JP2016068543A - Base material-silica sol dried product complex having positive hole and method of producing the same - Google Patents
Base material-silica sol dried product complex having positive hole and method of producing the same Download PDFInfo
- Publication number
- JP2016068543A JP2016068543A JP2014209438A JP2014209438A JP2016068543A JP 2016068543 A JP2016068543 A JP 2016068543A JP 2014209438 A JP2014209438 A JP 2014209438A JP 2014209438 A JP2014209438 A JP 2014209438A JP 2016068543 A JP2016068543 A JP 2016068543A
- Authority
- JP
- Japan
- Prior art keywords
- silica sol
- substrate
- base material
- dried
- dried product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title description 7
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000002131 composite material Substances 0.000 claims abstract description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 27
- 239000002245 particle Substances 0.000 claims abstract description 18
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 17
- 239000012298 atmosphere Substances 0.000 claims abstract description 13
- 239000000835 fiber Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 239000003610 charcoal Substances 0.000 claims abstract description 8
- 239000002759 woven fabric Substances 0.000 claims abstract description 8
- 239000004033 plastic Substances 0.000 claims abstract description 7
- 229920003023 plastic Polymers 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims abstract description 4
- 235000017491 Bambusa tulda Nutrition 0.000 claims abstract description 4
- 241001330002 Bambuseae Species 0.000 claims abstract description 4
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims abstract description 4
- 239000011425 bamboo Substances 0.000 claims abstract description 4
- 239000000123 paper Substances 0.000 claims abstract description 4
- 238000001035 drying Methods 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 29
- 241000700605 Viruses Species 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 13
- -1 refractory Substances 0.000 claims description 9
- 230000000415 inactivating effect Effects 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000002023 wood Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 2
- 230000000840 anti-viral effect Effects 0.000 abstract description 24
- VCUVETGKTILCLC-UHFFFAOYSA-N 5,5-dimethyl-1-pyrroline N-oxide Chemical compound CC1(C)CCC=[N+]1[O-] VCUVETGKTILCLC-UHFFFAOYSA-N 0.000 abstract description 14
- 238000004435 EPR spectroscopy Methods 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 10
- 239000011521 glass Substances 0.000 abstract description 8
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 abstract description 3
- 150000002739 metals Chemical class 0.000 abstract description 3
- 239000011819 refractory material Substances 0.000 abstract description 2
- 239000011538 cleaning material Substances 0.000 abstract 1
- 230000002070 germicidal effect Effects 0.000 abstract 1
- 230000000474 nursing effect Effects 0.000 abstract 1
- 238000005192 partition Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 25
- 239000002585 base Substances 0.000 description 23
- 229920000742 Cotton Polymers 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 241000712461 unidentified influenza virus Species 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000004480 active ingredient Substances 0.000 description 6
- 239000003443 antiviral agent Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229960000907 methylthioninium chloride Drugs 0.000 description 4
- 239000011941 photocatalyst Substances 0.000 description 4
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000003899 bactericide agent Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000008055 phosphate buffer solution Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000008213 purified water Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910018137 Al-Zn Inorganic materials 0.000 description 2
- 229910018573 Al—Zn Inorganic materials 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 208000008842 sick building syndrome Diseases 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Polymers CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 241000710842 Japanese encephalitis virus Species 0.000 description 1
- 241000712079 Measles morbillivirus Species 0.000 description 1
- 229920002413 Polyhexanide Polymers 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229960000878 docusate sodium Drugs 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000001362 electron spin resonance spectrum Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 201000002498 viral encephalitis Diseases 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Laminated Bodies (AREA)
- Silicon Compounds (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Treating Waste Gases (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、正孔を保有しウイルス不活化作用を有する基材−シリカゾル乾燥物複合体及びその製造方法に関する。また、本発明は上記基材−シリカゾル乾燥物複合体を利用した製品、特にマスク又はエアフィルタに関する。 The present invention relates to a substrate-silica sol dried composite having holes and having a virus inactivating action, and a method for producing the same. The present invention also relates to a product using the substrate-silica sol dried product composite, particularly a mask or an air filter.
生活空間である大気及び水中に存在するウイルス類、あるいは大腸菌などの病原菌や揮発性有害有機物を、副作用を伴うことなく、短時間で浄化する技術として光触媒が知られている。 A photocatalyst is known as a technique for purifying viruses present in the air and water as living spaces, pathogenic bacteria such as Escherichia coli and volatile harmful organic substances in a short time without causing side effects.
このような作用は、光触媒が紫外線照射を受けることにより、活性酸素種を発生させてウイルス類を不活化、滅菌、分解することにあるといわれている。活性酸素とはスーパーオキサイドアニオン、過酸化水素水、ヒドロキシラジカルおよび一重項酸素を指すが、中でも,半導体が紫外線などの光照射を受けて価電子帯の電子が励起され導電帯に移動したあとに生成する正孔(h+)が水の水素原子から電子を奪って生成するヒドロキシラジカル(OH・)が、さまざまな物質を酸化させて分解・滅菌することから特に高い評価を得ている。It is said that such an action is to inactivate, sterilize and decompose viruses by generating reactive oxygen species when the photocatalyst is irradiated with ultraviolet rays. Active oxygen refers to superoxide anion, hydrogen peroxide solution, hydroxy radical, and singlet oxygen. Among them, after a semiconductor is irradiated with light such as ultraviolet rays, electrons in the valence band are excited and moved to the conduction band. Hydroxyl radicals (OH.) Generated by the generated holes (h + ) taking electrons from the hydrogen atoms of water are highly evaluated because they oxidize and decompose and sterilize various substances.
しかしながら、ヒドロキシラジカルを生成させる正孔を太陽光が当たらない室内で光触媒から正孔を生成させるには光触媒に紫外線を照射する必要があり、例えば、衛生マスクなど光が届かない環境では、触媒機能が発揮されないという問題がある。また、太陽光の紫外線の代わりに照明用の可視光で動作する触媒の場合には、発生した正孔が励起されて移動した電子と再結合して失われることが多く、その防止には白金などの貴金属の配合が必要なためコストが高くなるという問題もある。これらの事情から無光下で正孔を保有し機能する触媒を坦持した材料が求められている。 However, it is necessary to irradiate the photocatalyst with ultraviolet rays in order to generate holes from the photocatalyst in a room where sunlight does not strike the holes that generate hydroxy radicals. For example, in an environment where light does not reach such as a sanitary mask, the catalytic function There is a problem that cannot be demonstrated. In addition, in the case of a catalyst that operates with visible light for illumination instead of the ultraviolet rays of sunlight, the generated holes are often lost by recombining with the electrons that have been excited and moved. There is also a problem that the cost is increased because it is necessary to blend a precious metal such as. Under these circumstances, a material carrying a catalyst that retains holes and functions in the absence of light is required.
