[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016061143A - 排気浄化システム - Google Patents

排気浄化システム Download PDF

Info

Publication number
JP2016061143A
JP2016061143A JP2014186756A JP2014186756A JP2016061143A JP 2016061143 A JP2016061143 A JP 2016061143A JP 2014186756 A JP2014186756 A JP 2014186756A JP 2014186756 A JP2014186756 A JP 2014186756A JP 2016061143 A JP2016061143 A JP 2016061143A
Authority
JP
Japan
Prior art keywords
exhaust
control
nox
injection amount
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014186756A
Other languages
English (en)
Other versions
JP6439334B2 (ja
Inventor
輝男 中田
Teruo Nakada
輝男 中田
隆行 坂本
Takayuki Sakamoto
隆行 坂本
長岡 大治
Taiji Nagaoka
大治 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014186756A priority Critical patent/JP6439334B2/ja
Publication of JP2016061143A publication Critical patent/JP2016061143A/ja
Application granted granted Critical
Publication of JP6439334B2 publication Critical patent/JP6439334B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

【課題】フィルタ強制再生からSOxパージへの切り替え時に温度低下を抑制することで、SOxパージの効率化を図る。【解決手段】フィルタ33及び、NOx還元型触媒32を有する排気後処理装置30と、排気をリッチ状態にするフィルタ再生を実行するフィルタ強制再生制御部51と、排気をリッチ状態にしてNOx還元型触媒32を目標温度まで昇温するリッチ制御と排気空をリーン状態にしてNOx還元型触媒32の温度を降下させるリーン制御とを交互に行うことでNOx還元型触媒32のNOx浄化能力を回復させる触媒再生を実行するSOx離脱処理部60とを備え、SOx離脱処理部60は、フィルタ強制再生制御部51によるフィルタ再生によってフィルタ33の粒子状物質堆積量が低下したと判定すると触媒再生をリッチ制御から開始する。【選択図】図1

Description

本発明は、排気浄化システムに関する。
従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。このNOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。
また、NOx吸蔵還元型触媒には、排気中に含まれる硫黄酸化物(以下、SOxという)も吸蔵される。このSOx吸蔵量が増加すると、NOx吸蔵還元型触媒のNOx浄化能力を低下させる課題がある。このため、SOx吸蔵量が所定量に達した場合は、NOx吸蔵還元型触媒からSOxを離脱させてS被毒から回復させるべく、ポスト噴射や排気管噴射によって上流側の酸化触媒に未燃燃料を供給して排気温度をSOx離脱温度まで上昇させる所謂SOxパージを定期的に行う必要がある(例えば、特許文献1参照)。
特開2009−47086号公報 特開2007−315225号公報 特開2009−115038号公報
SOxパージ時の触媒温度を所望の温度範囲に維持する手法として、排気空燃比をリッチ化して排気温度を上昇させるリッチ制御と、排気空燃非をリーン化して排気温度を降下させるリーン制御とを交互に行うものが知られている(例えば、特許文献1参照)。
このようなSOxパージを効率的に行うには、例えば、フィルタ強制再生直後の排気高温状態でSOxパージを実行することが好ましい。しかしながら、フィルタ強制再生直後にSOxパージをリーン制御から開始すると、排気温度が一旦低下するため、十分な効率化が図れない可能性がある。
開示のシステムは、フィルタ強制再生からSOxパージへの切り替え時に温度低下を抑制することで、SOxパージの効率化を図ることを目的とする。
開示のシステムは、内燃機関の排気通路に、排気中の粒子状物質を捕集するフィルタ及び、排気中のNOxを還元浄化するNOx還元型触媒を配置した排気後処理装置と、排気をリッチ状態にして前記フィルタに堆積した粒子状物質を燃焼除去させるフィルタ再生を実行する第1再生制御手段と、排気をリッチ状態にして前記NOx還元型触媒を所定の目標温度まで昇温するリッチ制御と、排気空をリーン状態にして前記NOx還元型触媒の温度を降下させるリーン制御とを交互に行うことで前記NOx還元型触媒のNOx浄化能力を回復させる触媒再生を実行する第2再生制御手段と、を備え、前記第2再生制御手段は、前記第1再生制御手段による前記フィルタ再生によって前記フィルタの粒子状物質堆積量が低下したと判定すると、前記触媒再生を前記リッチ制御から開始する。
開示のシステムによれば、フィルタ強制再生からSOxパージへの切り替え時に温度低下を抑制することで、SOxパージの効率化を図ることができる。
