[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016058560A - Optical fiber output type multi-wavelength laser light source device - Google Patents

Optical fiber output type multi-wavelength laser light source device Download PDF

Info

Publication number
JP2016058560A
JP2016058560A JP2014183911A JP2014183911A JP2016058560A JP 2016058560 A JP2016058560 A JP 2016058560A JP 2014183911 A JP2014183911 A JP 2014183911A JP 2014183911 A JP2014183911 A JP 2014183911A JP 2016058560 A JP2016058560 A JP 2016058560A
Authority
JP
Japan
Prior art keywords
laser light
light sources
temperature
laser
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014183911A
Other languages
Japanese (ja)
Other versions
JP6278200B2 (en
Inventor
一郎 福士
Ichiro Fukushi
一郎 福士
章之 門谷
Akiyuki Kadoya
章之 門谷
隼規 坂本
Junki Sakamoto
隼規 坂本
一馬 渡辺
Kazuma Watanabe
一馬 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014183911A priority Critical patent/JP6278200B2/en
Publication of JP2016058560A publication Critical patent/JP2016058560A/en
Application granted granted Critical
Publication of JP6278200B2 publication Critical patent/JP6278200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical fiber output type multi-wavelength laser light source device capable of maintaining wavelength stability of a laser light source by suppressing coupling efficiency fluctuation in a multiplexing part.SOLUTION: The optical fiber output type multi-wavelength laser light source device includes: a plurality of first temperature control elements 3 which are provided correspondently to a plurality of laser light sources 2 and control temperatures of the laser light sources; a multiplexing part 5 by which laser lights from the plurality of laser light sources emitted through a light transmission part 4 for transmitting laser lights emitted from the plurality of laser light sources are multiplexed and emitted to an optical fiber 10 and laser lights from the plurality of laser light sources are partially demultiplexed; a second temperature control element 6 which controls a temperature of the multiplexing part; a plurality of photodetectors 7 which are provided correspondently to the plurality of laser light sources and detect a part of laser lights of the plurality of laser light sources emitted from the multiplexing part; and a control circuit 8 by which laser output is controlled at a predetermined value on the basis of detection output from the plurality of photodetectors and the second temperature control element is controlled in such a manner that the temperature of the multiplexing part becomes a predetermined temperature. The multiplexing part is thermally insulated from the plurality of laser light sources.SELECTED DRAWING: Figure 1

Description

本発明は、異なる波長を持つ複数のレーザ光を一本の光ファイバから出射する光ファイバ出力型多波長レーザ光源装置に関する。   The present invention relates to an optical fiber output type multi-wavelength laser light source device that emits a plurality of laser beams having different wavelengths from a single optical fiber.

複数のレーザ光を同軸に合波して一本の光ファイバから出射する光ファイバ出力型多波長レーザ光源装置においては、光出力を安定化するために、オートパワーコントロール(APC)を行う場合、フィードバック光として光ファイバ結合前のレーザ光を用いている。このため、環境温度の変化等により合波光学系の調芯がずれてしまうと、光ファイバへの結合効率が低下し、光ファイバ出射後の光出力が変動してしまう。   In an optical fiber output type multi-wavelength laser light source device that multiplexes a plurality of laser beams coaxially and emits them from a single optical fiber, in order to stabilize the optical output, when performing auto power control (APC), Laser light before optical fiber coupling is used as feedback light. For this reason, if the alignment of the multiplexing optical system is shifted due to a change in the environmental temperature or the like, the coupling efficiency to the optical fiber is lowered, and the light output after emission from the optical fiber is fluctuated.

図3は、従来のマルチカラーレーザ装置の構成図である。図3に示すマルチカラーレーザ装置は、互いに異なる波長(488nm,635nm)を持つ各レーザ光を出射する複数のレーザ光源と、各レーザ光を合波する合波光学素子とを熱伝導率の大きい筐体350に実装し、筐体全体を温度コントローラ352で温度制御することにより、環境温度の変動による光ビームポインティングの変動を抑制している。   FIG. 3 is a configuration diagram of a conventional multi-color laser apparatus. The multi-color laser apparatus shown in FIG. 3 has a large thermal conductivity between a plurality of laser light sources that emit laser beams having different wavelengths (488 nm and 635 nm) and a multiplexing optical element that combines the laser beams. By mounting on the casing 350 and controlling the temperature of the entire casing with the temperature controller 352, the fluctuation of the light beam pointing due to the fluctuation of the environmental temperature is suppressed.