このような無光下で正孔を保有する触媒体として、特許文献1には、不定比酸化物および/または不定比窒化物がp型半導体を構成する遷移金属または該合金の金属欠乏型不定比酸化物または金属欠乏型不定比窒化物を金属、セラミックス、プラスチックおよび繊維質から構成されるいずれかの構造体の表面に担持した構造体が水分子との共存環境下で発生するヒドロキシラジカルの酸化機能により、有機物および無機物を分解する触媒が提案されている。 As such a catalyst body that retains holes in the absence of light,
また、特許文献2には、チタンなどの遷移金属のカルボン酸塩及び遷移金属酸化物のカルボン酸塩群から選んだ1種又は2種以上及びシリカゾルを有効成分とする水溶液を塗布・乾燥させた基材が光の照射を受けない状態で正孔を保有することが示されている。その証拠として表面にラジカルトラップ剤DMPO(5,5−ジメチルー1−ピロリンーN−オキシド)水溶液を滴下した液の電子スピン共鳴試験のESR分光スペクトルにはヒドロキシラジカルが存在したと認定されるDMPO−OH・の4本のピークが検出されたことから正孔を保有することが記載されている。 In
特許文献3には、マスク本体の呼吸通過箇所に、ヒドロキシラジカルを発生する微粒子状の抗ウイルス剤が付着した繊維基材と活性炭シートとが積層されていることを特徴とする衛生マスクが開示されている。また、特許文献4には、一価銅化合物を有効成分として含むウイルス不活化剤が、明所のほか暗所においてもウイルス不活化機能を発揮することが記載されている。 Patent Document 3 discloses a sanitary mask characterized in that a fiber base material and an activated carbon sheet on which fine particle antiviral agents that generate hydroxy radicals are laminated are laminated at a respiratory passage location of the mask body. ing.
さらに、特許文献5には、フェイスマスクであって、殺菌剤を有する最外層を含む複数の層を含み、殺菌剤含有層は、付加固体百分率で、ポリヘキサメチレンビグアニドを0.01から20重量パーセント、クエン酸を0.01から10重量パーセント、及びN−アルキルポリグリコシド(N−alkyl polyglycoside)を0.01から10重量パーセント有することを特徴とするフェイスマスクが開示されている。 Further, Patent Document 5 includes a face mask, which includes a plurality of layers including an outermost layer having a bactericidal agent, and the bactericidal agent-containing layer has a polyhexamethylene biguanide content of 0.01 to 20 wt. A face mask is disclosed having a percent, 0.01 to 10 percent by weight citric acid, and 0.01 to 10 percent by weight N-alkyl polyglycoside.
特許文献6にはマスクやエアフィルタの交換時に捕捉されていたウイルスなどが飛散するため安全性を確保するためにマスクやエアフィルタの濾材としてオレイン酸アルカリ金属塩及びジオクチルスルホコハク酸アルカリ金属塩から選ばれた陰イオン表面活性剤を有効成分とする抗ウイルス剤を担持させたシートが提案されている。 Patent Document 6 selects from alkali metal oleate and alkali metal dioctylsulfosuccinate as a filter medium for the mask and air filter in order to ensure safety because viruses captured when the mask and air filter are replaced are scattered. There has been proposed a sheet carrying an antiviral agent containing the anionic surfactant as an active ingredient.
一方、特許文献7には、有機溶媒分散シリカゾルをポリエステルやアクリル樹脂、ポリカーボネート等の合成樹脂に配合して使用する場合、コロイダルシリカ粒子表面の固体酸性の作用を呈することが指摘されている(明細書段落0003)。 On the other hand, in Patent Document 7, it is pointed out that when an organic solvent-dispersed silica sol is used by blending with a synthetic resin such as polyester, acrylic resin, or polycarbonate, it exhibits a solid acidic action on the surface of colloidal silica particles (specification). Calligraphy paragraph 0003).
しかしながら、特許文献1に開示された触媒体は、その実施例によれば、密閉容器内に対象となる金属Tiの粉末を挿入し昇温、還元雰囲気下で表面を活性状態としたのち、目標とする温度までサンプルを加熱し、所定分圧の酸素を導入し、時間経過とともにサンプルの酸化により酸素分圧が低下するので所定分圧に調整保持し、酸素分圧の低下が認められなくなった時点で処理を終了後はサンプルを可能な限り急冷し、得られた粉体を秒速100m以上の流速を有する空気または窒素ガスを主体とするキャリアーガスにより金属、合金、セラミックス、プラスチックの表面に衝突させることによりこれら構造体の表層に前記の金属欠乏型不定比酸化物粉体を固定する、というものであり製造コストが非常に高いという問題があった。 However, according to the embodiment, the catalyst body disclosed in
一方、特許文献2に開示された基材−触媒被膜は、その製造に当たり、その主成分として遷移金属のカルボン酸塩又は遷移金属酸化物のカルボン酸塩を用いるものであるが、これら原料薬剤の製造工程が複雑で手数が掛かりその製造コストが非常に高いためにこの正孔触媒の製造コストも高くなる、という問題点がある On the other hand, the base material-catalyst film disclosed in
特許文献3には、マスク本体の呼吸通過箇所に、ヒドロキシラジカルを発生する微粒子状の抗ウイルス剤が付着した繊維基材と活性炭シートとが積層されているマスクが開示されているが、ここに開示されている抗ウイルス剤は、例えば、ドロマイト等を焼成し粉砕し、それを中和した後、粉砕して微粒子としたものであって、繊維基材にたとえば接着剤成分によって付着せしめられるものである。そのため、有効成分である微粒子が接着剤により覆われて効果が減殺されるおそれがあるほか、製造コストが嵩むおそれがある。 Patent Document 3 discloses a mask in which a fiber base material and an activated carbon sheet on which a fine particle antiviral agent that generates hydroxy radicals adheres to a respiratory passage portion of the mask body are laminated. The disclosed antiviral agent is, for example, baked and pulverized dolomite, etc., neutralized, and then pulverized into fine particles, which can be adhered to the fiber substrate by, for example, an adhesive component It is. For this reason, the fine particles as the active ingredient may be covered with an adhesive to reduce the effect, and the production cost may increase.
特許文献4に提案されている手段は、有効成分である酸化第一銅の大気中の限界濃度が1mg/m3と毒性の強い物質であって、その取り扱いに強い注意を要するうえ、第一酸化銅自体には基材に対する付着力がないので、基材に固着するにはバインダーを必要とするという問題がある。また、特許文献5に開示されたフェイスマスクは、その殺菌作用を呈する殺菌剤が、主として化学薬剤であり、効果の発現には30分程度を要するためにウイルスがマスクを通過中に不活化が期待できないという問題がある。The means proposed in
また特許文献6に提案された抗ウイルス剤の人体に対する安全性が不明であるという問題がある。このほかにも抗ウイルス剤は多数提案されているが抗ウイルス性が認められるものはそれなりに人体に対しても毒性もあることが多くマスクに実用化されたものはないのが実情である。 In addition, there is a problem that the safety of the antiviral agent proposed in Patent Document 6 is unknown. In addition to this, many antiviral agents have been proposed, but those that have antiviral properties are also toxic to the human body as they are, and the fact is that no masks have been put to practical use.
特許文献7の記載はコロイダルシリカ粒子表面の固体酸性触媒の作用について示唆するものであるが、生活空間の浄化作用に結びつくものではない。 The description of Patent Document 7 suggests the action of the solid acidic catalyst on the surface of the colloidal silica particles, but does not lead to the purification action of the living space.
本発明は、上記先行技術文献に記載の問題点を解決するものであって、その製造コストが極めて低く、かつ空間に使用したとき、迅速に抗ウイルス作用等を呈しながら、人体に無害である基材−シリカゾル乾燥物複合体、その製造方法及びそれを利用する製品、特にマスク及び空気処理装置を提案することを目的とする。 The present invention solves the problems described in the above-mentioned prior art documents, and its production cost is extremely low, and when used in a space, it exhibits an antiviral action and the like, and is harmless to the human body. It is an object of the present invention to propose a substrate-silica sol dried composite, a production method thereof, and a product using the same, particularly a mask and an air treatment apparatus.