本実施形態に係る排気浄化システムを示す全体構成図である。 本実施形態に係るSOxパージ制御を説明するタイミングチャート図である。 本実施形態に係るSOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。 本実施形態に係るSOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。 本実施形態に係るSOxパージ制御の触媒温度調整制御を説明するタイミングチャート図である。 本実施形態に係るNOxパージ制御を説明するタイミングチャート図である。 本実施形態に係るNOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。 本実施形態に係るNOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。 本実施形態に係るインジェクタの噴射量学習補正の処理を示すブロック図である。 本実施形態に係る学習補正係数の演算処理を説明するフロー図である。 本実施形態に係るMAF補正係数の設定処理を示すブロック図である。
以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化システムを説明する。
図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射するインジェクタ11がそれぞれ設けられている。これら各インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)50から入力される指示信号に応じてコントロールされる。
エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。吸気通路12には、吸気上流側から順にエアクリーナ14、吸入空気量センサ(以下、MAFセンサという)40、可変容量型過給機20のコンプレッサ20A、インタークーラ15、吸気スロットルバルブ16等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサをそれぞれ示している。
EGR装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量を調整するEGRバルブ24とを備えている。
排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気管噴射装置34が設けられている。
酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気管噴射装置34又はインジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。
NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。
フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ強制再生が実行される。フィルタ強制再生は、排気管噴射又はポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。
第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度を検出する。第2排気温度センサ44は、酸化触媒31とNOx吸蔵還元型触媒32との間に設けられており、NOx吸蔵還元型触媒32に流入する排気温度を検出する。NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(以下、空気過剰率ともいう)を検出する。
ECU50は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40〜45のセンサ値が入力される。また、ECU50は、フィルタ強制再生制御部51と、SOx離脱処理部60と、NOx離脱処理部70と、MAF追従制御部80、噴射量学習補正部90と、MAF補正係数演算部95とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。
[フィルタ強制再生制御]
フィルタ強制再生制御部51は、本発明の第1再生制御手段の一例であって、車両の走行距離、あるいは図示しない差圧センサで検出されるフィルタ前後差圧からフィルタ33のPM堆積量を推定すると共に、このPM堆積推定量が所定の上限閾値を超えると強制再生フラグFDPFをオンにする(図2の時刻t1参照)。強制再生フラグFDPFがオンにされると、排気管噴射装置34に排気管噴射を実行させる指示信号が送信されるか、あるいは、各インジェクタ11にポスト噴射を実行させる指示信号が送信されて、排気温度をPM燃焼温度(例えば、約550℃)まで昇温させる。この強制再生フラグFDPFは、PM堆積推定量が燃焼除去を示す所定の下限閾値(判定閾値)まで低下するとオフにされる(図2の時刻t2参照)。なお、強制再生フラグFDPFをオフにする判定閾値は、例えば、フィルタ強制再生開始(FDPF=1)からの上限経過時間や上限累積噴射量を基準にしてもよい。
[SOxパージ制御]
SOx離脱処理部60は、本発明の第2再生制御手段の一例であって、排気をリッチ状態にして排気温度を硫黄離脱温度(例えば、約600℃)まで上昇させて、NOx吸蔵還元型触媒32をSOx被毒から回復させる制御(以下、この制御をSOxパージ制御という)を実行する。
図2は、本実施形態のSOxパージ制御のタイミングチャートを示している。図2に示すように、SOxパージ制御を開始するSOxパージフラグFSPは、強制再生フラグFDPFのオフと同時にオンにされる(図2の時刻t2参照)。これにより、フィルタ33の強制再生によって排気温度を上昇させた状態からSOxパージ制御に効率よく移行することが可能となり、燃料消費量を効果的に低減することができる。
本実施形態において、SOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるSOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるSOxパージリッチ制御とを併用することで実現される。以下、SOxパージリーン制御及び、SOxパージリッチ制御の詳細について説明する。
