[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016001237A - Optical transmission module - Google Patents

Optical transmission module Download PDF

Info

Publication number
JP2016001237A
JP2016001237A JP2014120674A JP2014120674A JP2016001237A JP 2016001237 A JP2016001237 A JP 2016001237A JP 2014120674 A JP2014120674 A JP 2014120674A JP 2014120674 A JP2014120674 A JP 2014120674A JP 2016001237 A JP2016001237 A JP 2016001237A
Authority
JP
Japan
Prior art keywords
optical
holding member
hole
guide holding
transmission module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014120674A
Other languages
Japanese (ja)
Other versions
JP6382585B2 (en
Inventor
寛幸 本原
Hiroyuki Motohara
寛幸 本原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2014120674A priority Critical patent/JP6382585B2/en
Publication of JP2016001237A publication Critical patent/JP2016001237A/en
Application granted granted Critical
Publication of JP6382585B2 publication Critical patent/JP6382585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical transmission module with which it is possible to align optical cables with high accuracy.SOLUTION: An optical transmission module 100 comprises: a surface emission laser 10 having a light-emitting unit 11 for outputting an optical signal; a circuit board 20 provided with a through-hole 21 for letting the optical signal outputted from the surface emission laser 10 pass through; an optical cable 30 for propagating the optical signal outputted from the surface emission laser 10; and a guide holding member 40 having a through-hole 41 for inserting the optical cable 30 therethrough, and a bottom face by which it is mounted on the circuit board 20 and is optically polished, with a recess formed on the bottom face. The surface emission laser 10 is flip-chip mounted on the circuit board 20 so that the light-emitting unit 11 is located above the through-hole 21, and the guide holding member 40 for holding the optical cable 30 is mounted so as to face the surface emission laser 10 via the circuit board 20.

Description

本発明は、光伝送モジュールに関する。   The present invention relates to an optical transmission module.

従来、医療用の内視鏡は、挿入部が体内に深く挿入されることによって、病変部の観察を可能とし、さらに必要に応じて処置具が併用されることによって体内の検査、治療を可能としている。このような内視鏡として、挿入部の先端にCCD等の撮像素子を内蔵した撮像装置を備えた内視鏡がある。近年、より鮮明な画像観察を可能とする高画素数の撮像素子が開発されており、内視鏡への高画素数の撮像素子の使用が検討されている。内視鏡で高画素数の撮像素子を使用する場合、該撮像素子と信号処理装置との間を高速で信号を伝送するために、光ケーブルを用いた光伝送モジュールを内視鏡に組み込むことが必要となる。このような光伝送モジュールは、患者への負担軽減を考慮して先端部外径ならびに先端部長はできるだけ小さくすることが希求されるとともに、画質の向上のためにCCD等の撮像素子と光ケーブルとを精度よく位置合わせして光信号を伝播することが要求される。   Conventionally, medical endoscopes enable observation of lesions by inserting the insertion part deeply into the body, and also enables inspection and treatment of the body by using a treatment tool as needed It is said. As such an endoscope, there is an endoscope provided with an imaging device having a built-in imaging element such as a CCD at the tip of an insertion portion. In recent years, an image sensor having a high pixel number that enables clearer image observation has been developed, and the use of an image sensor having a high pixel number for an endoscope has been studied. When an imaging device having a high pixel count is used in an endoscope, an optical transmission module using an optical cable may be incorporated in the endoscope in order to transmit a signal between the imaging device and a signal processing device at high speed. Necessary. In such an optical transmission module, it is desired to reduce the outer diameter of the distal end and the length of the distal end as much as possible in consideration of reducing the burden on the patient, and an image sensor such as a CCD and an optical cable are used to improve image quality. It is required to propagate the optical signal with accurate alignment.

光ファイバを精度よく固定する方法として、光ファイバをガイド・保持する止具を透明な部材により形成し、透明な側面から照明して観察することにより、光ファイバの偏光保持面の方向付けを行う技術が開示されている(たとえば、特許文献1参照)。   As a method for fixing the optical fiber with high accuracy, a stopper for guiding and holding the optical fiber is formed by a transparent member, and the polarization holding surface of the optical fiber is oriented by illuminating and observing from a transparent side surface. A technique is disclosed (for example, see Patent Document 1).

特開平08−320423号公報Japanese Patent Application Laid-Open No. 08-320423

しかしながら、特許文献1においては、止具の透明な側面から観察しながら管内の光ファイバの偏光保持面を望ましい方向とし、管内に接着剤を浸透させて光ファイバを止具に固定する。その後、光学構成部品と光ファイバとを位置決め面を対向させながら、理想的な連結位置になるまで相互に滑動させて位置決めするとしているが、理想的な連結位置に位置決めする手段は何ら開示されていない。   However, in Patent Document 1, the polarization maintaining surface of the optical fiber in the tube is set in a desired direction while observing from the transparent side surface of the fastener, and the optical fiber is fixed to the fastener by penetrating an adhesive into the tube. After that, the optical component and the optical fiber are positioned by sliding each other until the ideal coupling position with the positioning surfaces facing each other. However, any means for positioning at the ideal coupling position is disclosed. Absent.

本発明は、上記に鑑みてなされたものであって、光ケーブルを精度よく位置合わせ可能な光伝送モジュールを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide an optical transmission module capable of accurately aligning an optical cable.