本発明者は、前記特許文献2に開示した手段についてさらに正孔の存在を電子スピン共鳴による立証や抗ウイルス性を含む詳細な研究を続けてきた。その結果、シリカゾルを基材に塗布して0℃から400℃、好ましくは、2℃から120℃の雰囲気温度で乾燥させた基材−シリカゾル乾燥物複合体が無光下で正孔を保有し、水分と接触するとヒドロキシラジカルを発生することを知見し、本発明を完成したものである。 The present inventor has further conducted detailed studies on the means disclosed in
本発明に係る基材−シリカゾル乾燥物複合体は、基材と、該基材上にシリカゾルを塗布後、乾燥してなり正孔を有することにより特徴づけられる。 The substrate-silica sol dried product composite according to the present invention is characterized by having a hole formed by drying after applying a silica sol on the substrate and the substrate.
上記発明において、原料であるシリカゾルは、それを構成するシリカ粒子の粒度が4nm〜0.7μm、特に、8〜20nmの範囲にあることが望ましい。 In the above invention, the silica sol as the raw material desirably has a silica particle size of 4 nm to 0.7 μm, particularly 8 to 20 nm.
上記各発明において、基材へのシリカゾルの塗布後の乾燥雰囲気温度は、0〜150℃、特に、2〜50℃の範囲とするのが好ましい。 In each of the above inventions, the drying atmosphere temperature after application of the silica sol to the substrate is preferably 0 to 150 ° C, particularly 2 to 50 ° C.
上記各発明において、基材を繊維、織布、不織布、紙、耐火物、金属、木材、プラスチック、ガラス木炭、竹炭のいずれか又はこれらの複合物とすることができる。 In each of the above inventions, the substrate can be any one of fiber, woven fabric, nonwoven fabric, paper, refractory, metal, wood, plastic, glass charcoal, bamboo charcoal, or a composite thereof.
前記基材として繊維、織布又は不織布を選択する場合には、これら基材に対するシリカの付着量を、乾燥状態において、前記基材の単位表面積当たりの質量(g・m2)当たり0.1〜2.1gの範囲とすることが望ましい。また、上記場合においては、シリカゾルの塗布後の乾燥雰囲気温度を2〜50℃でとすることが望ましい。When selecting a fiber, a woven fabric, or a nonwoven fabric as the substrate, the amount of silica attached to the substrate is 0.1 per mass (g · m 2 ) per unit surface area of the substrate in a dry state. It is desirable to be in the range of ~ 2.1 g. In the above case, it is desirable that the drying atmosphere temperature after application of the silica sol is 2 to 50 ° C.
前記各発明は、水と接触した際にヒドロキシラジカルを発生すること、さらに、無光下においてウイルス不活化作用を呈することにより特徴づけられる。 Each of the above inventions is characterized by generating hydroxy radicals when contacted with water, and further exhibiting a virus inactivating action in the absence of light.
前記各発明は、水と接触した際にヒドロキシラジカルを発生すること、さらに、無光下においてウイルス不活化作用を呈することにより特徴づけられる。 Each of the above inventions is characterized by generating hydroxy radicals when contacted with water, and further exhibiting a virus inactivating action in the absence of light.
上記基材−シリカゾル乾燥物複合体は、質量比で、1%以上40%以下のシリカを含有する処理液を、乾燥状態で、前記基材の単位表面積当たりの質量当たりの質量(g/m2)当たり0.1〜2.1gとなるように塗布した後、0〜150℃の雰囲気温度で乾燥させることにより製造することができる。
上記基材−シリカゾル乾燥物複合体は、質量比で、1%以上40%以下のシリカを含有する処理液を、乾燥状態で、前記基材の単位表面積当たりの質量当たりの質量(g/m2)当たり0.1〜2.1gとなるように塗布した後、0〜150℃の雰囲気温度で乾燥させることにより製造することができる。The base material-silica sol dried product composite is a mass per unit mass (g / m) per unit surface area of the base material in a dry state of a treatment liquid containing 1% to 40% silica. 2 ) It can be manufactured by coating at 0.1 to 2.1 g per unit, and then drying at an atmospheric temperature of 0 to 150 ° C.
The base material-silica sol dried product composite is a mass per unit mass (g / m) per unit surface area of the base material in a dry state of a treatment liquid containing 1% to 40% silica. 2 ) It can be manufactured by coating at 0.1 to 2.1 g per unit, and then drying at an atmospheric temperature of 0 to 150 ° C.
前記基材−シリカゾル乾燥物複合体は、マスクに適用するのが好適である。この場合において、第一に、マスクを、それを構成する部材のうち、少なくとも呼気透過部分に対し、前記発明のいずれかに記載の基材−シリカゾル乾燥物複合体を有してなるものとすることができるほか、特にマスクをガーゼマスクとし、その呼気透過部分に対し、基材がコットン系の不織布であり、かつ乾燥雰囲気温を0〜150℃として製造した基材−シリカゾル乾燥物複合体を装着してなるものとすることができる。 The substrate-silica sol dried product composite is preferably applied to a mask. In this case, first, the mask has the base-silica sol dry matter composite according to any one of the inventions described above at least for the breath permeable portion of the members constituting the mask. In addition, a base material-silica sol dried composite produced by using a gauze mask as a mask, the base material being a cotton-based non-woven fabric, and a dry atmosphere temperature of 0 to 150 ° C. with respect to the breath transmitting portion. It can be attached.
前記基材−シリカゾル乾燥物複合体を、基材を繊維、織布又は不織布とし、空気処理装置を構成する部材のうち、少なくとも排気側又は吸気側の一方又は双方に組み込んで空気処理装置を構成することができる。 The base material-silica sol dried product composite is made of fiber, woven fabric or non-woven fabric as a base material, and is incorporated into at least one of or both the exhaust side and the intake side of the members constituting the air processing device to constitute the air processing device. can do.
本発明により、無光下での迅速な抗ウイルス作用や殺菌作用などを呈する基材−シリカゾル乾燥物複合体を、その製造コストを極めて低く提供することが可能になる。また、本発明に係る基材−シリカゾル乾燥物複合体をフェイスマスクやエアフィルタの濾材等の無光下で迅速なウイルス不活化等の機能を求められる部材に適用することにより、生活空間において効果的にウイルス不活化や病原菌を殺菌、さらには、シックハウス症候群をもたらすVOCの除去などが可能になるなど、市民の健康維持に寄与することも可能になる。 According to the present invention, it is possible to provide a substrate-silica sol dried product composite that exhibits rapid antiviral action and bactericidal action in the absence of light, at an extremely low manufacturing cost. In addition, by applying the substrate-silica sol dried product complex according to the present invention to a member that is required to have a function such as rapid virus inactivation under no light, such as a filter material of a face mask or an air filter, it is effective in living space Thus, it is possible to contribute to the maintenance of citizens' health, such as virus inactivation, sterilization of pathogenic bacteria, and removal of VOC that causes sick house syndrome.
本発明に係る基材−シリカゾル乾燥物複合体は、基本的には、基材と、該基材上にシリカゾル塗布後、乾燥して得られる正孔を保有する基材−シリカゾル乾燥物複合体シリカゾル乾燥物として特徴づけられる。 The substrate-silica sol dried composite according to the present invention is basically a substrate-silica sol dried composite containing holes obtained by drying after applying the silica sol on the substrate. Characterized as a dried silica sol.