[SOxパージリーン制御の空気系制御]
図3は、SOxパージリーン制御時のMAF目標値MAFSPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ61は、エンジン回転数Ne及びアクセル開度Q(エンジン10の燃料噴射量)に基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリーン制御時の空気過剰率目標値λSPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
まず、第1目標空気過剰率設定マップ61から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリーン制御時の空気過剰率目標値λSPL_Trgtが読み取られて、MAF目標値演算部62に入力される。さらに、MAF目標値演算部62では、以下の数式(1)に基づいてSOxパージリーン制御時のMAF目標値MAFSPL_Trgtが演算される。
MAFSPL_Trgt=λSPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(1)
数式(1)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
MAF目標値演算部62によって演算されたMAF目標値MAFSPL_Trgtは、SOxパージフラグFSPがオン(図2の時刻t2参照)になるとランプ処理部63に入力される。ランプ処理部63は、各ランプ係数マップ63A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFSPL_Trgt_Rampをバルブ制御部64に入力する。
バルブ制御部64は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFSPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。
このように、本実施形態では、第1目標空気過剰率設定マップ61から読み取られる空気過剰率目標値λSPL_Trgtと、各インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFSPL_Trgtを設定し、このMAF目標値MAFSPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFSPL_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化、個体差等の影響を効果的に排除することができる。
また、MAF目標値MAFSPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。
[SOxパージリッチ制御の燃料噴射量設定]
図4は、SOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QSPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第2目標空気過剰率設定マップ65は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。
まず、第2目標空気過剰率設定マップ65から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgtが読み取られて、噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、以下の数式(2)に基づいてSOxパージリッチ制御時の目標噴射量QSPR_Trgtが演算される。
SPR_Trgt=MAFSPL_Trgt×Maf_corr/(λSPR_Target×RoFuel×AFRsto)−Qfnl_corrd・・・(2)
数式(2)において、MAFSPL_TrgtはSOxパージリーン時のMAF目標値であって、前述のMAF目標値演算部62から入力される。また、QfnlRaw_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corは後述するMAF補正係数をそれぞれ示している。
噴射量目標値演算部66によって演算された目標噴射量QSPR_Trgtは、後述するSOxパージリッチフラグFSPRがオンになると、排気管噴射装置34又は、各インジェクタ11に噴射指示信号として送信される。
このように、本実施形態では、第2目標空気過剰率設定マップ65から読み取られる空気過剰率目標値λSPR_Trgtと、各インジェクタ11の燃料噴射量とに基づいて目標噴射量QSPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QSPR_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
[SOxパージ制御の触媒温度調整制御]
SOxパージ制御中にNOx吸蔵還元型触媒32に流入する排気温度(以下、触媒温度ともいう)は、図2の時刻t2〜t4に示すように、排気管噴射又はポスト噴射を実行するSOxパージリッチフラグFSPRのオン・オフ(リッチ・リーン)を交互に切り替えることで制御される。SOxパージリッチフラグFSPRがオン(FSPR=1)にされると、排気管噴射又はポスト噴射によって触媒温度は上昇する(以下、この期間を噴射期間TF_INJという)。一方、SOxパージリッチフラグFSPRがオフにされると、排気管噴射又はポスト噴射の停止によって触媒温度は低下する(以下、この期間をインターバルTF_INTという)。
本実施形態において、噴射期間TF_INJは、予め実験等により作成した噴射期間設定マップ(不図示)からエンジン回転数Ne及びアクセル開度Qに対応する値を読み取ることで設定される。この噴射時間設定マップには、予め実験等によって求めた排気の空気過剰率を第2目標空気過剰率まで確実に低下させるのに必要となる噴射期間が、エンジン10の運転状態に応じて設定されている。