上述した課題を解決し、目的を達成するために、本発明にかかる光伝送モジュールは、光信号を入力する受光部または光信号を出力する発光部を有する光素子と、前記光素子に入力または出力する前記光信号を通過させるスルーホールを備える基板と、前記光素子から入力または出力される光信号を伝播する光ケーブルと、前記光ケーブル挿入用の貫通孔を有し、前記基板への実装面である底面が光学研磨されるとともに、前記底面に凹部が形成されたガイド保持部材と、を備え、前記光素子の前記受光部または前記発光部が、前記基板のスルーホール上に位置するようにフリップチップ実装されるとともに、前記光ケーブルを保持する前記ガイド保持部材は、前記基板を介して前記光素子と対向するように実装されることを特徴とする。   In order to solve the above-described problems and achieve the object, an optical transmission module according to the present invention includes an optical element having a light receiving unit that inputs an optical signal or a light emitting unit that outputs an optical signal, and an input or output to the optical element. A substrate having a through hole for passing the optical signal to be output; an optical cable for propagating an optical signal input or output from the optical element; and a through hole for inserting the optical cable; And a guide holding member having a recess formed on the bottom surface, and flips so that the light receiving portion or the light emitting portion of the optical element is positioned on the through hole of the substrate. The guide holding member for holding the optical cable is mounted so as to face the optical element through the substrate while being mounted in a chip.

また、本発明にかかる光伝送モジュールは、上記発明において、前記凹部は、前記貫通孔の中心に対して対称な位置に2つ形成されることを特徴とする。   Moreover, the optical transmission module according to the present invention is characterized in that, in the above invention, the recess is formed in two symmetrical positions with respect to the center of the through hole.

また、本発明にかかる光伝送モジュールは、上記発明において、前記ガイド保持部材は、前記底面と対向する上面が光学研磨されるとともに、前記上面に凹部が形成されることを特徴とする。   The light transmission module according to the present invention is characterized in that, in the above invention, the guide holding member is optically polished on an upper surface facing the bottom surface and has a recess formed on the upper surface.

また、本発明にかかる光伝送モジュールは、上記発明において、前記上面に形成される凹部は前記貫通孔の中心に対して対称に2つ形成され、前記上面の2つの凹部は、前記ガイド保持部材の重心を中心として前記底面の凹部と対称に形成されることを特徴とする。   Further, in the optical transmission module according to the present invention, in the above invention, two concave portions formed on the upper surface are formed symmetrically with respect to a center of the through hole, and the two concave portions on the upper surface are formed by the guide holding member. It is characterized in that it is formed symmetrically with the concave portion of the bottom surface around the center of gravity.

本発明によれば、ガイド保持部材の基板への実装面である底面を光学研磨するとともに、該底面に視認可能な凹部を形成することにより、該凹部をアライメントマークとしてガイド保持部材を基板に正確に実装することができる。これにより、ガイド保持部材の貫通孔に挿通される光ケーブルの位置合わせも精度よく行うことができ、光素子と光ケーブル間で入出力される光量が安定した光伝送モジュールを得ることができる。
また、基板にガイド保持部材を実装する際、余分な接着剤がある場合凹部に入り込むため、接着剤の貫通孔へのはみ出しを防止することができる。
According to the present invention, the bottom surface, which is the mounting surface of the guide holding member on the substrate, is optically polished, and a concave portion that can be visually recognized is formed on the bottom surface. Can be implemented. Accordingly, the optical cable inserted through the through hole of the guide holding member can be accurately aligned, and an optical transmission module in which the amount of light input and output between the optical element and the optical cable is stable can be obtained.
In addition, when the guide holding member is mounted on the substrate, the adhesive enters into the recess when there is an excess adhesive, so that the adhesive can be prevented from protruding into the through hole.

図1は、本発明の実施の形態に係る光伝送モジュールの断面図である。FIG. 1 is a cross-sectional view of an optical transmission module according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るガイド保持部材の斜視図である。FIG. 2 is a perspective view of the guide holding member according to the embodiment of the present invention. 図3は、本発明の実施の形態に係るガイド保持部材の底面図である。FIG. 3 is a bottom view of the guide holding member according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る光伝送モジュールの側面図である。FIG. 4 is a side view of the optical transmission module according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る光伝送モジュールの製造工程のフローチャートである。FIG. 5 is a flowchart of the manufacturing process of the optical transmission module according to the embodiment of the present invention. 図6は、実施の形態の変形例1に係るガイド保持部材の斜視図である。FIG. 6 is a perspective view of a guide holding member according to Modification 1 of the embodiment. 図7は、実施の形態の変形例2に係るガイド保持部材の斜視図である。FIG. 7 is a perspective view of a guide holding member according to Modification 2 of the embodiment.

以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)を説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。また、図面は模式的なものであり、各部材の厚みと幅との関係、各部材の比率などは、現実と異なることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals. The drawings are schematic, and it is necessary to note that the relationship between the thickness and width of each member, the ratio of each member, and the like are different from the actual ones. Also in the drawings, there are included portions having different dimensional relationships and ratios.

図1は、本発明の実施の形態1に係る光伝送モジュールの断面図である。図2は、図1の光伝送モジュールで使用するガイド保持部材の斜視図である。図3は、本発明の実施の形態に係るガイド保持部材の底面図である。図4は、本発明の実施の形態に係る光伝送モジュールの側面図である。   FIG. 1 is a cross-sectional view of the optical transmission module according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of a guide holding member used in the optical transmission module of FIG. FIG. 3 is a bottom view of the guide holding member according to the embodiment of the present invention. FIG. 4 is a side view of the optical transmission module according to the embodiment of the present invention.

本発明の実施の形態に係る光伝送モジュール100は、光素子である面発光レーザ10と、面発光レーザ10を実装する基板20と、光信号を伝送する光ケーブル30と、光ケーブル30を保持するガイド保持部材40とを備える。本発明に係る光伝送モジュールは、光素子としてフォトダイオード等の受光素子と、面発光レーザ等の発光素子のいずれも採用することができるが、光素子が面発光レーザ10である場合について説明する。   An optical transmission module 100 according to an embodiment of the present invention includes a surface emitting laser 10 that is an optical element, a substrate 20 on which the surface emitting laser 10 is mounted, an optical cable 30 that transmits an optical signal, and a guide that holds the optical cable 30. Holding member 40. In the optical transmission module according to the present invention, any of a light receiving element such as a photodiode and a light emitting element such as a surface emitting laser can be adopted as an optical element. The case where the optical element is a surface emitting laser 10 will be described. .