ここに、基材−シリカゾル乾燥物複合体に適用する場合の基材としては、特に制限を設ける必要がなく、例えば、比較的低温で分解する天然繊維や合成繊維も使用可能である。基材の形状にも特に制限はなく、繊維状のもののほか、板状あるいは粒状のものも使用可能である。具体的には、天然又は合成の繊維、それらの織布、不織布、紙、耐火物、板状又は繊維状の金属、木材、プラスチック、ガラス、木炭、竹炭やこれらの複合物を使用することができる。 Here, as a base material in the case of applying to the base material-silica sol dried product composite, there is no particular limitation, and for example, natural fibers and synthetic fibers that decompose at a relatively low temperature can be used. There is no restriction | limiting in particular also in the shape of a base material, A plate-like or granular thing can be used besides a fibrous thing. Specifically, natural or synthetic fibers, woven fabrics, non-woven fabrics, paper, refractories, plate-like or fibrous metals, wood, plastic, glass, charcoal, bamboo charcoal and their composites may be used. it can.
シリカゾルを有効成分として含有する溶液がこれら基材の上に塗布・乾燥されて基材−シリカゾル乾燥物が形成される。本発明においては、シリカゾル乾燥物は、シリカゾル溶液が、室温を含む低温で徐々に脱水乾燥されたものとするのが好ましい。生成した乾燥物の詳細は、必ずしも明確でないが、シリカゾルの水中で存在する(Si(OH)6)−2等のOH−基が低温で徐々に乾燥し遊離水分が蒸発する場合には離脱・脱水が遅れ、乾燥後にマイナス電荷に見合う正孔が発生するものと推定される。A solution containing silica sol as an active ingredient is applied onto the substrate and dried to form a dried substrate-silica sol. In the present invention, it is preferable that the silica sol dried product is obtained by gradually dehydrating and drying the silica sol solution at a low temperature including room temperature. The details of the produced dry matter are not necessarily clear, but when the OH - group such as (Si (OH) 6 ) -2 etc. present in the silica sol water is gradually dried at a low temperature and free water evaporates, it is detached. It is presumed that dehydration is delayed and holes corresponding to negative charges are generated after drying.
本発明において使用するシリカゾル溶液には、水を分散媒にしたものと、有機溶媒を分散媒にしたものがあり、その双方が使用可能である。その濃度は、質量比で、1〜40%程度とするのがよい。濃度が低すぎる場合には、必要な乾燥物や基材−シリカゾル乾燥物を得るために必要なシリカゾル溶液量が多くなり、生産効率の低下を招く。一方、濃度が高すぎる場合は付着量を適正範囲に管理できず基材−乾燥物複合体の通気度が確保しにくいなどの不具合が起こる。プラスチック、有機被覆金属やステンレス鋼板など水性シリカゾルを弾く基材を用いる場合にはメタノールやイソプロピルアルコールなどの有機溶媒シリカゾルを使用すればよい。 The silica sol solution used in the present invention includes those using water as a dispersion medium and those using an organic solvent as a dispersion medium, both of which can be used. The concentration is preferably about 1 to 40% by mass ratio. If the concentration is too low, the amount of silica sol solution required to obtain the necessary dry product or substrate-silica sol dry product increases, leading to a decrease in production efficiency. On the other hand, when the concentration is too high, the amount of adhesion cannot be controlled within an appropriate range, and problems such as difficulty in ensuring the air permeability of the base material-dried material complex occur. In the case of using a substrate that repels an aqueous silica sol such as plastic, organic coated metal, and stainless steel plate, an organic solvent silica sol such as methanol or isopropyl alcohol may be used.
乾燥温度も重要である。乾燥雰囲気温度が150℃より高いときには、本発明の特有の効果が発現しがたくなり、逆に0℃未満ではシリカゾルが凍結やゲル化しやすいため、本発明の目的を達成することができない。適当な乾燥雰囲気温度は、前記シリカゾルの濃度や乾燥の際の通風条件などにも影響されるが、一般に0℃以上150℃以下、好ましくは、2℃以上50℃以下とすることができる。 The drying temperature is also important. When the drying atmosphere temperature is higher than 150 ° C., the characteristic effect of the present invention is hardly expressed. Conversely, when the temperature is lower than 0 ° C., the silica sol is likely to be frozen or gelled, so that the object of the present invention cannot be achieved. The appropriate drying atmosphere temperature is affected by the concentration of the silica sol and the ventilation conditions during drying, but is generally 0 ° C. or higher and 150 ° C. or lower, preferably 2 ° C. or higher and 50 ° C. or lower.
図1は、シリカを質量比で20%含有するシリカゾル(日産化学工業(株)製のスノーテックスO(商標))の水溶液をガラス板上に滴下し、自然乾燥して得られた粉末の熱分析試験を行った結果を示すグラフである。試験器としては、セイコーエプソン(株)EXSTAR6000(登録商標)を用い、室温20℃の試験室で、熱分析条件は、昇温速度:5℃/minとし、熱分解ガスによる測定機器の腐食防止のため空気を300mL/min、(流速:1m/min)の割合で流した。 FIG. 1 shows the heat of powder obtained by dripping an aqueous solution of silica sol (Snowtex O (trademark), manufactured by Nissan Chemical Industries, Ltd.) containing 20% by mass of silica onto a glass plate and naturally drying. It is a graph which shows the result of having conducted the analytical test. As a tester, Seiko Epson Co., Ltd. EXSTAR6000 (registered trademark) was used. In a test room at a room temperature of 20 ° C., the thermal analysis conditions were a heating rate of 5 ° C./min. Therefore, air was flowed at a rate of 300 mL / min (flow rate: 1 m / min).
図1から、自然乾燥して得られたシリカゾル粉末は、加熱前の通風状態ですでに減量し始め、加熱過程においては、約46℃における吸熱ピークを伴う急激な減量が100℃から緩やかになり、発熱も緩やかになって400℃でピークに達することが分かる。図1において、57.6℃までの減量は11.2%と算定される。また、シリカゾルの大半は、約150℃までの乾燥過程において、部分的脱水生成物に変性していると推定される。 From FIG. 1, the silica sol powder obtained by natural drying has already started to lose weight in the ventilation state before heating, and during the heating process, the sudden weight loss with an endothermic peak at about 46 ° C. becomes moderate from 100 ° C. It can be seen that the exotherm is moderate and reaches a peak at 400 ° C. In FIG. 1, the weight loss up to 57.6 ° C. is calculated as 11.2%. In addition, it is estimated that most of the silica sol has been modified into a partially dehydrated product during the drying process up to about 150 ° C.
このような部分的脱水生成物は、基材上に生成されたとき、以下の実施例等から明らかなように、正孔(h+)が存在するものとなり、接触した相手から電子を奪う、すなわち酸化作用により、後述するようにさまざまな効果を生ぜしめる作用を呈すると推定される。When such a partially dehydrated product is produced on a substrate, as will be apparent from the following examples and the like, holes (h + ) are present and take electrons from the contacted partner. That is, it is presumed that the effect of oxidizing causes various effects as will be described later.
以下、実施例により、発明の態様を一層明らかにする。 Hereinafter, embodiments of the present invention will be further clarified by examples.
(実施例1:乾燥温度の適正値の確認・評価)
シリカゾル乾燥温度の正孔形成に対する影響を、電子スピン共鳴(ESR)分光法を用いて調べる。正孔が水と反応して生成するヒドロキシラジカルOH・は反応性が高く寿命が短いのでスピントラップ剤DMPO(5,5−dimethyl−1−pyrroline−N−oxide)と反応させて安定なラジカルDMPO−OH・に変換させ、そのESRのスペクトルからピークの大きさで定量する。(Example 1: Confirmation and evaluation of appropriate value of drying temperature)
The effect of silica sol drying temperature on hole formation is investigated using electron spin resonance (ESR) spectroscopy. Hydroxyl radical OH. Produced by reaction of holes with water is highly reactive and has a short lifetime, so that it reacts with spin trap agent DMPO (5,5-dimethyl-1-pyrroline-N-oxide) and is stable radical DMPO. It is converted into —OH. And quantified by the peak size from the spectrum of the ESR.