インターバルTF_INTは、触媒温度が最も高くなるSOxパージリッチフラグFSPRがオンからオフに切り替えられた際に、フィードバック制御によって設定される。具体的には、SOxパージリッチフラグFSPRがオフされた際の目標触媒温度と推定触媒温度との偏差ΔTに比例して入力信号を変化させる比例制御と、偏差ΔTの時間積分値に比例して入力信号を変化させる積分制御と、偏差ΔTの時間微分値に比例して入力信号を変化させる微分制御とで構成されるPID制御によって処理される。目標触媒温度は、NOx吸蔵還元型触媒32からSOxを離脱可能な温度で設定され、推定触媒温度は、例えば、第1排気温度センサ43で検出される酸化触媒31の入口温度と、酸化触媒31及びNOx吸蔵還元型触媒32の内部での発熱反応等に基づいて推定すればよい。
図5の時刻t1に示すように、フィルタ強制再生の終了(FDPF=0)によってSOxパージフラグFSPがオンされると、SOxパージリッチフラグFSPRもオンにされ、さらに前回のSOxパージ制御時にフィードバック計算されたインターバルTF_INTも一旦リセットされる。すなわち、フィルタ強制再生直後の初回は、噴射期間設定マップで設定した噴射期間TF_INJ_1に応じて排気管噴射又はポスト噴射が実行される(図5の時刻t1〜t2参照)。このように、SOxパージリーン制御を行うことなくSOxパージリッチ制御からSOxパージ制御を開始するので、フィルタ強制再生で上昇した排気温度を低下させることなく、速やかにSOxパージ制御に移行され、燃料消費量を低減することができる。
次いで、噴射期間TF_INJ_1の経過によってSOxパージリッチフラグFSPRがオフになると、PID制御によって設定されたインターバルTF_INT_1が経過するまで、SOxパージリッチフラグFSPRはオフとされる(図5の時刻t2〜t3参照)。さらに、インターバルTF_INT_1の経過によってSOxパージリッチフラグFSPRがオンにされると、再び噴射期間TF_INJ_2に応じた排気管噴射又はポスト噴射が実行される(図5の時刻t3〜t4参照)。その後、これらSOxパージリッチフラグFSPRのオン・オフの切り替えは、後述するSOxパージ制御の終了判定によってSOxパージフラグFSPがオフ(図5の時刻tn参照)にされるまで繰り返し実行される。
このように、本実施形態では、触媒温度を上昇させると共に空気過剰率を第2目標空気過剰率まで低下させる噴射期間TF_INJをエンジン10の運転状態に基づいて参照されるマップから設定すると共に、触媒温度を降下させるインターバルTF_INTをPID制御によって処理するようになっている。これにより、SOxパージ制御中の触媒温度をパージに必要な所望の温度範囲に効果的に維持しつつ、空気過剰率を目標過剰率まで確実に低下させることが可能になる。
[SOxパージ制御の終了判定]
SOxパージ制御は、(1)SOxパージフラグFSPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)SOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のSOx吸着量がSOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、SOxパージフラグFSPをオフにして終了される(図2の時刻t4、図5の時刻tn参照)。
このように、本実施形態では、SOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、SOxパージが排気温度の低下等によって進捗しなかった場合に、燃料消費量が過剰になることを効果的に防止することができる。
[NOxパージ制御]
NOx離脱処理部70は、排気をリッチ雰囲気にしてNOx吸蔵還元型触媒32に吸蔵されているNOxを還元浄化により無害化して放出することで、NOx吸蔵還元型触媒32のNOx吸蔵能力を回復させる制御(以下、この制御をNOxパージ制御という)を実行する。
NOxパージ制御を開始するNOxパージフラグFNPは、エンジン10の運転状態から単位時間当たりのNOx排出量を推定し、これを累積計算した推定累積値ΣNOxが所定の閾値を超えるとオンにされる(図6の時刻t1参照)。あるいは、エンジン10の運転状態から推定される触媒上流側のNOx排出量と、NOx/ラムダセンサ45で検出される触媒下流側のNOx量とからNOx吸蔵還元型触媒32によるNOx浄化率を演算し、このNOx浄化率が所定の判定閾値よりも低くなった場合に、NOxパージフラグFNPはオンにされる。
本実施形態において、NOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第3目標空気過剰率(例えば、約1.3)まで低下させるNOxパージリーン制御と、噴射系制御によって空気過剰率を第4目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるNOxパージリッチ制御とを併用することで実現される。以下、NOxパージリーン制御及び、NOxパージリッチ制御の詳細について説明する。
[NOxパージリーン制御のMAF目標値設定]
図7は、NOxパージリーン制御時のMAF目標値MAFNPL_Trgtの設定処理を示すブロック図である。第3目標空気過剰率設定マップ71は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリーン制御時の空気過剰率目標値λNPL_Trgt(第3目標空気過剰率)が予め実験等に基づいて設定されている。
まず、第3目標空気過剰率設定マップ71から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリーン制御時の空気過剰率目標値λNPL_Trgtが読み取られて、MAF目標値演算部72に入力される。さらに、MAF目標値演算部72では、以下の数式(3)に基づいてNOxパージリーン制御時のMAF目標値MAFNPL_Trgtが演算される。
