[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016176791A - 温度測定装置及びこれを用いた寸法測定装置 - Google Patents

温度測定装置及びこれを用いた寸法測定装置 Download PDF

Info

Publication number
JP2016176791A
JP2016176791A JP2015056639A JP2015056639A JP2016176791A JP 2016176791 A JP2016176791 A JP 2016176791A JP 2015056639 A JP2015056639 A JP 2015056639A JP 2015056639 A JP2015056639 A JP 2015056639A JP 2016176791 A JP2016176791 A JP 2016176791A
Authority
JP
Japan
Prior art keywords
temperature
emissivity
measured
contact
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015056639A
Other languages
English (en)
Inventor
健太 古川
Kenta Furukawa
健太 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2015056639A priority Critical patent/JP2016176791A/ja
Publication of JP2016176791A publication Critical patent/JP2016176791A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

【課題】単独では測定精度の課題がある非接触式温度センサを用いた測定でありながら、高精度に被測定物の温度分布を測定できる温度測定装置、及びこれを用いた寸法測定装置を提供する。【解決手段】温度測定装置は、非接触式温度センサ3により被測定物の温度分布を測定する。被測定物の放射率と等しい放射率を有する放射率マスタMw,Maと、放射率マスタに設けられる接触式温度センサ5,7と、非接触式温度センサ3により測定される放射率マスタMw,Maの温度が、接触式温度センサ5,7による測定温度と等しくなる放射率設定値を設定する放射率設定部と、この放射率設定値に設定された非接触式温度センサ3により測定した実温度分布情報を、接触式温度センサ5,7による温度測定値を用いて補正する温度補正部とを備える。【選択図】図1