(試料の準備)
基材としてコットンスパンレース不織布(ユニチカ(株)製コットエースC060S/A18(商標),目付量:60g/m2)を準備した。これを25×40mmのサイズに裁断し、ステンレス金網上に載置した状態で、水を分散媒とするシリカゾル(日産化学工業(株)製スノーテックスO(商標))を2倍量の水で希釈して濃度:6.7質量%とし、基材1枚あたり0.35mL滴下、4℃、28℃、50℃、80℃及び150℃の雰囲気中で乾燥してESR測定用の試料とした。試料は、乾燥温度ごとに各3枚準備した。(Sample preparation)
A cotton spunlace nonwoven fabric (Cot Ace C060S / A18 (trademark) manufactured by Unitika Ltd., basis weight: 60 g / m 2 ) was prepared as a base material. This is cut into a size of 25 × 40 mm and placed on a stainless steel wire mesh. Silica sol (Snowtex O (trademark) manufactured by Nissan Chemical Industries, Ltd.) using water as a dispersion medium is doubled in water. Dilute to a concentration of 6.7% by mass, drop 0.35 mL per substrate, and dry in an atmosphere of 4 ° C., 28 ° C., 50 ° C., 80 ° C. and 150 ° C. to prepare a sample for ESR measurement . Three samples were prepared for each drying temperature.
(DMPO反応液の調整)
測定用試料を次のようにしてDMPO水溶液と反応させ、DMPO反応液(DMPO−OH・を含む液)を得た。
(1)前記により準備した各3枚を26×75mmのスライドガラスに重ねて載置する。
(2)その上から濃度5質量%のDMPO水溶液を、1.1mL滴下・浸透させる。
(3)さらに、別のスライドガラスをDMPO水溶液を滴下・浸透したシリカゾル塗布コットン不織布に被せて5分間保持する。
(4)上下面のスライドグラスを強く圧下して、測定用試料と反応したDMPO反応液を絞り出して(約0.4ml)、ESRの測定用DMPO反応液とする。(Preparation of DMPO reaction solution)
The measurement sample was reacted with a DMPO aqueous solution as follows to obtain a DMPO reaction solution (a solution containing DMPO-OH).
(1) Each of the three sheets prepared as described above is placed on a 26 × 75 mm slide glass.
(2) From above, 1.1 mL of a DMPO aqueous solution having a concentration of 5% by mass is dropped and permeated.
(3) Further, another slide glass is placed on a silica sol-coated cotton nonwoven fabric into which a DMPO aqueous solution is dropped and permeated, and held for 5 minutes.
(4) The slide glasses on the upper and lower surfaces are squeezed down, and the DMPO reaction solution reacted with the measurement sample is squeezed out (about 0.4 ml) to obtain a DMPO reaction solution for ESR measurement.
(ESRの測定)
得られたESR測定用DMPO反応液について、日本電子(株)JES−RE3Xを用い、共鳴周波数:9.4GHz、掃引幅:334.5±7.5mT,磁場変調幅:0.2mT,時定数:0.03secの条件でESRを測定した。得られたスペクトルはDMPO−OH・特有の強度比:1:2:2:1の4本線シグナルを示したので、そのピーク値を測定した。(Measurement of ESR)
About the obtained DMSR reaction liquid for ESR measurement, JEOL Ltd. JES-RE3X, resonance frequency: 9.4 GHz, sweep width: 334.5 ± 7.5 mT, magnetic field modulation width: 0.2 mT, time constant : ESR was measured under the condition of 0.03 sec. Since the spectrum obtained showed a four-line signal with DMPO-OH · specific intensity ratio of 1: 2: 2: 1, its peak value was measured.
対比のため、前記基材(無処理の不織布)を用いて、DMPO反応液の調整及びESRの測定を行い、コントロール値を得た。 For comparison, the DMPO reaction solution was adjusted and ESR was measured using the substrate (untreated non-woven fabric) to obtain a control value.
評価は、前記ピークの大きい中央2本のうち左側のピーク値とのコントロール(シリカゾルを塗布しないコットン)値の差によって行った。結果は表1に示す。 The evaluation was performed by the difference in control (cotton without silica sol coating) value from the left peak value of the two central peaks having the large peak. The results are shown in Table 1.
表1から、実施例1の乾燥条件の範囲内では、乾燥温度、乾燥条件の如何にかかわらず、無処理(コントロール)の場合に対してピーク差が認められることが分かる。このことは、実験の範囲内において、正孔(h+)を有する基材−シリカゾル乾燥物複合体が得られていることを示している。特に、乾燥条件を、温度:28℃、4時間の自然乾燥、及び50℃、30分の熱風乾燥の場合には、正孔(h+)の保有量が特に高くなることを示している。このような実験を繰り返すことにより、乾燥温度として2〜50℃を採用することが、正孔を(h+)を有する基材−シリカゾル乾燥物複合体を得るのに特に好ましいことが分かる。From Table 1, it can be seen that within the range of the drying conditions of Example 1, a peak difference is recognized with respect to the case of no treatment (control) regardless of the drying temperature and the drying conditions. This indicates that a base material-silica sol dry matter composite having holes (h + ) is obtained within the range of the experiment. In particular, when the drying conditions are temperature: 28 ° C., natural drying for 4 hours, and hot air drying at 50 ° C. for 30 minutes, the hole (h + ) retention amount is particularly high. By repeating such an experiment, it can be seen that adopting a drying temperature of 2 to 50 ° C. is particularly preferable for obtaining a base-silica sol dried product composite having holes (h + ).
(実施例2:シリカゾルのシリカ粒径の影響)
市場で入手できる種々のシリカゾルを基板上に塗布・乾燥し、得られた基材−シリカゾル乾燥物について、下記のメチレンブルーテストを行い、シリカゾルの種類の差のもたらす正孔の生成への影響について調査した。調査は、基板として、55%Al−Znめっき鋼板を用い、その3cm×3cmの正方形の試片の表面に表2に示すシリカゾル溶液を30μL滴下後、温度26℃の雰囲気で、4時間自然乾燥した。得られた55%Al−Znめっき鋼板−シリカゾル乾燥物の表面(シリカゾル被膜の生成側)上に、0.3mモル/Lのメチレンブルー水溶液50μLを滴下後,直ちに、ポリプロピレンフイルムを被せて1分間保持後、前記ポリプロピレンフイルムを剥がし、精製水2mlで表面を洗浄し、洗浄液の濃度を分光光度計で測定するメチレンブルーテストにより行った。なお、調査は、55%Al−Znめっき鋼板試片の各3枚について行い、結果は平均値によって示した。結果は、表2に示す。(Example 2: Influence of silica particle size of silica sol)
Various silica sols that can be obtained on the market are coated and dried on the substrate, and the resulting base material-silica sol dried product is subjected to the following methylene blue test to investigate the effect on the generation of holes caused by the difference in the type of silica sol. did. In the investigation, a 55% Al—Zn plated steel plate was used as a substrate, 30 μL of the silica sol solution shown in Table 2 was dropped on the surface of a 3 cm × 3 cm square specimen, and then naturally dried in an atmosphere at a temperature of 26 ° C. for 4 hours. did. On the surface of the obtained 55% Al—Zn-plated steel sheet-silica sol dried product (silica sol coating production side), 50 μL of 0.3 mMole / L methylene blue aqueous solution was dropped and immediately covered with polypropylene film and held for 1 minute. Thereafter, the polypropylene film was peeled off, the surface was washed with 2 ml of purified water, and the concentration of the washing solution was measured by a methylene blue test using a spectrophotometer. In addition, the investigation was conducted for each of three 55% Al—Zn plated steel sheet specimens, and the results were shown as average values. The results are shown in Table 2.