また、この種の従来の技術としては、例えば、特許文献2に記載された技術が知られている。   Further, as this type of conventional technique, for example, a technique described in Patent Document 2 is known.

米国特許7903706B2号公報US Patent No. 7903706B2 特開昭63−224384号公報JP-A-63-224384

しかしながら、特許文献1に記載された技術は、以下の課題を有していた。即ち、温度制御対象となる筐体350には、複数のレーザ光源と、合波光学素子とが含まれるため、温度調整能力が大きい温度コントローラ352が必要となるため、消費電力が大きくなる。   However, the technique described in Patent Document 1 has the following problems. That is, since the casing 350 to be temperature controlled includes a plurality of laser light sources and multiplexing optical elements, the temperature controller 352 having a large temperature adjustment capability is required, and thus power consumption increases.

また、筐体全体を温度コントローラ352で温度制御しているため、レーザ光源の温度と合波光学素子の温度とを独立に制御できない。このため、環境温度が変化した時に、ビームポインティングの変動(合波部の結合効率変動)を抑制するために、温度コントローラは、合波光学素子の温度を変化させるとともに、レーザ光源の温度も同時に変化させてしまう。このため、レーザ光源の波長安定性を損なってしまう可能性がある。   Further, since the temperature of the entire casing is controlled by the temperature controller 352, the temperature of the laser light source and the temperature of the multiplexing optical element cannot be controlled independently. For this reason, when the environmental temperature changes, the temperature controller changes the temperature of the multiplexing optical element and also the temperature of the laser light source at the same time in order to suppress beam pointing fluctuations (coupling efficiency fluctuations of the multiplexing unit). It will change. This may impair the wavelength stability of the laser light source.

本発明の課題は、合波部の結合効率変動を抑制し、温度コントローラの消費電力を低減し、レーザ光源の波長安定性を維持できる光ファイバ出力型多波長レーザ光源装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optical fiber output type multi-wavelength laser light source device capable of suppressing the coupling efficiency fluctuation of the multiplexing unit, reducing the power consumption of the temperature controller, and maintaining the wavelength stability of the laser light source. .

本発明に係る光ファイバ出力型多波長レーザ光源装置は、上記課題を解決するために、互いに異なる波長のレーザ光を出射する複数のレーザ光源と、前記複数のレーザ光源に対応して設けられ、前記レーザ光源の温度を制御する複数の第1温度制御素子と、前記複数のレーザ光源から出射されたレーザ光を伝送する光伝送部と、前記光伝送部を出射した前記複数のレーザ光源からのレーザ光を合波して光ファイバに出射し且つ前記複数のレーザ光源からのレーザ光の一部を分岐する合波部と、前記合波部の温度を制御する第2温度制御素子と、前記複数のレーザ光源に対応して設けられ、前記合波部から出射された前記複数のレーザ光源のレーザ光の一部を検出する複数の光検出器と、前記複数の光検出器の検出出力に基づきレーザ出力を所定値に制御し且つ前記合波部の温度が所定温度になるように前記第2温度制御素子を制御する制御回路を備え、前記合波部は、前記複数のレーザ光源に対して熱的に絶縁されていることを特徴とする。   In order to solve the above problems, an optical fiber output type multi-wavelength laser light source device according to the present invention is provided corresponding to a plurality of laser light sources that emit laser beams having different wavelengths, and the plurality of laser light sources, A plurality of first temperature control elements for controlling the temperature of the laser light source; a light transmission unit for transmitting laser light emitted from the plurality of laser light sources; and a plurality of laser light sources emitted from the light transmission unit. A multiplexing unit that multiplexes and emits laser light to an optical fiber and branches a part of the laser light from the plurality of laser light sources; a second temperature control element that controls a temperature of the multiplexing unit; A plurality of photodetectors provided corresponding to a plurality of laser light sources and detecting a part of the laser beams of the plurality of laser light sources emitted from the multiplexing unit, and detection outputs of the plurality of photodetectors Based on the laser output And a control circuit that controls the second temperature control element so that the temperature of the multiplexing unit is a predetermined temperature, and the multiplexing unit is thermally insulated from the plurality of laser light sources. It is characterized by being.

