality of the plate members, and the clearance is secured on the outer peripheral side of the tube, the fluid flows from the upstream side to the downstream side. Then, the plate members which are movable in the circumferential direction around the tube body are overlapped with each other in a direction crossing the flow path. Also in this case, since the cross section with respect to the flow path of the dam member attached to the tubular body becomes smaller, the change in the flow of the flow path due to the influence of the dam member becomes smaller. Therefore, it contributes to lightening of underwater work.

前記骨組み部材の前記流路の横断面視での面積を、例えば前記流路の横断面積の30%以下にする。これにより、流路内の流体が骨組み部材の間を円滑に流れる状態を確保することができる。これに伴ない、流速の増加を抑制することができ、作業効率の低下を抑制することができる。   The area of the frame member in the cross-sectional view of the flow path is, for example, 30% or less of the cross-sectional area of the flow path. Thereby, the state in which the fluid in a flow path flows smoothly between frame members can be ensured. Along with this, an increase in flow velocity can be suppressed, and a reduction in work efficiency can be suppressed.

前記コンクリート製隔壁を上流側から下流側に貫通させて埋設した前記管体の上流側開口を塞ぐこともできる。これにより、流路を塞ぐ隔壁を構築することができる。   It is also possible to close the upstream opening of the tubular body embedded through the concrete partition wall from the upstream side to the downstream side. Thereby, the partition which plugs up a flow path can be constructed.

本発明における第1工程を縦断面視で例示する説明図である。It is explanatory drawing which illustrates the 1st process in this invention by a longitudinal cross-sectional view. 図1のA1矢視で流路内部を例示する説明図である。It is explanatory drawing which illustrates the inside of a flow path by A1 arrow view of FIG. 本発明における第2工程を縦断面視で例示する説明図である。It is explanatory drawing which illustrates the 2nd process in this invention by a longitudinal cross-sectional view. 図3のA2矢視で流路内部を例示する説明図である。It is explanatory drawing which illustrates the inside of a flow path by A2 arrow view of FIG. 本発明における第3工程を縦断面視で例示する説明図である。It is explanatory drawing which illustrates the 3rd process in this invention by a longitudinal cross-sectional view. 本発明における第4工程を縦断面視で例示する説明図である。It is explanatory drawing which illustrates the 4th process in this invention by a longitudinal cross-sectional view. 本発明により製造した隔壁を縦断面視で例示する説明図である。It is explanatory drawing which illustrates the partition manufactured by this invention by the longitudinal cross-sectional view. 図7の管体の上流側開口を塞いだ流路を縦断面視で例示する説明図である。It is explanatory drawing which illustrates the flow path which block | closed the upstream opening of the tubular body of FIG. 7 by a longitudinal cross-sectional view. 本発明における第2工程の変形例を縦断面視で示す説明図である。It is explanatory drawing which shows the modification of the 2nd process in this invention by a longitudinal cross-sectional view. せき板部材の別の変形例を例示し、図10(a)は流体が流れるすき間を確保した状態、図10(b)は流体が流れるすき間の一部を塞いだ状態、図10(c)は流体が流れるすき間をすべて塞いだ状態を例示する説明図である。FIG. 10A illustrates a state in which a gap through which the fluid flows is secured, FIG. 10B illustrates a state in which a part of the gap through which the fluid flows is blocked, and FIG. FIG. 4 is an explanatory diagram illustrating a state in which all gaps through which fluid flows are blocked. せき板部材のさらに別の変形例を例示し、図11(a)は流体が流れるすき間を確保した状態、図11(b)は流体が流れるすき間の一部を塞いだ状態、図11(c)は流体が流れるすき間をすべて塞いだ状態を例示する説明図である。FIG. 11 (a) shows a state in which a gap through which fluid flows is secured, FIG. 11 (b) shows a state in which a part of the gap through which fluid flows is closed, FIG. 11 (c). ) Is an explanatory view illustrating a state in which all gaps through which fluid flows are closed.

以下、本発明の流路内のコンクリート製隔壁の製造方法(以下、隔壁の製造方法)を図1〜6に示した実施形態に基づいて、第1工程〜第4工程の4つの工程に分けて説明する。この実施形態では、図7に示すように、流体Fが充満した状態で流れている流路C内に流路断面積を小さくするコンクリート製隔壁1(以下、隔壁1という)を製造する。即ち、隔壁1を製造することにより、当初の流路断面積を管体6の横断面積に縮小させている。   Hereinafter, the concrete partition wall manufacturing method (hereinafter referred to as a partition wall manufacturing method) in the flow channel of the present invention is divided into four steps of a first step to a fourth step based on the embodiment shown in FIGS. I will explain. In this embodiment, as shown in FIG. 7, a concrete partition wall 1 (hereinafter referred to as a partition wall 1) having a small channel cross-sectional area is manufactured in a channel C flowing in a state where the fluid F is filled. That is, by manufacturing the partition wall 1, the initial flow path cross-sectional area is reduced to the cross-sectional area of the tube body 6.

当初の流路Cの直径は例えば1〜5m(、流路断面積としては0.785〜19.625m)である。管体6の内径は例えば50mm〜250mm(、横断面積は例えば0.00196〜0.049m)、或いは管体6の横断面積は当初の流路Cの流路断面積の0.25%程度である。当初の流路C内の流速は例えば0.01〜0.4m/sである。 The diameter of the initial flow path C is, for example, 1 to 5 m (the flow path cross-sectional area is 0.785 to 19.625 m 2 ). The inner diameter of the tube body 6 is, for example, 50 mm to 250 mm (the cross-sectional area is, for example, 0.00196 to 0.049 m 2 ), or the cross-sectional area of the tube body 6 is about 0.25% of the channel cross-sectional area of the original channel C. It is. The initial flow velocity in the channel C is, for example, 0.01 to 0.4 m / s.

流路Cの内部での作業は基本的に潜水作業員による水中作業になる。流路Cには隔壁1を構成する部材を搬入するための経路として、地上と流路Cを繋ぐ搬入口Eが設けられている。流路Cは鋼管等の金属製であってもコンクリート製であってもその材質は限定されない。   The work inside the channel C is basically an underwater work by a diving worker. The flow path C is provided with a carry-in entrance E that connects the ground and the flow path C as a path for carrying in the members constituting the partition wall 1. The material of the channel C is not limited, whether it is made of metal such as a steel pipe or made of concrete.