MAFNPL_Trgt=λNPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(3)
数式(3)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
MAF目標値演算部72によって演算されたMAF目標値MAFNPL_Trgtは、NOxパージフラグFSPがオン(図6の時刻t1参照)になるとランプ処理部73に入力される。ランプ処理部73は、各ランプ係数マップ73A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFNPL_Trgt_Rampをバルブ制御部74に入力する。
バルブ制御部74は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFNPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。
このように、本実施形態では、第3目標空気過剰率設定マップ71から読み取られる空気過剰率目標値λNPL_Trgtと、各インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFNPL_Trgtを設定し、このMAF目標値MAFNPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFNPL_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
また、MAF目標値MAFNPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。
[NOxパージリッチ制御の燃料噴射量設定]
図8は、NOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QNPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第4目標空気過剰率設定マップ75は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt(第4目標空気過剰率)が予め実験等に基づいて設定されている。
まず、第4目標空気過剰率設定マップ75から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgtが読み取られて噴射量目標値演算部76に入力される。さらに、噴射量目標値演算部76では、以下の数式(4)に基づいてNOxパージリッチ制御時の目標噴射量QNPR_Trgtが演算される。
NPR_Trgt=MAFNPL_Trgt×Maf_corr/(λNPR_Target×RoFuel×AFRsto)−Qfnl_corrd・・・(4)
数式(4)において、MAFNPL_TrgtはNOxパージリーンMAF目標値であって、前述のMAF目標値演算部72から入力される。また、QfnlRaw_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corは後述するMAF補正係数をそれぞれ示している。
噴射量目標値演算部76によって演算される目標噴射量QNPR_Trgtは、NOxパージフラグFSPがオンになると、排気管噴射装置34又は各インジェクタ11に噴射指示信号として送信される(図6の時刻t1)。この噴射指示信号の送信は、後述するNOxパージ制御の終了判定によってNOxパージフラグFNPがオフ(図6の時刻t2)にされるまで継続される。
このように、本実施形態では、第4目標空気過剰率設定マップ75から読み取られる空気過剰率目標値λNPR_Trgtと、各インジェクタ11の燃料噴射量とに基づいて目標噴射量QNPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QNPR_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
[NOxパージ制御の空気系制御禁止]
ECU50は、エンジン10の運転状態が低負荷側の領域では、MAFセンサ40のセンサ値に基づいて吸気スロットルバルブ16やEGRバルブ24の開度をフィードバック制御している。一方、エンジン10の運転状態が高負荷側の領域では、ECU50はブースト圧センサ46のセンサ値に基づいて可変容量型過給機20による過給圧をフィードバック制御している(以下、この領域をブース圧FB制御領域という)。
このようなブース圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の制御が可変容量型過給機20の制御と干渉してしまう現象が生じる。このため、上述の数式(3)で設定されるMAF目標値MAFNPL_Trgtに基づいて空気系をフィードバック制御するNOxパージリーン制御を実行しても、吸入空気量をMAF目標値NPL_Trgtに維持できない課題がある。その結果、ポスト噴射や排気管噴射を実行するNOxパージリッチ制御を開始しても、空気過剰率をNOxパージに必要な第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させられない可能性がある。
このような現象を回避すべく、本実施形態のNOx離脱処理部70は、ブース圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の開度を調整するNOxパージリーン制御を禁止し、排気管噴射又はポスト噴射のみで空気過剰率を第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させる。これにより、ブース圧FB制御領域においても、NOxパージを確実に行うことが可能になる。なお、この場合、上述の数式(4)のMAF目標値MAFNPL_Trgtには、エンジン10の運転状態に基づいて設定されるMAF目標値を適用すればよい。
[NOxパージ制御の終了判定]