基板20は、FPC基板やセラミック基板、ガラエポ基板、ガラス基板、Si基板等が使用され、面発光レーザ10の発光部11から射出される光を通過するスルーホール21を有する。本実施の形態において、スルーホール21の内径は、後述する光ケーブル30の外径と同径または僅かに大きく形成される。   The substrate 20 is an FPC substrate, ceramic substrate, glass epoxy substrate, glass substrate, Si substrate, or the like, and has a through hole 21 through which light emitted from the light emitting portion 11 of the surface emitting laser 10 passes. In the present embodiment, the inner diameter of the through hole 21 is the same as or slightly larger than the outer diameter of the optical cable 30 described later.

基板20には、接続電極22が形成され、接続電極22を介し面発光レーザ10に電気信号が送信される。面発光レーザ10は、発光部11が基板20と対向するように基板20に実装されるフリップチップタイプである。基板20への面発光レーザ10の実装は、例えば、面発光レーザ10にAuバンプ12を形成し、基板20の接続電極22上に超音波により接合するか、または、接合部に、アンダーフィル材やサイドフィル材等の接着剤13を注入し、接着剤13を硬化させて実装する。あるいは、Auバンプ12を使用せず、基板20にはんだペースト等を印刷し、面発光レーザ10を配置した後、リフロー等ではんだを溶融して実装してもよい。あるいは、面発光レーザ10にはんだバンプを形成し、基板20の接続電極22上に実装装置により配置し、はんだ溶融することで実装してもよい。   A connection electrode 22 is formed on the substrate 20, and an electrical signal is transmitted to the surface emitting laser 10 through the connection electrode 22. The surface emitting laser 10 is a flip chip type mounted on the substrate 20 so that the light emitting unit 11 faces the substrate 20. The surface-emitting laser 10 is mounted on the substrate 20 by, for example, forming Au bumps 12 on the surface-emitting laser 10 and bonding them on the connection electrodes 22 of the substrate 20 by ultrasonic waves, or underfill material at the bonding portion. Then, an adhesive 13 such as a side fill material is injected, and the adhesive 13 is cured and mounted. Alternatively, the solder bumps may be printed on the substrate 20 without using the Au bumps 12, and the surface emitting laser 10 may be disposed, and then solder may be melted and mounted by reflow or the like. Alternatively, solder bumps may be formed on the surface emitting laser 10, placed on the connection electrode 22 of the substrate 20 by a mounting device, and mounted by melting the solder.

基板20への面発光レーザ10の実装において、二視野光学系を用いて面発光レーザ10の発光部11の中心とスルーホール21の中心とを位置合わせし、発光部11の真下にスルーホール21が位置するように実装する。   In mounting the surface emitting laser 10 on the substrate 20, the center of the light emitting unit 11 of the surface emitting laser 10 and the center of the through hole 21 are aligned using a two-field optical system, and the through hole 21 is directly below the light emitting unit 11. Implement to be located.

ガイド保持部材40は、光ケーブル30を挿通する貫通孔41を有する。貫通孔41は、円柱状のほか、角柱状であってもよい。ガイド保持部材40はガラス等の紫外および可視光領域で透明な材質で形成される。図2に示すように、本実施の形態に係るガイド保持部材40は、直方体状をなし、貫通孔41は、上面51および底面50の中央部に、上面51および底面50に垂直に形成されている。貫通孔41の両端部には、テーパ45、テーパ46がそれぞれ形成されている。   The guide holding member 40 has a through hole 41 through which the optical cable 30 is inserted. The through hole 41 may have a prismatic shape in addition to a cylindrical shape. The guide holding member 40 is formed of a transparent material in the ultraviolet and visible light regions such as glass. As shown in FIG. 2, the guide holding member 40 according to the present embodiment has a rectangular parallelepiped shape, and the through hole 41 is formed at the center of the upper surface 51 and the bottom surface 50 and perpendicular to the upper surface 51 and the bottom surface 50. Yes. At both ends of the through hole 41, a taper 45 and a taper 46 are formed.

基板20上への接着剤43の供給量が所定量より多く供給されたり、ガイド保持部材40の基板20へのマウントの際に所定より大きな負荷がかかったような場合、接着剤43は、基板20のスルーホール21内部に溢れるおそれがあるが、テーパ46を形成することにより、接着剤43のスルーホール21へのはみ出しを抑制しうる。また、貫通孔41の光ケーブル30挿入側にテーパ45を形成することにより、光ケーブル30の貫通孔41への挿入を容易とするとともに、接着剤44をテーパ45内に供給して、光ケーブル30とガイド保持部材40とを接合するため、ガイド保持部材40と光ケーブル30との接合面積を大きくでき、接合強度を向上することができる。   When the supply amount of the adhesive 43 on the substrate 20 is supplied more than a predetermined amount, or when a load larger than a predetermined load is applied when the guide holding member 40 is mounted on the substrate 20, the adhesive 43 is However, by forming the taper 46, the adhesive 43 can be prevented from protruding into the through hole 21. Further, by forming the taper 45 on the insertion side of the optical cable 30 in the through hole 41, the insertion of the optical cable 30 into the through hole 41 is facilitated, and the adhesive 44 is supplied into the taper 45 so that the optical cable 30 and the guide are provided. Since the holding member 40 is bonded, the bonding area between the guide holding member 40 and the optical cable 30 can be increased, and the bonding strength can be improved.

基板20への実装面である底面、すなわち、図2に示す面50は、光学研磨されている。また、底面である面50には、凹部42aおよび凹部42bが形成されている。本実施の形態において、凹部42aおよび凹部42bは、アライメントマークの機能を有する。ガイド保持部材40は、二視野光学系を用いて面発光レーザ10の発光部11の中心と貫通孔41の中心とを位置合わせして実装されるが、凹部42aおよび凹部42bの位置から貫通孔41の中心を認識することにより、精度よくガイド保持部材40を基板20に実装することができる。   The bottom surface which is a mounting surface on the substrate 20, that is, the surface 50 shown in FIG. 2 is optically polished. Further, a recess 42a and a recess 42b are formed on the surface 50 which is the bottom surface. In the present embodiment, the recess 42a and the recess 42b have a function of an alignment mark. The guide holding member 40 is mounted by aligning the center of the light emitting portion 11 of the surface emitting laser 10 and the center of the through hole 41 using a two-field optical system, and the through hole is formed from the positions of the concave portion 42a and the concave portion 42b. By recognizing the center of 41, the guide holding member 40 can be mounted on the substrate 20 with high accuracy.