図1、図2に例示する第1工程では、隔壁1の下流側型枠2を構成する棒状の骨組み部材3を陸上のクレーン等を用いて搬入口Eを通じて流路C内に搬入する。搬入した骨組み部材3は、潜水作業員の作業により、流路Cの内周面に溶接やボルト等を用いて接合して、流体Fが上流側から下流側に流れるすき間を確保した状態で流路C内に固定する。後述する第2工程において、骨組み部材3には管体6が固定されるので、図2に示すように、管体6を固定し易い構造で骨組み部材3を形成する。   In the first step illustrated in FIGS. 1 and 2, the rod-shaped frame member 3 constituting the downstream mold 2 of the partition wall 1 is carried into the channel C through the carry-in entrance E using a land crane or the like. The imported frame member 3 is joined to the inner peripheral surface of the flow path C by welding, bolts, or the like by the work of a submersible worker, and the flow of the fluid F is ensured to ensure a clearance from the upstream side to the downstream side. Fix in the road C. In the second step, which will be described later, since the tube body 6 is fixed to the frame member 3, the frame member 3 is formed with a structure that allows the tube body 6 to be fixed easily as shown in FIG.

本発明では、流体Fが流れている流路C内に下流側型枠2を構築する際に、流体Fが流れるすき間を確保した状態で骨組み部材3を流路C内に固定するので、流路断面積の縮小による流速の上昇を抑制できる。また、骨組み部材3なので、流れによって受ける力を抑制できる。   In the present invention, when the downstream mold 2 is constructed in the flow path C in which the fluid F flows, the framework member 3 is fixed in the flow path C in a state in which a gap through which the fluid F flows is secured. An increase in flow velocity due to a reduction in road cross-sectional area can be suppressed. Moreover, since it is the framework member 3, the force received by a flow can be suppressed.

流路C内に固定した骨組み部材3の流路Cの横断面視での面積(すべての骨組み部材3の合計面積)は、流路Cの横断面積の30%以下にすることが望ましい。骨組み部材3をこの程度に粗な状態で流路Cに配置すると、流速の増加を十分に抑えることができる。   The area of the frame member 3 fixed in the channel C in the cross-sectional view of the channel C (the total area of all the frame members 3) is desirably 30% or less of the cross-sectional area of the channel C. When the skeleton member 3 is disposed in the flow path C in such a rough state, an increase in the flow velocity can be sufficiently suppressed.

次に、図3、図4に例示する第2工程では流路C内に管体6を搬入し、流体Fの流れる方向に延設するように骨組み部材3に固定する。この固定した管体6の内部を通じて流体Fを上流側から下流側に流れるようにする。さらに、管体6の外周側で流体Fが上流側から下流側に流れるすき間を確保した状態で、固定した骨組み部材3の上流側で管体6の上流側開口6aよりも下流側の所定位置に、せき板部材4を仮設部7を用いて仮配置する。   Next, in the second step illustrated in FIGS. 3 and 4, the pipe body 6 is carried into the flow path C and fixed to the frame member 3 so as to extend in the direction in which the fluid F flows. The fluid F is allowed to flow from the upstream side to the downstream side through the inside of the fixed tube body 6. Further, in a state in which a clearance for the fluid F to flow from the upstream side to the downstream side is ensured on the outer peripheral side of the tube body 6, a predetermined position on the upstream side of the fixed frame member 3 and on the downstream side of the upstream opening 6 a of the tube body 6. In addition, the dam member 4 is temporarily disposed using the temporary portion 7.

この実施形態では、複数枚で構成されるせき板部材4を上流側から下流側に間隔をあけて配置することで、流体Fが流れるすき間を確保している。具体的には管体6を中心にして、径の異なる複数の円環状のせき板部材4を同軸上に配置している。円環状のせき板部材4を分割し、さらに小さなサイズの円弧状の部材にして流路C内に搬入し、流路C内で溶接や接合金具等により接合することで円環状のせき板部材4を形成することもできる。   In this embodiment, the gap through which the fluid F flows is ensured by disposing the plurality of dam members 4 from the upstream side to the downstream side. Specifically, a plurality of annular dam members 4 having different diameters are coaxially arranged around the tube body 6. The ring-shaped claw plate member 4 is divided into smaller circular arc-shaped members, loaded into the flow path C, and joined in the flow path C by welding, fittings, or the like. 4 can also be formed.

この実施形態では、仮設部7を棒状の仮枠7aと紐状の接合部材7bとで構成している。仮枠7aは、せき板部材4を仮配置する位置よりも上流側で流路Cの内周面に固定して設置する。仮枠7aとせき板部材4とを接合部材7bを介して接続することで、せき板部材4を仮配置する。仮枠7aは、図4に例示するように、管体6が挿通した状態で固定可能な構成で骨組みを形成するとよい。また、潜水作業員は骨組み部材3と仮枠7aの間に入って、管体6を固定する作業やせき板部材4を仮配置する作業を行うことになるので、潜水作業員が通過できる経路を確保した構造で仮枠7aを形成するとよい。接合部材7bとしては、紐状の部材の他にもワイヤやチェーン等を用いることができる。   In this embodiment, the temporary portion 7 is composed of a rod-like temporary frame 7a and a string-like joining member 7b. The temporary frame 7a is fixed and installed on the inner peripheral surface of the flow path C on the upstream side of the position where the dam member 4 is temporarily arranged. By connecting the temporary frame 7a and the board member 4 via the joining member 7b, the board member 4 is temporarily arranged. As illustrated in FIG. 4, the temporary frame 7 a is preferably formed with a structure that can be fixed in a state where the tubular body 6 is inserted. Further, since the diving worker enters between the skeleton member 3 and the temporary frame 7a and performs the work of fixing the tubular body 6 and the work of temporarily arranging the baffle plate member 4, a path through which the diving worker can pass. The temporary frame 7a may be formed with a structure that secures the above. As the bonding member 7b, a wire, a chain, or the like can be used in addition to the string-like member.

この第2工程において、各部材を設置する順番は特に限定されないが、例えば、以下の作業手順で行う。(1)仮枠7aを骨組み部材3よりも上流側で、かつ、せき板部材4を仮配置する位置よりも上流側に構築する。(2)管体6を骨組み部材3と仮枠7aに挿通させ、固定する。(3)円環状のせき板部材4を分割した円弧状の部材を骨組み部材3と仮枠7aの間に搬入し、円弧状の部材それぞれに接続部材7bの一端部を接続し、それぞれの接続部材7bの他端部を仮枠7aに接続する。(4)隣り合うそれぞれの円弧状の部材を溶接により接合し、円環状のせき板部材4を形成する。   In the second step, the order in which the members are installed is not particularly limited, but for example, the following work procedure is used. (1) The temporary frame 7a is constructed on the upstream side of the frame member 3 and on the upstream side of the position where the siding plate member 4 is temporarily arranged. (2) The tubular body 6 is inserted through the frame member 3 and the temporary frame 7a and fixed. (3) An arc-shaped member obtained by dividing the ring shaped baffle member 4 is carried between the framework member 3 and the temporary frame 7a, and one end of the connection member 7b is connected to each of the arc-shaped members, and the respective connections are made. The other end of the member 7b is connected to the temporary frame 7a. (4) The adjacent arc-shaped members are joined together by welding to form an annular dam member 4.