本発明によれば、複数のレーザ光源と合波部とを熱的に絶縁し、合波部を所定温度になるように制御するので、環境温度の変化による合波部の結合効率変動を抑制し、光ファイバ出射後の光出力を安定化することができる。また、温度制御対象が小さくなるため、温度コントローラの消費電力を低減することができる。また、合波部の制御温度がレーザ光源と独立となるため、レーザ光源の波長安定性を維持することができる。   According to the present invention, the plurality of laser light sources and the multiplexing unit are thermally insulated, and the multiplexing unit is controlled so as to reach a predetermined temperature, thereby suppressing the coupling efficiency fluctuation of the multiplexing unit due to a change in environmental temperature. In addition, the light output after emission from the optical fiber can be stabilized. In addition, since the temperature control target is reduced, the power consumption of the temperature controller can be reduced. In addition, since the control temperature of the multiplexing unit is independent of the laser light source, the wavelength stability of the laser light source can be maintained.

本発明の実施形態の光ファイバ出力型多波長レーザ光源装置の上面構成図である。It is a top surface lineblock diagram of an optical fiber output type multi-wavelength laser light source device of an embodiment of the present invention. 本発明の実施形態の光ファイバ出力型多波長レーザ光源装置の側面構成図である。It is a side block diagram of the optical fiber output type multi-wavelength laser light source device of the embodiment of the present invention. 従来のマルチカラーレーザ装置の構成図である。It is a block diagram of the conventional multicolor laser apparatus.

以下、本発明の光ファイバ出力型多波長レーザ光源装置の実施の形態を図面に基づいて詳細に説明する。   Embodiments of an optical fiber output type multi-wavelength laser light source device of the present invention will be described in detail below with reference to the drawings.

図1は、本発明の実施形態の光ファイバ出力型多波長レーザ光源装置の上面構成図である。図2は、本発明の実施形態の光ファイバ出力型多波長レーザ光源装置の側面構成図である。   FIG. 1 is a top view of an optical fiber output type multi-wavelength laser light source apparatus according to an embodiment of the present invention. FIG. 2 is a side configuration diagram of the optical fiber output type multi-wavelength laser light source apparatus according to the embodiment of the present invention.

光ファイバ出力型多波長レーザ光源装置は、レーザ筐体1内に、複数のレーザ光源2−1〜2−n、複数の第1温度制御素子3−1〜3−n、光伝送光学系4、合波光学系5、第2温度制御素子6、複数のフォトダイオード7−1〜7−n、レーザ制御回路8、コネクタ9を有して構成されている。   An optical fiber output type multi-wavelength laser light source device includes a plurality of laser light sources 2-1 to 2-n, a plurality of first temperature control elements 3-1 to 3-n, and an optical transmission optical system 4 in a laser housing 1. , A multiplexing optical system 5, a second temperature control element 6, a plurality of photodiodes 7-1 to 7-n, a laser control circuit 8, and a connector 9.

コネクタ9には光ファイバ10の一端が接続されている。光ファイバ10の他端にはコネクタ11が接続されている。   One end of an optical fiber 10 is connected to the connector 9. A connector 11 is connected to the other end of the optical fiber 10.

複数のレーザ光源2−1〜2−nは、互いに異なる波長(λ1,λ2…λn)のレーザ光を出射するもので、互いに所定距離だけ離間して配置されている。このため、複数のレーザ光源2−1〜2−nの各々は、互いに熱的に絶縁されている。   The plurality of laser light sources 2-1 to 2-n emit laser beams having different wavelengths (λ1, λ2,..., Λn) and are spaced apart from each other by a predetermined distance. For this reason, each of the plurality of laser light sources 2-1 to 2-n is thermally insulated from each other.