凹部42aおよび凹部42bは、半球の溝状をなすが、円錐状であってもよく、面50側から見た際、同一形状であればその形状を問うものではない。凹部42aおよび凹部42bは溝状であるため、基板20上に塗布した接着剤43の量が多い場合、凹部42aおよび凹部42b内に接着剤43を取り込むことができるため、接着剤43の貫通孔41へのはみ出しを防止することができる。   The concave portion 42a and the concave portion 42b have a hemispherical groove shape, but may have a conical shape, and the shape is not limited as long as the shape is the same when viewed from the surface 50 side. Since the concave portion 42a and the concave portion 42b are groove-shaped, when the amount of the adhesive 43 applied on the substrate 20 is large, the adhesive 43 can be taken into the concave portion 42a and the concave portion 42b. The protrusion to 41 can be prevented.

凹部42aおよび凹部42bは、図3に示すように、貫通孔41の中心Cに対して対称な位置に形成されることが好ましい。また、凹部42aおよび凹部42bは、できるだけ離れた位置に形成されることが好ましいため、対角線上の角近傍にそれぞれ形成される。   The recess 42a and the recess 42b are preferably formed at symmetrical positions with respect to the center C of the through hole 41 as shown in FIG. Moreover, since it is preferable to form the recessed part 42a and the recessed part 42b in the position as distant as possible, they are each formed in the corner vicinity on a diagonal.

ガイド保持部材40は、例えば、ウエハ(ガラス板)の状態で、光学研磨された面に貫通孔41、テーパ45および46、ならびに凹部42aおよび凹部42bを複数形成し、ダイシングすることで個片化すればよい。貫通孔41、テーパ45および46、ならびに凹部42aおよび凹部42bは、ドリル、エッチング等により形成するため、砂目状となる。したがって、面50に形成された凹部42aおよび凹部42bを光学系で撮像した際、光学研磨された面50と砂目状の凹部42aおよび凹部42bとはコントラスト差が大きくなり、画像認識しやすくなる。また、凹部42aおよび凹部42bは、ドリルまたはエッチング等により、貫通孔41等と同一の工程で形成することにより、貫通孔41との位置関係も精度よく加工できる。   For example, in the state of a wafer (glass plate), the guide holding member 40 is singulated by forming a plurality of through holes 41, tapers 45 and 46, and concave portions 42a and 42b on the optically polished surface and dicing. do it. The through hole 41, the tapers 45 and 46, and the recesses 42a and 42b are formed in a grain shape because they are formed by drilling, etching, or the like. Accordingly, when the concave portion 42a and the concave portion 42b formed on the surface 50 are imaged by the optical system, the contrast difference between the optically polished surface 50 and the grain-like concave portion 42a and the concave portion 42b becomes large, and image recognition becomes easy. . Further, the recess 42a and the recess 42b are formed in the same process as the through hole 41 by drilling or etching, so that the positional relationship with the through hole 41 can be processed with high accuracy.

ガイド保持部材40の側面、すなわち、貫通孔41に挿通された光ケーブル30の光軸と平行な面52、53、54、55のうち、少なくとも一面は光学研磨されていることが好ましい。2面を光学研磨面とする場合は、対向する面、例えば、面52と54を光学研磨面とし、面53と55を光学研磨しない砂目状の面とすることが好ましい。ガイド保持部材40の光軸と平行な面を光学研磨することにより、貫通孔41への光ケーブル30の挿入を光学面から観察可能となる。   It is preferable that at least one of the side surfaces of the guide holding member 40, that is, the surfaces 52, 53, 54, 55 parallel to the optical axis of the optical cable 30 inserted through the through hole 41 is optically polished. When the two surfaces are optically polished surfaces, the opposing surfaces, for example, the surfaces 52 and 54 are preferably optically polished surfaces, and the surfaces 53 and 55 are preferably grained surfaces that are not optically polished. By optically polishing a surface parallel to the optical axis of the guide holding member 40, insertion of the optical cable 30 into the through hole 41 can be observed from the optical surface.

ガイド保持部材40は、ウエハからダイシングにより個片化する際、ダイシングの速度を調整(遅く)することにより、光学研磨面を形成することができる。ウエハのX方向(横方向)のダイシングを通常の速度とし、Y方向(縦方向)を、光学研磨される遅い速度でダイシングすることにより、対向する2面が光学研磨面で、他の2面は砂目(磨りガラス状)のガイド保持部材40を得ることができる。   When the guide holding member 40 is separated from the wafer by dicing, the optical polishing surface can be formed by adjusting (slowing) the dicing speed. By dicing the wafer in the X direction (lateral direction) at a normal speed and dicing in the Y direction (longitudinal direction) at a slow speed that is optically polished, the two opposing surfaces are optically polished surfaces, and the other two surfaces Can obtain a grained (polished glass) guide holding member 40.

ガイド保持部材40は、例えば、基板20の実装面に接着剤43を塗布後、ガイド保持部材40を、二視野光学系を用いて面発光レーザ10の発光部11の中心と貫通孔41の中心とを位置合わせし、ボンダー等の装置により接着剤43上にマウントし、接着剤43を硬化させて実装すればよい。ガイド保持部材40は、基板20を介して面発光レーザ10と対向するように実装されている。   For example, the guide holding member 40 is formed by applying the adhesive 43 to the mounting surface of the substrate 20, and then using the two-field optical system to guide the guide holding member 40 to the center of the light emitting portion 11 and the center of the through hole 41 of the surface emitting laser 10. Are mounted on the adhesive 43 by a device such as a bonder, and the adhesive 43 is cured and mounted. The guide holding member 40 is mounted so as to face the surface emitting laser 10 through the substrate 20.

光ケーブル30は、面発光レーザ10からの光信号を伝播する光ファイバを、樹脂等のジャケットで被覆したものである。光ファイバは、光を伝送するコアと、コアの外周に設けられるクラッドとからなる。本実施の形態に係る光ケーブル30は、光ファイバの保護の観点から、ジャケットで被覆された状態でガイド保持部材40の貫通孔41に挿通されることが好ましいが、ジャケットを剥離した状態で貫通孔41に挿通してもよい。   The optical cable 30 is obtained by coating an optical fiber that propagates an optical signal from the surface emitting laser 10 with a jacket made of resin or the like. The optical fiber includes a core that transmits light and a clad provided on the outer periphery of the core. The optical cable 30 according to the present embodiment is preferably inserted through the through hole 41 of the guide holding member 40 in a state of being covered with a jacket from the viewpoint of protecting the optical fiber. 41 may be inserted.

つづいて、実施の形態1に係る光伝送モジュール100の製造方法について、図5を参照して説明する。図5は、本発明の実施の形態1に係る光伝送モジュールの製造工程のフローチャートである。   Next, a method for manufacturing the optical transmission module 100 according to Embodiment 1 will be described with reference to FIG. FIG. 5 is a flowchart of the manufacturing process of the optical transmission module according to Embodiment 1 of the present invention.

まず、面発光レーザ10を基板20に実装する(ステップS1)。実装は、面発光レーザ10の発光部11の直下に、基板20のスルーホール21が位置するように位置合わせした後、面発光レーザ10に形成されたAuバンプ12等と基板の接続電極22とを、接着剤13等により接続する。   First, the surface emitting laser 10 is mounted on the substrate 20 (step S1). Mounting is performed so that the through hole 21 of the substrate 20 is positioned immediately below the light emitting portion 11 of the surface emitting laser 10, and then the Au bumps 12 and the like formed on the surface emitting laser 10 and the connection electrodes 22 of the substrate are arranged. Are connected by an adhesive 13 or the like.

次に、ガイド保持部材40の凹部42aおよび凹部42bの位置により貫通孔41中心を認識する(ステップS2)。光学系により底面である面50上の凹部42aおよび凹部42bを画像確認し、凹部42aと凹部42bとの中間点を貫通孔41の中心として座標認識するとともに、ガイド保持部材40の傾き(θ)も確認する。   Next, the center of the through hole 41 is recognized based on the positions of the recess 42a and the recess 42b of the guide holding member 40 (step S2). The optical system confirms the image of the concave portion 42a and the concave portion 42b on the surface 50 which is the bottom surface, recognizes the coordinates with the intermediate point between the concave portion 42a and the concave portion 42b as the center of the through hole 41, and the inclination (θ) of the guide holding member 40. Also check.

続いて、基板20にガイド保持部材40を実装する(ステップS3)。基板20へのガイド保持部材40の実装は、ステップS2で認識した貫通孔41中心の座標、およびガイド保持部材40の傾きに基づき、ガイド保持部材40の傾きを調整するとともに、ガイド保持部材40の貫通孔41の中心が、面発光レーザ10の発光部11の中心に位置するよう、ボンダー等の装置により基板20上にマウントし、基板20に予め塗布された接着剤43を硬化させて実装すればよい。   Subsequently, the guide holding member 40 is mounted on the substrate 20 (step S3). The guide holding member 40 is mounted on the substrate 20 by adjusting the inclination of the guide holding member 40 based on the coordinates of the center of the through hole 41 recognized in step S2 and the inclination of the guide holding member 40. It mounts on the board | substrate 20 with apparatuses, such as a bonder, so that the center of the through-hole 41 may be located in the center of the light emission part 11 of the surface emitting laser 10, and the adhesive agent 43 previously apply | coated to the board | substrate 20 is hardened and mounted. That's fine.

基板20へのガイド保持部材40の実装後、貫通孔41内部に光ケーブル30を挿入し、位置合わせを行う(ステップS4)。貫通孔41に挿入された光ケーブル30を、ガイド保持部材40の光軸と平行な光学研磨面から観察し、光ケーブル30の端部を目標位置に位置合わせする。本実施の形態では、ガイド保持部材40の光軸と平行な光学研磨面から光ケーブル30の端部位置を確認できるので、位置決めが容易となる。   After the guide holding member 40 is mounted on the substrate 20, the optical cable 30 is inserted into the through hole 41, and alignment is performed (step S4). The optical cable 30 inserted into the through hole 41 is observed from an optical polishing surface parallel to the optical axis of the guide holding member 40, and the end of the optical cable 30 is aligned with the target position. In the present embodiment, since the end position of the optical cable 30 can be confirmed from the optical polishing surface parallel to the optical axis of the guide holding member 40, the positioning becomes easy.

本実施の形態では、ガイド保持部材40の基板20との実装面である底面(面50)に、凹部42aおよび凹部42bを形成しているが、ガイド保持部材40の光軸と平行な光学研磨面から、砂目状の凹部42aおよび凹部42bが観察できるため、凹部42aおよび凹部42bの頂部を光ケーブル30の端部の位置決め目標とすることができる。また、ガイド保持部材40の光軸と平行な光学研磨面から、凹部42aおよび凹部42bに入り込んだ接着剤43も観察できるため、凹部42aおよび凹部42bに入り込んだ接着剤43の量から、接着材43の過不足、すなわち、基板20とガイド保持部材40との接着強度等を判断することもできる。   In the present embodiment, the recess 42a and the recess 42b are formed on the bottom surface (surface 50) that is the mounting surface of the guide holding member 40 with the substrate 20, but optical polishing parallel to the optical axis of the guide holding member 40 is performed. Since the grain-like concave portions 42a and the concave portions 42b can be observed from the surface, the top portions of the concave portions 42a and the concave portions 42b can be set as positioning targets of the end portions of the optical cable 30. Further, since the adhesive 43 entering the recess 42a and the recess 42b can be observed from the optical polishing surface parallel to the optical axis of the guide holding member 40, the amount of the adhesive 43 entering the recess 42a and the recess 42b is determined from the amount of the adhesive 43. It is also possible to determine the excess or deficiency of 43, that is, the adhesive strength between the substrate 20 and the guide holding member 40.