本発明では、骨組み部材3に管体6を流れ方向に延設するので、管体6の設置による流速の上昇も極めて小さく、管体6が流れによって受ける力も小さくなる。せき板部材4も流体Fが流れるすき間を確保した状態で仮配置されるので、流速の上昇を抑制でき、せき板部材4が流れによって受ける力も小さくなる。これにより、これらの作業を水中で行う潜水作業員の労力を軽減できる。流路C内に各種部材を搬入する作業も容易になる。   In the present invention, since the pipe body 6 is extended in the flow direction on the frame member 3, the increase in the flow rate due to the installation of the pipe body 6 is extremely small, and the force that the pipe body 6 receives by the flow is also small. Since the slat plate member 4 is also temporarily arranged in a state where a clearance through which the fluid F flows is secured, an increase in the flow velocity can be suppressed, and the force that the slat plate member 4 receives by the flow is also reduced. Thereby, the labor of the submersible worker who performs these work underwater can be reduced. The operation of carrying various members into the flow path C is also facilitated.

次に、図5に例示する第3工程では、仮設部7によるせき部材4の仮配置を解除して、せき板部材4を下流側に移動させて骨組み部材3に固定する。これら固定されたせき板部材4により、管体6の外周側を塞ぐことにより下流側型枠2を構築する。この際に、管体6の内部を通じて流体Fを上流側から下流側に流す状態を維持する。   Next, in the third step illustrated in FIG. 5, the temporary arrangement of the weir member 4 by the temporary portion 7 is released, and the weir plate member 4 is moved downstream to be fixed to the frame member 3. The downstream mold 2 is constructed by closing the outer peripheral side of the tube body 6 with the fixed plate member 4. At this time, the state in which the fluid F flows from the upstream side to the downstream side through the inside of the tube body 6 is maintained.

この実施形態では、それぞれのせき板部材4に接続されている接続部材7bを取り外すことにより、せき板部材4の仮配置を解除する。そして、接続部材7bを取り外したせき板部材4を順次流れに沿って下流側に移動させ、骨組み部材3に固定する。複数枚で構成されるせき板部材4を全て骨組み部材3に固定し、管体6の外周側を塞ぐことにより下流側型枠2を構築する。   In this embodiment, by temporarily removing the connecting members 7b connected to the respective plate members 4, the temporary arrangement of the plate members 4 is released. Then, the dam member 4 from which the connecting member 7b has been removed is sequentially moved downstream along the flow and fixed to the skeleton member 3. The downstream mold 2 is constructed by fixing all of the plurality of plate members 4 to the frame member 3 and closing the outer peripheral side of the tube body 6.

本発明では、仮配置したせき板部材4を骨組み部材3に固定して、管体6の外周側を塞ぐことにより下流側型枠2を構築する。この際に、流路断面積が小さくなって流速が上がるが、せき板部材4を流れに沿って下流側に移動させればよいので、過大な労力が必要になることはない。   In the present invention, the downstream-side formwork 2 is constructed by fixing the temporarily placed baffle member 4 to the frame member 3 and closing the outer peripheral side of the tubular body 6. At this time, the flow passage cross-sectional area is reduced and the flow velocity is increased. However, since the dam member 4 only needs to be moved downstream along the flow, excessive labor is not required.

次に、図6に例示する第4工程では、構築した下流側型枠2の上流側で管体6の上流側開口6aよりも下流側の位置に上流側型枠5を構築する。上流側型枠5は、下流側型枠2と同様に、管体6を貫通させた状態で構築する。そして、下流側型枠2と上流側型枠5との間の管体6の外周側のスペースに、水中でも硬化するコンクリートCRを打設して硬化させることにより隔壁1を形成する。   Next, in the fourth step illustrated in FIG. 6, the upstream mold 5 is constructed at a position downstream of the upstream opening 6 a of the tubular body 6 on the upstream side of the constructed downstream mold 2. Similarly to the downstream mold 2, the upstream mold 5 is constructed in a state where the tubular body 6 is penetrated. The partition wall 1 is formed by placing and hardening concrete CR that is hardened even in water in the space on the outer peripheral side of the tubular body 6 between the downstream mold 2 and the upstream mold 5.

具体的には、下流側型枠2と上流側型枠5との間の管体6の外周側のスペースに、コンクリートCRを打設する際には、上流側型枠5や下流側型枠2に適宜、穴を設けておく。陸上に設置したコンクリート打設設備8からは下流側型枠2と上流側型枠5との間に圧送ホースを延設する。このコンクリート打設設備8から打設するコンクリ―トCRを供給する。コンクリートCRを打設すると、上述したスペースに存在する水が、設けた穴を通じて下流側型枠2の下流側、上流側型枠5の上流側に流出してコンクリートCRと入れ替わり、下流側型枠2と上流側型枠5との間の管体6の外周側のスペースにコンクリートCRを充填することができる。このように形成した隔壁1は、管体6が上流側から下流側に貫通して埋設された状態になる。即ち、隔壁1の流路断面積は管体6の開口面積となる。   Specifically, when the concrete CR is placed in the space on the outer peripheral side of the tubular body 6 between the downstream mold 2 and the upstream mold 5, the upstream mold 5 and the downstream mold 2 is appropriately provided with holes. A pressure feeding hose is extended between the downstream mold 2 and the upstream mold 5 from the concrete placement facility 8 installed on land. The concrete CR to be placed is supplied from the concrete placement facility 8. When the concrete CR is placed, the water existing in the space described above flows into the downstream side of the downstream formwork 2 and the upstream side of the upstream formwork 5 through the provided holes, and is replaced with the concrete CR. Concrete CR can be filled in a space on the outer peripheral side of the pipe body 6 between 2 and the upstream mold 5. The partition wall 1 formed in this way is in a state in which the pipe body 6 penetrates from the upstream side to the downstream side and is embedded. That is, the cross-sectional area of the partition wall 1 is the opening area of the tube body 6.