調査に用いたシリカゾルの種類、その粒径、形状および濃度は表2に示すとおりである。ここにシリカゾルの粒径とは、シリカゾルメーカーのカタログの値を意味し、その濃度とは、シリカゾル溶液中に含まれるシリカ分の質量比(%)を意味する。また、形状とは、シリカゾル溶液を電子顕微鏡下で観察したとき得られるシリカ粒子の形状を意味し、球状とは、視野に現れるシリカ粒子がほぼ球形である物を、多孔質とは孔径が2〜15nmの細孔が粒子表面に多数存在する直径300〜700nmの球形の粒子を意味する。 Table 2 shows the types, particle sizes, shapes, and concentrations of silica sols used in the investigation. Here, the particle size of the silica sol means the value of the catalog of the silica sol manufacturer, and the concentration means the mass ratio (%) of the silica content contained in the silica sol solution. The shape means the shape of the silica particles obtained when the silica sol solution is observed under an electron microscope. The spherical shape means that the silica particles appearing in the visual field are almost spherical. It means a spherical particle having a diameter of 300 to 700 nm in which many pores of ˜15 nm are present on the particle surface.
得られた結果から
(1)シリカゾルのシリカの形状が球形のものについては、シリカゾルの濃度が同じ場合は粒径が小さい方が、メチレンブルー濃度が低くなる、すなわち、正孔の生成が多いが、シリカゾルの濃度が低いとその分正孔の発生量も少なくなる。
(2)シリカゾルのシリカの粒径が粗大で形状が多孔質な場合も、シリカの形状が球形の場合と同様に、粒径が小さい方が正孔の生成は多いようであるが、そのレベルは粒径が10分の1以下の球状シリカのものと大差なく、微細な細孔が粒子表面に多数存在することによる比表面積の寄与が大きいことがわかる。
(3)基材への付着力は粒径が小さいほど大きく、基材−シリカゾル乾燥物複合体の特性として基材への密着性は重要な要素である。したがって、高濃度で粒子径の小さいシリカゾルが主目的の正孔の生成機能も含めて望ましい、ということになる。From the obtained results: (1) For silica sols with a spherical silica shape, when the silica sol concentration is the same, the smaller the particle size, the lower the methylene blue concentration, that is, more hole generation, If the concentration of silica sol is low, the amount of holes generated is reduced accordingly.
(2) Even when the silica sol has a coarse silica particle size and a porous shape, as the silica shape is spherical, the smaller the particle size, the more holes are generated. Is not much different from that of spherical silica having a particle size of 1/10 or less, and it can be seen that the specific surface area contributes greatly due to the presence of many fine pores on the particle surface.
(3) Adhesive force to the base material increases as the particle size decreases, and adhesion to the base material is an important factor as a characteristic of the base material-silica sol dried product composite. Therefore, a silica sol having a high concentration and a small particle size is desirable including the main hole generation function.
(実施例3:抗ウイルス性の確認・評価)
(試料の調整)
表3に示す各素材について、30mm×30mmのサイズの小片を準備し、実施例1と同様の手順で、水を分散媒とする粒径10−15nmのシリカゾル(日産化学工業(株)製スノーテックスO(商標)を精製水で希釈して得た、濃度:6.7質量%のシリカゾル溶液をガラスクロス小片上には100μL、コットン小片上には350μLを滴下し、50℃の雰囲気で30分間乾燥して基材−シリカゾル乾燥物複合体の試料を得た。(Example 3: Confirmation and evaluation of antiviral properties)
(Sample adjustment)
For each material shown in Table 3, a small piece having a size of 30 mm × 30 mm was prepared, and a silica sol having a particle diameter of 10-15 nm with water as a dispersion medium (Snow manufactured by Nissan Chemical Industries, Ltd.) was prepared in the same procedure as in Example 1. 100 μL of a silica sol solution having a concentration of 6.7% by mass obtained by diluting Tex O (trademark) with purified water was dropped on a glass cloth piece and 350 μL on a cotton piece, and the solution was added in a 50 ° C. atmosphere. The sample was dried for 5 minutes to obtain a sample of the substrate-silica sol dried product composite.
(抗ウイルス性の評価)
抗ウイルス性の評価は、下記の方法により、インフルエンザウイルスに対する抗ウイルス性をウイルスの力価(HA価)に与える影響により評価した。
(1)力価128HA以上のニワトリ胚で培養したA/Philippine/2/82(H3N2)インフルエンザウイルス液0.5mlを前記基材−シリカゾル乾燥物複合体の30mm×30mmの各試料小片に添加する。
(2)得られたインフルエンザウイルス液添加後の各小片を37℃、1時間インキュベートする。
(3)インキュベート後の各小片に対し、2mlのPBS(リン酸緩衝液)による洗浄を3回行って、基材−シリカゾル乾燥物複合体とインフルエンザウイルス液との反応後の力価測定液とした。
(4)力価(HA価)の測定は、96穴マイクロプレートを用いた「赤血球凝集(HA)試験」により測定し、結果は表4に示した。(Antiviral evaluation)
The antiviral property was evaluated by the effect of the antiviral property against influenza virus on the virus titer (HA value) by the following method.
(1) Add 0.5 ml of A / Philippine / 2/82 (H3N2) influenza virus solution cultured in chicken embryos with a titer of 128 HA or more to each 30 mm × 30 mm sample piece of the substrate-silica sol dried product complex. .
(2) Each piece after addition of the obtained influenza virus solution is incubated at 37 ° C. for 1 hour.
(3) Each of the small pieces after the incubation is washed with 2 ml of PBS (phosphate buffer solution) three times, and the titer measurement solution after the reaction between the substrate-silica sol dried product complex and the influenza virus solution is performed. did.
(4) The titer (HA titer) was measured by the “erythrocyte agglutination (HA) test” using a 96-well microplate. The results are shown in Table 4.
抗ウイルス活性値(L)は、触媒機能も含めたクロス自体の抗ウイルス性を表し、ウイルス減少値(N)は触媒による抗ウイルス性を表している。抗ウイルス活性値(L)が0のときには、抗ウイルス性がなく、正の値をとるときに抗ウイルス性があると判断され、ウイルス減少値(N)が0のときには、触媒坦持処理による抗ウイルス性の増加はなく、正の値を取るときに抗ウイルス性の増加があると判断される。抗ウイルス活性値(L)は、触媒と基材の両者が持つ抗ウイルス性の和と考えられる。表3に示すように、本発明に係る基材−シリカゾル乾燥物複合体は、基材として用いた各種の繊維素材に対して、ウイルス不活化作用を呈することが分かる。 The antiviral activity value (L) represents the antiviral properties of the cloth itself including the catalytic function, and the virus reduction value (N) represents the catalytic antiviral properties. When the antiviral activity value (L) is 0, it is judged that there is no antiviral property and when it takes a positive value, it is judged that there is antiviral property. There is no increase in antiviral activity, and it is judged that there is an increase in antiviral activity when taking a positive value. The antiviral activity value (L) is considered to be the sum of antiviral properties of both the catalyst and the substrate. As shown in Table 3, it can be seen that the substrate-silica sol dried product composite according to the present invention exhibits a virus inactivating action on various fiber materials used as the substrate.