Description

本発明は、温度測定装置及びこれを用いた寸法測定装置に関する。
一般に、被測定物の三軸方向の長さを測定する三次元測定装置等の寸法測定装置が知られている。寸法測定時の基準温度は、国際規格に基づいて20℃と定められているため、これまでの精密寸法測定は、20℃に制御された恒温室内で行う必要があった。しかし、近年になって、生産効率の向上に伴って加工製造現場に近い場所での測定に対する要求が強まり、寸法測定装置を加工製造現場の周辺に設置するケースが増えている。
しかしながら、加工製造現場の雰囲気温度が20℃に一定に保たれていることは稀である。このような環境で寸法測定装置を使用した場合は、寸法測定装置及び被測定物の熱変形に起因する誤差が発生するため、高精度の測定が困難となる。また、20℃に制御された恒温室で測定する場合であっても、寸法測定装置本体及び被測定物の温度を20℃に安定させるためには、恒温室内で長時間ならす必要がある。そのため、寸法測定に時間がかかるという問題があった。
上記問題を解決する先行技術として、特許文献1に記載の技術が知られている。この技術では、寸法測定装置の各軸(三次元測定装置の場合は三軸)の温度及び被測定物の温度を温度検出手段により測定し、それら検出温度に基づいて寸法測定値を補正している。
高精度が要求される寸法測定装置においては、一般的に温度補正が必須なため、寸法測定装置本体や被測定物の温度を正確に把握する必要がある。従来では、そのような場合の温度測定手段として、測定精度の高い接触式温度センサが主に用いられていた。しかし、接触式温度センサは、ケーブルの引き回し等の問題があり、寸法測定装置の可動部に取り付けることが難しい。また、被測定物を入れ替えする場合には、測定の度に被測定物にセンサを付け外しする必要があり、自動化には不向きである。
また、被測定物は、その各部で均一な温度分布となっていることは少なく、部分毎に僅かに温度差を有していることが多い。そのため、高精度に温度補正を行うには、被測定物の全体の温度分布までを正確に把握する必要がある。しかし、接触式温度センサでは、センサを取り付けた1点のみの測定であり、被測定物全体の温度分布までは把握できない。接触式温度センサの数を増やして多点測定するようにすれば、全体の温度分布を大まかには把握できる。しかし、その場合には、ケーブルが増える等の問題が発生し、好ましくない。
一方、放射温度計による非接触式の温度測定方法も知られている。しかし放射温度計は、被測定物の放射率によって異なる結果が出力されるため、高精度の温度測定が難しい。
特開平11−190617号公報
本発明は、上記事項に鑑みてなされたものであり、その目的は、単独では測定精度の課題がある非接触式温度センサを用いた測定でありながら、高精度に被測定物の温度分布を測定できる温度測定装置、及びこれを用いた寸法測定装置を提供することにある。
本発明は下記構成からなる。
(1) 被測定物からの放射赤外線を非接触式温度センサにより検出して前記被測定物の温度分布を測定する温度測定装置であって、
前記被測定物の放射率と等しい放射率を有する放射率マスタと、
前記放射率マスタに設けられる接触式温度センサと、
前記被測定物と前記放射率マスタを含む領域の温度分布を前記非接触式温度センサにより測定して調整用温度分布情報を取得し、前記調整用温度分布情報から求められる前記放射率マスタの位置の温度が、前記接触式温度センサによる測定温度と等しくなるように、前記非接触式温度センサの放射率設定値を設定する放射率設定部と、
前記放射率設定値が設定された前記非接触式温度センサにより前記被測定物の温度分布を測定して実温度分布情報を取得し、前記実温度分布情報を、前記接触式温度センサによる温度測定値を用いて補正する温度補正部と、
を備えることを特徴とする温度測定装置。
(2) 前記放射率マスタは、前記被測定物の互いに異なる放射率を有する複数の部位毎に複数設けられ、
前記放射率設定部は、前記非接触式温度センサを前記部位毎の前記放射率設定値に順次設定し、
前記温度補正部は、前記非接触式温度センサにより、前記放射率設定値毎に測定された前記実温度分布情報を補正することを特徴とする(1)に記載の温度測定装置。
(3) 前記非接触式温度センサは、2次元の温度分布を測定する放射温度計であることを特徴とする(1)又は(2)に記載の温度測定装置。
(4) (1)乃至(3)のいずれか一つに記載の温度測定装置と、
前記被測定物の寸法を測定する寸法測定部と、
前記寸法測定部による寸法測定値を、前記温度測定装置により得られる補正後の温度と、予め定めた基準温度との差に基づいて補正する寸法補正部と、
を備えることを特徴とする寸法測定装置。
本発明によれば、単独では測定精度の課題がある非接触式温度センサを用いた測定でありながら、高精度に被測定物の温度分布を測定でき、これにより、高精度な寸法測定が可能となる。
本発明の実施形態を説明するための図で、寸法測定装置の全体構成を示す斜視図である。 寸法測定部の要部構成を示す外観斜視図である。 測定子を移動させるX軸方向直動機構の構成を示す部分構成図である。 寸法測定装置の制御ブロック図である。 温度補正の手順を示すフローチャートである。 放射温度計による測定ポイントを示す説明図である。 温度補正の手順を示すフローチャートである。