本発明では、下流側型枠2を構築した後は、管体6を通じて流体Fが上流側から下流側に流れるので、下流側型枠2から管体6の上流側開口6aまでの範囲は、流体Fが淀んだ状態になり、流速の影響を受け難くなる。そのため、この範囲に上流側型枠5を過大な労力なしで構築することが可能になる。次いで、下流側型枠2と上流側型枠5との間に打設したコンクリートCRが硬化することで、管体6が上流側から下流側に貫通した隔壁1が完成する。したがって、潜水作業員の軽労化を図りつつ効率的に隔壁1を製造することができる。しかも、現場でコンクリートCRを打設して隔壁1を製造するので、流路断面積が大きな流路Cにおいても本発明を適用することができる。また、様々な横断面形状の流路Cに対してもその形状に合致した隔壁1を製造することができる。   In the present invention, after the downstream mold 2 is constructed, the fluid F flows from the upstream side to the downstream side through the tube 6, so the range from the downstream mold 2 to the upstream opening 6 a of the tube 6 is The fluid F becomes stagnant and hardly affected by the flow velocity. Therefore, it becomes possible to construct the upstream mold 5 in this range without excessive labor. Next, the concrete CR placed between the downstream mold 2 and the upstream mold 5 is cured, so that the partition wall 1 in which the tubular body 6 penetrates from the upstream side to the downstream side is completed. Therefore, the partition wall 1 can be manufactured efficiently while reducing the labor of diving workers. Moreover, since the partition wall 1 is manufactured by placing concrete CR on site, the present invention can also be applied to the channel C having a large channel cross-sectional area. Moreover, the partition 1 matched with the shape can be manufactured also about the flow path C of various cross-sectional shapes.

この実施形態では、下流側型枠2を複数枚のせき板部材4を備える構成にしているので、地上から流路C内に部材を搬入する経路が狭い場合でもせき板部材4を搬入できる。また、せき板部材4が流れによって受ける力を小さくできる。尚、この実施形態のせき板部材4は円環状に形成されているが、四角形状や扇状等、様々な形状で構成することができる。   In this embodiment, since the downstream mold 2 is configured to include a plurality of slat plate members 4, the slat plate member 4 can be carried in even when the route for carrying the member from the ground into the channel C is narrow. Moreover, the force which the plate member 4 receives by a flow can be made small. In addition, although the board member 4 of this embodiment is formed in the annular | circular shape, it can be comprised by various shapes, such as square shape and a fan shape.

この実施形態のように、複数枚のせき板部材4を用いる場合には、骨組部材3に固定された際に隣り合うせき板部材4どうしが重なり合う範囲を設けるようにせき板部材4を形成すると密閉性の高い下流側型枠2を構築することができる。また、せき板部材4を骨組み部材3に固定する際に溶接等の作業が必要になる場合には、全てのせき板部材4を骨組み部材3にまで移動させ、管体6の外周側を塞いだ後に溶接等の作業を行うとよい。せき板部材4によって、管体6の外周側が塞がれると、下流側型枠2から管体6の上流側開口6aまでの範囲は、流体Fが淀んだ状態になり、流速の影響を受け難くなる。そのため、過大な労力なしで作業を行い易くなる。   When using a plurality of plate members 4 as in this embodiment, when the plate members 4 are formed so as to provide a range in which adjacent plate members 4 overlap when fixed to the frame member 3. It is possible to construct the downstream mold 2 having a high hermeticity. Further, when work such as welding is required when fixing the spar member 4 to the skeleton member 3, all the slat members 4 are moved to the skeleton member 3 to block the outer peripheral side of the tube body 6. After that, work such as welding should be performed. When the outer peripheral side of the tubular body 6 is closed by the dam member 4, the range from the downstream mold 2 to the upstream opening 6a of the tubular body 6 is in a state where the fluid F is stagnated and is affected by the flow velocity. It becomes difficult. Therefore, it becomes easy to work without excessive labor.

この実施形態では、上流側型枠5を構築する際に、仮枠7aを上流側型枠5を構成する骨組み部材として利用することもできる。仮枠7aの強度が不十分な場合には骨組みを付加して、強度を上げる。骨組み部材3および仮枠7aの構造は図2、図4に示されている構造に限られず、トラス構造等の他の構造を採用することもできる。コンクリート打設後に下流側型枠2、上流側型枠5を流路Cから撤去することもできるし、少なくとも一方を残置させることもできる。   In this embodiment, when constructing the upstream mold 5, the temporary frame 7 a can be used as a skeleton member constituting the upstream mold 5. When the strength of the temporary frame 7a is insufficient, a framework is added to increase the strength. The structures of the frame member 3 and the temporary frame 7a are not limited to the structures shown in FIGS. 2 and 4, and other structures such as a truss structure may be employed. After casting concrete, the downstream mold 2 and the upstream mold 5 can be removed from the flow path C, or at least one of them can be left behind.

図8に示すように、管体6の上流側開口6aを塞ぐことで、流路Cを塞ぐ隔壁1にすることができる。この実施形態では、上流側開口6aに蓋体9を被せて接合することで、上流側開口6aを塞いでいる。蓋体9を上流側開口6aに対して着脱自在にすれば、所望のときに塞いだ流路Cを開通させることができる。上流側開口6aを塞ぐことで、下流側型枠2の下流側の流体Fの流れも淀んだ状態になるので、下流側開口6bからコンクリートCRを打設し硬化させることにより、管体6の内部をコンクリートで埋めることもできる。   As shown in FIG. 8, by closing the upstream opening 6 a of the tube body 6, the partition wall 1 that closes the flow path C can be formed. In this embodiment, the upstream opening 6a is closed by covering the upstream opening 6a with the lid 9 and joining them. If the lid 9 is detachable from the upstream opening 6a, the closed channel C can be opened when desired. By closing the upstream opening 6a, the flow of the fluid F on the downstream side of the downstream mold 2 is also stagnated. Therefore, by placing and hardening the concrete CR from the downstream opening 6b, The interior can be filled with concrete.

この実施形態では、隔壁1に1本の管体6を貫通させているが、複数本の管体6を挿通させた構成にすることもできる。この際に同内径の管体6だけでなく異なる内径の管体6を設けることもできる。複数の異なる内径の管体6を設け、蓋体9を上流側開口6aに対して着脱自在にすれば、所望のときに流路Cを所望の流路断面積に変更し易くなる。管体6は円形断面に限らず多角形断面等にすることもできる。   In this embodiment, one tubular body 6 is passed through the partition wall 1, but a configuration in which a plurality of tubular bodies 6 are inserted can also be used. At this time, not only the tube 6 having the same inner diameter but also the tube 6 having a different inner diameter can be provided. If a plurality of tube bodies 6 having different inner diameters are provided and the lid body 9 is detachable from the upstream opening 6a, the channel C can be easily changed to a desired channel cross-sectional area when desired. The tube body 6 is not limited to a circular cross section, and may be a polygonal cross section or the like.

隔壁の製造方法における第2工程は図9に例示するようにすることもできる。この実施形態では、1枚の螺旋状に形成されたせき板部材4を使用している。そして、せき板部材4の螺旋中心軸方向を流体Fの流れの方向に引き延ばして、せき板部材4を流路Cの横断面視で流路Cの管体6の外周側範囲を塞ぐ位置に仮設部7によって仮配置している。   The 2nd process in the manufacturing method of a partition can also be made to illustrate in FIG. In this embodiment, a single plate member 4 formed in a spiral shape is used. Then, the spiral central axis direction of the weir plate member 4 is extended in the direction of the flow of the fluid F so that the weir plate member 4 is in a position to close the outer peripheral side range of the tubular body 6 of the flow path C in a cross-sectional view of the flow path C. Temporary placement is provided by the temporary unit 7.

さらに、管体6の上流側開口6aに延長管10を接続し、管体6を上流側に延長することで、流体Fが流入する開口の位置を隔壁1を製造する位置からより上流側の位置に移動させている。延長管10の上流側の開口には、開口面積を大きくする拡張部材11を設けている。延長管10を安定して流路Cに固定するために延長管10と流路Cの内周面とを接続する支持部材12を設けている。流体Fが流入する開口(拡張部材11の開口)の位置は、搬入口Eよりも上流側にして、この開口と搬入口Eとの間に柵13を設けている。   Furthermore, the extension pipe 10 is connected to the upstream opening 6a of the pipe body 6 and the pipe body 6 is extended to the upstream side, so that the position of the opening into which the fluid F flows is more upstream than the position where the partition wall 1 is manufactured. Moved to position. The opening on the upstream side of the extension pipe 10 is provided with an expansion member 11 that increases the opening area. In order to stably fix the extension pipe 10 to the flow path C, a support member 12 that connects the extension pipe 10 and the inner peripheral surface of the flow path C is provided. The position of the opening into which the fluid F flows (the opening of the expansion member 11) is located upstream of the carry-in entrance E, and a fence 13 is provided between the opening and the carry-in entrance E.

この実施形態では、仮配置および仮配置を解除する作業を1枚のせき板部材4に対して行えばよいので作業工数を低減できる。加えて、管体6の流体Fが流入する開口が、より上流側に位置しているので、流路断面積が小さくなって管体6に流れ込む流体Fの流速が増加した場合においても、その流速の影響を受け難い淀んだ範囲が広くなる。これに伴ない、潜水作業をより軽労化することができる。拡張部材11を設けることで、管体6に流れ込む流体Fを一層誘導することができるので、潜水作業を行う範囲の流体Fの流速の増加を抑制するには有利になる。柵13を設けることにより、潜水作業員や部材が開口に近づくことを防止できる。   In this embodiment, since the temporary placement and the work for releasing the temporary placement may be performed on one piece of the plate member 4, the number of work steps can be reduced. In addition, since the opening into which the fluid F flows in the tube body 6 is located on the upstream side, even when the flow rate of the fluid F flowing into the tube body 6 increases due to a decrease in the cross-sectional area of the flow path, The stagnant range that is not easily affected by the flow velocity is widened. In connection with this, diving work can be made lighter. By providing the expansion member 11, the fluid F flowing into the tube body 6 can be further guided, which is advantageous for suppressing an increase in the flow velocity of the fluid F in a range where the diving operation is performed. By providing the fence 13, it is possible to prevent a diving worker or member from approaching the opening.

隔壁の製造方法における第2工程、第3工程は図10に例示するようにすることもできる。   The second step and the third step in the method for manufacturing the partition wall can be exemplified in FIG.

この実施形態のせき板部材4は、図10(c)で示すように、管体6が貫通する環状のせき板部材4aと、せき板部材4aに一端部が接続されて周方向にずらして配置された複数のせき板部材4b、4cとで構成されている。せき板部材4b、4cは、横断面視で、せき板部材4aと流路Cの内周面とのすき間を放射状に16分割した略台形状(外周縁は円弧)の板状の部材である。せき板部材4b、4cが周方向交互に配置されている。   As shown in FIG. 10 (c), the plate member 4 of this embodiment has an annular plate member 4a through which the tubular body 6 penetrates, and one end of the plate member 4a is connected to the plate member 4a and shifted in the circumferential direction. It is comprised by the some board member 4b, 4c arrange | positioned. The plate members 4b and 4c are substantially trapezoidal plate members (outer circumferential edges are circular arcs) obtained by radially dividing the gap between the plate member 4a and the inner peripheral surface of the flow path C in a cross-sectional view. . The plate members 4b and 4c are alternately arranged in the circumferential direction.

せき板部材4b、4cは、それぞれの一端部を起点にしてせき板部材4aに対して折り畳み可能になっている。   The weir plate members 4b and 4c can be folded with respect to the weir plate member 4a starting from one end of each.

第2工程においては、それぞれのせき板部材4b、4cをせき板部材4aに対して折り畳み、図10(a)で例示するように、それぞれのせき板部材4b、4cの一方表面を管体6の外周面に対向させた状態にして、骨組み部材3の上流側で管体6の上流側開口6aよりも下流側の所定位置に仮配置する。   In the second step, the respective plate members 4b and 4c are folded with respect to the plate member 4a, and as illustrated in FIG. In a state of being opposed to the outer peripheral surface of the tube member 6, it is temporarily arranged at a predetermined position on the upstream side of the frame member 3 and on the downstream side of the upstream opening 6 a of the tube body 6.

より詳しくは、一方のせき板部材4bの他端部(外周縁)がせき板部材4aよりも流路Cの下流側になるように折り畳み、その後、他方のせき板部材4cを同様に折り畳み、せき板部材4bとせき板部材4cとが重なる状態にしてせき板部材4a、4b、4cを仮配置する。   More specifically, the other slat plate member 4b is folded so that the other end portion (outer peripheral edge) is on the downstream side of the flow path C with respect to the slat plate member 4a, and then the other slat plate member 4c is folded in the same manner. The weir plate members 4a, 4b and 4c are temporarily arranged so that the weir plate member 4b and the weir plate member 4c overlap.

次いで、第3工程においては、せき板部材4a、4b、4cを下流側へ移動させて骨組み部材3の位置に配置する。次いで、せき板部材4aに対して折り畳まれて閉じた状態であったせき板部材4bを、図10(b)に例示するように開いてゆく。   Next, in the third step, the plate members 4 a, 4 b, 4 c are moved to the downstream side and arranged at the position of the skeleton member 3. Next, the dam member 4b that has been folded and closed with respect to the dam member 4a is opened as illustrated in FIG. 10B.

せき板部材4bが完全に開くと、せき板部材4cも完全に開いて、図10(c)に例示するように、せき板部材4a、4b、4cにより管体6の外周面と流路Cの内周面とのすき間が塞がれる。この状態で骨組み部材3にせき板部材4a、4b、4cを固定する。これら固定されたせき板部材4a、4b、4cにより、管体6の外周側を塞ぐことにより下流側型枠2を構築する。   When the weir plate member 4b is completely opened, the weir plate member 4c is also completely opened, and as shown in FIG. 10C, the outer peripheral surface of the tubular body 6 and the flow path C are formed by the weir plate members 4a, 4b, and 4c. The gap with the inner peripheral surface of is closed. In this state, the plate members 4a, 4b, and 4c are fixed to the frame member 3. The downstream mold 2 is constructed by closing the outer peripheral side of the tubular body 6 with the fixed plate members 4a, 4b, and 4c.

この実施形態では、管体6の外周側で流体Fが上流側から下流側に流れるすき間を確保した状態にする際には、管体6に取り付けられたそれぞれのせき板部材4b、4cの一方表面を管体の外周面に対向させた状態にしている。これにより、管体6に取り付けたせき板部材4a、4b、4cの流路Cに対する横断面が小さくなるので、せき板部材4a、4b、4cの影響による流路Cの流れの変化が小さくなる。そのため、水中作業の軽労化に寄与する。   In this embodiment, when the gap where the fluid F flows from the upstream side to the downstream side is secured on the outer peripheral side of the tube body 6, one of the respective plate members 4 b and 4 c attached to the tube body 6. The surface is made to face the outer peripheral surface of the tubular body. Thereby, since the cross section with respect to the flow path C of the plate members 4a, 4b, and 4c attached to the pipe body 6 becomes small, the change in the flow of the flow path C due to the influence of the cross plate members 4a, 4b, and 4c becomes small. . Therefore, it contributes to lightening of underwater work.

第3工程では、せき板部材4b、4cが開いていくにつれて流路断面積が小さくなって流速が速くなるが、せき板部材4a、4b、4cを流体Fの流れに沿って下流側に押し出すように動かせばよいので、過大な労力が必要になることはない。   In the third step, the flow passage cross-sectional area decreases and the flow velocity increases as the crest members 4b and 4c open, but the crest members 4a, 4b and 4c are pushed downstream along the flow of the fluid F. So that it does not require excessive effort.

尚、この実施形態では、せき板部材4b、4cを計16枚用いているが、他の枚数にすることもできる。例えば、せき板部材4aを横断面視で32角形状に形成し、せき板部材4b、4cを計32枚の部材で構成することもできる。   In this embodiment, a total of 16 plate members 4b and 4c are used, but other numbers may be used. For example, the weir plate member 4a can be formed in a 32 square shape in a cross-sectional view, and the weir plate members 4b and 4c can be constituted by a total of 32 members.

第2工程、第3工程は図11に例示するようにすることもできる。   The second step and the third step can be exemplified in FIG.

この実施形態のせき板部材4は、図11(c)で示すように、管体6が貫通する環状のせき板部材4hと、せき板部材4hに一端が周方向に移動可能に取付けられた複数のせき板部材4d〜4gとで構成されている。せき板部材4d、4e、4f、4gは、せき板部材4hの外周面と流路Cの内周面との間のすき間を4分割した略扇方状の板状の部材である。   As shown in FIG. 11 (c), the plate member 4 of this embodiment is attached to the ring-shaped plate member 4 h through which the tubular body 6 penetrates and one end of the plate member 4 h so as to be movable in the circumferential direction. It is comprised by the some board member 4d-4g. The plate members 4d, 4e, 4f, and 4g are substantially fan-shaped plate-like members in which the gap between the outer peripheral surface of the plate member 4h and the inner peripheral surface of the flow path C is divided into four.

第2工程においては、図11(a)に例示するように、それぞれのせき板部材4d、4e、4f、4gを流路Cを横断する向きで互いに重ねた状態して骨組み部材3の位置に配置する。   In the second step, as shown in FIG. 11 (a), the respective plate members 4d, 4e, 4f, and 4g are overlapped with each other in the direction crossing the flow path C, and the frame members 3 are positioned. Deploy.

次いで、第3工程においては、それぞれのせき板部材4e、4f、4gを図11(b)に例示するように、管体6を中心にして周方向に動かして図11(c)に例示するように管体6の外周側を塞いで、骨組み部材3にせき板部材4d、4e、4f、4g、4hを固定する。このとき、周方向に隣り合うせき板部材4d〜4gどうしは、周方向に一部がオーバーラップしている。これら固定されたせき板部材4d、4e、4f、4g、4hによって、管体6の外周側を塞ぐことにより下流側型枠2を構築する。   Next, in the third step, the respective plate members 4e, 4f, and 4g are moved in the circumferential direction around the tube body 6 as illustrated in FIG. 11B and illustrated in FIG. 11C. In this way, the outer peripheral side of the tube body 6 is closed, and the plate members 4d, 4e, 4f, 4g, and 4h are fixed to the frame member 3. At this time, the dam members 4d to 4g adjacent in the circumferential direction partially overlap in the circumferential direction. The downstream mold 2 is constructed by closing the outer peripheral side of the tubular body 6 with the fixed plate members 4d, 4e, 4f, 4g, and 4h.

この実施形態では、管体6の外周側で流体Fが上流側から下流側に流れるすき間を確保した状態にする際には、管体6に取り付けられてこの管体6を中心にして周方向に移動可能なこれらせき板部材4を流路Cを横断する向きにして互いに重ねた状態にしている。これにより、管体6に取り付けたせき板部材4の流路Cに対する横断面が小さくなるので、せき板部材4の影響による流路Cの流れの変化が小さくなる。そのため、水中作業の軽労化に寄与する。また、せき板部材4をコンパクトにすることができるので、地上から流路C内に部材を搬入する際に搬入経路Eが狭い場合でもせき板部材4を搬入することができる。   In this embodiment, when the clearance which the fluid F flows on the outer peripheral side of the tubular body 6 from the upstream side to the downstream side is ensured, the circumferential direction around the tubular body 6 is attached to the tubular body 6. These swayable plate members 4 are placed in a state of being stacked on each other in a direction crossing the flow path C. Thereby, since the cross section with respect to the flow path C of the dam member 4 attached to the pipe body 6 becomes small, the change of the flow of the flow path C by the influence of the dam member 4 becomes small. Therefore, it contributes to lightening of underwater work. Moreover, since the board member 4 can be made compact, the board member 4 can be carried in even when the carrying-in route E is narrow when carrying the member into the channel C from the ground.

