JP2016012694A - リソグラフィ装置、および物品製造方法 - Google Patents
リソグラフィ装置、および物品製造方法 Download PDFInfo
- Publication number
- JP2016012694A JP2016012694A JP2014134545A JP2014134545A JP2016012694A JP 2016012694 A JP2016012694 A JP 2016012694A JP 2014134545 A JP2014134545 A JP 2014134545A JP 2014134545 A JP2014134545 A JP 2014134545A JP 2016012694 A JP2016012694 A JP 2016012694A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- substrate
- beams
- inspection
- lithographic apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70383—Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70558—Dose control, i.e. achievement of a desired dose
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electron Beam Exposure (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
Abstract
【課題】ビームに関する検査の頻度と生産性との両立の点で有利なリソグラフィ装置を提供すること。【解決手段】パターンの形成を複数のビームで基板に行うリソグラフィ装置であって、複数のビームを基板に照射する光学系と、光学系を制御する制御部とを備え、制御部は、基板の第1領域に物品のための第1パターンの形成を行い、第1領域とは異なる基板の第2領域に複数のビームの検査のための第2パターンの形成を行うように、光学系を制御することを特徴とする。【選択図】図8
Description
本発明は、複数のビームでパターン形成を基板に行うリソグラフィ装置、および物品製造方法に関する。
複数のビーム(荷電粒子線等)でパターン形成を基板に行うリソグラフィ装置が知られている。このようなリソグラフィ装置は、ビームに関する欠陥(ビームの特性またはブランキングに係る欠陥)が発生した場合に、パターン形成の欠陥の原因となりうる。特許文献1は、個々の電子光学系に反射電子検出器を設け、個々の電子線の調整を行う描画装置を開示している。また、特許文献2は、複数の荷電粒子線の照射により発光する蛍光体材料を用いることによって、該複数の荷電粒子線の特性の情報を得る露光装置(描画装置)を開示している。
上記のような欠陥の発生は、その要因は様々であり、また、そのタイミングは予測困難である。従って、当該欠陥の検査は、できる限り高い頻度で、しかも、その検査が原因で生産性(スループット)が低下しないように行うのが好ましい。
本発明は、例えば、ビームに関する検査の頻度と生産性との両立の点で有利なリソグラフィ装置を提供することを目的とする。
上記課題を解決するために、本発明は、パターンの形成を複数のビームで基板に行うリソグラフィ装置であって、複数のビームを基板に照射する光学系と、光学系を制御する制御部とを備え、制御部は、基板の第1領域に物品のための第1パターンの形成を行い、第1領域とは異なる基板の第2領域に複数のビームの検査のための第2パターンの形成を行うように、光学系を制御することを特徴とする。
本発明によれば、例えば、ビームに関する検査の頻度と生産性との両立の点で有利なリソグラフィ装置を提供することができる。
以下、本発明を実施するための形態について図面などを参照して説明する。
(第1実施形態)
まず、本発明の一実施形態に係るリソグラフィ装置について説明する。以下、本実施形態に係るリソグラフィ装置は、一例として、以下のようなマルチビーム方式の荷電粒子線描画装置(描画装置)とする。マルチビーム方式の荷電粒子線描画装置(描画装置)は、複数の電子ビーム(荷電粒子線)を偏向させ、電子ビームの照射のON/OFFを個別に制御することで、所定の描画データを被処理基板の所定の位置に描画する。ここで、荷電粒子線は、本実施形態のような電子線に限定されず、イオン線などの他の荷電粒子線であってもよい。また、例えば、光ビーム(レーザービーム)を音響光学素子により適宜回折させて制御することで描画を行う光ビーム描画装置としてもよい。