複数の第1温度制御素子3−1〜3−nは、複数のレーザ光源2−1〜2−nに対応して設けられるとともに、図2に示すように、放熱板からなる筐体1とレーザ光源との間に設けられ、複数のレーザ光源2−1〜2−nの温度を制御するもので、例えばペルチェ素子からなる。   The plurality of first temperature control elements 3-1 to 3-n are provided corresponding to the plurality of laser light sources 2-1 to 2-n and, as shown in FIG. It is provided between the laser light sources and controls the temperature of the plurality of laser light sources 2-1 to 2-n, and is composed of, for example, a Peltier element.

光伝送光学系4は、本発明の光伝送部に対応し、複数のレーザ光源2−1〜2−nから出射されたレーザ光を伝送するもので、例えば、光ファイバからなる。なお、光伝送光学系4は、光ファイバの代わりに、集光レンズを用いることもできる。   The optical transmission optical system 4 corresponds to the optical transmission unit of the present invention and transmits laser light emitted from the plurality of laser light sources 2-1 to 2-n, and is made of, for example, an optical fiber. The light transmission optical system 4 can use a condensing lens instead of the optical fiber.

合波光学系5は、本発明の合波部に対応し、光伝送光学系4を出射した複数のレーザ光源2−1〜2−nからのレーザ光を同軸に合波してコネクタ9を介して光ファイバ10に出射し且つ複数のレーザ光源2−1〜2−nからのレーザ光の一部を分岐して複数のフォトダイオード7−1〜7−nに出力するもので、例えば、ダイクロイックフィルタからなる。   The multiplexing optical system 5 corresponds to the multiplexing unit of the present invention, and coaxially combines the laser beams from the plurality of laser light sources 2-1 to 2-n emitted from the optical transmission optical system 4 to connect the connector 9. Are emitted to the optical fiber 10 and part of the laser light from the plurality of laser light sources 2-1 to 2-n is branched and output to the plurality of photodiodes 7-1 to 7-n. It consists of a dichroic filter.

第2温度制御素子6は、図2に示すように、筐体1と合波光学系5との間に設けられ、合波光学系5の温度を制御するもので、例えば、ペルチェ素子からなる。   As shown in FIG. 2, the second temperature control element 6 is provided between the housing 1 and the multiplexing optical system 5, and controls the temperature of the multiplexing optical system 5. For example, the second temperature control element 6 is composed of a Peltier element. .

複数のフォトダイオード7−1〜7−nは、本発明の複数の光検出器に対応し、合波光学系5から出射された複数のレーザ光源2−1〜2−nのレーザ光の一部を検出してレーザ制御回路8に出力する。   The plurality of photodiodes 7-1 to 7-n correspond to the plurality of photodetectors of the present invention, and are one of the laser beams of the plurality of laser light sources 2-1 to 2-n emitted from the multiplexing optical system 5. Are detected and output to the laser control circuit 8.

レーザ制御回路8は、本発明の制御回路に対応し、複数のフォトダイオード7−1〜7−nからの検出出力に基づきレーザ出力を所定値に制御するとともに、複数のレーザ光源2−1〜2−nの温度と合波光学系5の温度が所定温度になるように複数の第1温度制御素子3−1〜3−n及び第2温度制御素子6を制御する。   The laser control circuit 8 corresponds to the control circuit of the present invention, controls the laser output to a predetermined value based on the detection outputs from the plurality of photodiodes 7-1 to 7-n, and the plurality of laser light sources 2-1 to 2-1. The plurality of first temperature control elements 3-1 to 3-n and the second temperature control element 6 are controlled so that the temperature of 2-n and the temperature of the multiplexing optical system 5 become a predetermined temperature.

また、合波光学系5は、光伝送光学系4を介して複数のレーザ光源2−1〜2−nに対して熱的に絶縁されている。   The multiplexing optical system 5 is thermally insulated from the plurality of laser light sources 2-1 to 2-n through the optical transmission optical system 4.

レーザ制御回路8は、複数のフォトダイオード7−1〜7−nの出力に基づき複数のレーザ光源2−1〜2−nの光出力の変動が所定値以下になるように第2温度制御素子6の温度を制御する。   The laser control circuit 8 includes a second temperature control element such that fluctuations in the light outputs of the plurality of laser light sources 2-1 to 2-n are less than or equal to a predetermined value based on the outputs of the plurality of photodiodes 7-1 to 7-n. 6 temperature is controlled.

次にこのように構成される本発明の実施形態の光ファイバ出力型多波長レーザ光源装置の動作を説明する。   Next, the operation of the optical fiber output type multi-wavelength laser light source apparatus of the embodiment of the present invention configured as described above will be described.

まず、異なる波長の複数のレーザ光源2−1〜2−nが、複数の第1温度制御素子3−1〜3−nにより温度制御される。各レーザ光源2−1〜2−nからの出射光は、光伝送光学系4を介して合波光学系5に導光され、同軸のビームに再配置される。   First, a plurality of laser light sources 2-1 to 2-n having different wavelengths are temperature-controlled by a plurality of first temperature control elements 3-1 to 3-n. Light emitted from each of the laser light sources 2-1 to 2-n is guided to the multiplexing optical system 5 through the optical transmission optical system 4 and rearranged into a coaxial beam.

また、これと同時に、各波長のレーザ光の一部がフォトダイオード7−1〜7−nに導光され、レーザ制御回路8にフィードバックされる。レーザ制御回路8によりレーザ光源2−1〜2−nの各波長に対してAPC制御が行われる。   At the same time, part of the laser light of each wavelength is guided to the photodiodes 7-1 to 7-n and fed back to the laser control circuit 8. The laser control circuit 8 performs APC control for each wavelength of the laser light sources 2-1 to 2 -n.

合波光学系5に取り付けられたコネクタ9には、同軸のビームに対して調芯された出力用の光ファイバ10の一端が固定され、光ファイバ10の他端からは各波長の光が出射される。   One end of an output optical fiber 10 aligned with a coaxial beam is fixed to a connector 9 attached to the multiplexing optical system 5, and light of each wavelength is emitted from the other end of the optical fiber 10. Is done.

ここで、合波光学系5が実装される筐体1は、第2温度制御素子6により温度制御されるため、環境温度の変化による合波光学系5の結合効率変動を抑制し、APCにより安定化された光出力を光ファイバ10から出力することができる。また、光伝送光学系4は、熱伝導率が低く、レーザ光源2−1〜2−nと合波光学系5とを熱的に絶縁しているため、相互の熱的な干渉を排除することができる。   Here, since the casing 1 in which the multiplexing optical system 5 is mounted is temperature-controlled by the second temperature control element 6, the coupling efficiency fluctuation of the multiplexing optical system 5 due to a change in environmental temperature is suppressed, and the APC is used. A stabilized light output can be output from the optical fiber 10. Further, the optical transmission optical system 4 has low thermal conductivity and thermally insulates the laser light sources 2-1 to 2-n and the multiplexing optical system 5 from each other, thereby eliminating mutual thermal interference. be able to.

即ち、レーザ光源2−1〜2−nと合波光学系5とを熱的に絶縁し、合波光学系5を所定温度になるように制御するので、環境温度の変化による合波光学系5の結合効率変動を抑制し、光ファイバ出射後の光出力を安定化することができる。   That is, since the laser light sources 2-1 to 2-n and the combining optical system 5 are thermally insulated and the combining optical system 5 is controlled so as to reach a predetermined temperature, the combining optical system due to a change in environmental temperature. 5 can be suppressed, and the light output after exiting the optical fiber can be stabilized.

また、温度制御対象が小さくなるため、温度コントローラの消費電力を低減することができる。また、合波光学系5の制御温度がレーザ光源2−1〜2−nと独立となるため、レーザ光源2−1〜2−nの波長安定性を維持することができる。   In addition, since the temperature control target is reduced, the power consumption of the temperature controller can be reduced. Moreover, since the control temperature of the multiplexing optical system 5 is independent of the laser light sources 2-1 to 2-n, the wavelength stability of the laser light sources 2-1 to 2-n can be maintained.

本発明に係る光ファイバ出力型多波長レーザ光源装置は、異なる波長のレーザ光を同時又は時系列に使い分ける装置全般に適用され、レーザ顕微鏡、レーザプロジェクタ、フローサイトメータ等に利用可能である。   The optical fiber output type multi-wavelength laser light source device according to the present invention is applied to all devices that use laser beams of different wavelengths simultaneously or in time series, and can be used for laser microscopes, laser projectors, flow cytometers, and the like.

1 レーザ筐体
2−1〜2−n レーザ光源
3−1〜3−n 第1温度制御素子
4 光伝送光学系
5 合波光学系
6 第2温度制御素子
7−1〜7−n フォトダイオード
8 レーザ制御回路
9,11 コネクタ
10 光ファイバ
DESCRIPTION OF SYMBOLS 1 Laser housing | casing 2-1 to 2-n Laser light source 3-1 to 3-n 1st temperature control element
4 optical transmission optical system 5 multiplexing optical system 6 second temperature control elements 7-1 to 7-n photodiode 8 laser control circuits 9, 11 connector 10 optical fiber

Claims (3)

互いに異なる波長のレーザ光を出射する複数のレーザ光源と、
前記複数のレーザ光源に対応して設けられ、前記レーザ光源の温度を制御する複数の第1温度制御素子と、
前記複数のレーザ光源から出射されたレーザ光を伝送する光伝送部と、
前記光伝送部を出射した前記複数のレーザ光源からのレーザ光を合波して光ファイバに出射し且つ前記複数のレーザ光源からのレーザ光の一部を分岐する合波部と、
前記合波部の温度を制御する第2温度制御素子と、
前記複数のレーザ光源に対応して設けられ、前記合波部から出射された前記複数のレーザ光源のレーザ光の一部を検出する複数の光検出器と、
前記複数の光検出器の検出出力に基づきレーザ出力を所定値に制御し且つ前記合波部の温度が所定温度になるように前記第2温度制御素子を制御する制御回路を備え、前記合波部は、前記複数のレーザ光源に対して熱的に絶縁されていることを特徴とする光ファイバ出力型多波長レーザ光源装置。
A plurality of laser light sources that emit laser beams of different wavelengths;
A plurality of first temperature control elements that are provided corresponding to the plurality of laser light sources and control the temperature of the laser light sources;
An optical transmission unit for transmitting laser light emitted from the plurality of laser light sources;
A multiplexing unit that multiplexes the laser beams from the plurality of laser light sources that have exited the light transmission unit, emits them to an optical fiber, and branches a part of the laser beams from the plurality of laser light sources;
A second temperature control element for controlling the temperature of the multiplexing unit;
A plurality of photodetectors provided corresponding to the plurality of laser light sources and detecting a part of the laser beams of the plurality of laser light sources emitted from the multiplexing unit;
A control circuit for controlling the second temperature control element so that the laser output is controlled to a predetermined value based on the detection outputs of the plurality of photodetectors and the temperature of the combining unit is set to a predetermined temperature; The optical fiber output type multi-wavelength laser light source device, wherein the unit is thermally insulated from the plurality of laser light sources.
前記複数のレーザ光源の各々のレーザ光源は、互いに熱的に絶縁されていることを特徴とする請求項1記載の光ファイバ出力型多波長レーザ光源装置。   2. The optical fiber output type multi-wavelength laser light source apparatus according to claim 1, wherein each of the plurality of laser light sources is thermally insulated from each other. 前記制御回路は、前記複数の光検出器の出力に基づき前記複数のレーザ光源の光出力の変動が所定値以下になるように前記第2温度制御素子を制御することを特徴とする請求項1又は請求項2記載の光ファイバ出力型多波長レーザ光源装置。
2. The control circuit according to claim 1, wherein the control circuit controls the second temperature control element based on outputs of the plurality of photodetectors so that fluctuations in light output of the plurality of laser light sources become a predetermined value or less. An optical fiber output type multi-wavelength laser light source device according to claim 2.
JP2014183911A 2014-09-10 2014-09-10 Optical fiber output type multi-wavelength laser light source device Active JP6278200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014183911A JP6278200B2 (en) 2014-09-10 2014-09-10 Optical fiber output type multi-wavelength laser light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014183911A JP6278200B2 (en) 2014-09-10 2014-09-10 Optical fiber output type multi-wavelength laser light source device

Publications (2)

Publication Number Publication Date
JP2016058560A true JP2016058560A (en) 2016-04-21
JP6278200B2 JP6278200B2 (en) 2018-02-14

Family

ID=55756683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014183911A Active JP6278200B2 (en) 2014-09-10 2014-09-10 Optical fiber output type multi-wavelength laser light source device

Country Status (1)

Country Link
JP (1) JP6278200B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068982A (en) * 1998-08-17 2000-03-03 Kdd Corp Optical access system
US6118562A (en) * 1997-05-16 2000-09-12 Electronics And Telecommunications Research Institute Wavelength aligning apparatus using arrayed waveguide grating
JP2006339993A (en) * 2005-06-01 2006-12-14 Korea Advanced Inst Of Sci Technol Constituting method of wavelength variable optical source, wavelength variable optical source device, and wavelength division multiplexing optical transmission device using this optical source device
JP2013197371A (en) * 2012-03-21 2013-09-30 Fujikura Ltd Drive circuit, light source device, light amplifier, and driving method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118562A (en) * 1997-05-16 2000-09-12 Electronics And Telecommunications Research Institute Wavelength aligning apparatus using arrayed waveguide grating
JP2000068982A (en) * 1998-08-17 2000-03-03 Kdd Corp Optical access system
JP2006339993A (en) * 2005-06-01 2006-12-14 Korea Advanced Inst Of Sci Technol Constituting method of wavelength variable optical source, wavelength variable optical source device, and wavelength division multiplexing optical transmission device using this optical source device
JP2013197371A (en) * 2012-03-21 2013-09-30 Fujikura Ltd Drive circuit, light source device, light amplifier, and driving method

Also Published As

Publication number Publication date
JP6278200B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
US7369587B2 (en) Temperature control for coarse wavelength division multiplexing systems
US20110170856A1 (en) Optical transmission device
JP2009004903A (en) Optical data link, and optical output control method
JP6010632B2 (en) Light source unit, light source unit control method, program, and recording medium
CN106125212B (en) Optical module
US20150311670A1 (en) Heat-swap device and method
JP2014079013A5 (en)
JP2009194876A (en) Power-saved wavelength selection apparatus
JP6278200B2 (en) Optical fiber output type multi-wavelength laser light source device
JP2016111214A (en) Wavelength variable light source, control method for wavelength variable light source, and manufacturing method of wavelength variable light source
WO2011050612A1 (en) Method, device, and system for locking wavelength of optical signal
JP2009033556A (en) Optical transmitter
WO2021129854A1 (en) Wdm-based baseband signal transmission apparatus and method, storage medium, and electronic device
CN203554454U (en) Passive optical network, optical link terminal (OLT) and optical module thereof
JP2011142137A (en) Method of controlling optical transmitter
JP2010239556A (en) Optical output controller, and optical output control method
JP2006222868A (en) Optical transmitting and receiving module and optical transmitter-receiver provided with the same
JP2005032968A (en) Optical transmitting module
WO2016001969A1 (en) Semiconductor laser device
US9325153B2 (en) Method to control transmitter optical module
JP2005191223A (en) Semiconductor laser source
KR101833108B1 (en) Wdm system without temperature maintenance device by using at least two array waveguide lattice
JP2009188758A (en) Optical transmitter
JP2008211362A (en) Optical signal transmitter
JP6529064B2 (en) Optical communication system and optical communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180102

R151 Written notification of patent or utility model registration

Ref document number: 6278200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151