尚、この実施形態では、せき板部材4hの外周面と流路Cの内周面との間のすき間を4分割にしたが、例えば、せき板部材4hの外周面と流路Cの内周面との間のすき間を4分割以上にすることもできるし、2分割又は3分割にすることもできる。   In this embodiment, the gap between the outer peripheral surface of the plate member 4h and the inner peripheral surface of the flow path C is divided into four parts. The gap between the surfaces can be divided into four or more, or can be divided into two or three.

1 コンクリート製隔壁
2 下流側型枠
3 骨組み部材
4、4a〜4h せき板部材
5 上流側型枠
6 管体
6a 上流側開口
6a 下流側開口
7 仮設部
7a 仮枠
7b 接合部材
8 コンクリート打設設備
9 蓋体
10 延長管
11 拡張部
12 支持部材
13 柵
C 流路
E 搬入口
F 流体
CR コンクリート
DESCRIPTION OF SYMBOLS 1 Concrete partition wall 2 Downstream side formwork 3 Frame member 4, 4a-4h Cut plate member 5 Upstream side formwork 6 Tubular body 6a Upstream side opening 6a Downstream side opening 7 Temporary part 7a Temporary frame 7b Joining member 8 Concrete placement equipment 9 Lid 10 Extension tube 11 Expansion portion 12 Support member
13 Fence C Channel E E Inlet F Fluid CR Concrete

Claims (8)

上流側から下流側に流体が流れている状態の流路内に、この流体の流れ方向に間隔をあけて下流側型枠および上流側型枠を構築し、これら型枠の間にコンクリートを打設して硬化させることにより隔壁を製造する流路内のコンクリート製隔壁の製造方法であって、
前記下流側型枠を骨組み部材とせき板部材とで構成し、前記流体が上流側から下流側に流れるすき間を確保した状態で前記骨組み部材を前記流路内に固定し、次いで、前記骨組み部材に管体を固定して前記流れ方向に延設し、この管体の内部を通じて前記流体を上流側から下流側に流し、かつ、この管体の外周側で前記流体が上流側から下流側に流れるすき間を確保した状態で前記固定した骨組み部材の位置に前記せき板部材を配置し、次いで前記管体の内部を通じて前記流体を上流側から下流側に流す状態を維持しつつ、前記せき板部材により前記管体の外周側の前記流体が流れるすき間を塞いで、前記せき板部材を前記骨組み部材に固定することにより前記下流側型枠を構築し、次いで、構築した前記下流側型枠の上流側で前記管体の上流側開口よりも下流側の位置に前記上流側型枠を構築し、前記コンクリートを硬化させたコンクリート製隔壁に前記管体を上流側から下流側に貫通させて埋設することを特徴とする流路内のコンクリート製隔壁の製造方法。
In the flow path in the state where the fluid flows from the upstream side to the downstream side, a downstream formwork and an upstream formwork are constructed at intervals in the fluid flow direction, and concrete is placed between these formwork. It is a method for manufacturing a concrete partition wall in a flow path for manufacturing a partition wall by setting and curing,
The downstream mold is composed of a skeleton member and a slab member, and the skeleton member is fixed in the flow path in a state in which a gap flows from the upstream side to the downstream side, and then the skeleton member The pipe is fixed in the flow direction, the fluid flows from the upstream side to the downstream side through the inside of the pipe body, and the fluid flows from the upstream side to the downstream side on the outer peripheral side of the pipe body. The squeeze plate member is disposed while the squeeze plate member is disposed at the position of the fixed frame member in a state where a flow gap is secured, and then the state in which the fluid flows from the upstream side to the downstream side through the inside of the tubular body is maintained. The downstream formwork is constructed by closing the gap through which the fluid on the outer peripheral side of the tubular body flows, and fixing the plate member to the frame member, and then upstream of the constructed downstream formwork On the tube on the side The flow path is characterized in that the upstream formwork is constructed at a position downstream of the side opening, and the pipe is penetrated from the upstream side to the downstream side in a concrete partition wall obtained by hardening the concrete. Manufacturing method for concrete partition walls.
前記管体の外周側で前記流体が上流側から下流側に流れるすき間を確保した状態で前記固定した骨組み部材の上流側で前記管体の上流側開口よりも下流側の所定位置に前記せき板部材を仮設部によって仮配置し、次いで、前記仮設部による前記せき板部材の仮配置を解除して前記せき板部材を下流側に移動させて前記骨組み部材の位置に配置する請求項1に記載の流路内のコンクリート製隔壁の製造方法。   In the state where the fluid flows from the upstream side to the downstream side on the outer peripheral side of the tubular body, the dam plate is located at a predetermined position on the upstream side of the fixed frame member and downstream of the upstream opening of the tubular body. The member is temporarily arranged by a temporary part, and then the temporary arrangement of the board member by the temporary part is released, and the board member is moved downstream to be arranged at the position of the frame member. Method for manufacturing concrete partition walls in the flow path of 前記下流側型枠が複数枚の前記せき板部材を備え、これらせき板部材を前記流路の横断面視で前記流路の前記管体の外周側範囲を塞ぐ位置に前記仮設部によって仮配置する請求項2に記載の流路内のコンクリート製隔壁の製造方法。   The downstream mold is provided with a plurality of the slat plate members, and these squeeze members are temporarily arranged by the temporary portion at positions where the outer peripheral side range of the tubular body of the flow channel is closed in a cross-sectional view of the flow channel. The manufacturing method of the partition wall made from concrete in the flow path of Claim 2 to do. 前記下流側型枠が1枚の螺旋状に形成された前記せき板部材を備え、このせき板部材をその螺旋中心軸方向を前記流体の流れの方向に引き延ばして、このせき板部材を前記流路の横断面視で前記流路の前記管体の外周側範囲を塞ぐ位置に前記仮設部によって仮配置する請求項2に記載の流路内のコンクリート製隔壁の製造方法。   The downstream formwork is provided with a piece of the plate member formed in a spiral shape, and the plate member is extended in the direction of the flow of the fluid in the direction of the spiral central axis, and the plate member is moved to the flow direction. The method for producing a concrete partition wall in a flow path according to claim 2, wherein the temporary partitioning portion is temporarily arranged at a position that closes an outer peripheral side range of the tubular body of the flow path in a cross-sectional view of the path. 前記下流側型枠が複数枚の前記せき板部材を備え、前記管体の外周側で前記流体が上流側から下流側に流れるすき間を確保した状態にする際には、前記管体に取り付けられたそれぞれの前記せき板部材の一方表面を前記管体の外周面に対向させた状態にする請求項1または2に記載の流路内のコンクリート製隔壁の製造方法。   The downstream mold is provided with a plurality of the baffle members, and is attached to the pipe body in a state in which a gap flows from the upstream side to the downstream side on the outer peripheral side of the pipe body. The method for producing a concrete partition wall in a flow path according to claim 1 or 2, wherein one surface of each of the dam members is opposed to the outer peripheral surface of the tubular body. 前記下流側型枠が複数枚の前記せき板部材を備え、前記管体の外周側で前記流体が上流側から下流側に流れるすき間を確保した状態にする際には、前記管体に取り付けられてこの管体を中心にして周方向に移動可能なこれらせき板部材を前記流路を横断する向きにして互いに重ねた状態にする請求項1または2に記載の流路内のコンクリート製隔壁の製造方法。   The downstream mold is provided with a plurality of the baffle members, and is attached to the pipe body in a state in which a gap flows from the upstream side to the downstream side on the outer peripheral side of the pipe body. 3. The concrete partition walls in the flow path according to claim 1, wherein the plate members movable in the circumferential direction around the tubular body are overlapped with each other in a direction transverse to the flow path. Production method. 前記流路内に固定した前記骨組み部材の前記流路の横断面視での面積を、前記流路の横断面積の30%以下にする請求項1〜6のいずれかに記載の流路内のコンクリート製隔壁の製造方法。   The area in the cross-sectional view of the flow path of the frame member fixed in the flow path is 30% or less of the cross-sectional area of the flow path. A method for producing a concrete partition wall. 前記コンクリート製隔壁を上流側から下流側に貫通させて埋設した前記管体の上流側開口を塞ぐ請求項1〜7のいずれかに記載の流路内のコンクリート製隔壁の製造方法。   The manufacturing method of the concrete partition in the flow path in any one of Claims 1-7 which plugs the upstream opening of the said tubular body embed | buried by penetrating the said concrete partition from the upstream to the downstream.
JP2015095037A 2015-05-07 2015-05-07 Method for producing a concrete partition wall in a flow path Active JP6471037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015095037A JP6471037B2 (en) 2015-05-07 2015-05-07 Method for producing a concrete partition wall in a flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015095037A JP6471037B2 (en) 2015-05-07 2015-05-07 Method for producing a concrete partition wall in a flow path

Publications (2)

Publication Number Publication Date
JP2016211208A true JP2016211208A (en) 2016-12-15
JP6471037B2 JP6471037B2 (en) 2019-02-13

Family

ID=57551315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015095037A Active JP6471037B2 (en) 2015-05-07 2015-05-07 Method for producing a concrete partition wall in a flow path

Country Status (1)

Country Link
JP (1) JP6471037B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678370A (en) * 1984-12-04 1987-07-07 Danby Pty. Ltd. Sewer renovation system
JPH084101A (en) * 1994-06-21 1996-01-09 Mikita Kogyo:Kk Method and apparatus for blocking pipe and culvert or the like
JP2003129451A (en) * 2001-10-22 2003-05-08 Toshiba Corp Weir device for piping
JP2004137776A (en) * 2002-10-18 2004-05-13 Ito Yogyo Co Ltd Cut-off wall device of pipe and temporary channel device in the pipe making use thereof
JP2005180569A (en) * 2003-12-19 2005-07-07 Tetra Co Ltd Water stop plug and bypass system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678370A (en) * 1984-12-04 1987-07-07 Danby Pty. Ltd. Sewer renovation system
JPH084101A (en) * 1994-06-21 1996-01-09 Mikita Kogyo:Kk Method and apparatus for blocking pipe and culvert or the like
JP2003129451A (en) * 2001-10-22 2003-05-08 Toshiba Corp Weir device for piping
JP2004137776A (en) * 2002-10-18 2004-05-13 Ito Yogyo Co Ltd Cut-off wall device of pipe and temporary channel device in the pipe making use thereof
JP2005180569A (en) * 2003-12-19 2005-07-07 Tetra Co Ltd Water stop plug and bypass system

Also Published As

Publication number Publication date
JP6471037B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6636773B2 (en) Construction structure and construction method of tunnel lining body
CN103104091B (en) Sliding mold whole lifting platform and construction method
JPH04231595A (en) Method and device for sanitary disposal in sewer
JP2018150752A (en) Method for constructing tunnel skeleton
KR20150144398A (en) Reinforced Concrete Walls by Triangular Reinforcing Bar Details and Construction Method Thereof
CA2964579A1 (en) Preformed duct assembly
JP6471037B2 (en) Method for producing a concrete partition wall in a flow path
JP6576095B2 (en) Segment manufacturing method and concrete-integrated steel segment
KR102168165B1 (en) Reinforcement method of Pile­Support Intake Tower using Earthquake­Resistant Pile and Slab
CN210530854U (en) Assembled steel reinforcement cage for rapid lining of tunnel
JP2015166521A (en) Vertical conduit tube
CN111005447A (en) Grouting anchoring device and method for rigidly connected prefabricated special-shaped beam and armpit area
JP6272602B2 (en) How to modify underwater structures
EP3228753B1 (en) Modular pre-fabricated water control pump system
KR20110094897A (en) Constructing method for the tunnel using tbm
JP5288356B2 (en) How to connect existing piping and new piping in the manhole
KR100312849B1 (en) Cast system for providing tunnel lining and process for forming tunnel lining by the same
JP6874375B2 (en) How to build a tunnel skeleton
CN104264992B (en) Construction method for high-rise building pipe rooms
JP6483575B2 (en) Segment frame, segment manufacturing method, and segment
CN106351234A (en) Assembled type three-combined-round-steel-pipe concrete inner support structure and manufacturing method
CN110924508B (en) Composite lining water pipe structure and construction method
JP2017122353A (en) Replacement method of concrete slab and replacement structure
JP2015206218A (en) Underground space construction method
KR20090008657A (en) Manhole form

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6471037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250