なお、ガイド保持部材40の光軸と平行な光学研磨面からの光ケーブル30の端部の観察による光ケーブル30の光軸方向の位置合わせ後、光ケーブル30を固定してもよいが、光軸方向の位置合わせ後、光軸方向と垂直な面において光ケーブル30を位置合わせした後、光ケーブル30を固定することにより、さらに光量が安定した光伝送モジュールを得ることができる。光ケーブル30の光軸方向と垂直な面における位置合わせは、面発光レーザ10の発光部11から光を出射しながら、光ケーブル30に入力された光量を測定し、規定値以上の光量となるように光ケーブル30を位置合わせする。光ケーブル30に入力された光量の測定は、光ケーブル30の他端をフォトダイオード、パワーメータ、オシロスコープ等に接続することにより行えばよい。   The optical cable 30 may be fixed after the optical cable 30 is aligned in the optical axis direction by observing the end of the optical cable 30 from the optical polishing surface parallel to the optical axis of the guide holding member 40. After alignment, after aligning the optical cable 30 in a plane perpendicular to the optical axis direction, the optical cable 30 is fixed, whereby an optical transmission module with a more stable light quantity can be obtained. The alignment in the plane perpendicular to the optical axis direction of the optical cable 30 is such that the amount of light input to the optical cable 30 is measured while emitting light from the light emitting unit 11 of the surface emitting laser 10 so that the amount of light is equal to or greater than a specified value. The optical cable 30 is aligned. The amount of light input to the optical cable 30 may be measured by connecting the other end of the optical cable 30 to a photodiode, power meter, oscilloscope or the like.

あるいは、光軸と平行な面が光学研磨されないガイド保持部材を用いた場合には、貫通孔に挿入された光ケーブル30の光軸方向および光軸と垂直な面での位置合わせのいずれも、光ケーブル30に入力された光量を測定して、規定値以上の光量となるように位置合わせしてもよい。   Alternatively, when a guide holding member whose surface parallel to the optical axis is not optically polished is used, both the optical cable direction of the optical cable 30 inserted into the through hole and the alignment on the surface perpendicular to the optical axis are both optical cables. The amount of light input to 30 may be measured and aligned so that the amount of light exceeds a specified value.

光ケーブル30の位置決めの後、光ケーブル30を接着剤44で固定する(ステップS5)。光ケーブル30の固定は、テーパ45内に接着剤44を充填し、光学研磨面からUV光等を照射して、接着剤44を硬化すればよい。接着剤44の硬化により光ケーブル30は、光伝送モジュール100に接着固定される。光学研磨されない砂目状の面からUV光等を照射してもよいが、UV高の乱反射を防止して、接着剤を効率よく硬化させるためには、光学研磨面からUV光を照射することが好ましい。本実施の形態では、接着剤44をテーパ45内に供給して、光ケーブル30とガイド保持部材40とを接合するため、ガイド保持部材40と光ケーブル30との接合面積を大きくでき、接合強度を向上することができる。   After positioning of the optical cable 30, the optical cable 30 is fixed with the adhesive 44 (step S5). The optical cable 30 may be fixed by filling the taper 45 with the adhesive 44 and irradiating the optical polishing surface with UV light or the like to cure the adhesive 44. The optical cable 30 is bonded and fixed to the optical transmission module 100 by the curing of the adhesive 44. UV light may be irradiated from a grainy surface that is not optically polished, but UV light should be irradiated from the optically polished surface in order to prevent UV-high diffused reflection and cure the adhesive efficiently. Is preferred. In this embodiment, since the adhesive 44 is supplied into the taper 45 to join the optical cable 30 and the guide holding member 40, the joining area between the guide holding member 40 and the optical cable 30 can be increased, and the joining strength is improved. can do.

上記のようにして作成された光伝送モジュール100は、面発光レーザ10の発光部11から光を出射し、出射された光は、基板20に形成されたスルーホール21を介して光ケーブル30に入射する。光ケーブル30で伝播された光信号は、光ケーブル30の他端が接続されたフォトダイオードやトランスインピーダンスアンプ等を備えた光素子モジュールや、さらに外部の信号処理回路にて処理される。   The light transmission module 100 produced as described above emits light from the light emitting portion 11 of the surface emitting laser 10, and the emitted light enters the optical cable 30 through the through hole 21 formed in the substrate 20. To do. The optical signal propagated through the optical cable 30 is processed by an optical element module including a photodiode, a transimpedance amplifier, and the like to which the other end of the optical cable 30 is connected, and an external signal processing circuit.

本実施の形態に係る光伝送モジュール100は、基板20との実装面である底面(面50)に、アライメントマークとして機能する溝状の凹部42aおよび凹部42bを設けているため、ガイド保持部材40の貫通孔41中心を正確に認識でき、基板20へのガイド保持部材40の実装精度を向上することができる。また、基板20とガイド保持部材40とを固定する接着剤43の塗布量が多い場合でも、凹部42aおよび凹部42b内に接着材43を取り込めるため、接着剤43の貫通孔41へのはみ出しを防止することができる。   Since the optical transmission module 100 according to the present embodiment is provided with the groove-shaped recess 42a and the recess 42b that function as alignment marks on the bottom surface (surface 50) that is a mounting surface with the substrate 20, the guide holding member 40 is provided. The center of the through hole 41 can be accurately recognized, and the mounting accuracy of the guide holding member 40 on the substrate 20 can be improved. Further, even when the amount of the adhesive 43 that fixes the substrate 20 and the guide holding member 40 is large, the adhesive 43 can be taken into the recess 42a and the recess 42b, so that the adhesive 43 does not protrude into the through hole 41. can do.

また、本実施の形態において、ガイド保持部材40は、基板20への実装面である底面(面50)を光学研磨し、凹部42aおよび凹部42bを形成しているが、底面と対向する上面も光学研磨し、上面にも凹部を形成してもよい。図6は、実施の形態の変形例1に係るガイド保持部材の斜視図である。変形例1に係るガイド保持部材40Aにおいて、底面と対向する上面(面51)は光学研磨され、上面(面51)に凹部42cおよび凹部42dが形成されている。凹部42cおよび凹部42dは、貫通孔41の中心に対して対称な位置に形成されている。変形例1によれば、ガイド保持部材の上面または下面のいずれの面でも実装することができる。   In the present embodiment, the guide holding member 40 optically polishes the bottom surface (surface 50), which is the mounting surface on the substrate 20, to form the recesses 42a and the recesses 42b. A concave portion may be formed also on the upper surface by optical polishing. FIG. 6 is a perspective view of a guide holding member according to Modification 1 of the embodiment. In the guide holding member 40A according to the first modification, the upper surface (surface 51) facing the bottom surface is optically polished, and a recess 42c and a recess 42d are formed on the upper surface (surface 51). The recess 42 c and the recess 42 d are formed at positions symmetrical with respect to the center of the through hole 41. According to the modification 1, it can be mounted on either the upper surface or the lower surface of the guide holding member.

また、ガイド保持部材の上面に形成される2つの凹部は、ガイド保持部材の重心を中心として、底面の2つの凹部と対称になるように形成されることが好ましい。図7は、実施の形態の変形例2に係るガイド保持部材の斜視図である。変形例2に係るガイド保持部材40Bにおいて、ガイド保持部材40Bの上面(面51)に形成される2つの凹部42eおよび凹部42fは、ガイド保持部材40Bの重心を中心として底面(面50)の2つの凹部42aおよび凹部42bと対称、すなわち、ガイド保持部材40Bを180°回転した際、凹部42aおよび凹部42bの位置となるように形成される。変形例2によれば、ガイド保持部材の上面または下面のいずれの面でも実装できるとともに、実装面での凹部の位置がいずれの面でも同一となるため、光学系による観察の際、処理が容易となる。   Further, it is preferable that the two concave portions formed on the upper surface of the guide holding member are formed so as to be symmetrical with the two concave portions on the bottom surface with the center of gravity of the guide holding member as the center. FIG. 7 is a perspective view of a guide holding member according to Modification 2 of the embodiment. In the guide holding member 40B according to the modified example 2, the two concave portions 42e and the concave portions 42f formed on the upper surface (surface 51) of the guide holding member 40B are 2 on the bottom surface (surface 50) with the center of gravity of the guide holding member 40B as the center. It is symmetrical with the two concave portions 42a and the concave portions 42b, that is, formed so as to be positioned at the concave portions 42a and the concave portions 42b when the guide holding member 40B is rotated 180 °. According to the second modification, the mounting can be performed on either the upper surface or the lower surface of the guide holding member, and the position of the concave portion on the mounting surface is the same on any surface, so that processing is easy when observing with the optical system. It becomes.

10 面発光レーザ
11 発光部
12 Auバンプ
13、43、44 接着剤
20 基板
21 スルーホール
22 接続電極
30 光ケーブル
40、40A、40B ガイド保持部材
41 貫通孔
42a、42b、42c、42d、42e、42f 凹部
45、46 テーパ
50、51、52、53、54、55 面
100 光伝送モジュール
DESCRIPTION OF SYMBOLS 10 Surface emitting laser 11 Light emission part 12 Au bump 13, 43, 44 Adhesive 20 Board | substrate 21 Through hole 22 Connection electrode 30 Optical cable 40, 40A, 40B Guide holding member 41 Through-hole 42a, 42b, 42c, 42d, 42e, 42f Recessed part 45, 46 Taper 50, 51, 52, 53, 54, 55 Surface 100 Optical transmission module

Claims (4)

光信号を入力する受光部または光信号を出力する発光部を有する光素子と、
前記光素子に入力または前記光素子が出力する前記光信号を通過させるスルーホールを備える基板と、
前記光信号を伝播する光ケーブルと、
前記光ケーブル挿入用の貫通孔を有し、前記基板への実装面である底面が光学研磨されるとともに、前記底面に凹部が形成されたガイド保持部材と、を備え、
前記光素子の前記受光部または前記発光部が、前記基板のスルーホール上に位置するようにフリップチップ実装されるとともに、前記光ケーブルを保持する前記ガイド保持部材は、前記基板を介して前記光素子と対向するように実装されることを特徴とする光伝送モジュール。
An optical element having a light receiving portion for inputting an optical signal or a light emitting portion for outputting an optical signal;
A substrate comprising a through hole that allows the optical signal that is input to or output from the optical element to pass therethrough;
An optical cable for propagating the optical signal;
A guide holding member having a through hole for inserting the optical cable, a bottom surface which is a mounting surface on the substrate is optically polished, and a recess is formed on the bottom surface,
The light receiving part or the light emitting part of the optical element is flip-chip mounted so as to be positioned on the through hole of the substrate, and the guide holding member that holds the optical cable is interposed between the optical element and the optical element. An optical transmission module, which is mounted so as to be opposed to the optical transmission module.
前記凹部は、前記貫通孔の中心に対して対称な位置に2つ形成されることを特徴とする請求項1に記載の光伝送モジュール。   2. The optical transmission module according to claim 1, wherein two of the recesses are formed at symmetrical positions with respect to the center of the through hole. 前記ガイド保持部材は、前記底面と対向する上面が光学研磨されるとともに、前記上面に凹部が形成されることを特徴とする請求項1または2に記載の光伝送モジュール。   3. The optical transmission module according to claim 1, wherein the guide holding member has an upper surface facing the bottom surface that is optically polished and a recess is formed on the upper surface. 4. 前記上面に形成される凹部は前記貫通孔の中心に対して対称な位置に2つ形成され、前記上面の2つの凹部は、前記ガイド保持部材の重心を中心として前記底面の2つの凹部と対称に形成されることを特徴とする請求項2に記載の光伝送モジュール。   Two recesses formed on the upper surface are formed at symmetrical positions with respect to the center of the through hole, and the two recesses on the upper surface are symmetrical with the two recesses on the bottom surface around the center of gravity of the guide holding member. The optical transmission module according to claim 2, wherein the optical transmission module is formed as follows.
JP2014120674A 2014-06-11 2014-06-11 Optical transmission module Active JP6382585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014120674A JP6382585B2 (en) 2014-06-11 2014-06-11 Optical transmission module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014120674A JP6382585B2 (en) 2014-06-11 2014-06-11 Optical transmission module

Publications (2)

Publication Number Publication Date
JP2016001237A true JP2016001237A (en) 2016-01-07
JP6382585B2 JP6382585B2 (en) 2018-08-29

Family

ID=55076860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014120674A Active JP6382585B2 (en) 2014-06-11 2014-06-11 Optical transmission module

Country Status (1)

Country Link
JP (1) JP6382585B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200552B1 (en) * 2016-06-07 2017-09-20 株式会社フジクラ Cable with connector
WO2019224942A1 (en) * 2018-05-23 2019-11-28 オリンパス株式会社 Endoscope optical module, endoscope, and endoscope optical module manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239511A (en) * 1988-03-22 1989-09-25 Sumitomo Electric Ind Ltd Semiconductor light emitting element for optical coupling component
US20020054737A1 (en) * 1998-06-08 2002-05-09 Jian Benjamin B. Multilayer optical fiber coupler
JP2004037776A (en) * 2002-07-02 2004-02-05 Omron Corp Optical waveguide and optical waveguide device
WO2005057262A1 (en) * 2003-12-15 2005-06-23 Nec Corporation Optical module and production method therefor
JP2009047937A (en) * 2007-08-20 2009-03-05 Sony Corp Optical transmission/optical reception module, method of manufacturing optical module and optical communication module
JP2010175592A (en) * 2009-01-27 2010-08-12 Alps Electric Co Ltd Optical element
JP2013025092A (en) * 2011-07-21 2013-02-04 Olympus Corp Optical element module, optical transmission module, and method of manufacturing optical transmission module
JP2014010329A (en) * 2012-06-29 2014-01-20 Olympus Corp Optical fiber cable connection structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239511A (en) * 1988-03-22 1989-09-25 Sumitomo Electric Ind Ltd Semiconductor light emitting element for optical coupling component
US20020054737A1 (en) * 1998-06-08 2002-05-09 Jian Benjamin B. Multilayer optical fiber coupler
JP2004037776A (en) * 2002-07-02 2004-02-05 Omron Corp Optical waveguide and optical waveguide device
WO2005057262A1 (en) * 2003-12-15 2005-06-23 Nec Corporation Optical module and production method therefor
JP2009047937A (en) * 2007-08-20 2009-03-05 Sony Corp Optical transmission/optical reception module, method of manufacturing optical module and optical communication module
JP2010175592A (en) * 2009-01-27 2010-08-12 Alps Electric Co Ltd Optical element
JP2013025092A (en) * 2011-07-21 2013-02-04 Olympus Corp Optical element module, optical transmission module, and method of manufacturing optical transmission module
JP2014010329A (en) * 2012-06-29 2014-01-20 Olympus Corp Optical fiber cable connection structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200552B1 (en) * 2016-06-07 2017-09-20 株式会社フジクラ Cable with connector
WO2017212661A1 (en) * 2016-06-07 2017-12-14 株式会社フジクラ Photoelectric conversion unit, cable provided with photoelectric conversion unit, and cable provided with connector
JP2017220541A (en) * 2016-06-07 2017-12-14 株式会社フジクラ Cable with connector
WO2019224942A1 (en) * 2018-05-23 2019-11-28 オリンパス株式会社 Endoscope optical module, endoscope, and endoscope optical module manufacturing method

Also Published As

Publication number Publication date
JP6382585B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
US9385249B2 (en) Optical element module, optical transmission module, and method of manufacturing optical transmission module
US9207412B2 (en) Optical transmission module and endoscope
US9762329B2 (en) Optical transmission module and imaging device
JP6321933B2 (en) Optical transmission module and endoscope
US9435925B2 (en) Optical fiber cable connecting structure
KR100975051B1 (en) Apparatus and method for optical connection
US20190384013A1 (en) Optical module, endoscope and manufacturing method of optical module
US10088669B2 (en) Endoscope
US20180055342A1 (en) Endoscope and optical transmission module
US20180078114A1 (en) Endoscope and optical transmission module
JP2009047937A (en) Optical transmission/optical reception module, method of manufacturing optical module and optical communication module
WO2016117121A1 (en) Optical transmission module and endoscope
WO2016203797A1 (en) Imaging module, endoscope system, and method for manufacturing imaging module
US9874706B2 (en) Optical transmission module and method for manufacturing optical transmission module
JP6382585B2 (en) Optical transmission module
US10470642B2 (en) Optical transmitter and endoscope
US20180368662A1 (en) Optical transmission module and endoscope
US9588310B2 (en) Method and apparatus for aligning of opto-electronic components
US20180220051A1 (en) Endoscope, image pickup module, and manufacturing method of image pickup module
JP6382586B2 (en) Optical transmission module and method for manufacturing optical transmission module
US10838194B2 (en) Optical transmission module and endoscope
JP6081160B2 (en) Optical element module, optical transmission module, and optical transmission module manufacturing method
US20200049908A1 (en) Optical module and endoscope
WO2019224942A1 (en) Endoscope optical module, endoscope, and endoscope optical module manufacturing method
US20210356730A1 (en) Optical transducer for endoscope, endoscope, and manufacturing method for optical transducer for endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R151 Written notification of patent or utility model registration

Ref document number: 6382585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250