NOxパージ制御は、(1)NOxパージフラグFNPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)NOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のNOx吸蔵量がNOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、NOxパージフラグFNPをオフにして終了される(図6の時刻t2参照)。
このように、本実施形態では、NOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、NOxパージが排気温度の低下等によって成功しなかった場合に燃料消費量が過剰になることを確実に防止することができる。
[MAF追従制御]
MAF追従制御部80は、(1)通常運転のリーン状態からSOxパージ制御又はNOxパージ制御によるリッチ状態への切り替え期間及び、(2)SOxパージ制御又はNOxパージ制御によるリッチ状態から通常運転のリーン状態への切り替え期間に、各インジェクタ11の燃料噴射タイミング及び燃料噴射量をMAF変化に応じて補正する制御(以下、この制御をMAF追従制御という)を実行する。
[噴射量学習補正]
図9に示すように、噴射量学習補正部90は、学習補正係数演算部91と、噴射量補正部92とを有する。
学習補正係数演算部91は、エンジン10のリーン運転時にNOx/ラムダセンサ45で検出される実ラムダ値λActと、推定ラムダ値λEstとの誤差Δλに基づいて燃料噴射量の学習補正係数FCorrを演算する。排気がリーン状態のときは、酸化触媒31でHCの酸化反応が生じないため、酸化触媒31を通過して下流側のNOx/ラムダセンサ45で検出される排気中の実ラムダ値λActと、エンジン10から排出された排気中の推定ラムダ値λEstとは一致すると考えられる。このため、これら実ラムダ値λActと推定ラムダ値λEstとに誤差Δλが生じた場合は、各インジェクタ11に対する指示噴射量と実噴射量との差によるものと仮定することができる。以下、この誤差Δλを用いた学習補正係数演算部91による学習補正係数の演算処理を図10のフローに基づいて説明する。
ステップS300では、エンジン回転数Ne及びアクセル開度Qに基づいて、エンジン10がリーン運転状態にあるか否かが判定される。リーン運転状態にあれば、学習補正係数の演算を開始すべく、ステップS310に進む。
ステップS310では、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK1及び補正感度係数K2を乗じることで、学習値FCorrAdptが演算される(FCorrAdpt=(λEst−λAct)×K1×K2)。推定ラムダ値λEstは、エンジン回転数Neやアクセル開度Qに応じたエンジン10の運転状態から推定演算される。また、補正感度係数K2は、図9に示す補正感度係数マップ91AからNOx/ラムダセンサ45で検出される実ラムダ値λActを入力信号として読み取られる。
ステップS320では、学習値FCorrAdptの絶対値|FCorrAdpt|が所定の補正限界値Aの範囲内にあるか否かが判定される。絶対値|FCorrAdpt|が補正限界値Aを超えている場合、本制御はリターンされて今回の学習を中止する。
ステップS330では、学習禁止フラグFProがオフか否かが判定される。学習禁止フラグFProとしては、例えば、エンジン10の過渡運転時、SOxパージ制御時(FSP=1)、NOxパージ制御時(FNP=1)等が該当する。これらの条件が成立する状態では、実ラムダ値λActの変化によって誤差Δλが大きくなり、正確な学習を行えないためである。エンジン10が過渡運転状態にあるか否かは、例えば、NOx/ラムダセンサ45で検出される実ラムダ値λActの時間変化量に基づいて、当該時間変化量が所定の閾値よりも大きい場合に過渡運転状態と判定すればよい。
ステップS340では、エンジン回転数Ne及びアクセル開度Qに基づいて参照される学習値マップ91B(図9参照)が、ステップS310で演算された学習値FCorrAdptに更新される。より詳しくは、この学習値マップ91B上には、エンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、好ましくは、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上され、使用頻度が少ない領域では未学習を効果的に防止することが可能になる。
ステップS350では、エンジン回転数Ne及びアクセル開度Qを入力信号として学習値マップ91Bから読み取った学習値に「1」を加算することで、学習補正係数FCorrが演算される(FCorr=1+FCorrAdpt)。この学習補正係数FCorrは、図9に示す噴射量補正部92に入力される。
噴射量補正部92は、パイロット噴射QPilot、プレ噴射QPre、メイン噴射QMain、アフタ噴射QAfter、ポスト噴射QPostの各基本噴射量に学習補正係数FCorrを乗算することで、これら燃料噴射量の補正を実行する。
このように、推定ラムダ値λEstと実ラムダ値λActとの誤差Δλに応じた学習値で各インジェクタ11に燃料噴射量を補正することで、各インジェクタ11の経年劣化や特性変化、個体差等のバラツキを効果的に排除することが可能になる。
[MAF補正係数]
MAF補正係数演算部95は、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgtの設定及び、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に用いられるMAF補正係数Maf_corrを演算する。
本実施形態において、各インジェクタ11の燃料噴射量は、NOx/ラムダセンサ45で検出される実ラムダ値λActと推定ラムダ値λEstとの誤差Δλに基づいて補正される。しかしながら、ラムダは空気と燃料の比であるため、誤差Δλの要因が必ずしも各インジェクタ11に対する指示噴射量と実噴射量との差の影響のみとは限らない。すなわち、ラムダの誤差Δλには、各インジェクタ11のみならずMAFセンサ40の誤差も影響している可能性がある。
