[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016149270A - Method of manufacturing positive material for lithium ion battery and electrode material manufactured by the same - Google Patents

Method of manufacturing positive material for lithium ion battery and electrode material manufactured by the same Download PDF

Info

Publication number
JP2016149270A
JP2016149270A JP2015025824A JP2015025824A JP2016149270A JP 2016149270 A JP2016149270 A JP 2016149270A JP 2015025824 A JP2015025824 A JP 2015025824A JP 2015025824 A JP2015025824 A JP 2015025824A JP 2016149270 A JP2016149270 A JP 2016149270A
Authority
JP
Japan
Prior art keywords
positive electrode
ion battery
lithium ion
active material
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015025824A
Other languages
Japanese (ja)
Other versions
JP2016149270A5 (en
JP6551878B2 (en
Inventor
貴志 寺西
Takashi Teranishi
貴志 寺西
昭 岸本
Akira Kishimoto
昭 岸本
祐未 吉川
Yumi Yoshikawa
祐未 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2015025824A priority Critical patent/JP6551878B2/en
Publication of JP2016149270A publication Critical patent/JP2016149270A/en
Publication of JP2016149270A5 publication Critical patent/JP2016149270A5/ja
Application granted granted Critical
Publication of JP6551878B2 publication Critical patent/JP6551878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a positive electrode for a lithium ion battery that has an enhanced capacity characteristic at a high charging/discharging rate, and an electrode material manufactured by the method.SOLUTION: A method of manufacturing a positive electrode for a lithium ion battery comprises a dispersion liquid preparing step of dispersing, in liquid, an active material raw material including powdered active material constituting a positive electrode for the lithium ion battery, a powdered first element raw material containing a first element which constitutes ferroelectric material containing the first element and a second element, and a powered second element raw material containing a second element to prepare dispersion liquid, a gelation step of making the dispersion liquid gelate, and a heating step of heating the gel to carry the ferroelectric material on the active material raw material.SELECTED DRAWING: Figure 7

Description

本発明は、リチウムイオン電池の正極材料の製造方法及びこの方法で製造した電極材料に関するものである。   The present invention relates to a method for producing a positive electrode material for a lithium ion battery and an electrode material produced by this method.

従来、リチウムイオン電池では、正極として活物質の粒子表面に強誘電体を担持させ、焼結させている複合正極を用いている。   Conventionally, in a lithium ion battery, a composite positive electrode in which a ferroelectric is supported on the surface of active material particles and sintered is used as the positive electrode.

このような複合正極として、LiCoO2系の正極粉末の粒子表面に、強誘電体であるチタン酸バリウムBaTiO3を0.1mol%〜5mol%の添加量範囲であって、100nm〜5μm以下の粒子径範囲で担持させ、なおかつ400℃〜750℃の温度範囲で焼結させた複合正極が提案されている(例えば、特許文献1参照。)。この複合正極は、低温での出力特性の改善を目的としており、具体的には、活物質であるLi1.1Ni0.5Co0.2Mn0.3O2粒子に、1mol%のBaTiO3を700℃においてメカニカルに混合することで担持させた複合正極とし、この複合正極において-30℃の低温での出力特性が未処理品に対して139.5%改善されたとの報告がある。 As such a composite positive electrode, on the particle surface of the LiCoO 2 type positive electrode powder, a ferroelectric barium titanate BaTiO 3 is added in a range of 0.1 mol% to 5 mol%, and the particle diameter is 100 nm to 5 μm or less. A composite positive electrode supported in a range and sintered in a temperature range of 400 ° C. to 750 ° C. has been proposed (see, for example, Patent Document 1). The purpose of this composite positive electrode is to improve the output characteristics at low temperature. Specifically, 1 mol% of BaTiO 3 is mechanically added at 700 ° C to Li 1.1 Ni 0.5 Co 0.2 Mn 0.3 O 2 particles as the active material. It is reported that the composite positive electrode supported by mixing is improved by 139.5% in the output characteristics at a low temperature of −30 ° C. with respect to the untreated product.

上記の複合正極は、リチウムイオン電池の電解質として非水系電解液を用いたものであるが、電解質を硫化物系固体とした全固体リチウムイオン電池の複合正極とし、活物質に対して1wt%量で、平均粒径50nmの強誘電体チタン酸バリウムBaTiO3を液相中分散させることで複合化させた複合正極も提案されている(例えば、特許文献2参照。)。この複合正極は、放電容量の向上を目的としており、固体電解質と活物質との界面での抵抗を約20%減少させ,放電容量を約5%向上可能であることが報告されている。 The above composite positive electrode uses a non-aqueous electrolyte as an electrolyte of a lithium ion battery, but is a composite positive electrode of an all solid lithium ion battery in which the electrolyte is a sulfide solid, and the amount is 1 wt% with respect to the active material. There has also been proposed a composite positive electrode in which a ferroelectric barium titanate BaTiO 3 having an average particle diameter of 50 nm is combined in a liquid phase (see, for example, Patent Document 2). This composite positive electrode is intended to improve the discharge capacity, and it has been reported that the resistance at the interface between the solid electrolyte and the active material can be reduced by about 20% and the discharge capacity can be improved by about 5%.

特開2011−210694号公報JP 2011-210694 A 特開2014−116129号公報JP 2014-116129 A

リチウムイオン電池では、低温での出力特性の改善や、放電容量の向上も重要な性能向上の項目ではあるが、高速充放電レートにおける容量特性の向上も重要な項目であるものの、従来の複合正極では、高速充放電レートにおける容量特性の向上が期待できなかった。   For lithium-ion batteries, improvement of output characteristics at low temperatures and improvement of discharge capacity are important performance improvement items, but improvement of capacity characteristics at high-speed charge / discharge rates is also an important item, but conventional composite positive electrodes Thus, improvement in capacity characteristics at a high-speed charge / discharge rate could not be expected.

リチウムイオン電池の正極では、正極を構成している活物質と電解液との界面でのLiイオンの挿入脱離反応が生じているが、活物質の粒子表面に強誘電体を担持させた複合正極では、強誘電体の分極を利用することによりLiイオンの挿入脱離反応を促進させる効果を狙いとしており、強誘電体はできるだけ微粒子状態で活物質に担持させることで、特に高速充放電レートにおける容量特性の向上が期待できる可能性があった。   In the positive electrode of a lithium ion battery, an insertion / release reaction of Li ions occurs at the interface between the active material constituting the positive electrode and the electrolytic solution, but a composite in which a ferroelectric material is supported on the particle surface of the active material. The positive electrode aims to promote the insertion and desorption reaction of Li ions by utilizing the polarization of the ferroelectric, and the ferroelectric is supported on the active material in the fine particle state as much as possible, especially at high charge / discharge rates. There is a possibility that improvement in capacity characteristics can be expected.

しかし、従来の強誘電体をメカニカルに活物質に被覆させて加熱処理する方法では、加熱にともなって強誘電体の粒成長が生じることで、強誘電体をできるだけ微粒子状態で活物質に担持させることが困難となっていた。   However, in the conventional method in which the ferroelectric material is mechanically coated with the active material and subjected to the heat treatment, the ferroelectric grows as a result of the growth of the ferroelectric particles, and the ferroelectric material is supported on the active material in the fine particle state as much as possible. It was difficult.

本発明者らは、このような現状に鑑み、強誘電体をできるだけ微粒子状態で活物質に担持させた複合正極とすることで、高速充放電レートにおける容量特性を向上させるべく研究を行って、本発明を成すに至ったものである。   In view of such a current situation, the present inventors conducted a study to improve the capacity characteristics at a high-speed charge / discharge rate by using a composite positive electrode in which a ferroelectric is supported on an active material in a fine particle state as much as possible. The present invention has been achieved.

本発明のリチウムイオン電池の正極材料の製造方法は、リチウムイオン電池の正極を構成する活物質の粉末状とした活物質原料と、第1元素と第2元素とを含有した強誘電体を構成するための第1元素を含有する粉末状とした第1元素原料と、第2元素を含有する粉末状とした第2元素原料とを溶液に分散させて分散液を作製する分散液作製工程と、分散液をゲルとするゲル化工程と、ゲルを加熱して活物質原料に強誘電体を担持させる加熱工程とを有するものである。   The method for producing a positive electrode material for a lithium ion battery according to the present invention comprises an active material raw material in powder form of an active material constituting a positive electrode of a lithium ion battery, and a ferroelectric containing a first element and a second element. A dispersion preparation step for preparing a dispersion by dispersing a powdered first element material containing a first element and a powdered second element material containing a second element in a solution And a gelling step in which the dispersion is used as a gel, and a heating step in which the gel is heated and the ferroelectric material is supported on the active material material.

さらに、本発明のリチウムイオン電池の正極材料の製造方法では、以下の点にも特徴を有するものである。
(1)第1元素原料と第2元素原料は、加熱工程で強誘電体となった場合に、活物質原料に対して5mol%以下としていること。
(2)活物質原料はコバルト酸リチウムとし、第1元素原料は酢酸バリウムとし、第1元素原料はチタンブトキシドとして、リチウムイオン電池の正極を構成する活物質にチタン酸バリウムを担持させていること。
(3)ゲル化工程では、分散液を70℃において6時間撹拌しながら乾燥させることでゲル化させ、加熱工程では、600℃で20時間加熱していること。
Furthermore, the method for producing a positive electrode material for a lithium ion battery of the present invention is also characterized by the following points.
(1) The first element material and the second element material should be 5 mol% or less with respect to the active material material when the first element material and the second element material become a ferroelectric in the heating process.
(2) The active material material is lithium cobaltate, the first element material is barium acetate, the first element material is titanium butoxide, and the active material constituting the positive electrode of the lithium ion battery is supported with barium titanate. .
(3) In the gelation step, the dispersion is gelled by drying with stirring at 70 ° C. for 6 hours, and in the heating step, it is heated at 600 ° C. for 20 hours.

また、本発明の電極材料は、粉末状としたコバルト酸リチウムと、粉末状とした酢酸バリウムと、粉末状としたチタンブトキシドとを溶液に分散させた分散液を、撹拌しながら乾燥させてゲルとし、このゲルを加熱することでコバルト酸リチウムにチタン酸バリウムを担持させた電極材料であって、チタン酸バリウムの粒径を100nm以下としているものである。   In addition, the electrode material of the present invention is a gel obtained by drying a dispersion obtained by dispersing powdered lithium cobaltate, powdered barium acetate, and powdered titanium butoxide in a solution while stirring. And an electrode material in which barium titanate is supported on lithium cobaltate by heating the gel, and the particle size of barium titanate is 100 nm or less.

本発明によれば、ソフトケミカルな液相法により活物質表面に強誘電体をナノ粒子状として合成・付着させることができ、強誘電体の均質化・均一膜厚化が可能となることで、Liイオンの活物質内への挿入脱離をよりスムーズに生じさせることができ、高速充放電レートにおける容量特性を改善できる.   According to the present invention, it is possible to synthesize and adhere a ferroelectric substance in the form of nanoparticles to the active material surface by a soft chemical liquid phase method, and to enable homogenization and uniform film thickness of the ferroelectric substance. In addition, the insertion and release of Li ions into the active material can occur more smoothly, and the capacity characteristics at a high-speed charge / discharge rate can be improved.

加熱工程後の粉末のSTEM像及びSTEM-EDS像である。It is the STEM image and STEM-EDS image of the powder after a heating process. 加熱工程後の粉末のXRDパターンである。It is the XRD pattern of the powder after a heating process. 加熱工程で600℃にて熱処理した試料のSTEM像である。It is a STEM image of the sample heat-processed at 600 degreeC by the heating process. 高速充放電レートにおける容量特性のグラフである。It is a graph of the capacity | capacitance characteristic in a high-speed charging / discharging rate. 加熱工程(600℃)後の粉末のXRDパターンである。It is the XRD pattern of the powder after a heating process (600 degreeC). 加熱工程(600℃)後のSTEM像及びSTEM-EDS像である。It is the STEM image and STEM-EDS image after a heating process (600 degreeC). 高速充放電レートにおける容量特性のグラフである。It is a graph of the capacity | capacitance characteristic in a high-speed charging / discharging rate.

本発明では、活物質表面にメカニカルな方法で強誘電体粒子を付着させるのではなく、ソフトケミカルな液相法により、活物質表面に強誘電体をナノ粒子状として合成・付着させているものである。   In the present invention, the ferroelectric particles are synthesized and attached to the active material surface as nano-particles by the soft chemical liquid phase method, rather than attaching the ferroelectric particles to the active material surface by a mechanical method. It is.

すなわち、本発明のリチウムイオン電池の正極材料の製造方法は、リチウムイオン電池の正極を構成する活物質の粉末状とした活物質原料と、第1元素と第2元素とを含有した強誘電体を構成するための第1元素を含有する粉末状とした第1元素原料と、第2元素を含有する粉末状とした第2元素原料とを溶液に分散させて分散液を作製する分散液作製工程と、分散液をゲルとするゲル化工程と、ゲルを加熱して活物質原料に強誘電体を担持させる加熱工程とを有している。   That is, the method for producing a positive electrode material for a lithium ion battery according to the present invention includes a ferroelectric material containing an active material raw material in powder form of an active material constituting a positive electrode of a lithium ion battery, and a first element and a second element. Preparation of a dispersion by dispersing a first element material in powder form containing the first element and a second element material in powder form containing the second element in a solution A step, a gelation step using the dispersion as a gel, and a heating step of heating the gel and supporting the ferroelectric on the active material raw material.

以下において実施例を示しながら、具体的に説明する。   Hereinafter, specific examples will be described with reference to examples.

<正極材料の製造>
使用した活物質は、リチウムイオン電池に実用化されているコバルト酸リチウム(LiCoO2)とした。コバルト酸リチウムは粉末状としており、平均粒径3μmであった。コバルト酸リチウムに担持させる強誘電体はチタン酸バリウム(BaTiO3)とし、第1元素原料はBa源としての酢酸バリウムとし、第2元素原料はTi源としてのチタンブトキシドとした。
<Manufacture of positive electrode material>
The active material used was lithium cobaltate (LiCoO 2 ) that has been put to practical use in lithium ion batteries. Lithium cobaltate was powdered and had an average particle size of 3 μm. The ferroelectric material supported on lithium cobaltate was barium titanate (BaTiO 3 ), the first element material was barium acetate as a Ba source, and the second element material was titanium butoxide as a Ti source.

コバルト酸リチウムは、エタノールに分散させたコバルト酸リチウム溶液とし、酢酸バリウムは、酢酸に溶解させた酢酸溶液とし、チタンブトキシドは、2−メトキシエタノールに溶解させたメトキシエタノール溶液とし、コバルト酸リチウム溶液に所定量の酢酸溶液とメトキシエタノール溶液を加えて、超音波分散させて分散液とした。これが分散液作製工程である。ここで、コバルト酸リチウム溶液は、5gのコバルト酸リチウムを40mLのエタノールに分散させた溶液とし、酢酸溶液は、20mlの酢酸に1.31gの酢酸バリウムを溶解させた溶液とし、メトキシエタノール溶液は、20mlの2−メトキシエタノールに1.76gのチタンブトキシドを溶解させた溶液として、コバルト酸リチウムに対してチタン酸バリウムが10mol%となるように調整した。   Lithium cobaltate is a lithium cobaltate solution dispersed in ethanol, barium acetate is an acetic acid solution dissolved in acetic acid, titanium butoxide is a methoxyethanol solution dissolved in 2-methoxyethanol, lithium cobaltate solution A predetermined amount of an acetic acid solution and a methoxyethanol solution were added to the solution and ultrasonically dispersed to obtain a dispersion. This is the dispersion preparation process. Here, the lithium cobaltate solution is a solution in which 5 g of lithium cobaltate is dispersed in 40 mL of ethanol, the acetic acid solution is a solution of 1.31 g of barium acetate in 20 ml of acetic acid, and the methoxyethanol solution is A solution in which 1.76 g of titanium butoxide was dissolved in 20 ml of 2-methoxyethanol was adjusted so that barium titanate was 10 mol% with respect to lithium cobaltate.

分散液を70℃において6時間撹拌・乾燥させることでゲルを得た。これがゲル化工程である。   The dispersion was stirred and dried at 70 ° C. for 6 hours to obtain a gel. This is the gelation process.

得られたゲルを400℃、500℃、600℃、700℃、800℃でそれぞれ20時間熱処理した。これが加熱工程である。加熱工程後の各粉末のSTEM像及びSTEM-EDS像を図1に示す。図1において、「LC-BT-400」が400℃の場合、「LC-BT-500」が500℃の場合、「LC-BT-600」が600℃の場合、「LC-BT-700」が700℃の場合、「LC-BT-800」が800℃の場合を示している。後述する図2及び図4においても同じである。「bare LC」は、未処理LC、すなわちBaTiO3を担持していないLiCoO2のみの状態である。 The obtained gel was heat-treated at 400 ° C, 500 ° C, 600 ° C, 700 ° C and 800 ° C for 20 hours, respectively. This is the heating process. The STEM image and STEM-EDS image of each powder after a heating process are shown in FIG. In Fig. 1, "LC-BT-400" is 400 ° C, "LC-BT-500" is 500 ° C, "LC-BT-600" is 600 ° C, "LC-BT-700" In the case of 700 ° C, “LC-BT-800” shows the case of 800 ° C. The same applies to FIGS. 2 and 4 described later. “Bare LC” is a state of only untreated LC, ie, LiCoO 2 not carrying BaTiO 3 .

得られた粉末のXRDパターンを図2に示す。図2より、熱処理温度が500℃以下では、BaTiO3(BT)が十分には形成されておらず、BaCO3(BC)が主成分であり、600℃以上で主成分としてBaTiO3(BT)が得られることが分かる。 The XRD pattern of the obtained powder is shown in FIG. As shown in FIG. 2, when the heat treatment temperature is 500 ° C. or lower, BaTiO 3 (BT) is not sufficiently formed, BaCO 3 (BC) is the main component, and when it is 600 ° C. or higher, BaTiO 3 (BT) is the main component. It can be seen that

特に、図1のSTEM-EDS像からも明らかなように、全ての熱処理温度においてLC相とBT相(またはBC相)ナノ粒子の2相コンポジット構造となっていることが確認できた。   In particular, as can be seen from the STEM-EDS image in FIG. 1, it was confirmed that a two-phase composite structure of LC phase and BT phase (or BC phase) nanoparticles was obtained at all heat treatment temperatures.

さらに、熱処理温度の増大に伴い、BaTiO3粒子の粒成長が見られた。BaTiO3粒子が形成されているもののうち、もっとも粒径が小さくなったものは600℃にて熱処理した試料であった。そのSTEM像を図3に示す。図3より、均一粒径のナノ粒子が活物質の表面に被覆されていることが分かる。BaTiO3粒子の粒径を確認したところ、平均粒径65nmであった。 Furthermore, BaTiO 3 particle growth was observed as the heat treatment temperature increased. Among the samples with BaTiO 3 particles formed, the sample with the smallest particle size was a sample heat-treated at 600 ° C. The STEM image is shown in FIG. As can be seen from FIG. 3, the surface of the active material is coated with nanoparticles having a uniform particle diameter. When the particle size of the BaTiO 3 particles was confirmed, the average particle size was 65 nm.

<正極材料の性能評価方法>
上記の方法で製造したコンポジット粉末が正極材料としての性能を有しているかを評価すべく、以下の方法で性能評価を行った。
<Performance evaluation method of positive electrode material>
In order to evaluate whether the composite powder produced by the above method has performance as a positive electrode material, performance evaluation was performed by the following method.

まず、コンポジット粉末と、導電助剤(アセチレンブラック)と、結着ポリマー(PVDF)を7:2:1の質量比の割合で混合して正極シートを作製した。   First, a composite sheet, a conductive additive (acetylene black), and a binder polymer (PVDF) were mixed at a mass ratio of 7: 2: 1 to prepare a positive electrode sheet.

対極は金属Liとし、電解液はエチレンカーボネートとジエチルカーボネートを3:7の体積比の溶媒中に溶解させた1mol/Lのフッ化リン酸リチウムLiPF6とした。そして、2023型コインセルを用いて3.3V−4.5Vの電位範囲において充放電試験を行った。充放電レートは、電流密度を0.1Cから最大5Cまたは10C [1C = 160 mA/g (LC理論容量換算)]の範囲において、各レート5サイクルずつ段階的にレートを引き上げることで制御した。 The counter electrode was Li metal, and the electrolyte was 1 mol / L lithium fluorophosphate LiPF 6 in which ethylene carbonate and diethyl carbonate were dissolved in a solvent having a volume ratio of 3: 7. Then, a charge / discharge test was performed in a potential range of 3.3 V to 4.5 V using a 2023 type coin cell. The charge / discharge rate was controlled by stepping up the rate in 5 cycles for each rate in the range of current density from 0.1C to 5C or 10C [1C = 160 mA / g (LC theoretical capacity conversion)].

高速充放電レートにおける容量特性の結果を図4に示す。400℃及び500℃で熱処理した試料については、初期容量及び高速充放電レートでの放電容量は、コバルト酸リチウムのみ(未処理品)に比べ極端に低くかった。これはBaCO3(BC)が強誘電体ではない不純物相となっていることが起因していると考えられる。一方、熱処理温度が600℃以上の場合には,ほぼ単相のBaTiO3粒子が形成されていることから、BaTiO3粒子による効果が期待できるので、熱処理温度600℃以上のものについて比較した。 The result of the capacity | capacitance characteristic in a high-speed charging / discharging rate is shown in FIG. For the samples heat-treated at 400 ° C. and 500 ° C., the initial capacity and the discharge capacity at the fast charge / discharge rate were extremely low compared to lithium cobaltate alone (untreated product). This is probably because BaCO 3 (BC) is an impurity phase that is not a ferroelectric substance. On the other hand, when the heat treatment temperature is 600 ° C. or higher, almost single-phase BaTiO 3 particles are formed, so the effect of BaTiO 3 particles can be expected.

上表の「0.1C-1サイクル目の容量」を「初期容量」とし、「10C-5サイクル目(計35サイクル目)における初期容量に対する容量保持率」を算出している。
また、「未処理品に対する改善割合」は、「5C-5サイクル目(計30サイクル目)の容量」での未処理品の容量と600℃加熱品の容量との比較、及び未処理品の容量と800℃加熱品の容量との比較である。
“Capacity at 0.1C-1 cycle” in the above table is “initial capacity”, and “capacity retention ratio relative to initial capacity at 10C-5th cycle (35th cycle in total)” is calculated.
In addition, “Improvement ratio relative to untreated products” is a comparison between the capacity of untreated products and the capacity of 600 ° C heated products in “5C-5th cycle (total 30th cycle) capacity” and This is a comparison between the capacity and the capacity of the 800 ° C heated product.

表1に示されるように、初期容量は、600℃加熱品と800℃加熱品で、いずれも未処理品に比べ少し低下したが、これは容量に寄与しないBaTiO3の質量分率の効果である。 As shown in Table 1, the initial capacities of the 600 ° C and 800 ° C heated products were both slightly lower than the untreated products, but this was due to the effect of the mass fraction of BaTiO 3 that did not contribute to the capacity. is there.

高速充放電レートでの容量は、5C-5サイクル目の計30サイクル後では、600℃加熱品で優れた容量(122mAh/g)を示しており、平均粒径158nmとなっている800℃加熱品と比較して大幅に改善していることが分かる。特に、「122mAh/g」という値は、未処理品の放電容量(78mAh/g)を大きく逆転しており、改善割合は158%となっている。このことから、強誘電体の粒子径を100nm未満まで微粒子化することで、高速充放電レートの特性がより改善されることが分かる。   The capacity at the high-speed charge / discharge rate shows excellent capacity (122 mAh / g) with a product heated at 600 ° C after 30 cycles of 5C-5th cycle, and heating at 800 ° C with an average particle size of 158 nm It can be seen that there is a significant improvement compared to the product. In particular, the value of “122 mAh / g” significantly reverses the discharge capacity (78 mAh / g) of the untreated product, and the improvement rate is 158%. From this, it is understood that the characteristics of the high-speed charge / discharge rate are further improved by making the particle size of the ferroelectric particles smaller than 100 nm.

このように、実施例1では、最適熱処理温度を600℃とすることでBaTiO3粒子の粒径を最小化できることを確認したが、BaTiO3粒子のLiCoO2に対する最適量についての検討が必要であり、下記の実施例2を実施した。 As described above, in Example 1, it was confirmed that the particle size of BaTiO 3 particles can be minimized by setting the optimum heat treatment temperature to 600 ° C. However, it is necessary to examine the optimum amount of BaTiO 3 particles with respect to LiCoO 2 . The following Example 2 was carried out.

上述した<正極材料の製造>で、加熱工程の温度を600℃とし、BaTiO3となった際に、LiCoO2に対して1mol%、2.5mol%、5mol%、10mol%、15mol%のBaTiO3が生じるように分散液を調整して、各粉末を作製した。ここで、コバルト酸リチウム溶液に加える酢酸溶液及びメトキシエタノール溶液は、単にコバルト酸リチウム溶液への添加量を調整するのではなく、酢酸溶液のバリウム濃度及びメトキシエタノール溶液のチタン濃度を適宜調整し、コバルト酸リチウム溶液に必要以上に酢酸及び2−メトキシエタノールが加えられることを抑制した。具体的には、酢酸溶液は、2ml〜20mlの酢酸に0.13g〜1.96gの酢酸バリウムを溶解させた溶液とし、メトキシエタノール溶液は、2ml〜20mlの2−メトキシエタノールに0.18g〜2.63gのチタンブトキシドを溶解させた溶液とした。 In <Manufacture of positive electrode material> described above, when the temperature of the heating step is 600 ° C. and becomes BaTiO 3 , 1 mol%, 2.5 mol%, 5 mol%, 10 mol%, 15 mol% of BaTiO 3 with respect to LiCoO 2 Each powder was prepared by adjusting the dispersion liquid so as to cause the above. Here, the acetic acid solution and the methoxyethanol solution to be added to the lithium cobaltate solution do not simply adjust the addition amount to the lithium cobaltate solution, but appropriately adjust the barium concentration of the acetic acid solution and the titanium concentration of the methoxyethanol solution, Addition of acetic acid and 2-methoxyethanol more than necessary to the lithium cobaltate solution was suppressed. Specifically, the acetic acid solution is a solution in which 0.13 g to 1.96 g of barium acetate is dissolved in 2 ml to 20 ml of acetic acid, and the methoxyethanol solution is 0.18 g to 2.63 g in 2 ml to 20 ml of 2-methoxyethanol. A solution in which titanium butoxide was dissolved was used.

図5に、得られた粉末のXRDパターンを示す。粉末中に含まれるBaTiO3の量の減少にともなって、BaTiO3(BT)のピーク強度が減少しているが、これはLiCoO2に対する相対量の減少の影響であると考えられ、いずれの場合であってもBaTiO3が形成できていると考えてよい。 FIG. 5 shows an XRD pattern of the obtained powder. As the amount of BaTiO 3 contained in the powder decreases, the peak intensity of BaTiO 3 (BT) decreases, which is considered to be due to the decrease in the relative amount with respect to LiCoO 2 . Even so, it can be considered that BaTiO 3 is formed.

図6に、BaTiO3(BT)1mol%の場合の試料と、BaTiO3(BT)5mol%の場合の試料のSTEM-EDS像を示す。図6よりBT相-LC相の2相コンポジット構造をとっていることが確認できる。図示しないが、他の全ての試料において、BT相とLC相の2相コンポジット構造をとっていることが確認できた。 FIG. 6 shows STEM-EDS images of the sample in the case of BaTiO 3 (BT) 1 mol% and the sample in the case of BaTiO 3 (BT) 5 mol%. It can be confirmed from FIG. 6 that the BT phase-LC phase has a two-phase composite structure. Although not shown, it was confirmed that all other samples had a two-phase composite structure of BT phase and LC phase.

図7に、BaTiO3(BT)1mol%の場合の試料と、BaTiO3(BT)5mol%の場合の試料、及びLiCoO2のみ(未処理品)の試料での、高速充放電レートにおける容量特性の結果を示す。この容量特性に基づき、諸特性の比較を下表に示す。 Fig. 7 shows the capacity characteristics at a fast charge / discharge rate for a sample with BaTiO 3 (BT) 1 mol%, a sample with BaTiO 3 (BT) 5 mol%, and a sample with LiCoO 2 alone (untreated product). The results are shown. Based on this capacity characteristic, a comparison of various characteristics is shown in the table below.

上表の「0.1C-1サイクル目の容量」を「初期容量」とし、「10C-5サイクル目(計35サイクル目)における初期容量に対する容量保持率」を算出している。
また、「未処理品に対する改善割合」は、「10C-5サイクル目(計35サイクル目)の容量」での未処理品の容量とBT1mol%品の容量との比較、及び未処理品の容量とBT5mol%品の容量との比較である。
“Capacity at 0.1C-1 cycle” in the above table is “initial capacity”, and “capacity retention ratio relative to initial capacity at 10C-5th cycle (35th cycle in total)” is calculated.
“Improvement ratio relative to untreated products” is the comparison between the capacity of untreated products and the capacity of BT1 mol% products in “capacity of 10C-5th cycle (35th cycle in total)” And the capacity of BT5mol% product.

表2に示されるように、初期容量は、BaTiO3添加量の増大にともなって減少したが、これは容量に寄与しない強誘電体BaTiO3の質量分率の効果である。 As shown in Table 2, the initial capacity decreased with an increase in the added amount of BaTiO 3 , which is an effect of the mass fraction of the ferroelectric BaTiO 3 that does not contribute to the capacity.

また、表2に示されるように、BaTiO3添加量の高速充放電レートにおける容量特性への影響は大きく、BaTiO3添加量は1mol%の方が5mol%よりも効果的であり、特にBaTiO3添加量が1mol%の場合には、35サイクル後(10Cでの5サイクル目)において、比較対象の未処理品、すなわちLiCoO2のみでの容量が62mAh/gであるのに対して、146 mAh/gと238%もの改善が見られた。さらに、高速充放電レートにおける容量保持率についても、BaTiO3添加量が1mol%の場合には、35サイクル目において対初期容量値78%であるのに対して、未処理品、すなわちLiCoO2のみでは33%であり、大幅に向上することが確認できた。 Further, as shown in Table 2, significantly impact on the capacity characteristics in a high-speed charge and discharge rate of the BaTiO 3 additive amount, BaTiO 3 added amount is more effective than 5 mol% is more of 1 mol%, in particular BaTiO 3 When the addition amount is 1 mol%, after 35 cycles (5th cycle at 10C), the untreated product to be compared, that is, LiCoO 2 alone has a capacity of 62 mAh / g, whereas 146 mAh / g and 238% improvement. Furthermore, regarding the capacity retention rate at the high-speed charge / discharge rate, when the addition amount of BaTiO 3 is 1 mol%, the initial capacity value is 78% at the 35th cycle, whereas only the untreated product, that is, LiCoO 2 Was 33%, confirming a significant improvement.

Claims (5)

リチウムイオン電池の正極を構成する活物質の粉末状とした活物質原料と、第1元素と第2元素とを含有した強誘電体を構成するための第1元素を含有する粉末状とした第1元素原料と、第2元素を含有する粉末状とした第2元素原料とを溶液に分散させて分散液を作製する分散液作製工程と、
前記分散液をゲルとするゲル化工程と、
前記ゲルを加熱して前記活物質原料に前記強誘電体を担持させる加熱工程と
を有するリチウムイオン電池の正極材料の製造方法。
An active material raw material in powder form of an active material constituting a positive electrode of a lithium ion battery, and a first powder form containing a first element for constituting a ferroelectric containing a first element and a second element A dispersion preparing step of preparing a dispersion by dispersing a single element raw material and a powdered second element raw material containing a second element in a solution;
A gelation step using the dispersion as a gel;
A method for producing a positive electrode material of a lithium ion battery, comprising: a heating step of heating the gel and supporting the ferroelectric on the active material material.
前記第1元素原料と前記第2元素原料は、前記加熱工程で前記強誘電体となった場合に、前記活物質原料に対して5mol%以下としている請求項1に記載のリチウムイオン電池の正極材料の製造方法。   2. The positive electrode of the lithium ion battery according to claim 1, wherein the first element material and the second element material are 5 mol% or less with respect to the active material material when the ferroelectric material is formed in the heating step. Material manufacturing method. 前記活物質原料はコバルト酸リチウムとし、前記第1元素原料は酢酸バリウムとし、前記第1元素原料はチタンブトキシドとして、リチウムイオン電池の正極を構成する活物質にチタン酸バリウムを担持させている請求項2に記載のリチウムイオン電池の正極材料の製造方法。   The active material raw material is lithium cobalt oxide, the first element raw material is barium acetate, the first element raw material is titanium butoxide, and the active material constituting the positive electrode of the lithium ion battery supports barium titanate. Item 3. A method for producing a positive electrode material for a lithium ion battery according to Item 2. 前記ゲル化工程では、前記分散液を70℃において6時間撹拌しながら乾燥させることでゲル化させ、前記加熱工程では、600℃で20時間加熱している請求項3に記載のリチウムイオン電池の正極材料の製造方法。   4. The lithium ion battery according to claim 3, wherein in the gelation step, the dispersion is gelled by drying with stirring at 70 ° C. for 6 hours, and in the heating step, the dispersion is heated at 600 ° C. for 20 hours. Manufacturing method of positive electrode material. 粉末状としたコバルト酸リチウムと、粉末状とした酢酸バリウムと、粉末状としたチタンブトキシドとを溶液に分散させた分散液を、撹拌しながら乾燥させてゲルとし、このゲルを加熱することでコバルト酸リチウムにチタン酸バリウムを担持させた電極材料であって、
前記チタン酸バリウムの粒径を100nm以下としている電極材料。
A dispersion in which powdered lithium cobaltate, powdered barium acetate, and powdered titanium butoxide are dispersed in a solution is dried with stirring to form a gel, and the gel is heated. An electrode material in which barium titanate is supported on lithium cobaltate,
An electrode material having a particle size of the barium titanate of 100 nm or less.
JP2015025824A 2015-02-12 2015-02-12 Method for producing positive electrode material for lithium ion battery and electrode material produced by this method Active JP6551878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015025824A JP6551878B2 (en) 2015-02-12 2015-02-12 Method for producing positive electrode material for lithium ion battery and electrode material produced by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015025824A JP6551878B2 (en) 2015-02-12 2015-02-12 Method for producing positive electrode material for lithium ion battery and electrode material produced by this method

Publications (3)

Publication Number Publication Date
JP2016149270A true JP2016149270A (en) 2016-08-18
JP2016149270A5 JP2016149270A5 (en) 2018-01-11
JP6551878B2 JP6551878B2 (en) 2019-07-31

Family

ID=56691641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015025824A Active JP6551878B2 (en) 2015-02-12 2015-02-12 Method for producing positive electrode material for lithium ion battery and electrode material produced by this method

Country Status (1)

Country Link
JP (1) JP6551878B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181614A (en) * 2017-04-13 2018-11-15 トヨタ自動車株式会社 Positive electrode material for lithium ion secondary battery
JP2019009252A (en) * 2017-06-23 2019-01-17 国立大学法人 岡山大学 Ferroelectric carbon composite material and method for manufacturing the same
JP2019114454A (en) * 2017-12-25 2019-07-11 日亜化学工業株式会社 Method of manufacturing positive electrode material for non-aqueous secondary battery
JP2020061337A (en) * 2018-10-12 2020-04-16 トヨタ自動車株式会社 Positive electrode active material and secondary battery including the same
US10873089B2 (en) 2017-12-12 2020-12-22 Toyota Jidosha Kabushiki Kaisha Positive electrode material and lithium secondary battery using the same
US11133505B2 (en) 2017-12-12 2021-09-28 Toyota Jidosha Kabushiki Kaisha Positive electrode material and lithium secondary battery using the same
US11139470B2 (en) 2017-03-06 2021-10-05 Toyota Jidosha Kabushiki Kaisha Method of manufacturing positive electrode material for lithium ion secondary battery and positive electrode material for lithium ion secondary battery
US11201348B2 (en) 2018-03-22 2021-12-14 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
CN115939403A (en) * 2023-01-17 2023-04-07 西安交通大学 Ferroelectric modified positive electrode material, preparation method thereof and secondary battery
US11936036B2 (en) 2019-11-28 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, secondary battery, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362014A (en) * 1991-06-04 1992-12-15 Mitsubishi Materials Corp Production of barium titanate thin film
JP2012028231A (en) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd Solid lithium ion secondary battery
JP2012531010A (en) * 2009-06-30 2012-12-06 エルジー・ケム・リミテッド Method for producing electrode including porous coating layer, electrode formed by the method, and electrochemical device including the same
JP2014116129A (en) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd Lithium ion secondary battery and method for producing positive electrode active material mixture for lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362014A (en) * 1991-06-04 1992-12-15 Mitsubishi Materials Corp Production of barium titanate thin film
JP2012531010A (en) * 2009-06-30 2012-12-06 エルジー・ケム・リミテッド Method for producing electrode including porous coating layer, electrode formed by the method, and electrochemical device including the same
JP2012028231A (en) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd Solid lithium ion secondary battery
JP2014116129A (en) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd Lithium ion secondary battery and method for producing positive electrode active material mixture for lithium secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11139470B2 (en) 2017-03-06 2021-10-05 Toyota Jidosha Kabushiki Kaisha Method of manufacturing positive electrode material for lithium ion secondary battery and positive electrode material for lithium ion secondary battery
US11171331B2 (en) 2017-03-06 2021-11-09 Toyota Jidosha Kabushiki Kaisha Method of manufacturing positive electrode material for lithium ion secondary battery and positive electrode material for lithium ion secondary battery
JP2018181614A (en) * 2017-04-13 2018-11-15 トヨタ自動車株式会社 Positive electrode material for lithium ion secondary battery
JP2019009252A (en) * 2017-06-23 2019-01-17 国立大学法人 岡山大学 Ferroelectric carbon composite material and method for manufacturing the same
US10873089B2 (en) 2017-12-12 2020-12-22 Toyota Jidosha Kabushiki Kaisha Positive electrode material and lithium secondary battery using the same
US11133505B2 (en) 2017-12-12 2021-09-28 Toyota Jidosha Kabushiki Kaisha Positive electrode material and lithium secondary battery using the same
JP2019114454A (en) * 2017-12-25 2019-07-11 日亜化学工業株式会社 Method of manufacturing positive electrode material for non-aqueous secondary battery
US11201348B2 (en) 2018-03-22 2021-12-14 Kabushiki Kaisha Toshiba Electrode, secondary battery, battery pack, and vehicle
JP2020061337A (en) * 2018-10-12 2020-04-16 トヨタ自動車株式会社 Positive electrode active material and secondary battery including the same
JP7085135B2 (en) 2018-10-12 2022-06-16 トヨタ自動車株式会社 A positive electrode active material and a secondary battery including the positive electrode active material.
US11936036B2 (en) 2019-11-28 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, secondary battery, and electronic device
CN115939403A (en) * 2023-01-17 2023-04-07 西安交通大学 Ferroelectric modified positive electrode material, preparation method thereof and secondary battery

Also Published As

Publication number Publication date
JP6551878B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6551878B2 (en) Method for producing positive electrode material for lithium ion battery and electrode material produced by this method
KR102553596B1 (en) Nickel manganese-containing composite hydroxide and method for producing the same
JP4915488B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR102402147B1 (en) Manganese spinel doped with magnesium, cathode material comprising said manganese spinel, method for preparing the same, and lithium ion battery comprising said spinel
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5590337B2 (en) Manganese composite hydroxide particles, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production methods thereof
JP2015122234A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and method for manufacturing the same
KR102022891B1 (en) Manufacturing method of negative material for rechargeable battery, negative material for rechargeable battery made by the same, and rechargeable battery including the same
WO2016017360A1 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, production method therefor, and non-aqueous electrolyte secondary battery
CN108701824A (en) The manufacturing method of negative electrode active material, mixing negative electrode active material material, anode for nonaqueous electrolyte secondary battery, lithium rechargeable battery and negative electrode active material
JP2018168065A (en) Method for preparing titanium and niobium mixed oxide by solvothermal treatment; and electrode and lithium accumulator comprising that mixed oxide
JP2021064598A (en) Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same
TWI550938B (en) Cathode material of lithium ion battery and method for making the same
JP2017088437A (en) Method for producing graphite-covered silicon composite body
Temeche et al. Improved Electrochemical Properties of Li4Ti5O12 Nanopowders (NPs) via Addition of LiAlO2 and Li6SiON Polymer Electrolytes, Derived from Agricultural Waste
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP2005038772A (en) Active material for lithium secondary battery, and its manufacturing method
JP2020033235A (en) Method for producing transition metal composite hydroxide, and method for producing cathode active material for lithium ion secondary battery
KR102479545B1 (en) Lithium hydroxide treatment method including cathode material for lithium secondary battery and slurry production method including cathode material to which it is applied
JP6975435B2 (en) Non-aqueous electrolyte secondary battery Negative electrode manufacturing method
KR101693711B1 (en) Preparation method of lithium titanium oxide particles coated with carbon and nitrogen, electrode active material and lithium secondary batteries
KR102275898B1 (en) Lithium composite oxide and manufacturing method of the same
JP7144785B2 (en) Method for producing lithium vanadium phosphate
KR101798154B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
JP2016072188A (en) Method for manufacturing coated complex oxide particles for positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use of coated complex oxide particles manufactured thereby

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6551878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150