(実施例4:基材−シリカゾル乾燥物複合体の確認・評価)
(試料の調整)
基材としてソフトタイプコットン不織布(ユニチカ(株)製コットエース,C080S/Z09(商標),目付量:80g/m2)を10×10mmに切断し、水を分散媒とするシリカゾル(日産化学工業(株)製スノーテックスC(商標)を純水で希釈して得た、濃時間自然乾燥して基材−シリカゾル乾燥物複合体を得た。なお、通気度測定用の100mm×100mmサンプルの無処理および、濃度5.1質量%シリカゾルを刷毛塗りした乾燥シリカゾル付着量は0.25g/g/m2であった。なお、この不織布の通気度はJIS L1096 A法 フラジール法によれば,それぞれ59、62cc/cm2/secであった。(Example 4: Confirmation / evaluation of substrate-silica sol dried product composite)
(Sample adjustment)
Silica sol (Nissan Chemical Industry Co., Ltd.) using a soft type cotton non-woven fabric (Cot Ace manufactured by Unitika Co., Ltd., C080S / Z09 (trademark), basis weight: 80 g / m 2 ) as a base material and cut into 10 × 10 mm Snowtex C (trademark) manufactured by Co., Ltd. was diluted with pure water and naturally dried for a long time to obtain a dried substrate-silica sol composite, which was a 100 mm × 100 mm sample for measuring air permeability. The amount of dry silica sol deposited with no treatment and brushed with a silica sol having a concentration of 5.1% by mass was 0.25 g / g / m 2. The air permeability of this non-woven fabric was determined according to JIS L1096 A method and fragile method. They were 59 and 62 cc / cm 2 / sec, respectively.
(抗ウイルス性の評価)
得られた基材−シリカゾル乾燥物複合体について、インフルエンザウイルス液の添加量を0.05ml、インキュベート時間を0分間、10分間としたほかは、実施例3と同様にして、基材−シリカゾル乾燥物複合体とインフルエンザウイルス液との反応後の力価測定を行った。また、基材として用いたソフトタイプコットン不織布についても対照材としてインフルエンザウイルス液との反応後の力価測定を行った。測定結果は図2に示す。(Antiviral evaluation)
About the obtained base-silica sol dried product complex, the base-silica sol was dried in the same manner as in Example 3 except that the addition amount of influenza virus solution was 0.05 ml and the incubation time was 0 minutes and 10 minutes. The titer was measured after the reaction between the product complex and the influenza virus solution. Moreover, the titer measurement after reaction with the influenza virus liquid was performed as a control material also about the soft type cotton nonwoven fabric used as a base material. The measurement results are shown in FIG.
図2から分かるように、ウイルス液が、本発明に係るシリカゾル乾燥物複合体と接触した場合0分でウイルス力価が最大1.6と急激に低下すること分かる。実際には50μLのPBS水でウイルス液を流す作業を2回行うのに約1分を要するが本発明に係る基材−シリカゾル乾燥物複合体から発生するヒドロキシラジカルによりHAの糖たんぱくが急激に分解無能化することが明らかである。 As can be seen from FIG. 2, when the virus solution comes into contact with the dried silica sol complex according to the present invention, it can be seen that the virus titer rapidly decreases to 1.6 at maximum in 0 minutes. Actually, it takes about 1 minute to perform the flow of the virus solution with 50 μL of PBS water twice, but the glycoprotein of HA is rapidly increased by the hydroxy radical generated from the substrate-silica sol dried product complex according to the present invention. It is clear that the degradation is disabled.
なお、実施例3及び4で述べた不織布にシリカゾルを塗布して乾燥して作成したサンプルは、ESRや抗ウイルスの試験前に精製水に1時間浸漬後自然乾燥したものであり、本発明に係る基材−シリカゾル乾燥物複合体及びその応用物品は、水に不溶であることから水洗が可能である。また、乾燥後は正孔が再生するので、基材−シリカゾル乾燥物複合体及びその応用物品は繰り返し水に接触する使用が可能である。 Samples prepared by applying silica sol to the nonwoven fabrics described in Examples 3 and 4 and drying were immersed in purified water for 1 hour before ESR and antiviral tests and then naturally dried. Such a substrate-silica sol dried product composite and its application article are insoluble in water and can be washed with water. Moreover, since holes are regenerated after drying, the substrate-silica sol dried product composite and its applied articles can be used in contact with water repeatedly.
上記実施例に示すごとく、本発明においては抗ウイルス性の評価にはインフルエンザウイルスのHAの不活化を評価に用いており、HAが存在するエンベロープを有するウイルス、すなわち風疹ウイルス,麻疹ウイルス、SARSコロナウイルス、日本脳炎ウイルスのどにはすべて効力を発揮する。ここに、HAとはインフルエンザウイルスなどが持つエンベロープと呼ばれる脂質膜の外側にスパイク状に並んでいる2種類の糖たんぱくの一つでヘマグルチニン(赤血球凝集素)のことであり、ウイルスが標的細胞に感染する機能を持つ。糖たんぱくが正孔またはヒドロキラジカルにより分解すると感染力が失われるのでウイルス力価の評価に用いられる。 As shown in the above examples, in the present invention, inactivation of influenza virus HA is used for evaluation in the evaluation of antiviral activity, and viruses having an envelope in which HA is present, that is, rubella virus, measles virus, SARS corona Effective for all viruses and Japanese encephalitis virus. Here, HA is one of two types of glycoproteins arranged in a spike shape outside the lipid membrane called the envelope of influenza virus etc. and is hemagglutinin (hemagglutinin). Has the ability to infect. When glycoproteins are decomposed by holes or hydroxyl radicals, the infectivity is lost, so it is used for the evaluation of virus titer.
市販のガーゼマスク(商品名:ふんわりコットンガーゼマスク、コットンガーゼ6層、サイズ135x95mm、株式会社大創産業製)のガーゼ重なり合い部に、実施例3でサイズ135x95mm、株式会社大創産業製)のガーゼ重なり合い部に、実施例3で用いた作成したシリカゾル−乾燥物複合体シート(9cm×9cm)を1枚ずつ3枚挟み込み、抗ウイルス用ガーゼマスクとした。この抗ウイルス用ガーゼマスクは、ウイルス力価の低下はlog4.8すなわち、もとのウイルスの63000分の1,99.98%低減できることになる。 Gauze of commercial gauze mask (product name: soft cotton gauze mask, 6 layers of cotton gauze, size 135x95 mm, manufactured by Daiso Sangyo Co., Ltd.) and gauze overlapping part in Example 3 (size 135x95 mm, manufactured by Daiso Sangyo Co., Ltd.) Three pieces of the prepared silica sol-dried composite sheet (9 cm × 9 cm) used in Example 3 were sandwiched between the overlapping portions one by one to obtain an antiviral gauze mask. With this antiviral gauze mask, the decrease in virus titer is log 4.8, that is, 1,99.98% of the original virus can be reduced by 1,99.98%.