図11は、MAF補正係数演算部95によるMAF補正係数Maf_corrの設定処理を示すブロック図である。補正係数設定マップ96は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。
MAF補正係数演算部95は、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ96からMAF補正係数Maf_corrを読み取ると共に、このMAF補正係数Maf_corrをMAF目標値演算部62,72及び噴射量目標値演算部66,76に送信する。これにより、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgt、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に、MAFセンサ40のセンサ特性を効果的に反映することが可能になる。
[その他]
なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
10 エンジン
11 インジェクタ
12 吸気通路
13 排気通路
16 吸気スロットルバルブ
24 EGRバルブ
31 酸化触媒
32 NOx吸蔵還元型触媒
33 フィルタ
34 排気管噴射装置
40 MAFセンサ
45 NOx/ラムダセンサ
50 ECU

Claims (6)

  1. 内燃機関の排気通路に、排気中の粒子状物質を捕集するフィルタ及び、排気中のNOxを還元浄化するNOx還元型触媒を配置した排気後処理装置と、
    排気をリッチ状態にして前記フィルタに堆積した粒子状物質を燃焼除去させるフィルタ再生を実行する第1再生制御手段と、
    排気をリッチ状態にして前記NOx還元型触媒を所定の目標温度まで昇温するリッチ制御と、排気空をリーン状態にして前記NOx還元型触媒の温度を降下させるリーン制御とを交互に行うことで前記NOx還元型触媒のNOx浄化能力を回復させる触媒再生を実行する第2再生制御手段と、を備え、
    前記第2再生制御手段は、前記第1再生制御手段による前記フィルタ再生によって前記フィルタの粒子状物質堆積量が低下したと判定すると、前記触媒再生を前記リッチ制御から開始する
    排気浄化システム。
  2. 前記NOx還元型触媒の触媒温度を取得する温度取得手段をさらに備え、
    前記第2再生制御手段は、リーン制御の実行期間を直前のリッチ制御中に前記温度取得手段で取得される触媒温度と前記目標温度との偏差からPID制御によって設定する
    請求項1に記載の排気浄化システム。
  3. 前記第2再生制御手段は、リッチ制御の実行期間を前記内燃機関の運転状態に基づいて設定する
    請求項1又は2に記載の排気浄化システム。
  4. 前記第2再生制御手段は、前記リッチ制御をポスト噴射又は排気管噴射を用いて実行すると共に、ポスト噴射量又は排気管噴射量を前記内燃機関の吸入空気量、所定の目標空気過剰率及び、前記内燃機関の燃料噴射量に基づいて設定する
    請求項1から3の何れか一項に記載の排気浄化システム。
  5. 前記第2再生制御手段は、前記内燃機関の吸入空気量を前記目標空気過剰率と燃料比重と理論空燃比とで除算した値から前記内燃機関の燃料噴射量を減算して得られる値を前記ポスト噴射量又は前記排気管噴射量として設定する
    請求項4に記載の排気浄化システム。
  6. 前記内燃機関の排気系に設けられたラムダセンサと、
    前記内燃機関の運転状態から推定した推定ラムダ値と前記ラムダセンサで検出される実ラムダ値との差に基づいて前記内燃機関の燃料噴射量を補正する噴射量補正手段と、をさらに備え、
    前記第2再生制御手段は、前記内燃機関の燃料噴射量として前記噴射量補正部による補正後の燃料噴射量を用いる
    請求項4又は5に記載の排気浄化システム。
JP2014186756A 2014-09-12 2014-09-12 排気浄化システム Expired - Fee Related JP6439334B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014186756A JP6439334B2 (ja) 2014-09-12 2014-09-12 排気浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014186756A JP6439334B2 (ja) 2014-09-12 2014-09-12 排気浄化システム

Publications (2)

Publication Number Publication Date
JP2016061143A true JP2016061143A (ja) 2016-04-25
JP6439334B2 JP6439334B2 (ja) 2018-12-19

Family

ID=55795810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014186756A Expired - Fee Related JP6439334B2 (ja) 2014-09-12 2014-09-12 排気浄化システム

Country Status (1)

Country Link
JP (1) JP6439334B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108625936A (zh) * 2017-03-16 2018-10-09 丰田自动车株式会社 内燃机的控制装置
JP2019138162A (ja) * 2018-02-06 2019-08-22 マツダ株式会社 エンジンの制御装置