まず、本発明の一実施形態に係るリソグラフィ装置について説明する。以下、本実施形態に係るリソグラフィ装置は、一例として、以下のようなマルチビーム方式の荷電粒子線描画装置(描画装置)とする。マルチビーム方式の荷電粒子線描画装置(描画装置)は、複数の電子ビーム(荷電粒子線)を偏向させ、電子ビームの照射のON/OFFを個別に制御することで、所定の描画データを被処理基板の所定の位置に描画する。ここで、荷電粒子線は、本実施形態のような電子線に限定されず、イオン線などの他の荷電粒子線であってもよい。また、例えば、光ビーム(レーザービーム)を音響光学素子により適宜回折させて制御することで描画を行う光ビーム描画装置としてもよい。
図1は、本実施形態に係る描画装置の構成を示す概略図である。なお、以下の各図では、被処理基板に対する電子ビームの照射方向にZ軸を取り、Z軸に垂直な平面内に互いに直交するX軸およびY軸を取っている。さらに、以下の各図では、図1と同一の構成要素には、同一の符号を付す。描画装置1は、電子銃2と、該電子銃2のクロスオーバ3から発散した電子ビームを複数の電子ビームに分割、偏向、および結像させる光学系4と、被処理基板を保持する基板ステージ5と、描画装置1の各構成要素の動作などを制御する制御部6とを備える。なお、電子ビームは、大気圧雰囲気ではすぐに減衰するため、また、高電圧による放電を防止する意味もかねて、制御部6とコンソール40とを除く上記構成要素は、不図示の真空排気系により内部圧力が適宜調整された空間内に設置される。例えば、電子銃2および光学系4は、高い真空度に保たれた電子光学鏡筒内に設置される。同様に、基板ステージ5は、電子光学鏡筒内よりも比較的低い真空度に保たれたチャンバー内に設置される。また、被処理基板7は、例えば、単結晶シリコンからなる基板であり、表面上には感光性のレジストが塗布されている。
電子銃2は、熱や電界の印加により電子ビームを放出する機構であり、図1ではクロスオーバ3から放出された電子ビームの軌道2aを点線で示している。光学系4は、電子銃2側から順に、コリメーターレンズ10、アパーチャアレイ11、第1静電レンズアレイ12、ブランキング偏向器アレイ13、ブランキングアパーチャアレイ14、偏向器アレイ15、および第2静電レンズアレイ16を備える。なお、光学系4は、ブランキングアパーチャアレイ14の下流側に、第3静電レンズアレイ17を備える場合もある。コリメーターレンズ10は、電磁レンズで構成され、クロスオーバ3で発散した電子ビームを平行ビームとする光学素子である。アパーチャアレイ11は、マトリクス状に配列した複数の円形状の開口を有し、コリメーターレンズ10から入射した電子ビームを複数の電子ビームに分割する機構である。第1静電レンズアレイ12は、円形状の開口を有する3枚の電極板(図1では、3枚の電極板を一体で示している)から構成され、ブランキングアパーチャアレイ14に対して電子ビームを結像させる光学素子である。ブランキング偏向器アレイ13およびブランキングアパーチャアレイ14は、共にマトリクス状に配置され、各電子ビームの照射のON(非ブランキング状態)/OFF(ブランキング状態)動作を実施する機構である。偏向器アレイ(偏向器)15は、基板ステージ5に載置された被処理基板7の表面上の像をX軸方向に偏向する機構である。第2静電レンズアレイ16は、ブランキングアパーチャアレイ14を通過した電子ビームを被処理基板7に結像させる光学素子である。または、第2静電レンズアレイ16は、基板ステージ5に設置された後述する計測装置(電子ビーム計測装置、電子ビーム検出器)20に対して元のクロスオーバ3の像を結像させる光学素子である。
なお、ブランキングは、本実施形態では、ブランキング偏向器アレイ13およびブランキングアパーチャアレイ14を用いて電子ビームを遮断することにより実施したが、これに限られるものではない。例えば、画素に印加する電圧を切り替えることにより電子(ビーム)の反射と非反射とを切り替えるようなデバイスでは、当該非反射への切り替えがブランキングに相当する。
基板ステージ5は、6軸制御駆動が可能な構成であり被処理基板7を、例えば静電吸着により保持しつつ、適宜、少なくともXYの2軸方向に移動可能とする基板保持部であり、その位置は、不図示の干渉計(レーザー測長器)などにより実時間で計測される。例えば、このときの分解能は、0.1nm程度である。また、基板ステージ5は、その電子ビーム照射面に、電子ビームを計測する計測装置20を備える。この計測装置20の出力信号(電気信号)は、電子ビームの変化に対する、電子ビームの強度分布の計測に用いられる。ここで、強度分布とは、電子ビームの形状、位置および強度を示す。これらの計測に際しては、例えば、計測スリットを利用した計測方法が採用可能である。
制御部6は、図1に示すように、描画装置1の描画に関わる各構成要素の動作を制御する各種制御回路と、各制御回路を統括する主制御部30とを有する。各制御回路として、制御部6は、不図示のレンズ制御回路と、ブランキング偏向器制御回路31と、偏向器制御回路32と、検出器制御回路33と、ステージ制御回路34とを含む。まず、レンズ制御回路は、コリメーターレンズ10や各静電レンズアレイ12、16、17の動作を制御する。ブランキング偏向器制御回路31は、制御部6内に含まれる描画パターン発生回路、ビットマップ変換回路、およびブランキング指令生成回路により生成されるブランキング信号に基づいて、ブランキング偏向器アレイ13の動作を制御する。ここで、描画パターン発生回路は、描画パターンを生成し、この描画パターンは、ビットマップ変換回路によりビットマップデータに変換される。ブランキング指令生成回路は、ビットマップデータに基づいてブランキング信号を生成する。偏向器制御回路32は、制御部6内に含まれる偏向信号発生回路により生成される偏向信号に基づいて、偏向器アレイ15の動作を制御する。
検出器制御回路33は、計測装置20からの出力を受けて電子ビームの照射の有無を判定し、判定結果を主制御部30に送信する。さらに、検出器制御回路33は、主制御部30を介して後述のステージ制御回路34とも連携することにより、照射された電子ビームの特性を計測する。このときの計測項目は、例えば、電子ビームの形状、位置および強度である。この特性計測では、検出器制御回路33は、計測装置20で検出された結果を主制御部30に送信する。また、ステージ制御回路34も、その時点のステージの位置情報を主制御部30に送信し、偏向器制御回路32も、その時点の偏向量(偏向幅)を主制御部30に送信する。そして、主制御部30は、これらの各データに基づいて電子ビームの形状、位置および強度を計算することになる。但し、ここで特性計測するビームは多数あるビームの中から全体のビームの特性を代表するとして選ばれた数本のビームとなる。理由は、全ビームに対して特性計測を行うとすると、数万本〜数十万本のビーム、1本1本に対して計測を行う事になる。計測自体は不可能ではないが、それに要する計測時間を鑑みると、基板7にパターンを描画処理する単位時間当たりの枚数に影響を及ぼす事になるからである。
ステージ制御回路34は、主制御部30からの指令であるステージ位置情報(位置座標)に基づいて、基板ステージ5への指令目標値を算出し、駆動後の位置がこの目標値となるように基板ステージ5を駆動させる。このとき、上記干渉計が計測したデータは、ステージ制御回路34を介して主制御部30にて処理され、再度ステージ制御回路34に戻されることで、基板ステージ5の位置の制御に用いられる。ここで、ステージ制御回路34は、パターン描画中は、被処理基板7(基板ステージ5)をY軸方向に連続的にスキャンさせる。このとき、偏向器アレイ15は、干渉計による基板ステージ5の測長結果を基準として、被処理基板7の表面上の像をX軸方向に偏向させる。そして、ブランキング偏向器アレイ13は、被処理基板7上で目標線量が得られるように、電子ビームの照射のON/OFFを実施する。
ここでは、不図示であるが基板上に配置されたパターン作成時に同時に作成されたアライメントマークを計測する為のアライメント計測装置とその計測値から露光位置を計算する計算回路とがある。アライメント情報を利用する事で、基板上でデバイスパターン描画領域と非描画領域がより正確にわかる事で、正確にビーム検査パターンの描画が可能になる。
図2は、ビームが正常な場合と、ビームに欠陥がある場合とにそれぞれ描画されるパターンを示す図である。ブランキング指令をONにした時に基板上に描画するパターンを黒丸で、OFFにした時の同パターンを破線の白丸で表している。ブランキング指令に対してビームが正常な場合には、全てのブランキング指令がONの時は全て黒丸100となり、全てOFFの時には全て破線白丸110となるパターンが基板上に描画される。もし、ON/OFFの指令に対してビームに欠陥がある場合には、ON指令の時はONにならない欠陥101が、図2の欠陥のある時のブランキングON指令のパターン描画105のように混ざり合って描画される。同様に、OFF指令の時はOFFにならない欠陥111が、図2の欠陥のある時のブランキングOFF指令のパターン描画115のように混ざり合って描画される事になる。
なお、説明をし易くする為に、ブランキング指令がONの時もOFFの時も、「パターンが描画される」との表現を使っているが、実際の装置では、どちらかの指令の時には、「何もパターンが描画されない。」事になる。また、ビームの検査項目は、上述したブランキング特性に限られるものではなく、強度分布の検査を行う場合もありうる。ここで、描画するビーム検査パターンは、実素子パターンを描画する時と同じ描画の仕方で行う事が望ましい。つまり、実素子パターンの描画を個々のビームの繋ぎ合せで行っているのであれば、ビーム検査パターンは、ビームと1対1で対応するパターンで作るのが良い。また、複数個のビームの重ね合せで行っているのであれば、ビーム検査パターンも複数のビームの重ね合せで作るのがよい。
図3は、図2のビームのONとOFFの時それぞれの、ビームに欠陥がある場合に描画されるパターンの一例を抜き出した図である。例えば、基板上のデバイスパターン(第1パターン)を描画しない空き領域に、図3のようにビームのONとOFFの時のビームパターンを描画する事で、基板処理後に、この描画パターンを計測/検査し、ビームの欠陥の有無が判断できる。
図4は、本実施形態に係るビーム検査用パターン(第2パターン)の一例を示す図である。ビームON/OFFの描画パターンをビームONの描画位置に対して、X方向、Y方向にそれぞれビーム間隔の半分だけずらして描画するビーム検査パターン120である。このように描画する事で、ビーム検査パターンを描画するのに必要な基板上の空き領域が小さくて済み、また、ビーム検査をした時に見つかった欠陥とビームとの対応付けが容易になる。特に、ビームが描画されないブランキング指令の時にビームが出てしまう様な欠陥に対して、ビーム本数が数十〜数百万本の描画装置では、欠陥検査の結果と実際のビームの欠陥との対応付けは容易ではないため、この様な描画方法が重要となる。
これまでの図では、すべてのビームをONにした場合とOFFにした場合のビーム検査パターンの描画の例を説明したが、これに限られるものではない。例えば、図5のように、1列毎にONとOFFで描画して、XY方向に半ピッチずらした位置で、今度は1列毎にOFFとONで描画しても良い(ビーム検査パターン121)。即ち、1個のビーム検査パターン毎に、ブランキング指令がONの場合とOFFの場合の2つの描画が行われていればビームの欠陥検査は可能であるため、ONとOFFの組み合わせに制約は無い。
上述したように、ビーム欠陥の発生予測は不可能であるため、例えば、1枚の基板を描画中にビームの欠陥が発生する事も考えられる。ここで、従来の構成で基板毎にデバイスパターン描画の前後にビーム検査を行えば、仮に、ビーム検査の時間を短くできたとしても、基板処理枚数の2倍分の回数のビーム検査の時間が必要になるため、生産性の低下は免れない。これに対して、本実施形態によれば、デバイスパターン描画中のビーム欠陥の有無を保証するために、1枚の基板にデバイスパターン描画の開始時と終了時に、ビーム検査パターンを描画する。そして、ビーム検査パターンに基づくビーム検査を描画装置とは別の装置で実行しつつ、他の基板の描画を並行して行う。したがって、ビーム検査の結果を待たずに、他の基板の処理を進めることができ、生産性の低下を抑制することができる。ここでは、まず、1枚の基板に描画されるデバイスパターンとビーム検査パターンの構成について説明する。図6は、1枚の基板上にデバイスパターンの描画前後に検査用パターンを描画した場合の一例を示す図である。円形の基板に対して矩形上のデバイスパターンを配置するため、基板の上下と左右にはデバイスパターンが描画出来ない空き領域(ショット領域の配列の外側の周辺の領域)が発生する。その領域にビーム検査パターンの描画行う。図6では、基板の上下の空き領域にブランキングON/OFFのビーム検査パターン122、123を描画する例を示している。この例では、例えば、ビーム検査パターン122がデバイスパターン描画開始時に描画したパターンであり、122が終了時に描画したパターンである。当然、その逆でも何ら問題は無い。また、基板の左右にも同様の空き領域が生じるので、それを使用しても良い。
また、一度に全てのビーム検査描画が可能な領域が基板上に確保出来ない場合もありうる。このような場合は、例えば、図7のように、ショット50とショット50の間のスクライブラインと呼ばれるスペースに、ビーム検査パターンを描画する。全てのビームを一つのスクライブラインに描画するスペースを確保する事は難しい。ここで、図7のように、例えば、ビーム検査パターンをスクライブラインに合わせて幾つかのグループに分割し、グループ毎に、ブランキングON/OFFのビーム検査パターン122、123をスクライブラインに描画する。図6の場合と同様に、この例でもビーム検査パターン122のグループがデバイスパターン描画開始時に描画したパターンであり、ビーム検査パターン123のグループがデバイスパターン描画終了時に描画したパターンである。図7の例では、横方向のスクライブラインへの描画の例を示したが、これに限られるものではなく、例えば、縦方向のスクライブラインにビーム検査パターンを描画する事も可能である。その場合には、ビーム検査パターンのグループ分けを、縦方向のスクライブラインに合うように縦方向でグループ分けする。
次に、上述したように基板にデバイスパターンとビーム検査パターンとを描画した後の処理も含め、制御部6の該基板に対する処理の流れについて、図8のフローチャートを用いて説明する。まず、801で、制御部6は、これまで説明したように基板上にデバイスパターンとその前後でビーム検査用パターンの描画を行う。次に、802で描画が終了した基板のビーム検査を行うために、検査装置に基板を送り出す。この時、基板は現像されていてもいなくても良い。また、ビーム検査を行う検査装置は、基板にパターン描画を行った描画装置とは別の装置である。従って、基板への描画処理と並行して、ビームの欠陥処理を行う事が出来る。制御部6は、803で検査装置が検査した結果を受け取り、804で欠陥があったかどうかの判定を行う。判定の結果、欠陥がなかった場合は、808に進み、基板に次の処理を行う。欠陥があった場合は、描画パターンの忠実性に影響がでる可能性がある。具体的には、描画すべきパターンがパターンデータ通りに描画されなかったり、描画しなくてよい所に描画してしまったりする。そのため、ビーム欠陥の影響がある状態で描画された基板はリワーク処理にまわされる。例えば、再度、描画処理を行う事になる。このため、リワーク処理が多く発生すると生産性が低下する事になる。ここでは、805で描画したデバイスパターンとビーム検査の結果から、基板のリワークが必要か否かを判断する。例えば、ビームがONしない欠陥があっても、そのビームがその基板の描画に使われていなければ、当該基板のリワークは不要と判断出来る。制御部6が、805の判断で基板のリワークが必要ないと判断した場合、808に進み、基板に次の処理を行ってよいとの判断を行う。805の判断で基板のリワークが必要であると判断した場合は、807に進み、基板のリワーク処理を行うべきであるとの判断を行う。本実施形態によれば、検査した基板とは別の基板への描画処理と並行してビーム検査が行われているため、検査した基板から806のリワーク判断が終了した時点までに描画処理を行っていた基板までをリワーク処理すればよい。また、804で欠陥があったと判定した場合には、ビーム検査結果から、欠陥の影響を補償または低減するように、制御部6は、カラム、ステージ等の制御対象に指令を出す。ここで、制御部6は、欠陥の影響を補償または低減するように、例えば、描画データおよび描画シーケンス(手順)のうち少なくとも一方の変更を行いうる。なお、ビーム検査とその結果欠陥があった場合のリソグラフィ装置での対処(補償)とが基板を1枚描画する時間内で実施出来れば、リワーク処理が必要な基板は2枚で済む事になる。
以上のように、本実施形態によれば、装置コストがアップすることなくビームの検査に要する時間で生産性が低下することを抑制し、かつ、高い頻度で検査が可能なリソグラフィ装置を提供することができる。また、ビーム欠陥が発生した場合でも、必要最低限のリワーク処理で済むため、ユーザーが求める最適な生産性と装置コストで基板を処理する事が可能となる。
(物品製造方法)
本発明の実施形態に係る物品製造方法は、例えば、半導体デバイスなどのマイクロデバイスや微細構造を有する素子などの物品を製造するのに好適である。該製造方法は、感光剤が塗布された基板の該感光剤に上記の描画装置を用いて潜像パターンを形成する工程(基板に描画を行う工程)と、該工程で潜像パターンが形成された基板を現像する工程とを含み得る。さらに、該製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージングなど)を含み得る。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
なお、本実施形態では描画装置とビーム検査パターンを用いてビーム検査を行う検査装置とは異なる装置としたが、これに限られるものではなく、描画および検査の両方が行える装置(システム)であってもよい。
本発明の実施形態に係る物品製造方法は、例えば、半導体デバイスなどのマイクロデバイスや微細構造を有する素子などの物品を製造するのに好適である。該製造方法は、感光剤が塗布された基板の該感光剤に上記の描画装置を用いて潜像パターンを形成する工程(基板に描画を行う工程)と、該工程で潜像パターンが形成された基板を現像する工程とを含み得る。さらに、該製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージングなど)を含み得る。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
なお、本実施形態では描画装置とビーム検査パターンを用いてビーム検査を行う検査装置とは異なる装置としたが、これに限られるものではなく、描画および検査の両方が行える装置(システム)であってもよい。
以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。
1 描画装置
6 制御部
7 基板
106,116,120〜123 ビーム検査パターン
6 制御部
7 基板
106,116,120〜123 ビーム検査パターン
Claims (8)
- パターンの形成を複数のビームで基板に行うリソグラフィ装置であって、
前記複数のビームを前記基板に照射する光学系と、
前記光学系を制御する制御部と、を備え、
前記制御部は、前記基板の第1領域に物品のための第1パターンの形成を行い、該第1領域とは異なる前記基板の第2領域に前記複数のビームの検査のための第2パターンの形成を行うように、前記光学系を制御することを特徴とするリソグラフィ装置。 - 前記第2パターンは、前記複数のビームのうちのビームの強度に関する検査のためのパターンを含むことを特徴とする請求項1に記載のリソグラフィ装置。
- 前記第2パターンは、前記複数のビームのうちのビームのブランキング特性に関する検査のためのパターンを含むことを特徴とする請求項1または請求項2に記載のリソグラフィ装置。
- 前記第2領域は、前記基板のスクライブラインに対応する領域を含むことを特徴とする請求項1ないし請求項3のうちいずれか1項に記載のリソグラフィ装置。
- 前記第2領域は、前記基板の上のショット領域の配列の外側の前記基板の上の周辺の領域を含むことを特徴とする請求項1ないし請求項4のうちいずれか1項に記載のリソグラフィ装置。
- 前記制御部は、前記第1パターンの形成の前と後とに、前記第2パターンの形成を行うように、前記光学系を制御することを特徴とする請求項1ないし請求項5のうちいずれか1項に記載のリソグラフィ装置。
- 請求項1ないし請求項6のうちいずれか1項に記載のリソグラフィ装置を用いてパターンの形成を基板に行う工程と、
前記工程で前記パターンの形成を行われた前記基板を現像する工程と、を含むことを特徴とする物品製造方法。 - パターンの形成を複数のビームで基板に行う形成工程と、
前記形成工程で前記パターンの形成を行われた前記基板を検査する検査工程と、
を含む物品製造方法であって、
前記形成工程は、前記基板の第1領域に前記物品のための第1パターンの形成を行い、該第1領域とは異なる前記基板の第2領域に前記複数のビームの検査のための第2パターンの形成を行い、
前記検査工程は、前記基板に形成された前記第2パターンに基づいて前記複数のビームの検査を行い、
前記形成工程は、前記検査工程での前記複数のビームの検査が行われた場合、該検査の結果に基づいてパターンの形成を行うことを特徴とする物品製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014134545A JP2016012694A (ja) | 2014-06-30 | 2014-06-30 | リソグラフィ装置、および物品製造方法 |
KR1020150088281A KR20160002360A (ko) | 2014-06-30 | 2015-06-22 | 리소그래피 장치 및 물품의 제조 방법 |
TW104120173A TW201600937A (zh) | 2014-06-30 | 2015-06-23 | 微影裝置及製造物品的方法 |
US14/753,639 US20150380214A1 (en) | 2014-06-30 | 2015-06-29 | Lithography apparatus, and method of manufacturing article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014134545A JP2016012694A (ja) | 2014-06-30 | 2014-06-30 | リソグラフィ装置、および物品製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016012694A true JP2016012694A (ja) | 2016-01-21 |
Family
ID=54931291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014134545A Pending JP2016012694A (ja) | 2014-06-30 | 2014-06-30 | リソグラフィ装置、および物品製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20150380214A1 (ja) |
JP (1) | JP2016012694A (ja) |
KR (1) | KR20160002360A (ja) |
TW (1) | TW201600937A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018078250A (ja) * | 2016-11-11 | 2018-05-17 | 株式会社ニューフレアテクノロジー | マルチ荷電粒子ビーム描画装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9690210B2 (en) * | 2011-08-18 | 2017-06-27 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
-
2014
- 2014-06-30 JP JP2014134545A patent/JP2016012694A/ja active Pending
-
2015
- 2015-06-22 KR KR1020150088281A patent/KR20160002360A/ko unknown
- 2015-06-23 TW TW104120173A patent/TW201600937A/zh unknown
- 2015-06-29 US US14/753,639 patent/US20150380214A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
KR20160002360A (ko) | 2016-01-07 |
TW201600937A (zh) | 2016-01-01 |
US20150380214A1 (en) | 2015-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10483088B2 (en) | Multi charged particle beam writing apparatus and multi charged particle beam writing method | |
JP2012109477A (ja) | 電子ビーム描画装置、およびそれを用いた物品の製造方法 | |
US10867774B2 (en) | Multi charged particle beam writing apparatus and multi charged particle beam writing method | |
JP2013074088A (ja) | 荷電粒子線描画装置、描画データ生成方法、描画データ生成プログラム、それを用いた物品の製造方法 | |
TW201923815A (zh) | 多帶電粒子束描繪裝置及多帶電粒子束描繪方法 | |
JP2015216225A (ja) | リソグラフィ装置及び方法、並びに物品の製造方法 | |
US20150364291A1 (en) | Lithography apparatus, and method of manufacturing article | |
JP2006186125A (ja) | 荷電粒子線露光装置およびその露光方法 | |
JP5836773B2 (ja) | 描画装置、及び物品の製造方法 | |
JP2013021215A (ja) | ビーム計測装置、描画装置、および物品の製造方法 | |
US10283316B2 (en) | Aperture for inspecting multi beam, beam inspection apparatus for multi beam, and multi charged particle beam writing apparatus | |
JPH10106931A (ja) | 電子ビーム露光方法およびそれを用いた半導体集積回路装置の製造方法 | |
JP2016012694A (ja) | リソグラフィ装置、および物品製造方法 | |
US20150362842A1 (en) | Lithography apparatus, and method of manufacturing article | |
JP6662654B2 (ja) | 画像取得方法及び電子ビーム検査・測長装置 | |
CN109491211B (zh) | 带电粒子束描绘装置及消隐电路的故障诊断方法 | |
TWI742503B (zh) | 檢測一樣品之裝置及方法及其相關電腦程式產品 | |
JP2016115850A (ja) | リソグラフィ装置および方法ならびに物品の製造方法 | |
TWI626673B (zh) | Evaluation method, correction method, program, and electron beam drawing device | |
JP7394599B2 (ja) | リターディング電圧を用いた電子線検査装置 | |
TWI852145B (zh) | 描繪裝置及描繪方法 | |
KR20200044087A (ko) | 샘플 검사에서 이미지 콘트라스트 향상 | |
JP7176480B2 (ja) | マルチ荷電粒子ビーム描画方法及びマルチ荷電粒子ビーム描画装置 | |
US10483082B2 (en) | Evaluation method, correction method, recording medium and electron beam lithography system | |
KR102444744B1 (ko) | 하전 입자 빔 검사의 샘플 검사 레시피의 동적 결정 |