以上、本発明の実施形態を、その実施例を含めて明らかにしたが、本発明の実施形態はこれらに限定されるものではない。特に、本発明に係る基材−シリカゾル乾燥物複合体の環境浄化作用がシリカゾル乾燥物の有する正孔(h+)によるものであること、及び環境浄化作用の結果、一旦、水との接触によりヒドロキシラジカルを発生して正孔が失われても、乾燥させることにより、その再生が可能であることを考慮すると、多面的な利用が期待できる。すなわち、正孔を保有しているのでフェイスマスクに使用するとマスク通過中にウイルス不活化するというこれまでにない特異な機能を発揮する。空気清浄機やエアコンのフィルタとしても光の照射なしで、シックハウス症候群をもたらすVOC(揮発性有害有機化合物)や悪臭も正孔により酸化されて分解・無害化・浄化が可能である。As mentioned above, although embodiment of this invention was clarified including the Example, embodiment of this invention is not limited to these. In particular, the environmental purification action of the substrate-silica sol dried product composite according to the present invention is due to the holes (h + ) of the silica sol dried product, and as a result of the environmental purification action, once contacted with water. Even if holes are lost due to generation of hydroxy radicals, considering that they can be regenerated by drying, multifaceted utilization can be expected. In other words, since it possesses holes, when it is used for a face mask, it exhibits an unprecedented unique function of inactivating viruses during passage through the mask. As a filter for an air purifier or an air conditioner, VOC (Volatile Hazardous Organic Compound) and bad odor that cause sick house syndrome can be decomposed, detoxified, and purified by being oxidized by holes without light irradiation.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014209438A JP6342778B2 (en) | 2014-09-24 | 2014-09-24 | Hole-bearing substrate-silica sol dried product composite and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014209438A JP6342778B2 (en) | 2014-09-24 | 2014-09-24 | Hole-bearing substrate-silica sol dried product composite and method for producing the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016068543A true JP2016068543A (en) | 2016-05-09 |
JP2016068543A5 JP2016068543A5 (en) | 2017-04-06 |
JP6342778B2 JP6342778B2 (en) | 2018-06-13 |
Family
ID=55863640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014209438A Active JP6342778B2 (en) | 2014-09-24 | 2014-09-24 | Hole-bearing substrate-silica sol dried product composite and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6342778B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6064149B1 (en) * | 2015-03-30 | 2017-01-25 | パナソニックIpマネジメント株式会社 | Insulation sheet, electronic device using the same, and method for producing insulation sheet |
JP2017172068A (en) * | 2016-03-23 | 2017-09-28 | 入江 敏夫 | Substrate-silica sol dry matter composite, application article thereof and manufacturing method thereof |
JP2018183767A (en) * | 2017-04-27 | 2018-11-22 | 入江 敏夫 | Substrate-silica sol dried article composite and manufacturing method therefor |
JP2021518769A (en) * | 2019-03-20 | 2021-08-05 | 深▲セン▼市康▲風▼▲環▼境科技▲発▼展有限公司 | Protective equipment, sterilization and disinfection composite sheet and its manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009155262A (en) * | 2007-12-26 | 2009-07-16 | Lion Corp | Antiviral agent |
JP2011068628A (en) * | 2009-09-22 | 2011-04-07 | Isi:Kk | Living body defensive substance, complex thereof, and method for using them |
JP2013126623A (en) * | 2011-12-19 | 2013-06-27 | Tokushu Muki Zairyo Kenkyusho | Catalyst body holding positive hole in light irradiation non-receiving state, method for producing the same, and antiviral/antibacterial cloth |
-
2014
- 2014-09-24 JP JP2014209438A patent/JP6342778B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009155262A (en) * | 2007-12-26 | 2009-07-16 | Lion Corp | Antiviral agent |
JP2011068628A (en) * | 2009-09-22 | 2011-04-07 | Isi:Kk | Living body defensive substance, complex thereof, and method for using them |
JP2013126623A (en) * | 2011-12-19 | 2013-06-27 | Tokushu Muki Zairyo Kenkyusho | Catalyst body holding positive hole in light irradiation non-receiving state, method for producing the same, and antiviral/antibacterial cloth |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6064149B1 (en) * | 2015-03-30 | 2017-01-25 | パナソニックIpマネジメント株式会社 | Insulation sheet, electronic device using the same, and method for producing insulation sheet |
US10543660B2 (en) | 2015-03-30 | 2020-01-28 | Panasonic Intellectual Property Managment Co., Ltd. | Heat-insulation sheet, electronic device using same, and method for producing heat-insulation sheet |
US10710332B2 (en) | 2015-03-30 | 2020-07-14 | Panasonic Intellectual Property Management Co., Ltd. | Heat-insulation sheet, electronic device using same, and method for producing heat-insulation sheet |
JP2017172068A (en) * | 2016-03-23 | 2017-09-28 | 入江 敏夫 | Substrate-silica sol dry matter composite, application article thereof and manufacturing method thereof |
JP2018183767A (en) * | 2017-04-27 | 2018-11-22 | 入江 敏夫 | Substrate-silica sol dried article composite and manufacturing method therefor |
JP2021518769A (en) * | 2019-03-20 | 2021-08-05 | 深▲セン▼市康▲風▼▲環▼境科技▲発▼展有限公司 | Protective equipment, sterilization and disinfection composite sheet and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP6342778B2 (en) | 2018-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6113781B2 (en) | Antiviral fiber | |
US7824626B2 (en) | Air handler and purifier | |
JP6342778B2 (en) | Hole-bearing substrate-silica sol dried product composite and method for producing the same | |
JP2010535807A (en) | Microorganism control method and control apparatus using purified hydrogen peroxide gas | |
JP6726313B2 (en) | Photocatalytic functional filter | |
TW200925529A (en) | Air cleaning apparatus | |
KR20220115593A (en) | Method for manufacturing photocatalytic device, photocatalytic device, photocatalytic composition and gas decontamination device | |
TW201607597A (en) | Anti-microbial air filter | |
KR20070069165A (en) | Fiber fabric having voc removing function | |
JP5754893B2 (en) | Photocatalytic sheet and virus infection prevention or patient mask using the same | |
JPWO2006049067A1 (en) | Sheet used for filters, masks, etc. that have bactericidal action | |
Mousavi et al. | Photocatalysis air purification systems for coronavirus removal: Current technologies and future trends | |
Peng et al. | Photocatalytic inactivation technologies for bioaerosols: advances and perspective | |
Yoon et al. | A capture and inactivation system against pathogens in indoor air using copper nanoparticle decorated melamine sponge hybrid air filters | |
JP2016068543A5 (en) | ||
JP2013126623A (en) | Catalyst body holding positive hole in light irradiation non-receiving state, method for producing the same, and antiviral/antibacterial cloth | |
JP2017172068A (en) | Substrate-silica sol dry matter composite, application article thereof and manufacturing method thereof | |
CN112781164B (en) | Photocatalytic air purification and sterilization fiber, manufacturing method and application thereof, photocatalytic air purification and sterilization filter and manufacturing method thereof | |
CN115176815A (en) | Nano titanium dioxide preparation capable of being efficiently activated under low-frequency visible light and preparation method thereof | |
JP6484771B2 (en) | Substrate-silica sol dry matter composite and method for producing the same | |
JP2005052713A (en) | Carbon fiber supported porous titanium oxide photocatalyst and filter | |
JP5837288B2 (en) | Antiviral agent | |
JP2011212299A (en) | Antivirus sheet | |
JP2017206783A (en) | Fine particle attachment material, fine particle attachment fiber material and fiber product | |
JP2005296473A (en) | Air purifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20161005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161208 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20170125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170125 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170203 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20170406 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170926 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20171124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6342778 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S802 | Written request for registration of partial abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311802 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |