[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016125968A - Check device and method for checking - Google Patents

Check device and method for checking Download PDF

Info

Publication number
JP2016125968A
JP2016125968A JP2015001898A JP2015001898A JP2016125968A JP 2016125968 A JP2016125968 A JP 2016125968A JP 2015001898 A JP2015001898 A JP 2015001898A JP 2015001898 A JP2015001898 A JP 2015001898A JP 2016125968 A JP2016125968 A JP 2016125968A
Authority
JP
Japan
Prior art keywords
light
inspected
defect
receiving unit
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015001898A
Other languages
Japanese (ja)
Inventor
塚本 徹
Toru Tsukamoto
徹 塚本
大介 北山
Daisuke Kitayama
大介 北山
剛直 嶋村
Takenao Shimamura
剛直 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2015001898A priority Critical patent/JP2016125968A/en
Publication of JP2016125968A publication Critical patent/JP2016125968A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a check device capable of highly sensitive defect detection.SOLUTION: The check device has a light projecting unit irradiating a checking target with parallel light, a light receiving unit receiving light of the parallel light which is diffused by defects generated in the testing target, and a checking unit processing a signal obtained in the light receiving unit and checking the defects.SELECTED DRAWING: Figure 3

Description

本発明は、被検査体を検査する検査装置および検査方法に関する。   The present invention relates to an inspection apparatus and an inspection method for inspecting an object to be inspected.

従来、平板ガラス等の板状の被検査体を検査することが行われている。例えば、ガラス表面および内部の欠陥(くぼみ、傷、異物、泡など)の有無や欠陥の詳細(大きさ、数など)が検査装置で検査されている。
特許文献1には、投光部からの光の透過光を検出する光学系(明視野光学系)での検査方法が開示されている。このような明視野光学系では、欠陥などの検出対象と背景とのコントラストが検出感度を支配する。
2. Description of the Related Art Conventionally, a plate-like object to be inspected such as flat glass has been inspected. For example, the presence or absence of defects (such as dents, scratches, foreign objects, bubbles, etc.) and details of the defects (size, number, etc.) are inspected by an inspection device.
Patent Document 1 discloses an inspection method using an optical system (bright field optical system) that detects transmitted light from a light projecting unit. In such a bright field optical system, the contrast between a detection target such as a defect and the background dominates the detection sensitivity.

また、特許文献2には、投光部からの光をガラス表面または内部に集光レンズで集光して、欠陥で散乱した散乱光を検出する光学系(暗視野光学系)での検査方法が開示されている。このような暗視野光学系では、投光部からの光を直接受光することは無く、欠陥で散乱した散乱光のみを受光する。   Patent Document 2 discloses an inspection method using an optical system (dark field optical system) that detects light scattered from a defect by condensing light from a light projecting unit on a glass surface or inside with a condenser lens. Is disclosed. In such a dark field optical system, light from the light projecting unit is not directly received, but only scattered light scattered by the defect is received.

特開2004−117059号公報Japanese Patent Laid-Open No. 2004-117059 特開2007−24733号公報JP 2007-24733 A

ところが、特許文献1で示されるような明視野光学系で検査した場合、例えば欠陥が小さい場合に背景の輝度が高くなりすぎて欠陥の検出感度が十分ではない問題があった。受光部として、より高感度なカメラを使用することで検出感度をある程度改善することもできるが、異なる大きさの欠陥が集まった欠陥密集体を高感度に検出するためには十分とは言えない。また、高価な高感度カメラを使用すれば検査コストが著しく高くなる。
このように、明視野光学系では、欠陥密集体を高感度に検出することが困難であるため、欠陥密集体の大きさを正しく測定することができない。
However, when an inspection is performed with a bright field optical system as shown in Patent Document 1, for example, when the defect is small, there is a problem that the luminance of the background becomes too high and the detection sensitivity of the defect is not sufficient. Although the detection sensitivity can be improved to some extent by using a more sensitive camera as the light receiving part, it cannot be said to be sufficient for detecting a dense cluster of defects of different sizes. . Further, if an expensive high-sensitivity camera is used, the inspection cost is remarkably increased.
As described above, in the bright field optical system, it is difficult to detect the defect dense body with high sensitivity, and thus the size of the defect dense body cannot be measured correctly.

特許文献2で示される暗視野光学系では、欠陥からの散乱光だけを受光できるので、欠陥密集体を高感度に検出することができる。特許文献2で記載されているのは集光光学系であり、焦点を微調整するために複雑な光学系が採用されている。そのため、検出された欠陥がガラス内部に存在するのか、ガラス表面に存在するのかを明確に判別することができる。
しかし、特許文献2で示される集光光学系では、集光レンズによりガラス表面または内部に集光される光学系であるために、被検査体で照射されている領域は狭く、複数の欠陥の有無を同時に検査することには適していない。そのため、異なる大きさの欠陥が集まった欠陥密集体の検出は難しく、欠陥密集体の大きさを正しく測定することができない。
The dark field optical system disclosed in Patent Document 2 can receive only scattered light from a defect, so that a dense defect can be detected with high sensitivity. Patent Document 2 describes a condensing optical system, which employs a complicated optical system to finely adjust the focal point. Therefore, it can be clearly determined whether the detected defect exists inside the glass or the glass surface.
However, since the condensing optical system disclosed in Patent Document 2 is an optical system that condenses on the glass surface or inside by a condensing lens, the region irradiated by the object to be inspected is narrow, and a plurality of defects It is not suitable for testing for the presence or absence at the same time. For this reason, it is difficult to detect a defect cluster in which defects of different sizes are collected, and the size of the defect cluster cannot be measured correctly.

つまり、従来の技術では、異なる大きさの欠陥が集まった欠陥密集体を高感度に検出することは難しいという課題がある。   That is, the conventional technique has a problem that it is difficult to detect with high sensitivity a defect dense body in which defects of different sizes are collected.

本発明の目的は、欠陥を高感度に検出可能な検査装置および検査方法を提供することにある。   An object of the present invention is to provide an inspection apparatus and an inspection method capable of detecting defects with high sensitivity.

本発明の検査装置は、被検査体に平行光を照射する投光部と、前記投光部から照射された平行光が前記被検査体に生じた欠陥で散乱した光を受光する受光部と、前記受光部で得られた信号を処理して欠陥を検査する検査部と、を備えたことを特徴とする。   An inspection apparatus according to the present invention includes a light projecting unit that irradiates parallel light to an object to be inspected, and a light receiving unit that receives light scattered by a defect generated in the object to be inspected by the parallel light irradiated from the light projecting unit. And an inspection unit that inspects defects by processing a signal obtained by the light receiving unit.

本発明によれば、投光部から照射された光として平行光を用いているため、欠陥が生じる位置に関わらず、前記被検査体の欠陥で散乱した光が鮮明に検出され、得られた信号に基づいて良品性欠陥と非良品性欠陥とが判別できる。そのため、欠陥密集体を高感度に検出し、正確に測定できる。   According to the present invention, since the parallel light is used as the light emitted from the light projecting unit, the light scattered by the defect of the inspection object is clearly detected and obtained regardless of the position where the defect occurs. A good quality defect and a non-defective product defect can be distinguished based on the signal. For this reason, a dense defect can be detected with high sensitivity and accurately measured.

本発明の検査装置において、前記被検査体は、表面部に欠陥が生じる板状部材であり、前記投光部は、前記板状部材の平面と直交する垂線に対して投光光軸が90°未満の斜めに配置され、前記受光部は、前記被検査体の垂線と受光光軸が一致するように配置されていることが好ましい。
前記被検査面の裏面で反射した散乱光を前記受光部で検出しないため、被検査面と裏面の欠陥像が重なって過剰に大きく測定することが無くなる。そのため、欠陥密集体をより正確に測定可能な検査装置を提供することができる。しかも、前記被検査体が板状であるため、板厚変動または上下変動があっても検出可能な検査装置を提供することができる。
In the inspection apparatus of the present invention, the object to be inspected is a plate-like member in which a defect occurs in the surface portion, and the light projecting portion has a light projection optical axis of 90 with respect to a perpendicular perpendicular to the plane of the plate-like member. It is preferable that the light receiving unit is disposed at an angle of less than 0 ° so that the perpendicular of the object to be inspected and the light receiving optical axis coincide with each other.
Since the scattered light reflected by the back surface of the surface to be inspected is not detected by the light receiving unit, the defect images on the surface to be inspected and the back surface are not overlapped and are not measured excessively. Therefore, it is possible to provide an inspection apparatus capable of measuring the defect dense body more accurately. And since the to-be-inspected object is plate-shaped, the inspection apparatus which can be detected even if there are fluctuations in plate thickness or vertical fluctuations can be provided.

本発明の検査装置において、前記被検査体の厚さをt(mm)、前記被検査体の垂線に対して前記投光部が配置される角度をθ、ただし、0°<θ<90°、前記受光部が感知する信号断面の波形半値幅をd(mm)とした時に、
t×sinθ≦d/2
の関係を満足することが好ましい。
前記関係式の範囲であれば、投光部からの照射光で、被検査体の表面における受光部が検出可能な視野の範囲を照らすことができる。
従って、前記関係式の範囲であれば、板厚変動または上下変動があっても欠陥からの散乱光を十分な強度で検出することができる。
In the inspection apparatus of the present invention, the thickness of the object to be inspected is t (mm), and the angle at which the light projecting portion is disposed with respect to the perpendicular to the object to be inspected is θ, where 0 ° <θ <90 ° , When the waveform half-value width of the signal cross section sensed by the light receiving unit is d (mm),
t × sin θ ≦ d / 2
It is preferable to satisfy this relationship.
If it is the range of the said relational expression, the range of the visual field which the light-receiving part in the surface of a to-be-inspected object can detect can be illuminated with the irradiation light from a light projection part.
Therefore, within the range of the relational expression, scattered light from a defect can be detected with sufficient intensity even if there is a fluctuation in plate thickness or vertical fluctuation.

本発明の検査装置において、前記被検査体は透光性を有し、前記被検査体の表面に対して一方に前記投光部が配置され、他方に前記受光部が配置されていても良い。
この配置であれば、前記被検査体をはさんで前記投光部と前記受光部が反対側に配置しているため、前記投光部と前記受光部とが設置場所で干渉することは無い。
In the inspection apparatus of the present invention, the object to be inspected may have a light-transmitting property, and the light projecting unit may be disposed on one side with respect to the surface of the object to be inspected, and the light receiving unit may be disposed on the other side. .
With this arrangement, since the light projecting unit and the light receiving unit are arranged on the opposite side across the object to be inspected, the light projecting unit and the light receiving unit do not interfere with each other at the installation location. .

本発明の検査装置において、前記被検査体の表面に対して一方に前記投光部と前記受光部との双方を配置されていても良い。
この配置であれば、前記投光部と前記受光部が被検査体の表面に対して同じ側に配置されているため、前記被検査体の下部に、例えば搬送ローラーなどが配置されているためにすき間が無くても、前記投光部および前記受光部の設置が可能になる。
また、前記被検査体が透光性を有する透明体であっても検査を行うことが可能であるが、透光性を有していない、不透明体の検査に好適である。
In the inspection apparatus of the present invention, both the light projecting unit and the light receiving unit may be arranged on one side with respect to the surface of the object to be inspected.
With this arrangement, since the light projecting unit and the light receiving unit are arranged on the same side with respect to the surface of the object to be inspected, for example, a transport roller is arranged below the object to be inspected. Even if there is no gap, the light projecting unit and the light receiving unit can be installed.
Moreover, although it can test | inspect even if the said to-be-inspected object is a transparent body which has translucency, it is suitable for the test | inspection of the opaque body which does not have translucency.

本発明の検査装置において、前記被検査体は透光性を有し、前記被検査体の表面に対して一方に前記投光部が配置され、他方に前記受光部が配置されている場合に、前記被検査体の垂線に対して前記投光部が設置される角度θは、
10°<θ≦30°
であることが好ましい。
背景ノイズに対する欠陥からの像のコントラスト(S/N比)が高く、かつ欠陥に対する検出感度が高くなり、より高感度に欠陥密集体を検出し、より正確に測定できる。
In the inspection apparatus according to the aspect of the invention, the inspection object has translucency, and the light projecting unit is disposed on one side and the light receiving unit is disposed on the other side of the surface of the inspection object. , The angle θ at which the light projecting unit is installed with respect to the normal of the object to be inspected is
10 ° <θ ≦ 30 °
It is preferable that
The contrast (S / N ratio) of the image from the defect with respect to the background noise is high, and the detection sensitivity to the defect is increased, so that the defect dense body can be detected with higher sensitivity and can be measured more accurately.

本発明の検査装置において、前記投光部は種類の異なる複数の光源を有しても良い。
例えば、発光輝度、発光波長等が異なる複数の光源から同時に光を照射する。光の種類ごとに検出感度が高い欠陥の大きさなどの種類が異なるため、さまざまな種類の欠陥を同時に検出可能になる。
In the inspection apparatus of the present invention, the light projecting unit may include a plurality of different types of light sources.
For example, light is irradiated simultaneously from a plurality of light sources having different emission brightness, emission wavelength, and the like. Since the type of defect such as the size of a defect with high detection sensitivity differs for each type of light, various types of defects can be detected simultaneously.

本発明の検査装置において、前記投光部がパルス状に点灯しても良い。
例えば、明るさの異なる光をそれぞれパルス状に照射することで、実質的に発光輝度が異なる光源から同時に照射することと同様な作用となり、光の強さごとに検出感度が高い欠陥の大きさなどの種類が異なるため、さまざまな種類の欠陥を同時に検出可能になる。
一般的に複数の異なる種類の光を使用する光学系を構築する場合、複数の投光部と複数の受光部の組み合わせが必要となる。パルス状点灯を行うことにより投光部と受光部の組み合わせを1組のみとすることができる。これにより複数の光学系を設置する場合に発生する設置場所との干渉を避けることができ、またコストを削減することができる。
In the inspection apparatus of the present invention, the light projecting unit may be lit in a pulse shape.
For example, by irradiating light of different brightness in a pulsed manner, the effect is the same as irradiating from light sources with substantially different emission brightness, and the size of the defect with high detection sensitivity for each light intensity Since the types are different, various types of defects can be detected simultaneously.
In general, when an optical system using a plurality of different types of light is constructed, a combination of a plurality of light projecting units and a plurality of light receiving units is required. By performing pulsed lighting, only one set of the light projecting unit and the light receiving unit can be provided. As a result, it is possible to avoid interference with the installation location that occurs when a plurality of optical systems are installed, and to reduce costs.

本発明の検査方法は、投光部より被検査体に平行光を照射し、前記投光部より照射された平行光が前記被検査体に生じた欠陥で散乱した光を受光部で受光し、前記受光部で得られた信号を、前記検査部で処理して欠陥を検査することを特徴とする。
本発明の検査方法によれば、検査装置と同様の効果を奏することができる。つまり、平行光を用いているため、欠陥が生じる位置に関わらず、被検査体の欠陥で散乱した光が鮮明に検出され、得られた信号を処理して良品性欠陥と被良品性欠陥とを判別できる。そのため、欠陥密集体を高感度に検出し、より正確に測定できる。
The inspection method of the present invention irradiates the object to be inspected with parallel light from the light projecting unit, and the light received by the light receiving unit receives the light scattered by the defect generated in the object to be inspected by the parallel light irradiated from the light projecting unit. The signal obtained by the light receiving unit is processed by the inspection unit to inspect defects.
According to the inspection method of the present invention, the same effect as that of the inspection apparatus can be obtained. In other words, since the parallel light is used, the light scattered by the defect of the inspection object is clearly detected regardless of the position where the defect occurs, and the obtained signal is processed to determine whether the defect is defective or defective. Can be determined. For this reason, a dense defect can be detected with high sensitivity and measured more accurately.

本発明の第1実施形態の検査装置が適用されるガラス基板洗浄ラインの構成図である。It is a lineblock diagram of the glass substrate washing line to which the inspection device of a 1st embodiment of the present invention is applied. 第1実施形態の検査装置を示す斜視図である。It is a perspective view which shows the inspection apparatus of 1st Embodiment. (A)は図2で示す第1実施形態の断面図、(B)は照射光を帯幅のイメージした上から見た平面図である。(A) is sectional drawing of 1st Embodiment shown in FIG. 2, (B) is the top view seen from the upper side which imaged irradiation light. (A)は二重像発生メカニズムの概念図、(B)は発生する二重像のイメージ図である。(A) is a conceptual diagram of a double image generation mechanism, and (B) is an image diagram of the generated double image. 投光部の設置角度を変化させたときの信号/ノイズ比と欠陥検出感度の実験結果を示したグラフである。It is the graph which showed the experimental result of signal / noise ratio and defect detection sensitivity when changing the installation angle of a light projection part. (A)は照射光が透光性のある被検査体に照射されているイメージの斜視図、(B)は照射光の帯幅方向(照射断面方向)での輝度分布とその半値幅を示したグラフである。(A) is a perspective view of an image in which irradiated light is irradiated on a light-transmitting object to be inspected, and (B) shows a luminance distribution in the band width direction (irradiation cross-sectional direction) of the irradiated light and its half-value width. It is a graph. 照射光の帯幅と透光性を持つ被検査体の板厚変化に対する検出感度のイメージ図であって、(A)は帯幅が広い照射光で薄い板を検査する場合、(B)は帯幅が広い照射光で厚い板を検査する場合、(C)は帯幅が狭い照射光で薄い板を検査する場合、(D)は帯幅が狭い照射光で厚い板を検査する場合である。It is an image figure of the detection sensitivity with respect to the plate | board thickness change of the to-be-inspected object which has the zone width and translucency of irradiation light, (A) is a case where a thin board is test | inspected with irradiation light with a wide zone width, (B) is a zone | band. When inspecting a thick plate with irradiation light having a wide width, (C) is for inspecting a thin plate with irradiation light with a narrow band width, and (D) is for inspecting a thick plate with irradiation light with a narrow band width. . 被検査体であるガラスの板厚変化に対する欠陥の検出感度の実験結果を示した図である。It is the figure which showed the experimental result of the detection sensitivity of the defect with respect to the plate | board thickness change of the glass which is a to-be-inspected object. 投光部から照射する光量に対する欠陥の検出感度の実験結果を示した図である。It is the figure which showed the experimental result of the detection sensitivity of the defect with respect to the light quantity irradiated from a light projection part. 照射光の輝度分布の半値幅に対する板圧方向の変位と必要な光量の実験結果を示したグラフである。It is the graph which showed the experimental result of the displacement of a plate pressure direction with respect to the half value width of the luminance distribution of irradiation light, and required light quantity. 本発明の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of this invention.

<第1実施形態>
(第1実施形態の概略)
本発明を実施するための形態の一例を説明する。
まず、第1実施形態を図1から図10に基づいて説明する。第1実施形態の検査装置は、図1に示す、ガラス基板洗浄ラインで用いられる。
図1に示される通り、洗浄ラインでは、被検査体であるガラス基板Gが搬送装置1で搬送され、洗浄機2、水切り装置3、検査装置4の順に通過した後に回収され、出荷される。なお、出荷の前に別の工程に送られるものであってもよい。
第1実施形態で検査されるガラス基板Gは、フロート法で作製された後に、必要な大きさに切断加工されてそのまま、または幾つかの処理工程を経てから、図1のガラス基板洗浄ラインで洗浄され、検出装置4によって欠陥Dの検査が行われる。
<First Embodiment>
(Outline of the first embodiment)
An example for carrying out the present invention will be described.
First, a first embodiment will be described with reference to FIGS. The inspection apparatus according to the first embodiment is used in a glass substrate cleaning line shown in FIG.
As shown in FIG. 1, in the cleaning line, the glass substrate G that is an object to be inspected is transported by the transport device 1, and is collected and shipped after passing through the cleaning device 2, the draining device 3, and the inspection device 4 in this order. It may be sent to another process before shipment.
The glass substrate G to be inspected in the first embodiment is manufactured by the float process, and then cut into a necessary size and processed as it is or after several processing steps, in the glass substrate cleaning line of FIG. The defect D is inspected by the detection device 4 after being cleaned.

ここで、フロート法において、ガラス基板Gに欠陥D(図3参照)が生じる理由を簡単に説明する。
一般的なガラス製造工程において、必要な種類のガラス原料粉末を高温のガラス溶融窯に投入し、溶融させ、均質に混合した高温の粘性流体(以下では融液と表現することがある)の状態にする。この融液を溶けた錫金属(以下で溶融錫と表現することがある)の上に流し出す。フロート法で作製するガラスの前駆体である融液は溶融錫よりも十分に比重が小さいので、融液は溶融錫の上に浮かび、濡れ広がる。十分に濡れ広がることで、融液は所定の厚みの平板状に成形される。平板状に成形された融液が十分に冷えて固化した物が平板ガラスとなる。ここまでのプロセスが、フロート法と呼ばれている。
このフロート法で作製された板状ガラスは、溶融錫に接していた面も、上部で何も接していなかった面も、共に平坦になる。
Here, the reason why the defect D (see FIG. 3) occurs in the glass substrate G in the float process will be briefly described.
In a general glass manufacturing process, the necessary type of glass raw material powder is put into a high-temperature glass melting furnace, melted, and homogeneously mixed into a high-temperature viscous fluid (hereinafter sometimes referred to as melt) To. The melt is poured out on molten tin metal (hereinafter sometimes referred to as molten tin). Since the melt, which is a glass precursor prepared by the float process, has a specific gravity sufficiently lower than that of molten tin, the melt floats on the molten tin and spreads wet. By sufficiently spreading and spreading, the melt is formed into a flat plate having a predetermined thickness. A flat glass is obtained by sufficiently cooling and solidifying the melt formed into a flat plate shape. The process so far is called the float method.
The flat glass produced by this float process is flat both on the surface that is in contact with the molten tin and on the surface that is not in contact with anything at the top.

上記のフロート法のプロセスで、溶融錫を満たす容器の中は酸素を排した雰囲気である必要があるが、酸素を排した雰囲気であっても、僅かではあるが酸素の混入は避けられない。錫バスで発生した錫金属および不純物として混入している金属の蒸気が酸素と接触し、微小な酸化錫およびその他の金属酸化物となり、粘性を増した融液(またはガラス)の表面に定着したものが欠陥Dとなる。
この酸化錫由来の欠陥(酸化錫欠陥)が、第1実施形態で検査される欠陥Dの主である。欠陥Dには、他にガラス表面の傷もある。および、ガラス表面の傷に定着した酸化錫欠陥も考えられる。
In the above float process, the container filled with molten tin needs to have an atmosphere in which oxygen is exhausted, but even in an atmosphere in which oxygen is exhausted, a slight amount of oxygen cannot be avoided. Tin metal generated in the tin bath and metal vapor mixed as impurities come into contact with oxygen to form fine tin oxide and other metal oxides, which are fixed on the surface of the melt (or glass) with increased viscosity. Things become defects D.
This defect derived from tin oxide (tin oxide defect) is the main defect D to be inspected in the first embodiment. Other defects D include scratches on the glass surface. In addition, a tin oxide defect fixed on a scratch on the glass surface is also conceivable.

第1実施形態の検査装置4の構成が図2で示されている。
図2において、検査装置4は、ガラス基板Gに向けて平行光Lを照射する投光部12と、欠陥Dで散乱された光を受光して撮像する受光部13と、受光部13で得られた信号を処理して欠陥を検査する検査部14とを備えて構成される。なお、図2において、投光部12と受光部13との位置をわかりやすくするために、ガラス基板Gの位置をずらして図示している。
搬送装置1は、2本のレール1Aの間にほぼ等間隔に回転ローラー1Bが配置されており、回転ローラー1Bの回転によってガラス基板Gを移動させることができる。回転ローラー1B同士の間隔は50mm程度であり、回転ローラー1B間に平行光Lを通過させて、検査を行うのに十分な間隔となっている。
搬送装置1の搬送方向Fに対する直交方向(搬送装置1の幅方向)に対して、投光部12がガラス基板Gの幅よりも十分に広い照射幅を有する。
The configuration of the inspection apparatus 4 of the first embodiment is shown in FIG.
In FIG. 2, the inspection apparatus 4 is obtained by a light projecting unit 12 that irradiates the parallel light L toward the glass substrate G, a light receiving unit 13 that receives and images light scattered by the defect D, and a light receiving unit 13. And an inspection section 14 for inspecting the defect by processing the received signal. In FIG. 2, in order to make the positions of the light projecting unit 12 and the light receiving unit 13 easier to understand, the position of the glass substrate G is shifted and illustrated.
In the transport device 1, the rotating rollers 1B are arranged at approximately equal intervals between the two rails 1A, and the glass substrate G can be moved by the rotation of the rotating rollers 1B. The interval between the rotating rollers 1B is about 50 mm, and the interval is sufficient to allow the parallel light L to pass between the rotating rollers 1B and perform the inspection.
The light projecting unit 12 has an irradiation width that is sufficiently wider than the width of the glass substrate G with respect to the direction orthogonal to the transport direction F of the transport device 1 (the width direction of the transport device 1).

複数の受光部13は、幅方向で検査漏れが無いように、搬送装置1の幅方向に1列に配置されている。
検査部14は、受光部13で撮像した画像を表示するものであり、必要に応じて欠陥Dの寸法も計算して表示する。検査部14は、欠陥Dの有/無、または欠陥Dの寸法等の条件を事前に入力することで、欠陥Dが良品性欠陥であるか、不良品性欠陥であるかを直ちに判別することができる。
投光部12と受光部13との関係が図3に示されている。図3(A)の断面図で示すように、ガラス基板Gを透過した透過光Ltは、受光部13には届かないのに対して、欠陥Dで散乱した散乱光Lsのみが受光部13で検出される暗視野光学系になっている。この暗視野光学系であれば、背景が黒色であるところに、欠陥Dからの散乱光Lsのみが明るい像をなし、欠陥Dの検出が容易になる。
The plurality of light receiving units 13 are arranged in one row in the width direction of the transport device 1 so that there is no inspection omission in the width direction.
The inspection unit 14 displays an image captured by the light receiving unit 13, and calculates and displays the dimension of the defect D as necessary. The inspection unit 14 immediately determines whether the defect D is a non-defective product defect or a defective product defect by inputting in advance conditions such as the presence / absence of the defect D or the size of the defect D. Can do.
The relationship between the light projecting unit 12 and the light receiving unit 13 is shown in FIG. As shown in the cross-sectional view of FIG. 3A, the transmitted light Lt transmitted through the glass substrate G does not reach the light receiving unit 13, but only the scattered light Ls scattered by the defect D is received by the light receiving unit 13. It is a dark field optical system to be detected. In this dark field optical system, only the scattered light Ls from the defect D forms a bright image where the background is black, and the defect D can be easily detected.

(第1実施形態の詳細な構成)
第1実施形態で使用した投光部12は、例えば、照射装置の中に光源として高輝度LED素子を並べてライン状に平行光Lを照射するLED照明である。最大電流値は650(mA)、最大消費電力は750(W)、照明領域の幅は600(mm)、スリット幅は最大で8(mm)である。
第1実施形態で使用した受光部13は、例えば、CCDカメラである。分解能はおおよそ30(μm)である。
(Detailed configuration of the first embodiment)
The light projecting unit 12 used in the first embodiment is, for example, LED illumination that irradiates parallel light L in a line by arranging high-luminance LED elements as light sources in an irradiation device. The maximum current value is 650 (mA), the maximum power consumption is 750 (W), the width of the illumination area is 600 (mm), and the maximum slit width is 8 (mm).
The light receiving unit 13 used in the first embodiment is, for example, a CCD camera. The resolution is approximately 30 (μm).

図3(A)に第1実施形態の光学系の模式図を示す。
図3(A)において、投光部12から照射された平行光Lは、ガラス基板Gを透過する透過光Ltおよび欠陥Dで散乱する散乱光Lsになる。他に平行光Lは、ガラス基板Gの裏面と表面で反射するが、その反射光はごくわずかであり、また本検査では関係しないため、ここでは反射光の記載は省いた。
投光部12から照射された光は、ガラス基板Gの近傍では実質的に平行光Lとなる。投光部12から照射された光は、断面方向から見て、集光する光線であるが、その光線の集光点はガラス基板Gから十分に離れているため、ガラス基板Gの近傍では幅を持った光線となり、その幅(以後は帯幅Mと表記する)は、例えば図3(A)で示すガラス基板Gの厚さtの方向(透過方向)ではほぼ一定の厚みになる。投光部12とガラス基板Gに対する帯幅Mを受光部13から見たイメージは、図3(B)の上から見た平面図で示すようになる。
FIG. 3A shows a schematic diagram of the optical system of the first embodiment.
In FIG. 3A, the parallel light L emitted from the light projecting unit 12 becomes transmitted light Lt that passes through the glass substrate G and scattered light Ls that is scattered by the defect D. In addition, although the parallel light L is reflected by the back surface and the front surface of the glass substrate G, the reflected light is negligible and is not relevant in this inspection, so the description of the reflected light is omitted here.
The light emitted from the light projecting unit 12 becomes substantially parallel light L in the vicinity of the glass substrate G. The light emitted from the light projecting unit 12 is a light beam that is condensed when viewed from the cross-sectional direction, but since the condensing point of the light beam is sufficiently away from the glass substrate G, the width is near the glass substrate G. The width (hereinafter referred to as the band width M) is, for example, substantially constant in the direction of the thickness t (transmission direction) of the glass substrate G shown in FIG. An image of the band width M with respect to the light projecting unit 12 and the glass substrate G viewed from the light receiving unit 13 is as shown in a plan view viewed from above in FIG.

図4(A)で示すように、ガラス基板Gが透光性を有しているため、受光部13がガラス基板Gの垂線P方向からずれて配置された場合、欠陥Dの散乱光Lsの一部がガラス基板Gの裏面で反射された光Ls1による像Daが、受光部13で検出した時にガラス基板Gの表面で虚像Dbとして検出されることがある。その時の検出イメージは、図4(B)で示すように、欠陥Dの像と虚像Dbが同時に見え、二重像として検出される。この二重像では、欠陥Dと虚像Dbが一体に見えてしまい、欠陥Dの寸法が正しく評価されなくなる。あるいは、欠陥Dと虚像Dbが別の像として認識され、実際には存在しない虚像Dbも欠陥として認識されてしまい、製品の歩留まりが低下することになる。
虚像Dbを認識しないようにするためには、受光部13がガラス基板Gの垂線P上に配置されることが好ましい。受光部13を垂線P上に、ずれることなく正確に設置することは困難である。本願発明者が本発明に至るまでに多数の実験を行った結果、および従前の豊富な実験経験によると、受光部13のガラス基板Gの垂線P方向に対する配置の誤差が±5°以内であれば、虚像Dbが検出されないことを確認している。
As shown in FIG. 4A, since the glass substrate G has translucency, when the light receiving unit 13 is arranged so as to deviate from the normal P direction of the glass substrate G, the scattered light Ls of the defect D When the image Da by the light Ls1 partially reflected by the back surface of the glass substrate G is detected by the light receiving unit 13, it may be detected as a virtual image Db on the surface of the glass substrate G. As shown in FIG. 4B, the image of the defect D and the virtual image Db are simultaneously seen and detected as a double image. In this double image, the defect D and the virtual image Db appear to be integrated, and the dimension of the defect D cannot be correctly evaluated. Alternatively, the defect D and the virtual image Db are recognized as different images, and the virtual image Db that does not actually exist is also recognized as a defect, resulting in a decrease in product yield.
In order not to recognize the virtual image Db, it is preferable that the light receiving unit 13 is disposed on the perpendicular P of the glass substrate G. It is difficult to accurately install the light receiving unit 13 on the perpendicular line P without shifting. According to the results of numerous experiments conducted by the inventor of the present invention to the present invention and abundant experience in the past, the arrangement error of the light receiving unit 13 with respect to the normal P direction of the glass substrate G should be within ± 5 °. In this case, it is confirmed that the virtual image Db is not detected.

(第1実施形態の構成パラメーターの最適化)
図3(A)に示すように、投光部13は、被検査体の垂線Pに対して90°未満の斜めに配置されるが、その角度θは背景ノイズに対する欠陥Dからの像のコントラスト(S/N比)、および欠陥に対する検出感度で最適化される。
図5に投光部の設置角度を変化させたときのS/N比および検出感度を評価した実験結果を示す。
図5に示すように、S/N比は角度値が大きくなるほど向上する傾向があり、17°が最大となっている。検出感度は角度値が大きくなるほど低下する傾向がある。S/N比は少なくとも0.5程度が必要であり、投光部12の設置角度は、10°を超えて30°以下が好適である。設置角度が30°を超えると検出感度が著しく低下する恐れがある。より好ましくは、設置角度が10°を超えて20°以下、さらに好ましくは13°以上17°以下である。
(Optimization of configuration parameters of the first embodiment)
As shown in FIG. 3A, the light projecting unit 13 is disposed at an angle of less than 90 ° with respect to the perpendicular P of the object to be inspected, and the angle θ is the contrast of the image from the defect D with respect to background noise. (S / N ratio) and detection sensitivity to defects are optimized.
FIG. 5 shows the experimental results of evaluating the S / N ratio and the detection sensitivity when the installation angle of the light projecting unit is changed.
As shown in FIG. 5, the S / N ratio tends to improve as the angle value increases, and 17 ° is the maximum. The detection sensitivity tends to decrease as the angle value increases. The S / N ratio needs to be at least about 0.5, and the installation angle of the light projecting unit 12 is preferably more than 10 ° and not more than 30 °. If the installation angle exceeds 30 °, the detection sensitivity may be significantly reduced. More preferably, the installation angle is more than 10 ° and not more than 20 °, more preferably not less than 13 ° and not more than 17 °.

図6(A)には、投光部12から照射された平行光Lが、透光性のあるガラス基板Gに照射されているイメージが示されている。
図6(A)において、投光部12から照射された光は集光する光線であるが、その光線の集光点はガラス基板Gから十分に離れているため、ガラス基板Gの近傍では実質的に平行光Lとなる。
平行光Lの帯幅Mは、実際には境目が明瞭ではないことから、目視で帯幅Mの長さを測定できない。そのため、目視に頼らない手段で、帯幅Mを定量的に評価する手段が必要となる。すなわち、受光部13で得られた信号から、照射断面方向での輝度分布を読み取り、図6(B)で示すように、最大値に対する輝度値が1/2以上になる領域を波形半値幅(以後、半値幅と表記する)として読み取る。
この輝度の半値幅の値dは、帯幅Mに比例した値となり、帯幅Mの指標として用いることができる。
FIG. 6A shows an image in which the parallel light L emitted from the light projecting unit 12 is applied to the translucent glass substrate G.
In FIG. 6 (A), the light emitted from the light projecting unit 12 is a light beam that collects light, but since the focal point of the light beam is sufficiently away from the glass substrate G, it is substantially near the glass substrate G. Therefore, it becomes parallel light L.
The band width M of the parallel light L is actually unclear, so the length of the band width M cannot be measured visually. Therefore, a means for quantitatively evaluating the band width M without using visual observation is required. That is, the luminance distribution in the irradiation cross section direction is read from the signal obtained by the light receiving unit 13, and as shown in FIG. Hereinafter, it is read as half width).
The half value width d of the luminance is a value proportional to the band width M and can be used as an index of the band width M.

図7に、平行光Lの帯幅Mと透光性を持つガラス基板Gの板厚変化に対する検出感度のイメージ図が示されている。図7(A)には帯幅Mが広い平行光Lで薄い板を検査する場合、図7(B)には帯幅Mが広い平行光Lで厚い板を検査する場合、図7(C)には帯幅Mが狭い平行光Lで薄い板を検査する場合、図7(D)には帯幅Mが狭い平行光Lで厚い板を検査する場合をそれぞれ示す。帯幅Mが十分な広さであれば、図7(A)と図7(B)で示すように、ガラス基板Gの厚さによらず欠陥Dからの散乱光Lsを受光部13で十分な感度で受光することができる。帯幅Mが狭い場合でも、図7(D)で示すように、ガラス基板Gが厚い場合には受光部13で十分な感度で受光することができる。しかし、図7(C)で示すように、ガラス基板Gが薄い場合には欠陥Dに十分な光量が照射されず、受光部13で十分な感度で受光することが出来なくなる。   FIG. 7 shows an image diagram of the detection sensitivity with respect to the band width M of the parallel light L and the thickness change of the glass substrate G having translucency. FIG. 7A shows a case where a thin plate is inspected with a parallel light L having a wide band width M, and FIG. 7B shows a case where a thick plate is inspected with a parallel light L having a wide band width M. ) Shows a case where a thin plate is inspected with a parallel light L having a narrow band width M, and FIG. 7D shows a case where a thick plate is inspected with a parallel light L having a narrow band width M. If the band width M is sufficiently wide, the light receiving unit 13 is sufficient to scatter the scattered light Ls from the defect D regardless of the thickness of the glass substrate G, as shown in FIGS. 7 (A) and 7 (B). Light can be received with high sensitivity. Even when the band width M is narrow, as shown in FIG. 7D, when the glass substrate G is thick, the light receiving unit 13 can receive light with sufficient sensitivity. However, as shown in FIG. 7C, when the glass substrate G is thin, the defect D is not irradiated with a sufficient amount of light, and the light receiving unit 13 cannot receive light with sufficient sensitivity.

図3(A)に示す第1実施形態の光学系において、帯幅Mが以下の条件を満たすことで、受光部13で十分な感度で受光することができる。すなわち、ガラス基板Gの厚さをt(mm)、ガラス基板Gの垂線Pに対する投光部12が配置される角度をθ、ただし、0°<θ<90°、受光部13が感知する信号断面の半値幅をd(mm)とした時に、
t×sinθ≦d/2 (式1)
の関係を満足することである。ガラス基板Gが搬送中に上下動する場合の変動値t1(mm)を考慮すると、式1中のtを(t+t1)に読み替えることもできる。
In the optical system of the first embodiment shown in FIG. 3A, the light receiving section 13 can receive light with sufficient sensitivity when the band width M satisfies the following conditions. That is, the thickness of the glass substrate G is t (mm), the angle at which the light projecting unit 12 is disposed with respect to the normal P of the glass substrate G is θ, where 0 ° <θ <90 °, and the signal that the light receiving unit 13 senses. When the full width at half maximum of the cross section is d (mm),
t × sin θ ≦ d / 2 (Formula 1)
Satisfy the relationship. Considering the fluctuation value t1 (mm) when the glass substrate G moves up and down during conveyance, t in Equation 1 can be read as (t + t1).

投光部12からの平行光Lの投光光軸と、受光部13の視野中心線(垂線P)とがガラス基板Gの下面(裏面)で交わっていた場合に、ガラス基板Gの表面で受光部13の視野中心線が貫く点と、投光部12からの平行光Lの投光光軸の距離は式1の左辺(t×sinθ)となる。(t×sinθ)が平行光Lの投光光軸の中心線と受光部13の視野中心線のズレの最大値とみなすことができる。平行光Lの半値幅を示すdの1/2の値が(t×sinθ)以上であれば、受光部13が検出可能な視野の範囲を投光部12からの平行光Lが照らすことになり、欠陥Dを高感度で検出することができる。   When the light projecting optical axis of the parallel light L from the light projecting unit 12 and the visual field center line (perpendicular line P) of the light receiving unit 13 intersect at the lower surface (back surface) of the glass substrate G, the surface of the glass substrate G The distance between the point through which the visual field center line of the light receiving unit 13 passes and the light projecting optical axis of the parallel light L from the light projecting unit 12 is the left side (t × sin θ) of Equation 1. (T × sin θ) can be regarded as the maximum deviation between the center line of the light projecting optical axis of the parallel light L and the visual field center line of the light receiving unit 13. If the half value of d indicating the half width of the parallel light L is equal to or greater than (t × sin θ), the parallel light L from the light projecting unit 12 illuminates the range of the visual field that can be detected by the light receiving unit 13. Thus, the defect D can be detected with high sensitivity.

投光部12の角度θが15°であった場合(実験条件1)における、ガラスの板厚変化に対する欠陥Dの検出感度の実験結果を図8に示す。
図8において、ガラス基板Gであるガラス板が厚くなるほど欠陥Dの検出感度は低下する傾向にあるが、半値幅が16.7(mm)および9.4(mm)の時はガラス基板Gの厚さがおよそ1.5(mm)程度まで検出感度はほとんど一定である。しかし、半値幅が6.7(mm)の時は検出感度の低下が顕著であり、ガラス基板Gの厚さが2(mm)の時にほぼ半減していた。
FIG. 8 shows an experimental result of the detection sensitivity of the defect D with respect to a change in the thickness of the glass when the angle θ of the light projecting unit 12 is 15 ° (experimental condition 1).
In FIG. 8, the detection sensitivity of the defect D tends to decrease as the glass plate which is the glass substrate G becomes thicker. However, when the half width is 16.7 (mm) and 9.4 (mm), the glass substrate G The detection sensitivity is almost constant until the thickness is about 1.5 (mm). However, when the half-value width is 6.7 (mm), the detection sensitivity is remarkably lowered, and when the thickness of the glass substrate G is 2 (mm), it is almost halved.

図9には実験条件1における、投光部12から照射する平行光Lの光量に対する、受光部13で得られる欠陥Dの検出感度の実験結果を示す。
図9において、投光部12から照射される平行光Lの光量は投光部12で消費される電流値に比例する。電流値が大きくなるほど、欠陥Dに対する検出感度は高くなる傾向になっている。半値幅が小さいほど検出感度は高くなる傾向にある。
FIG. 9 shows an experimental result of the detection sensitivity of the defect D obtained by the light receiving unit 13 with respect to the amount of the parallel light L emitted from the light projecting unit 12 under the experimental condition 1.
In FIG. 9, the light quantity of the parallel light L emitted from the light projecting unit 12 is proportional to the current value consumed by the light projecting unit 12. As the current value increases, the detection sensitivity for the defect D tends to increase. The detection sensitivity tends to increase as the half-value width decreases.

実験条件1における、帯幅Mの指標となる半値幅に対し、ガラス基板Gの板厚または上下変動時の欠陥の検出感度と、光量の大きさに相関する実験結果を図10に示す。検出感度はガラス基板Gの高さを0.6(mm)上げる前と後での欠陥Dの検出信号強度の比で表し、信号強度に変化が無ければ1.0、減衰していれば1.0未満の値となる。光量の指標は電流余裕代で表し、1.0が最も光量に余裕があることを示す。実験結果によると、半値幅が広いと板厚または上下変動時の欠陥の検出感度が高く、半値幅が狭いと光量の余裕が多く取ることができる。検出感度と光量の余裕は相反する傾向であるが、両者のバランスをはかると、半値幅は5(mm)以上20(mm)以下であることが好ましい。より好ましくは5(mm)以上15(mm)、さらに好ましくは6(mm)以上7(mm)以下である。なお、前記実験条件1において、図10で表している半値幅の実験値は全て前記式1の範囲を満たしている。ここで、電流値余裕代とは、1から「検出に必要な電流値」/「最大電流値」を引いた値であり、「検出に必要な感度をとれる電流値に設定したとき、そのときの電流値は最大電流値と比較してどの程度の割合だけ使用しているか」という値を1から引いた値である。電流値余裕代は、「検出に必要な感度をとれる電流値に設定したとき、その照明にまだどれだけ電流を流す余裕があるか」を示している。   FIG. 10 shows the experimental results correlating with the half-width as an index of the band width M in the experimental condition 1 and the detection sensitivity of the glass substrate G at the time of the plate thickness or vertical fluctuation and the magnitude of the amount of light. The detection sensitivity is represented by the ratio of the detection signal intensity of the defect D before and after the height of the glass substrate G is increased by 0.6 (mm), and is 1.0 if there is no change in the signal intensity, and 1 if it is attenuated. The value is less than 0.0. The light quantity index is represented by a current margin, and 1.0 indicates that the light quantity has the most allowance. According to the experimental results, when the half-value width is wide, the detection sensitivity of defects at the time of plate thickness or vertical fluctuation is high, and when the half-value width is narrow, a large amount of light can be provided. Although there is a tendency that the detection sensitivity and the margin of the light quantity are in conflict, it is preferable that the half width is 5 (mm) or more and 20 (mm) or less when the balance between them is balanced. More preferably, they are 5 (mm) or more and 15 (mm), More preferably, they are 6 (mm) or more and 7 (mm) or less. Note that, in the experimental condition 1, all of the experimental values with the full width at half maximum shown in FIG. Here, the current value margin is a value obtained by subtracting “current value necessary for detection” / “maximum current value” from 1, and when “current value necessary for detection is set to a current value, Is a value obtained by subtracting from 1 the value “how much is used compared to the maximum current value”. The current value margin indicates how much current can still flow through the illumination when the current value is set to a value that can provide the sensitivity necessary for detection.

(第1実施形態の効果)
第1実施形態では、次の効果を奏することができる。
(1)投光部12から照射する光として、平行光Lを用いているため、欠陥Dが生じる位置に関わらず、ガラス基板Gの欠陥Dで散乱した散乱光Lsが鮮明に検出され、得られた信号を処理して良品性欠陥と非良品性欠陥とを判別することができる。そのため、欠陥密集体を高感度に検出し、より正確に測定できる。
(Effect of 1st Embodiment)
In the first embodiment, the following effects can be achieved.
(1) Since the parallel light L is used as the light emitted from the light projecting unit 12, the scattered light Ls scattered by the defect D of the glass substrate G is clearly detected and obtained regardless of the position where the defect D occurs. The received signal can be processed to discriminate between a non-defective product defect and a non-defective product defect. For this reason, a dense defect can be detected with high sensitivity and measured more accurately.

(2)ガラス基板Gは透光性を有し、ガラス基板Gの表面に対して一方に投光部12が配置され、他方に受光部13が配置されているため、投光部12と受光部13とが設置場所で干渉することは無い。 (2) Since the glass substrate G has translucency, the light projecting unit 12 is disposed on one side of the surface of the glass substrate G, and the light receiving unit 13 is disposed on the other side. The part 13 does not interfere with the installation location.

(3)板状部材であるガラス基板Gの平面と直交する垂線Pに対して、投光部12は投光光軸が90°未満の斜めに配置され、受光部13は垂線Pと受光光軸が一致するように配置されているため、被検査面の裏面で反射した散乱光Lsを受光部13で検出しない。それによって、被検査面と裏面の虚像Dbが重なって過剰に大きく表示されることが無くなる。そのため、欠陥密集体をより正確に測定可能な検査装置4を提供することができる。しかも、ガラス基板Gが板状であるため、板厚変動または上下変動があっても検出可能な検査装置4を提供することができる。 (3) The light projecting unit 12 is disposed obliquely with a light projecting optical axis of less than 90 ° with respect to the perpendicular P perpendicular to the plane of the glass substrate G, which is a plate-like member, and the light receiving unit 13 includes the perpendicular P and the received light. Since the axes are arranged to coincide with each other, the light receiving unit 13 does not detect the scattered light Ls reflected by the back surface of the surface to be inspected. As a result, the virtual image Db on the surface to be inspected and the back surface do not overlap and are not displayed excessively. Therefore, it is possible to provide the inspection apparatus 4 that can measure the defect dense body more accurately. Moreover, since the glass substrate G is plate-shaped, it is possible to provide an inspection apparatus 4 that can detect even if there is a plate thickness variation or vertical variation.

(4)ガラス基板Gの厚さをt(mm)、ガラス基板Gの垂線Pに対する投光部12が配置される角度をθ、ただし、0°<θ<90°、受光部13が感知する信号断面の半値幅をd(mm)とした時に、
t×sinθ≦d/2 (式1)
の関係を満足するため、投光部12からの平行光Lで、ガラス基板Gの表面における受光部13が検出可能な視野の範囲を照らすことが可能となり、板厚変動があっても十分な強度で欠陥からの散乱光Lsを検出することができる。
(4) The thickness of the glass substrate G is t (mm), and the angle at which the light projecting unit 12 is arranged with respect to the perpendicular P of the glass substrate G is θ, where 0 ° <θ <90 °, and the light receiving unit 13 senses. When the full width at half maximum of the signal section is d (mm),
t × sin θ ≦ d / 2 (Formula 1)
Therefore, the parallel light L from the light projecting unit 12 can illuminate the range of the field of view that can be detected by the light receiving unit 13 on the surface of the glass substrate G. Scattered light Ls from the defect can be detected by intensity.

(5)垂線Pに対して投光部12が設置される角度θが、
10°<θ≦30°
であれば、背景ノイズに対する欠陥からの像のコントラスト(S/N比)が高く、かつ欠陥に対する検出感度が高くなる。そのため、より高感度に欠陥密集体を検出し、より正確に測定できる。
(5) The angle θ at which the light projecting unit 12 is installed with respect to the perpendicular P is
10 ° <θ ≦ 30 °
If so, the contrast (S / N ratio) of the image from the defect to the background noise is high, and the detection sensitivity to the defect is high. For this reason, it is possible to detect defect dense bodies with higher sensitivity and measure them more accurately.

(6)投光部12の角度θが15°である場合、受光部13が感知する信号断面の半値幅dが5(mm)以上20(mm)以下であれば、欠陥Dの検出感度が十分で、かつ照射光源の光量(電力量)に余裕を持たせることができる。 (6) When the angle θ of the light projecting unit 12 is 15 °, if the half width d of the signal section sensed by the light receiving unit 13 is 5 (mm) or more and 20 (mm) or less, the detection sensitivity of the defect D is It is sufficient and a sufficient amount of light (power amount) of the irradiation light source can be provided.

<第2実施形態>
本発明の第2実施形態について、図11に基づいて説明する。第2実施形態は第1実施形態とは投光部の配置位置が異なるもので、他の構成は第1実施形態と同じである。なお、第2実施形態の説明において、第1実施形態と同一の構成は同一符号を付して説明を省略する。
第1実施形態では、ガラス基板Gの表面に対して、一方に投光部12が配置され、他方に受光部13が配置されている透過光学系であったが、第2実施形態では、図11で示すように、ガラス基板Gの表面に対して投光部12と受光部13との双方が配置されている反射光学系で構成される。
Second Embodiment
A second embodiment of the present invention will be described with reference to FIG. The second embodiment is different from the first embodiment in the arrangement position of the light projecting units, and the other configurations are the same as those of the first embodiment. In the description of the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
The first embodiment is a transmission optical system in which the light projecting unit 12 is arranged on one side and the light receiving unit 13 is arranged on the other side with respect to the surface of the glass substrate G. As shown by 11, it is constituted by a reflective optical system in which both the light projecting unit 12 and the light receiving unit 13 are arranged on the surface of the glass substrate G.

第2実施形態の光学系においても、第1実施形態と同様に、帯幅Mが以下の条件を満たすことで、受光部13で十分な感度で受光することができる。すなわち、ガラス基板Gの高さ変動値t1(mm)、ガラス基板Gの垂線Pに対する投光部12が配置される角度をα、ただし、0°<α<90°受光部13が感知する信号断面の半値幅をd(mm)とした時に、
t1×sinα≦d/2 (式2)
の関係を満足することである。
なお、第2実施形態の反射光学系については、ガラス基板Gの厚さtは式2に影響するものではない。
Also in the optical system of the second embodiment, similarly to the first embodiment, when the band width M satisfies the following conditions, the light receiving unit 13 can receive light with sufficient sensitivity. That is, the height fluctuation value t1 (mm) of the glass substrate G and the angle at which the light projecting unit 12 is arranged with respect to the perpendicular P of the glass substrate G is α, where 0 ° <α <90 ° is a signal sensed by the light receiving unit 13. When the full width at half maximum of the cross section is d (mm),
t1 × sin α ≦ d / 2 (Formula 2)
Satisfy the relationship.
In the reflective optical system of the second embodiment, the thickness t of the glass substrate G does not affect the expression 2.

第2実施形態では、被検査体はガラス基板Gのように透光性を有するものに限らず、不透明なものであっても良い。たとえば、金属、セラミックス、不透明な結晶化ガラス、プラスチックなどの樹脂等の被検査体の表面の検査に好適である。
なお、被検査体が透光性を有していない場合、被検査体の裏面での反射は起こらず、欠陥Dの虚像Dbは出現することはない。そのため、受光部13が垂線P上に配置されていなくてもよい。
In the second embodiment, the object to be inspected is not limited to the light-transmitting material such as the glass substrate G, and may be opaque. For example, it is suitable for inspecting the surface of an object to be inspected such as a resin such as metal, ceramics, opaque crystallized glass, and plastic.
In addition, when the to-be-inspected object does not have translucency, reflection by the back surface of to-be-inspected object does not occur, and the virtual image Db of the defect D does not appear. Therefore, the light receiving unit 13 may not be disposed on the perpendicular line P.

(第2実施形態の効果)
このような構成の第2実施形態では、第1実施形態の(1)(3)(5)(6)と同様の効果を奏することができる他、次の効果を奏することができる。
(7)ガラス基板Gの表面に対して一方に投光部12と受光部13との双方が配置されているため、ガラス基板Gの下部に、例えば搬送ローラーなどが配置されているためにすき間が無くても、投光部12および受光部13の設置が可能になる。
(Effect of 2nd Embodiment)
In the second embodiment having such a configuration, the same effects as those of the first embodiment (1), (3), (5), and (6) can be obtained, and the following effects can be obtained.
(7) Since both the light projecting unit 12 and the light receiving unit 13 are arranged on one side with respect to the surface of the glass substrate G, a clearance is provided because, for example, a transport roller is arranged below the glass substrate G. Even if there is no light, the light projecting unit 12 and the light receiving unit 13 can be installed.

(8)反射光学系であるため、被検査体が透光性を有していない不透明体であっても欠陥検査を行うことができる。 (8) Since it is a reflection optical system, defect inspection can be performed even if the object to be inspected is an opaque body that does not have translucency.

(9)被検査体が透光性を有していない不透明体である場合、受光部13が垂線P上に配置されていなくても構わない。そのため、受光部13の設置位置に自由度があり、投光部12と受光部13とが設置場所で干渉を避けることが容易になる。 (9) When the object to be inspected is an opaque body that does not have translucency, the light receiving portion 13 may not be disposed on the perpendicular line P. Therefore, there is a degree of freedom in the installation position of the light receiving unit 13, and the light projecting unit 12 and the light receiving unit 13 can easily avoid interference at the installation location.

<変形例>
なお、本発明は前記各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、各実施形態では、被検査体は透光性を持つ板状材料であるガラス基板であって、そのガラス基板の洗浄ラインを例示して説明したが、本発明はそれに限定されるものではない。例えば、表面処理工程、研磨工程、コーティング工程、などの前および後の少なくとも一方において、本発明の検査装置4で欠陥Dを検査することができる。
<Modification>
Note that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope in which the object of the present invention can be achieved are included in the present invention.
For example, in each embodiment, the object to be inspected is a glass substrate that is a plate-like material having translucency, and the cleaning line of the glass substrate is illustrated and described, but the present invention is not limited thereto. Absent. For example, the defect D can be inspected by the inspection apparatus 4 of the present invention at least before and after the surface treatment process, polishing process, coating process, and the like.

被検査体を透光性材料から形成する場合、ガラス以外の材料であってもよい。この材料として、例えば、アクリル等の樹脂材料、透光性セラミックス材料、透明または半透明(透光性を有する)結晶化ガラス材料、などが考えられる。
各実施形態では被検査体は板状であったが、本発明では板状に限らない。例えば、曲げ加工を施した板(自動車用の窓ガラス等)または厚みが一定ではない板(凹、凸、楔形など)の欠陥Dを検出することができる。
When the object to be inspected is formed from a translucent material, a material other than glass may be used. As this material, for example, a resin material such as acrylic, a translucent ceramic material, a transparent or translucent (translucent) crystallized glass material, and the like can be considered.
In each embodiment, the object to be inspected has a plate shape, but the present invention is not limited to a plate shape. For example, it is possible to detect a defect D on a bent plate (such as an automobile window glass) or a plate (such as a concave, convex, or wedge shape) whose thickness is not constant.

各実施形態において、欠陥Dは酸化錫欠陥、不純物酸化物欠陥、被検査体の表面の傷、傷に定着した酸化錫欠陥または不純物酸化物欠陥であると説明したが、欠陥Dの種類をこれらに限定するものではない。ガラス基板Gの表面に定着した塵であっても、検査装置4で欠陥Dとして認識される。
また、被検査体の内部の泡、異物(被検査体がガラスであれば、原料の溶け残り、または溶融プロセス中に発生した結晶化物など)であっても、検査装置4で欠陥Dとして認識される。
In each embodiment, it has been described that the defect D is a tin oxide defect, an impurity oxide defect, a scratch on the surface of the object to be inspected, a tin oxide defect fixed on the scratch, or an impurity oxide defect. It is not limited to. Even dust fixed on the surface of the glass substrate G is recognized as a defect D by the inspection device 4.
Moreover, even if it is a bubble or a foreign substance inside the object to be inspected (if the object to be inspected is glass, the raw material remains undissolved or a crystallized material generated during the melting process) is recognized as a defect D by the inspection apparatus 4 Is done.

各実施形態では、投光部12からの平行光Lの集光点を被検査体から十分にずらすことで、実質的に平行光としているが、本発明では、コリメートレンズ系を用いて厳密な平行光としても良い。コリメートレンズ系にビームエキスパンダーの機能も持たせて、平行光Lの光線幅を制御して、帯幅Mを自在に調整することもできる。あるいは、レンズを単体で用いて、焦点をずらしながらも被検査体を通過する平行光Lの光線幅を制御して、帯幅Mを調整しても良い。   In each embodiment, the collimating point of the collimated light L from the light projecting unit 12 is substantially shifted from the object to be inspected so that the collimated lens system is used. It may be parallel light. The collimating lens system can also have a beam expander function, and the width M can be adjusted freely by controlling the beam width of the parallel light L. Alternatively, the band width M may be adjusted by using a single lens and controlling the beam width of the parallel light L passing through the object to be inspected while shifting the focus.

各実施形態では、投光部12の光源にLEDを用いているが、特にLEDに限定するものではない。例えば、ハロゲンランプ、水銀ランプ、キセノンランプ等の高輝度光源、またはレーザー光源であっても構わない。また、光源の発光波長は可視光に限定するものではない。紫外光、近赤外光、赤外光であっても構わない。
各実施形態では、投光部12の光源に1種類のLED照明装置を1台で用いているが、複数台設置しても構わない。照明装置ごとに投入電流値、半値幅等を変更すれば、異なる種類の欠陥Dを同時に検出することが可能になる。
In each embodiment, although LED is used for the light source of the light projection part 12, it does not specifically limit to LED. For example, a high-intensity light source such as a halogen lamp, a mercury lamp, or a xenon lamp, or a laser light source may be used. The emission wavelength of the light source is not limited to visible light. It may be ultraviolet light, near infrared light, or infrared light.
In each embodiment, one type of LED illumination device is used as the light source of the light projecting unit 12, but a plurality of LED illumination devices may be installed. If the input current value, the half width, etc. are changed for each lighting device, different types of defects D can be detected simultaneously.

また、投光部12の光源に異なる種類の照明装置を複数台設置しても構わない。照明装置の発光波長、輝度等がそれぞれ異なっており、異なる種類の欠陥Dを同時に検出することが可能になる。
投光部12の光源は、パルス状に点灯しても良い。例えば、明るさの異なる光をそれぞれパルス状に照射することで、実質的に発光輝度が異なる光が投光部12から同時に照射することと同様な作用が得られる。さらに、パルス状点灯を行うことにより投光部と受光部の組み合わせを1組のみとすることができる。これにより複数の光学系を設置する場合に発生する設置場所との干渉を避けることができ、またコストを削減することができる。
各実施形態では、受光部13の受光素子はCCD素子であるが、特にCCDに限定するものではない。例えば、受光素子はCMOSであっても構わない。
A plurality of different types of lighting devices may be installed in the light source of the light projecting unit 12. The illuminating device has different emission wavelengths, luminances, and the like, so that different types of defects D can be detected simultaneously.
The light source of the light projecting unit 12 may be turned on in pulses. For example, by irradiating light of different brightness in a pulsed manner, the same effect as that of simultaneously irradiating light of substantially different emission luminance from the light projecting unit 12 can be obtained. Further, by performing pulsed lighting, only one combination of the light projecting unit and the light receiving unit can be achieved. As a result, it is possible to avoid interference with the installation location that occurs when a plurality of optical systems are installed, and to reduce costs.
In each embodiment, the light receiving element of the light receiving unit 13 is a CCD element, but is not particularly limited to a CCD. For example, the light receiving element may be a CMOS.

本発明の検査装置は、ガラス基板の洗浄ライン等で欠陥の検出に利用することができる。   The inspection apparatus of the present invention can be used for detecting defects in a glass substrate cleaning line or the like.

12 投光部
13 受光部
G ガラス基板(被検査体)
D 欠陥
L 平行光
Lt 透過光
Ls 散乱光
12 Light Emitting Part 13 Light Receiving Part G Glass Substrate (Inspected Object)
D defect L parallel light Lt transmitted light Ls scattered light

Claims (9)

被検査体に平行光を照射する投光部と、
前記投光部から照射された平行光が前記被検査体に生じた欠陥で散乱した光を受光する受光部と、
前記受光部で得られた信号を処理して欠陥を検査する検査部と、
を備えたことを特徴とする検査装置。
A light projecting unit that radiates parallel light onto the object to be inspected;
A light receiving unit that receives light scattered by a defect generated in the object to be inspected by the parallel light emitted from the light projecting unit;
An inspection unit for inspecting defects by processing a signal obtained by the light receiving unit;
An inspection apparatus comprising:
請求項1に記載の検査装置において、
前記被検査体は、板状部材であり、
前記投光部は、前記板状部材の平面と直交する垂線に対して投光光軸が90°未満の斜めに配置され、
前記受光部は、前記被検査体の垂線と受光光軸が一致するように配置されている
ことを特徴とする検査装置。
The inspection apparatus according to claim 1,
The object to be inspected is a plate-shaped member,
The light projecting portion is disposed obliquely with a light projecting optical axis of less than 90 ° with respect to a perpendicular perpendicular to the plane of the plate-like member,
The inspection apparatus, wherein the light receiving unit is arranged so that a perpendicular line of the object to be inspected and a light receiving optical axis coincide with each other.
請求項2に記載の検査装置において、
前記被検査体の厚さをt(mm)、
前記被検査体の垂線に対して前記投光部が配置される角度をθ、
ただし、0°<θ<90°、
前記受光部が感知する信号断面の波形半値幅をd(mm)とした時に、
t×sinθ≦d/2
の関係を満足する
ことを特徴とする検査装置。
The inspection apparatus according to claim 2,
The thickness of the object to be inspected is t (mm),
An angle at which the light projecting unit is disposed with respect to the normal of the object to be inspected is θ,
However, 0 ° <θ <90 °,
When the half width of the waveform of the signal section sensed by the light receiving unit is d (mm),
t × sin θ ≦ d / 2
Inspection equipment characterized by satisfying the relationship
請求項2または請求項3に記載の検査装置において、
前記被検査体は透光性を有し、
前記被検査体の表面に対して一方に前記投光部が配置され、
他方に前記受光部が配置されている
ことを特徴とする検査装置。
In the inspection apparatus according to claim 2 or claim 3,
The object to be inspected has translucency,
The light projecting portion is arranged on one side with respect to the surface of the inspection object,
The inspection device is characterized in that the light receiving unit is arranged on the other side.
請求項2または請求項3に記載の検査装置において、
前記被検査体の表面に対して一方に前記投光部と前記受光部との双方を配置されている
ことを特徴とする検査装置。
In the inspection apparatus according to claim 2 or claim 3,
Both the light projecting unit and the light receiving unit are arranged on one side with respect to the surface of the object to be inspected.
請求項4に記載の検査装置において、
前記被検査体の垂線に対して前記投光部が設置される角度θは、
10°<θ≦30°
であることを特徴とする、検査装置。
The inspection apparatus according to claim 4,
The angle θ at which the light projecting unit is installed with respect to the normal of the object to be inspected is
10 ° <θ ≦ 30 °
An inspection apparatus characterized by being.
請求項1ないし請求項6のいずれか一項に記載の検査装置において、
前記投光部は種類の異なる複数の光源を有している
ことを特徴とする検査装置。
In the inspection apparatus according to any one of claims 1 to 6,
The light projecting unit has a plurality of light sources of different types.
請求項1ないし請求項7のいずれか一項に記載の検査装置において、
前記投光部がパルス状に点灯する
ことを特徴とする検査装置。
In the inspection device according to any one of claims 1 to 7,
The light projecting unit is lit in a pulse shape.
投光部より被検査体に平行光を照射し、
前記投光部より照射された平行光が前記被検査体に生じた欠陥で散乱した光を受光部で受光し、
前記受光部で得られた信号を、検査部で処理して欠陥を検査する
ことを特徴とする検査方法。
The object to be inspected is irradiated with parallel light from the light projecting unit,
The light received from the light projecting unit is scattered by a defect generated in the object to be inspected by the light receiving unit,
An inspection method comprising: inspecting a defect by processing a signal obtained by the light receiving unit in an inspection unit.
JP2015001898A 2015-01-07 2015-01-07 Check device and method for checking Pending JP2016125968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001898A JP2016125968A (en) 2015-01-07 2015-01-07 Check device and method for checking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001898A JP2016125968A (en) 2015-01-07 2015-01-07 Check device and method for checking

Publications (1)

Publication Number Publication Date
JP2016125968A true JP2016125968A (en) 2016-07-11

Family

ID=56357828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001898A Pending JP2016125968A (en) 2015-01-07 2015-01-07 Check device and method for checking

Country Status (1)

Country Link
JP (1) JP2016125968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034601A (en) * 2018-09-21 2020-03-31 캐논 가부시끼가이샤 Foreign matter checking apparatus, exposure apparatus, and article manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214158A (en) * 2001-01-19 2002-07-31 Central Glass Co Ltd Defect detecting method and detecting device for transparent plate-like body
US20110043794A1 (en) * 2008-02-19 2011-02-24 Snu Precision Co., Ltd. Dark-Field Examination Device
JP2011203081A (en) * 2010-03-25 2011-10-13 Fujifilm Corp Defect inspection device
JP2012526968A (en) * 2009-05-15 2012-11-01 サン−ゴバン グラス フランス Method and system for detecting defects in transmission substrates
JP2013040915A (en) * 2011-08-18 2013-02-28 Samsung Corning Precision Materials Co Ltd Surface defect inspection device and inspection method for glass substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214158A (en) * 2001-01-19 2002-07-31 Central Glass Co Ltd Defect detecting method and detecting device for transparent plate-like body
US20110043794A1 (en) * 2008-02-19 2011-02-24 Snu Precision Co., Ltd. Dark-Field Examination Device
JP2012526968A (en) * 2009-05-15 2012-11-01 サン−ゴバン グラス フランス Method and system for detecting defects in transmission substrates
JP2011203081A (en) * 2010-03-25 2011-10-13 Fujifilm Corp Defect inspection device
JP2013040915A (en) * 2011-08-18 2013-02-28 Samsung Corning Precision Materials Co Ltd Surface defect inspection device and inspection method for glass substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200034601A (en) * 2018-09-21 2020-03-31 캐논 가부시끼가이샤 Foreign matter checking apparatus, exposure apparatus, and article manufacturing method
CN110941138A (en) * 2018-09-21 2020-03-31 佳能株式会社 Foreign matter inspection device, exposure device, and article manufacturing method
JP2020051759A (en) * 2018-09-21 2020-04-02 キヤノン株式会社 Foreign matter inspection device, exposure device, and article production method
JP7292842B2 (en) 2018-09-21 2023-06-19 キヤノン株式会社 Foreign Matter Inspection Apparatus, Exposure Apparatus, and Article Manufacturing Method
KR102582877B1 (en) * 2018-09-21 2023-09-27 캐논 가부시끼가이샤 Foreign matter checking apparatus, exposure apparatus, and article manufacturing method
CN110941138B (en) * 2018-09-21 2023-12-08 佳能株式会社 Foreign matter inspection device, exposure device, and article manufacturing method
TWI845542B (en) * 2018-09-21 2024-06-21 日商佳能股份有限公司 Foreign matter inspection device, exposure device and article manufacturing method

Similar Documents

Publication Publication Date Title
TWI408360B (en) Apparatus for detecting particles on a glass surface and a method thereof
US8242477B2 (en) Bright field and dark field channels, used for automotive glass inspection systems
KR101263973B1 (en) Oblique transmission illumination inspection system and method for inspecting a glass sheet
JP2011117928A (en) Apparatus and method for inspecting internal defect of substrate
KR20110058784A (en) Defect inspecting system, and defect inspecting method
JP2010151479A (en) Wiring pattern inspecting device
JP2010008177A (en) Defect detecting apparatus and method therefor
KR101482580B1 (en) Glass bottle inspection device and telecentric lens unit
KR20160047360A (en) System and method for defect detection
JP2015040835A (en) Defect inspection device and defect inspection method for transparent tabular body
KR101577119B1 (en) Pattern inspection apparatus and pattern inspection method
JP5830229B2 (en) Wafer defect inspection system
KR101203210B1 (en) Apparatus for inspecting defects
JP2013246059A (en) Defect inspection apparatus and defect inspection method
JP2010519516A (en) Method and apparatus for illuminating a film for automatic inspection
JP2005181070A (en) Flaw detecting method of transparent plate-shaped body and flaw detector therefor
JP2006242886A (en) Surface defect inspecting apparatus
TW201224443A (en) Device and method for detecting bubble in transparent tube
KR20180136421A (en) System and method for defect detection
JP2016125968A (en) Check device and method for checking
JP2011106912A (en) Imaging illumination means and pattern inspection device
JP2008076223A (en) Inspection method of cylindrical transparent body, and inspection apparatus used for it
JP2014169988A (en) Defect inspection device of transparent body or reflection body
JP2013044635A (en) Defect detecting device
JP5521283B2 (en) Board inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181113