以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の実施形態を説明するための図で、寸法測定装置の全体構成を示す斜視図である。
寸法測定装置100は、被測定物(以降、ワークWと呼称する)の寸法を測定する寸法測定部200と、ワークWや寸法測定部200の温度変化による熱変形を補償するために必要部位の温度を測定する温度測定装置と、温度測定装置による測定温度と予め定めた基準温度(20℃)との差に基づいて、寸法測定値を補正する寸法補正部と、を備える。
温度測定装置は、被測定物からの放射赤外線を検出して被測定物の温度分布を測定する非接触式温度センサである放射温度計3と、接触式温度センサ5,7とを有する。放射温度計3は、ワークWや寸法測定部200の温度分布を測定し、接触式温度センサ5,7は、寸法測定部200の特定部位の温度を測定する。
寸法補正部は、放射温度計3により測定された温度分布と、接触式温度センサ5,7により測定された特定部位の温度測定値に基づいて、寸法測定部200によるワークWの寸法測定値を補正する。
この温度測定装置と寸法補正部は、寸法測定装置100の全体制御を行う制御部1を含んで構成される。この制御部1は、PC(パーソナルコンピュータ)やPLC(プログラマブルロジックコントローラ)等により構成される。これら温度測定装置と寸法補正部についての詳細は後述する。
<寸法測定部の構成>
まず、寸法測定部200の構成を説明する。
寸法測定装置100は、架台11と、架台11上に設けられワークWが載置される載置台13と、一対の測定子15A、15B、及び一対の測定子17A、17Bと、各測定子をX軸方向に駆動するX直動機構21と、Z軸方向に駆動するZ直動機構25と、Y軸方向に駆動するY直動機構27とを備える。
X直動機構21は取付板19に設けられ、Z直動機構25はフレーム23に設けられ、Y直動機構27は架台11上に設けられる。
載置台13は、架台11内部に設置された図示しない回転軸に直結され、ワークWを回転可能に支持する。例えば、ワークWが円筒状であれば、載置台13に支持されたワークWを、ワークWの円筒中心を回転中心として、任意の回転角度に回転できる。
一対の測定子15A,15Bと、一対の測定子17A,17Bとは、それぞれ等価な構造である。各測定子15A,15B,15C,15Dの基端部は、それぞれX直動機構21に接続され、各測定子15A,15B,15C,15Dがそれぞれ独立してX軸方向に移動自在に支持される。
図2は寸法測定部の要部構成を示す外観斜視図である。
X直動機構21は、ボールネジ機構31と、リニアガイド部33とを有する。ボールネジ機構31は、取付板19にX軸方向に沿って配置されたボールネジ35と、ボールネジ35を回転駆動するサーボモータ37と、ナット部39A、39Bとを有する。
ナット部39Aは測定子15Aを支持し、ナット部39Bは測定子17Aを支持する。これらナット部39A、39Bは、共にボールネジ35に螺合された状態で、ボールネジ35の回転によってX軸方向に移動する。
リニアガイド部33は、ガイドレール41と、ガイドレール41に沿ってX軸方向に移動するスライダ43A,43B,45A,45Bとを有する。スライダ43Aには測定子15Aが固定され、スライダ43Bには測定子15Bが固定される。また、スライダ45Aには測定子17Aが固定され、スライダ45Bには測定子17Bが固定される。
測定子15A,15Bの対、及び測定子17A,17Bの対は、それぞれ同一の構成であるため、以降は測定子15A,15Bの対を例にとり説明する。
図3は測定子を移動させるX軸方向直動機構の構成を示す部分構成図である。
被測定物のワークWが円筒形状である場合、測定子15Aは外径測定用の測定子、測定子15Bは内径測定用の測定子として機能する。
各測定子15A,15Bは、X直動機構21側からワークWに向けて垂下して延設される長尺状のアーム部47A,47Bを有する。アーム部47A,47BのワークW側の先端部には、ワークWとの距離を測定する変位検出部としての電気マイクロメータ(electric micrometer)49A,49Bが配置される。
電気マイクロメータ49A,49Bは、接触式の触子51の微小変位を電気的量に変換して測定する比較測長器である。触子51は、距離の検出方向に沿って電気マイクロメータ49A,49Bの本体部から突出して設けられ、突出する向きに弾性付勢されて支持される。この電気マイクロメータ49A,49Bは、所定長の検出可能ストローク内における触子51の位置を距離情報として出力する。本構成の場合、各電気マイクロメータ49A,49Bの触子51,51は、アーム部47A,47Bの互いに対面し合う、ワークWとの接触側に配置される。
測定子15Aのナット部39Aとスライダ43Aとの間には、測定子15Bの基端部に接続される電動アクチュエータ53の一端が接続される。電動アクチュエータ53は、測定子15Bに設けられ、測定子15Bを測定子15Aに対してX軸方向に沿って相対的に接近又は離反させる。
取付板19上におけるガイドレール41のボールネジ35側には、リニアスケール55が配置される。測定子15Aのリニアスケール55に対面する位置には、検出ヘッド59が配置される。この検出ヘッド59は、対面するリニアスケール55からアーム部47AのX軸方向位置を検出する。また、測定子15Bのリニアスケール55に対面する位置には検出ヘッド63が配置される。この検出ヘッド63は、リニアスケール55からアーム部47BのX軸方向位置を検出する。
上記構成の寸法測定部200は、測定子15A,15Bの先端部がワークWの外周面73と内周面75とを挟み込み、ワークWに接触した状態でワークWのX軸方向位置を検出する。
また、寸法測定部200は、被測定物の放射率と等しい放射率を有する放射率マスタMwと、測定子15A,15B,15C,15Dの放射率と等しい放射率を有する放射率マスタMaとを備える。本構成の場合、放射率マスタMwは、ワークWと同一の材料で形成され、放射率マスタMaは、アーム部47A,47Bと同一の材料で形成される。
<温度測定装置の構成>
温度測定装置は、被測定物からの放射赤外線を検出して被測定物の温度分布を測定する非接触式温度センサである放射温度計3と、放射率マスタMwに取り付けられた接触式温度センサ5と、放射率マスタMaに取り付けられた接触式温度センサ7と、を備える。
放射温度計3としては、2次元の温度分布を測定できる例えばサーモグラフィが用いられる。接触式温度センサ5,7としては、例えば、白金測温体や熱電対等が用いられる。
なお、本構成例では、2種類の放射率マスタを用意したが、放射率マスタは、必要に応じて、被測定物の互いに異なる放射率を有する複数の部位毎(材料毎)に、1種類以上設けられていればよい。
<寸法測定装置による寸法測定手順>
次に、寸法測定装置100による寸法測定手順について説明する。図4は寸法測定装置100の制御ブロック図である。なお、ここでも測定子15A,15Bを用いた動作について説明する。
制御部1は、入力部77に入力される測定開始信号を受けて、X直動機構21、Z直動機構25、Y直動機構27のそれぞれに駆動信号を出力して、測定子15A,15Bを空間内の所望の位置に移動させる。
制御部1は、触子51をワークW等の被測定物に接触させた状態にして、測定子15Aの電気マイクロメータ49Aが出力する距離検出信号を取り込むと共に、測定子15Bの電気マイクロメータ49Bが出力する距離検出信号を取り込む。
制御部1は、取り込んだ距離検出信号に基づいて被測定物の寸法測定値を求める。求めた寸法測定値の情報は記憶部81により記憶される。
本構成の寸法測定部200による寸法測定は、寸法が既知であるマスタ体(前述のマスターワークWm)とワークWとの寸法相対差を求めること、つまり、マスターワークWmの寸法とワークWの寸法とを測定し、双方の差分を求めることで行う。
マスターワークとは、規定通りの寸法となっていることが保証されたものであり、被測定物であるワークWと同一形状又はこれに近い形状を有する。ここでは、図1に示すように、ブロックゲージにより構成されたマスターワークWmを一例として使用している。マスターワークの寸法情報は、予め記憶部81に登録されているか、寸法測定前に別途に登録して、制御部1が参照可能な状態にされている。
寸法測定に際して、制御部1は、X直動機構21、Z直動機構25、Y直動機構27を駆動して、測定子15A、15Bを、待機位置からマスターワークWmが予めセットされた位置に移動させる。
そして、制御部1は、手動操作、又は予め登録されたアルゴリズムに基づいて、マスターワークWmの形状に応じてX直動機構21、Z直動機構25、Y直動機構27を駆動して、各測定子15A,15Bを、各測定子15A,15Bの電気マイクロメータ49A,49BがマスターワークWmに接触する位置に移動させる。
すなわち、制御部1は、図3に示すように、測定子15AをマスターワークWmの寸法測定部分における外側面(ワークWの外周面73に相当する面)の外側へ移動させる。このとき測定子15Bは、マスターワークWmの寸法測定部分における内側面(ワークWの内周面75に相当する面)の内側に移動させる。
そして、制御部1は、ボールネジ機構31を駆動して、電気マイクロメータ49Aの触子51がマスターワークWmに接触するまで測定子15AをX軸方向に移動させる。また、制御部1は、電動アクチュエータ53を駆動して、電気マイクロメータ49Bの触子51がマスターワークWmに接触するまで測定子15Bを測定子15A側に向けて移動させる。
これにより、マスターワークWmの外周面と内周面とが、電気マイクロメータ49A,49Bで挟まれた状態となる。制御部1は、このマスターワークWmを挟んだ状態で、電気マイクロメータ49A,49BによりマスターワークWmとの距離(触子51が押し込まれた量)を検出する。また、検出ヘッド59,63によりリニアスケール55のX軸方向絶対位置を読み取る。
そして、制御部1は、検出された電気マイクロメータ49A,49Bからの出力値と、検出ヘッド59,63からの出力値とを基準値として記憶部81に記憶させる。このときの各出力値が、ワークWを測定する際の基準点(原点)に相当する出力値となる。
基準値の設定を完了すると、制御部1は、X直動機構21、Z直動機構25、Y直動機構27を駆動して、測定子15A,15Bを一旦退避させた後、載置台13上のワークWのセットされた位置に移動させて、ワークWの寸法測定を開始する。
制御部1は、マスターワークWmの測定と同様に、X直動機構21、Z直動機構25、Y直動機構27を駆動して、各測定子15A,15Bを所望の測定位置に移動させる。そして、制御部1は、測定子15A,15Bが測定位置に移動完了した状態で、電気マイクロメータ49A,49BによりワークWとの距離(触子51が押し込まれた量)を検出する。また、検出ヘッド59,63によりリニアスケール55のX軸方向絶対位置を読み取る。
制御部1は、検出された電気マイクロメータ49A,49Bからの出力値と、検出ヘッド59,63からの出力値とを記憶部81に記憶させる。
次に、制御部1は、記憶部81に記憶された各種の出力値を用いてワークWの寸法測定値を演算する。つまり、既知の寸法のマスターワークWmを測定して求めた第1の距離と、ワークWを測定して求めた第2の距離との差分を求め、これら差分をマスターワークの既知の寸法に加算することで、ワークWの寸法測定値を求める。
この寸法測定値を演算する際、制御部1は、基準温度(20℃)からのワークWやアーム部47A,47Bの温度の差分に応じて、発生した熱変形量を補償するように、寸法測定値を補正処理する。
<熱変形量の補正処理手順>
次に、制御部1が測定した寸法測定値の温度補償を行う手順を、図5、図7のフローチャートを参照しながら説明する。以降に示す各手順は、制御部1によって統括制御される。
本明細書においては、各種温度測定値を次のように定義する。
Tw:ワークWに対する放射率マスタMwの接触式温度センサ5による測定値
Ta:アーム部(以下、ここでは一例としてアーム部47Aとする)に対する放射率マスタMaの接触式温度センサ7による測定値
tw:ワークWに対する放射率マスタMwの放射温度計3による測定値
ta:アーム部47Aに対する放射率マスタMaの放射温度計3による測定値
tw :ワークWの放射温度計3による測定値
ta :アーム部47Aの放射温度計3による測定値
図6に放射温度計3によるワークW,アーム部47A,及び放射率マスタMw,Maの領域を含む2次元の温度分布画像IMGと、各測定ポイントを示す。放射温度計3による温度測定の準備として、まず、温度分布画像における以下の各部座標値を求めておき、記憶部81(図4参照)に記憶させておく。
・アーム部47Aに対する放射率マスタMaの位置(X1,Y1)
・アーム部47Aの位置(X2,Y2)
・被測定物の放射率マスタMwの位置(X3,Y3)
・被測定物の位置(X4,Y4)
上記温度分布画像IMGからは、次のように温度測定値tw、ta、tw、taが求められる。
・放射率マスタMaの測定ポイントP1(X1,Y1)の温度測定値を求め、これをtaとする。
・アーム部47Aの測定ポイントP2(X2,Y2)の温度測定値を求め、これをtaとする。
・放射率マスタMwの測定ポイントP3(X3、Y3)の温度測定値を求め、これをtwとする。
・ワークWの測定ポイントP4(X4、Y4)の温度測定値を求め、これをtwとする。
上記の準備工程の後、制御部1は、放射率マスタMwの接触式温度センサ5により、放射率マスタMwの温度Twを測定する。また、放射率マスタMaの接触式温度センサ7により、放射率マスタMaの温度Taを測定する(図6のS11)。
次に、接触式温度センサ5,7と、放射温度計3とによる温度測定値が等しくなる放射温度計3の放射率εw,εaを、それぞれ求める(S12)。この処理の詳細を図7のフローチャートに示す。
最初に、ワークWに対する放射率εwを求める。まず、予め定めた放射率設定値の初期値εw0を、放射温度計3の放射率設定値としてセットする(S21)。そして、放射率設定値が初期値εw0にセットされた放射温度計3により、2次元の温度分布画像(第1の調整用温度分布情報)を取得する(S22)。
取得した温度分布画像から、予め定めたワークWの画像内における座標値(測定ポイント)を参照して、各部の温度測定値twを求める(S23)。
そして、放射温度計により求めたtwと、接触式温度センサ5により求めたTwとを比較する(S24)。双方の値が異なる場合は、放射率設定値を変更して(S25)、再度、放射温度計3による測定を行い、上記のS22からの処理を繰り返す。なお、このとき、接触式温度センサ5により、Twを再度測定してもよい。S22からの処理を繰り返す度にTwを測定することにより、放射温度計3による測定精度をより向上できる。
測定されたtwとTwの値が等しくなった場合、そのときの放射温度計3の放射率設定値を放射率εwとして決定する(S26)。
次に、上記同様に、アーム部47Aに対する放射率εaを、放射温度計により求めたtaと、接触式温度センサ5により求めたTaとが等しくなるまで放射温度計3の放射率設定値を徐々に変化させて、繰り返し測定する。
すなわち、予め定めた放射率εaの初期値εa0を、放射温度計3の放射率設定値としてセットする(S21)。そして、放射率設定値が初期値εa0にセットされた放射温度計3により、2次元の温度分布画像(第2の調整用温度分布情報)を取得する(S22)。
取得した温度分布画像から、予め定めた画像内における座標値(測定ポイント)を参照して、各部の温度測定値taを求める(S23)。
そして、放射温度計により求めたtaと、接触式温度センサ7により求めたTaとを比較する(S24)。双方の値が異なる場合は、放射率設定値を変更して(S25)、双方の値が等しくなるまで、放射温度計3による測定を繰り返す。なお、このときも、接触式温度センサ7により、Taを再度測定してもよい。
以上のようにして、Twとtwとが等しくなる放射率εwと、Taとtaとが等しくなる放射率εaを、放射率設定値毎に温度分布画像を測定してそれぞれ求める。
なお、放射率設定値の初期値は、予め記憶部81(図4参照)に登録された値を用いてもよく、入力部77から入力される値を用いてもよい。
次に、放射温度計3の放射率設定値を、求めた放射率εwに設定して、放射温度計3により温度分布画像(第1の実温度分布情報)を取得する(図5のS13)。また、放射率マスタMwに取り付けた接触式温度センサ5によって、放射率マスタMwの位置における温度測定値Twを求める(S14)。
そして、放射温度計3により取得した温度分布画像から、放射率マスタMwの位置〔測定ポイントP3(X3、Y3)〕における温度測定値twと、実際のワークWの位置〔測定ポイントP4(X4、Y4)〕における温度測定値twを求める(S15)。
次に、放射温度計3の放射率設定値を、求めた放射率εaに設定して、放射温度計3により温度分布画像(第2の実温度分布情報)を取得する(S16)。また、放射率マスタMaに取り付けた接触式温度センサ7によって、放射率マスタMaの位置における温度測定値Taを求める(S17)。
そして、放射温度計3により取得した温度分布画像から、放射率マスタMaの位置〔測定ポイントP1(X1、Y1)〕における温度測定値taと、実際のアーム部の位置〔測定ポイントP2(X2、Y2)〕における温度測定値taを求める(S18)。
なお、上記放射率設定値εw、εaの温度分布画像の取得と処理の手順は、任意であり、上記順に限らない。
次に、ワークWの温度twを、下記(1)式で補正して、補正後の被測定物の温度twcを求める。
twc =Tw+(tw−tw) …(1)
また、アーム部の温度taを、下記(2)式で補正して、補正後のアーム部の温度tacを求める(S19)。
tac =Ta+(ta−ta) …(2)
そして、補正後のワークWの温度twc、アーム部の温度tacと基準温度(20℃)との差から、ワークW及びアーム部の熱変形量を算出する。この算出された熱変形量を、各種寸法値に反映させる(S20)
例えば、補正後のワークWの温度twcが基準温度(20℃)よりも高い場合は、ワークWの熱膨張量を算出して、測定された内外径の寸法測定値から膨張量を差し引く。また、低い場合は、ワークWの熱収縮量を算出して、測定された内外径の寸法測定値に熱収縮量を加算する。
補正後のアーム部の温度tacが基準温度(20℃)よりも高い場合、又は低い場合は、アーム部の熱膨張によるアーム部の回転量を算出して、測定された内外径の寸法測定値から回転量に応じた寸法変化量を加減算する。
上記の内外径の寸法測定値を補正することによって、装置各部の温度変化によらずに、正確な寸法測定値を得ることができる。なお、制御部1は、放射温度計3の放射率設定値を設定する放射率設定部と、放射温度計3による測定結果を補正する温度補正部と、測定された寸法測定値の補正処理を行う寸法補正部として機能し、寸法測定装置100の全体を統括制御する。
上記例ではアーム部47Aの温度を用いて寸法測定値を補正したが、必要に応じて、他の部位の温度を求めて上記同様に寸法測定値を補正することもできる。また、上記例では2種類の放射率の材料を被測定物としているが、これに限らず、更に複数種類の放射率の材料を被測定物としてもよい。その場合、被測定物の数と同数の放射率を上記同様にして求め、求めた各放射率を放射温度計の放射率設定値としてセットし、順次に実温度分布画像を測定する。得られた実温度分布画像を用いて、上記同様の要領で寸法測定値を補正する。
また、測定後のワークWを、次のワークに入れ替え、再び測定を開始する場合には、一旦求めた放射率設定値をそのまま用い、上記のS15〜S22の処理を行うようにしてもよい。また、ワークWの入れ替えの度に、放射率を設定することであってもよい。前者の場合は、処理を簡略化でき、後者の場合は、より高精度な測定が行える。
以上説明したように、本構成の寸法測定装置100によれば、単独では測定精度の低い放射温度計3を用いた非接触な測定でありながら、高精度に被測定物(ワークWやアーム部)の温度を測定できる。そして、得られた温度測定値を用いて、測定された寸法測定値を補正することにより、高精度な寸法測定を実現できる。
また、アーム部等の可動部には接触式温度センサ5,7を取り付ける必要がないので、ケーブルの引き回し等の問題を生じることがない。また、入れ替えの発生するワークWに接触式温度センサを付け外しする必要がないので、寸法測定の自動化に有利な構成となる。
なお、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
上記の実施形態においては、三軸式の寸法測定装置に適用した場合を説明したが、一軸式の寸法測定装置等、他の温度補正を要する計測装置に適用することもできる。
1 制御部(放射率設定部、温度補正部、寸法補正部)
3 放射温度計(非接触式温度センサ)
5,7 接触式温度センサ
15A,15B,17A,17B 測定子
47A,47B アーム部
W ワーク
Mw,Ma 放射率マスタ
IMG 温度分布画像

Claims (4)

  1. 被測定物からの放射赤外線を非接触式温度センサにより検出して前記被測定物の温度分布を測定する温度測定装置であって、
    前記被測定物の放射率と等しい放射率を有する放射率マスタと、
    前記放射率マスタに設けられる接触式温度センサと、
    前記被測定物と前記放射率マスタを含む領域の温度分布を前記非接触式温度センサにより測定して調整用温度分布情報を取得し、前記調整用温度分布情報から求められる前記放射率マスタの位置の温度が、前記接触式温度センサによる測定温度と等しくなるように、前記非接触式温度センサの放射率設定値を設定する放射率設定部と、
    前記放射率設定値が設定された前記非接触式温度センサにより前記被測定物の温度分布を測定して実温度分布情報を取得し、前記実温度分布情報を、前記接触式温度センサによる温度測定値を用いて補正する温度補正部と、
    を備えることを特徴とする温度測定装置。
  2. 前記放射率マスタは、前記被測定物の互いに異なる放射率を有する複数の部位毎に複数設けられ、
    前記放射率設定部は、前記非接触式温度センサを前記部位毎の前記放射率設定値に順次設定し、
    前記温度補正部は、前記非接触式温度センサにより、前記放射率設定値毎に測定された前記実温度分布情報を補正することを特徴とする請求項1に記載の温度測定装置。
  3. 前記非接触式温度センサは、2次元の温度分布を測定する放射温度計であることを特徴とする請求項1又は請求項2に記載の温度測定装置。
  4. 請求項1乃至請求項3のいずれか一項に記載の温度測定装置と、
    前記被測定物の寸法を測定する寸法測定部と、
    前記寸法測定部による寸法測定値を、前記温度測定装置により得られる補正後の温度と、予め定めた基準温度との差に基づいて補正する寸法補正部と、
    を備えることを特徴とする寸法測定装置。
JP2015056639A 2015-03-19 2015-03-19 温度測定装置及びこれを用いた寸法測定装置 Pending JP2016176791A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015056639A JP2016176791A (ja) 2015-03-19 2015-03-19 温度測定装置及びこれを用いた寸法測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015056639A JP2016176791A (ja) 2015-03-19 2015-03-19 温度測定装置及びこれを用いた寸法測定装置

Publications (1)

Publication Number Publication Date
JP2016176791A true JP2016176791A (ja) 2016-10-06

Family

ID=57071251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015056639A Pending JP2016176791A (ja) 2015-03-19 2015-03-19 温度測定装置及びこれを用いた寸法測定装置

Country Status (1)

Country Link
JP (1) JP2016176791A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017004545T5 (de) 2016-09-09 2019-05-23 Denso Corporation Verfahren zur Herstellung einer Vorrichtungstemperatur-Steuervorrichtung und Verfahren zum Einfüllen vom Arbeitsfluid
CN110702232A (zh) * 2019-10-11 2020-01-17 河海大学 一种测试路面材料发射率的装置及方法
JP2020187027A (ja) * 2019-05-15 2020-11-19 三菱電機株式会社 温度推定装置、空調室内機および温度推定方法
JP2020197438A (ja) * 2019-05-31 2020-12-10 株式会社ミツトヨ 形状測定装置
JP7478079B2 (ja) 2020-10-30 2024-05-02 光精工株式会社 恒温測定システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017004545T5 (de) 2016-09-09 2019-05-23 Denso Corporation Verfahren zur Herstellung einer Vorrichtungstemperatur-Steuervorrichtung und Verfahren zum Einfüllen vom Arbeitsfluid
JP2020187027A (ja) * 2019-05-15 2020-11-19 三菱電機株式会社 温度推定装置、空調室内機および温度推定方法
JP2020197438A (ja) * 2019-05-31 2020-12-10 株式会社ミツトヨ 形状測定装置
CN110702232A (zh) * 2019-10-11 2020-01-17 河海大学 一种测试路面材料发射率的装置及方法
JP7478079B2 (ja) 2020-10-30 2024-05-02 光精工株式会社 恒温測定システム

Similar Documents

Publication Publication Date Title
EP2994718B1 (en) Method, apparatus and software program for inspecting workpieces
US9506736B2 (en) Measurement system
JP2016176791A (ja) 温度測定装置及びこれを用いた寸法測定装置
JP5816475B2 (ja) 産業機械
CN104303009B (zh) 用于检查工件的方法和设备
TWI258827B (en) Apparatus and method for positioning
US9494403B2 (en) Motorized inclinable measuring head
JP6417691B2 (ja) 寸法測定装置及び寸法測定方法
JP2015109023A (ja) 多軸工作機械の幾何誤差同定方法及び多軸工作機械
JP2006509194A (ja) 加工物検査方法
JP2014215079A (ja) 幾何偏差測定方法、及び、幾何偏差計測装置
JP2006212765A (ja) 工作機械の熱変位補正方法
Yin et al. Real-time thermal error compensation method for robotic visual inspection system
JP6155946B2 (ja) 工作機械の各部材の線膨張係数の決定方法および工作機械の熱変位補正装置
JP4931867B2 (ja) 可変端度器
JP5956952B2 (ja) 数値制御工作機械
KR101562472B1 (ko) 공작 기계의 공구대 위치 보정 장치
JPH11190617A (ja) 三次元測定機
JP2016090478A (ja) 測定値補正方法、測定値補正プログラム及び測定装置
JP6254397B2 (ja) 産業機械及びシフト量算出方法
JP5557620B2 (ja) 形状測定装置
JP2004108959A (ja) 形状測定装置
JP2016109596A (ja) 面形状測定方法
US20240125584A1 (en) Temperature compensation for machine tool
JP2020034291A (ja) 三次元測定機及び三次元測定方法