JP2019138160A (ja) * 2018-02-06 2019-08-22 マツダ株式会社 エンジンの制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151725A (ja) * 1995-12-01 1997-06-10 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2000352308A (ja) * 1999-06-10 2000-12-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2004360575A (ja) * 2003-06-04 2004-12-24 Toyota Motor Corp 内燃機関の排気浄化システム
JP2005155374A (ja) * 2003-11-21 2005-06-16 Isuzu Motors Ltd 排気浄化方法及び排気浄化システム
JP2006161668A (ja) * 2004-12-07 2006-06-22 Isuzu Motors Ltd 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
JP2013079638A (ja) * 2011-10-05 2013-05-02 Mitsubishi Motors Corp エンジンの排気浄化装置
JP2013108421A (ja) * 2011-11-18 2013-06-06 Mitsubishi Motors Corp エンジンの排気浄化装置
JP2014077431A (ja) * 2012-10-11 2014-05-01 Hyundai Motor Company Co Ltd 車両の排気ガス浄化装置および再生方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151725A (ja) * 1995-12-01 1997-06-10 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2000352308A (ja) * 1999-06-10 2000-12-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2004360575A (ja) * 2003-06-04 2004-12-24 Toyota Motor Corp 内燃機関の排気浄化システム
JP2005155374A (ja) * 2003-11-21 2005-06-16 Isuzu Motors Ltd 排気浄化方法及び排気浄化システム
JP2006161668A (ja) * 2004-12-07 2006-06-22 Isuzu Motors Ltd 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
JP2013079638A (ja) * 2011-10-05 2013-05-02 Mitsubishi Motors Corp エンジンの排気浄化装置
JP2013108421A (ja) * 2011-11-18 2013-06-06 Mitsubishi Motors Corp エンジンの排気浄化装置
JP2014077431A (ja) * 2012-10-11 2014-05-01 Hyundai Motor Company Co Ltd 車両の排気ガス浄化装置および再生方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108625936A (zh) * 2017-03-16 2018-10-09 丰田自动车株式会社 内燃机的控制装置
CN108625936B (zh) * 2017-03-16 2020-05-01 丰田自动车株式会社 内燃机的控制装置
JP2019138162A (ja) * 2018-02-06 2019-08-22 マツダ株式会社 エンジンの制御装置
JP2019138160A (ja) * 2018-02-06 2019-08-22 マツダ株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
JP6439334B2 (ja) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6471857B2 (ja) 排気浄化システム
WO2016039451A1 (ja) 排気浄化システム
WO2016039452A1 (ja) 排気浄化システム
JP2016223294A (ja) 排気浄化システム
JP6439334B2 (ja) 排気浄化システム
JP6432411B2 (ja) 排気浄化システム
WO2016098895A1 (ja) 排気浄化システム及びNOx浄化能力回復方法
JP6405816B2 (ja) 排気浄化システム
WO2016039453A1 (ja) 排気浄化システム及び、その制御方法
JP6604034B2 (ja) 排気浄化装置
WO2016039450A1 (ja) 排気浄化システム及び、その制御方法
JP6435730B2 (ja) 内燃機関の制御装置
WO2016104802A1 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP6455070B2 (ja) 排気浄化システム
WO2016039454A1 (ja) 排気浄化システム
JP2016200077A (ja) 排気浄化システム
JP6550996B2 (ja) 吸蔵量推定装置
JP2016180383A (ja) 触媒温度推定装置
JP6398505B2 (ja) 排気浄化システム
JP2016125374A (ja) 排気浄化システム
JP2016084753A (ja) 排気浄化システム
JP2016084752A (ja) 排気浄化システム
JP2016153638A (ja) 排気浄化システム
JP2016153619A (ja) 排気浄化システム
JP2016133022A (ja) 排気浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6439334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees