WO2016001969A1 - Semiconductor laser device - Google Patents
Semiconductor laser device Download PDFInfo
- Publication number
- WO2016001969A1 WO2016001969A1 PCT/JP2014/067375 JP2014067375W WO2016001969A1 WO 2016001969 A1 WO2016001969 A1 WO 2016001969A1 JP 2014067375 W JP2014067375 W JP 2014067375W WO 2016001969 A1 WO2016001969 A1 WO 2016001969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor lasers
- semiconductor
- semiconductor laser
- light
- laser
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
Definitions
- the present invention relates to a semiconductor laser device.
- Laser processing equipment performs various processes from laser beam to large-scale processing such as welding and cutting and fine processing such as marking. With the processing use of laser light, it is desired to increase the output and power consumption of a laser light source.
- laser light sources include gas lasers, solid state lasers, and semiconductor lasers. Semiconductor lasers are superior in terms of high efficiency and ease of maintenance.
- a laser processing apparatus using a semiconductor laser realizes high output by superimposing light outputs from a plurality of semiconductor lasers as described in Patent Document 1, for example.
- the output can be easily increased.
- a failure or deterioration of the semiconductor laser occurs, there is a problem that it is difficult to identify the failed or deteriorated semiconductor laser.
- Patent Document 2 a photodiode for output detection is provided for each semiconductor laser, and the failure of each semiconductor laser is detected by monitoring the output of each photodiode.
- Patent Document 3 a failure is detected by controlling the current supply timing to each semiconductor laser and monitoring the laser output in time series.
- Patent Document 2 since a photodiode is added to each semiconductor laser, the apparatus is increased in size and cost. Moreover, in patent document 3, a control system circuit and an algorithm will become complicated.
- a semiconductor laser device includes a plurality of semiconductor lasers, a drive circuit that supplies current to the plurality of semiconductor lasers, and a photosynthesis that combines the laser beams of the plurality of semiconductor lasers.
- a light detection element for detecting laser light of the plurality of semiconductor lasers combined by the light combiner, wherein the light combiner is coupled to each of the semiconductor lasers of the plurality of semiconductor lasers in the light combiner.
- the optical path length from each semiconductor laser to the optical combiner is set so that the light arrival time to the end differs for each semiconductor laser.
- the optical combiner sets the optical path length from each semiconductor laser to the optical combiner so that the light arrival time from each semiconductor laser to the multiplexing end is different for each semiconductor laser. Based on the light arrival time and the light output of each semiconductor laser, it is possible to detect a failure or deterioration of a part of the plurality of semiconductor lasers, and to reduce the size and cost.
- FIG. 1 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram showing each output when each semiconductor laser of the semiconductor laser device according to the first embodiment of the present invention is normal.
- FIG. 3 is a diagram showing each output when a part of the semiconductor lasers of the semiconductor laser of the semiconductor laser device according to the first embodiment of the present invention deteriorates.
- FIG. 4 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 2 of the present invention.
- FIG. 5 is a diagram showing a configuration of a semiconductor laser apparatus according to Example 3 of the present invention.
- FIG. 6 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 4 of the present invention.
- the principle of the present invention will be described.
- a pulse current is applied to a plurality of semiconductor lasers, an optical output is generated from the semiconductor laser that the current reaches early. Further, the light output reaches the photodiode from the one having a short optical distance. Accordingly, the arrival time of the light output from the plurality of semiconductor lasers at the multiplexing end is shifted by arranging the optical element that changes the optical distance from the semiconductor laser connection method, the arranging method, or the semiconductor laser to the multiplexing end. be able to. That is, the failure and deterioration of the semiconductor laser can be detected by monitoring the temporal change of the light output with the photodiode.
- FIG. 1 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 1 of the present invention.
- the semiconductor laser device according to the first embodiment of the present invention includes a plurality of semiconductor lasers LD1 to LD4, an LD drive circuit 10, a photo combiner 11, a photodiode PD, a resistor R, and a central processing unit (CPU). 13, a memory 14, and a display unit 15.
- the plurality of semiconductor lasers LD1 to LD4 are connected in series so that the distances LLD1, LLD2, LLD3, and LLD4 from the LD driving circuit 10 to each of the plurality of semiconductor lasers LD1 to LD4 are LLD1 ⁇ LLD2 ⁇ LLD3 ⁇ LLD4. Yes.
- the LD drive circuit 10 supplies current to the plurality of semiconductor lasers LD1 to LD4 connected in series.
- the plurality of semiconductor lasers LD1 to LD4 output laser light when a current flows.
- the plurality of semiconductor lasers LD1 to LD4 and the optical combiner 11 are such that the distances SLD1, SLD2, SLD3, and SLD4 from the plurality of semiconductor lasers LD1 to LD4 to the multiplexing end in the optical combiner 11 are SLD1 ⁇ SLD2 ⁇ SLD3 ⁇ SLD4. It is arranged to be.
- the light synthesizer 11 is composed of optical elements (mirrors, lenses, prisms, etc.) having reflection and refraction functions, and collects the light output from the plurality of semiconductor lasers LD1 to LD4 into a spot having a diameter of 500 ⁇ m or less at the multiplexing end. have.
- the light combiner 11 combines the laser beams of the semiconductor lasers LD1 to LD4, and the light arrival time from each of the semiconductor lasers LD1 to LD4 to the multiplexing end in the light combiner 11 is for each of the semiconductor lasers LD1 to LD4.
- the optical path lengths from the respective semiconductor lasers LD1 to LD4 to the optical combiner 11 are set.
- the half mirror 12 separates the combined laser light from the light combiner 11 into monitor light and output light.
- the photodiode PD corresponds to the light detection element of the present invention and detects the laser light dispersed by the half mirror 12.
- the CPU 13 stores the output value of the laser beam detected by the photodiode PD in the memory 14 or causes the display unit 15 to display the output value.
- the semiconductor lasers LD1 to LD4 output laser beams in the order of LD1, LD2, LD3, and LD4.
- the first laser beam emitted from the semiconductor laser LD1 is detected by the photodiode PD first through the light combiner 11 and the half mirror 12.
- the second laser beam output from the semiconductor laser LD2 is detected second by the photodiode PD via the photo combiner 11 and the half mirror 12.
- the laser beam from the semiconductor laser LD3 output third is detected by the photodiode PD third through the photo combiner 11 and the half mirror 12.
- the fourth laser light output from the semiconductor laser LD4 is detected by the photodiode PD fourth through the optical combiner 11 and the half mirror 12.
- the output of the photodiode PD can be obtained temporally in the order of the semiconductor laser LD1, the semiconductor laser LD2, the semiconductor laser LD3, and the semiconductor laser LD4.
- each output of the photodiode PD is a constant value.
- the third output is lower than the other outputs, it can be determined that the semiconductor laser LD3 has deteriorated. Further, even when a semiconductor laser fails, it is possible to detect a failed semiconductor laser due to a temporal output change of the photodiode PD.
- the line length from the LD drive circuit 10 to the semiconductor lasers LD1 to LD4 is set so that the light emission timings of the respective semiconductor lasers LD1 to LD4 are different for the semiconductor lasers LD1 to LD4.
- the optical path length from each of the semiconductor lasers LD1 to LD4 to the optical combiner 11 is adjusted so that the light arrival time from each of the semiconductor lasers LD1 to LD4 to the multiplexing end is different for each of the semiconductor lasers LD1 to LD4.
- FIG. 4 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 2 of the present invention.
- the semiconductor laser device according to the second embodiment includes an LD drive circuit 10, bipolar NPN transistors Q1 and Q2, semiconductor lasers LD1 and LD2, a photosynthesizer 11a, a photodiode PD, a CPU 13, a memory 14, and a display unit 15.
- the distance S1 between the LD drive circuit 10 and the transistor Q1 and the distance S2 between the LD drive circuit 10 and the transistor Q2 are the same.
- the LD driving circuit 10 applies a voltage to the bases of the transistors Q1 and Q2, thereby causing a current to flow through the transistors Q1 and Q2.
- the power source Vcc is connected to the collectors of the transistors Q1 and Q2, the anode of the semiconductor laser LD1 is connected to the emitter of the transistor Q1, and the anode of the semiconductor laser LD2 is connected to the emitter of the transistor Q2.
- the light combiner 11a is arranged such that the distances SLD11 and SLD12 from the semiconductor lasers LD1 and LD2 to the multiplexing end in the light combiner 11 satisfy SLD11> SLD12.
- FIG. 4 are the same as those shown in FIG. 1 because the optical combiner 11a, the photodiode PD, the CPU 13, the memory 14, and the display unit 15 shown in FIG. 4 are omitted.
- the semiconductor laser device of the second embodiment when the transistors Q1 and Q2 are turned on by the voltage from the LD driving circuit 10, a current flows through the semiconductor lasers LD1 and LD2 simultaneously. Then, the laser beam from the semiconductor laser LD2 reaches the optical combiner 11a first. On the other hand, the laser beam from the semiconductor laser LD1 reaches the optical combiner 11a second.
- the output first detected by the photodiode PD is the output of the laser light from the semiconductor laser LD2, and the output detected by the photodiode PD is the output of the laser light from the semiconductor laser LD1.
- the deterioration and failure of the semiconductor lasers LD1 and LD2 can be determined by the change in output with time.
- the distance from the LD drive circuit 10 to each of the semiconductor lasers LD1 to LD4 is set, and the distance from each of the semiconductor lasers LD1 to LD4 to the multiplexing end in the optical combiner 11 is set.
- FIG. 5 is a diagram showing a configuration of a semiconductor laser apparatus according to Example 3 of the present invention.
- the semiconductor laser device according to the third embodiment is different from the semiconductor laser device according to the first embodiment shown in FIG. 1 in that prisms 16a and 16b are arranged in the optical path between the semiconductor laser LD4 and the optical combiner 11.
- the prisms 16a and 16b correspond to the optical element for adjusting light propagation according to the present invention.
- the prisms 16a and 16b are arranged in the optical path between the semiconductor laser LD4 and the light combiner 11, light reaches between the semiconductor laser LD4 and the light combiner 11. The time can be adjusted. Therefore, it is possible to easily determine the deterioration or failure of the semiconductor lasers LD1 to LD4.
- FIG. 6 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 4 of the present invention.
- the semiconductor laser device according to the fourth embodiment is characterized in that the semiconductor lasers LD1 to LD4 are connected to the semiconductor laser device according to the first embodiment shown in FIG. 1 by conductive patterns PT1 to PT4 having different dielectric constants. To do.
- the semiconductor lasers LD1 to LD4 are connected by the conductive patterns PT1 to PT4 having different dielectric constants, the current transmission times are different from each other. For this reason, the current arrival time from the drive circuit 10 to each of the semiconductor lasers LD1 to LD4 can be adjusted, so that the deterioration or failure of the semiconductor lasers LD1 to LD4 can be easily determined.
- the present invention is applicable to laser processing machines and laser lighting equipment.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
The present invention is provided with: a plurality of semiconductor lasers (LD1-LD4); a drive circuit (10) that supplies a current to the semiconductor lasers; an optical synthesizer (11) that synthesizes laser beams of the semiconductor lasers; and an optical detection element (PD) that detects a synthesized laser beam of the semiconductor lasers, said laser beam having been synthesized by means of the optical synthesizer. The optical synthesizer sets optical path lengths from respective semiconductor lasers to a multiplexing end in the optical synthesizer such that semiconductor laser beam travelling times from respective semiconductor lasers to the multiplexing end vary by each of the semiconductor lasers.
Description
本発明は、半導体レーザ装置に関する。
The present invention relates to a semiconductor laser device.
レーザ加工装置は、レーザ光により、溶接や切断等の大口加工や、マーキング等の微細加工まで様々な加工を行う。レーザ光の加工利用に伴って、レーザ光源の高出力化や低消費電力化が望まれている。レーザ光源としては、ガスレーザ、固体レーザ、半導体レーザなどがある。高効率であることやメンテナンスの容易さの面で半導体レーザに優位性がある。
Laser processing equipment performs various processes from laser beam to large-scale processing such as welding and cutting and fine processing such as marking. With the processing use of laser light, it is desired to increase the output and power consumption of a laser light source. Examples of laser light sources include gas lasers, solid state lasers, and semiconductor lasers. Semiconductor lasers are superior in terms of high efficiency and ease of maintenance.
半導体レーザを用いたレーザ加工装置は、例えば、特許文献1に記載されるように複数の半導体レーザからの光出力を重ね合わせることで高出力を実現する。複数の半導体レーザを使用する場合、容易に高出力化できる。しかし、半導体レーザの故障や劣化が発生した場合に、故障、劣化した半導体レーザを特定することが困難であるという課題を有している。
A laser processing apparatus using a semiconductor laser realizes high output by superimposing light outputs from a plurality of semiconductor lasers as described in Patent Document 1, for example. When a plurality of semiconductor lasers are used, the output can be easily increased. However, when a failure or deterioration of the semiconductor laser occurs, there is a problem that it is difficult to identify the failed or deteriorated semiconductor laser.
この課題に対して、複数の半導体レーザを使用する場合、特許文献2、特許文献3に記載されるように、半導体レーザの故障を検知する装置を付加することで、装置としてのメンテナンス性や信頼性を高めることができる。
In response to this problem, when a plurality of semiconductor lasers are used, as described in Patent Document 2 and Patent Document 3, by adding a device for detecting a failure of the semiconductor laser, maintainability and reliability as a device are improved. Can increase the sex.
特許文献2においては、各々の半導体レーザに対して出力検知用のフォトダイオードを設け、各々のフォトダイオードの出力をモニタすることで各々の半導体レーザの故障を検知している。また、特許文献3においては、各々の半導体レーザに対する電流供給タイミングを制御し、レーザ出力を時系列でモニタすることで故障を検知している。
In Patent Document 2, a photodiode for output detection is provided for each semiconductor laser, and the failure of each semiconductor laser is detected by monitoring the output of each photodiode. In Patent Document 3, a failure is detected by controlling the current supply timing to each semiconductor laser and monitoring the laser output in time series.
しかしながら、特許文献2にあっては、各々の半導体レーザに対してフォトダイオードを付加するため、装置が大型化及び高コスト化する。また、特許文献3にあっては、制御系回路及びアルゴリズムが複雑化してしまう。
However, in Patent Document 2, since a photodiode is added to each semiconductor laser, the apparatus is increased in size and cost. Moreover, in patent document 3, a control system circuit and an algorithm will become complicated.
本発明は、複数の半導体レーザの一部の故障や劣化を検知でき、しかも小型化及び低コスト化を図ることができる半導体レーザ装置を提供することを目的とする。
It is an object of the present invention to provide a semiconductor laser device that can detect a failure or deterioration of a part of a plurality of semiconductor lasers and that can be reduced in size and cost.
上記の課題を解決するために、本発明に係る半導体レーザ装置は、複数の半導体レーザと、前記複数の半導体レーザに電流を供給する駆動回路と、前記複数の半導体レーザのレーザ光を合成する光合成器と、前記光合成器で合成された前記複数の半導体レーザのレーザ光を検知する光検知素子を備え、前記光合成器は、前記複数の半導体レーザの各々の半導体レーザから前記光合成器内の合波端までの光到達時間が前記各々の半導体レーザ毎に異なるように、前記各々の半導体レーザから前記光合成器までの光路長を設定する。
In order to solve the above problems, a semiconductor laser device according to the present invention includes a plurality of semiconductor lasers, a drive circuit that supplies current to the plurality of semiconductor lasers, and a photosynthesis that combines the laser beams of the plurality of semiconductor lasers. And a light detection element for detecting laser light of the plurality of semiconductor lasers combined by the light combiner, wherein the light combiner is coupled to each of the semiconductor lasers of the plurality of semiconductor lasers in the light combiner. The optical path length from each semiconductor laser to the optical combiner is set so that the light arrival time to the end differs for each semiconductor laser.
本発明によれば、光合成器は、各々の半導体レーザから合波端までの光到達時間が各々の半導体レーザ毎に異なるように、各々の半導体レーザから光合成器までの光路長を設定するので、各々の半導体レーザの光到達時間と光出力とに基づき、複数の半導体レーザの一部の故障や劣化を検知でき、しかも小型化及び低コスト化を図ることができる。
According to the present invention, the optical combiner sets the optical path length from each semiconductor laser to the optical combiner so that the light arrival time from each semiconductor laser to the multiplexing end is different for each semiconductor laser. Based on the light arrival time and the light output of each semiconductor laser, it is possible to detect a failure or deterioration of a part of the plurality of semiconductor lasers, and to reduce the size and cost.
以下、本発明の実施形態に係る半導体レーザ装置が図面を参照しながら詳細に説明される。
Hereinafter, a semiconductor laser device according to an embodiment of the present invention will be described in detail with reference to the drawings.
まず、本発明の原理を説明する。複数の半導体レーザにパルス電流を与えると、電流が早く到達する半導体レーザから光出力を生じる。また、光出力は光学的距離が短いものからフォトダイオードに到達する。従って、半導体レーザの接続方法、配置方法又は半導体レーザから合波端までに光学的距離を変化させる光学素子を配置することで、合波端における複数の半導体レーザからの光出力の到達時間をずらすことができる。即ち、光出力の時間的変化をフォトダイオードでモニタすることで半導体レーザの故障、劣化を検出することができる。
First, the principle of the present invention will be described. When a pulse current is applied to a plurality of semiconductor lasers, an optical output is generated from the semiconductor laser that the current reaches early. Further, the light output reaches the photodiode from the one having a short optical distance. Accordingly, the arrival time of the light output from the plurality of semiconductor lasers at the multiplexing end is shifted by arranging the optical element that changes the optical distance from the semiconductor laser connection method, the arranging method, or the semiconductor laser to the multiplexing end. be able to. That is, the failure and deterioration of the semiconductor laser can be detected by monitoring the temporal change of the light output with the photodiode.
(実施例1)
図1は本発明の実施例1に係る半導体レーザ装置の構成を示す図である。本発明の実施例1に係る半導体レーザ装置は、図1に示すように、複数の半導体レーザLD1~LD4、LD駆動回路10、光合成器11、フォトダイオードPD、抵抗R、中央処理装置(CPU)13、メモリ14、表示部15を備える。 (Example 1)
FIG. 1 is a diagram showing a configuration of a semiconductor laser device according toEmbodiment 1 of the present invention. As shown in FIG. 1, the semiconductor laser device according to the first embodiment of the present invention includes a plurality of semiconductor lasers LD1 to LD4, an LD drive circuit 10, a photo combiner 11, a photodiode PD, a resistor R, and a central processing unit (CPU). 13, a memory 14, and a display unit 15.
図1は本発明の実施例1に係る半導体レーザ装置の構成を示す図である。本発明の実施例1に係る半導体レーザ装置は、図1に示すように、複数の半導体レーザLD1~LD4、LD駆動回路10、光合成器11、フォトダイオードPD、抵抗R、中央処理装置(CPU)13、メモリ14、表示部15を備える。 (Example 1)
FIG. 1 is a diagram showing a configuration of a semiconductor laser device according to
複数の半導体レーザLD1~LD4は、LD駆動回路10から複数の半導体レーザLD1~LD4の各々までの距離LLD1,LLD2,LLD3,LLD4がLLD1<LLD2<LLD3<LLD4となるように直列に接続されている。LD駆動回路10は、直列に接続された複数の半導体レーザLD1~LD4に電流を供給する。複数の半導体レーザLD1~LD4は、電流が流れることによりレーザ光を出力する。
The plurality of semiconductor lasers LD1 to LD4 are connected in series so that the distances LLD1, LLD2, LLD3, and LLD4 from the LD driving circuit 10 to each of the plurality of semiconductor lasers LD1 to LD4 are LLD1 <LLD2 <LLD3 <LLD4. Yes. The LD drive circuit 10 supplies current to the plurality of semiconductor lasers LD1 to LD4 connected in series. The plurality of semiconductor lasers LD1 to LD4 output laser light when a current flows.
また、複数の半導体レーザLD1~LD4と光合成器11は、複数の半導体レーザLD1~LD4から光合成器11内の合波端までの距離SLD1,SLD2,SLD3,SLD4がSLD1<SLD2<SLD3<SLD4となるように配置されている。
The plurality of semiconductor lasers LD1 to LD4 and the optical combiner 11 are such that the distances SLD1, SLD2, SLD3, and SLD4 from the plurality of semiconductor lasers LD1 to LD4 to the multiplexing end in the optical combiner 11 are SLD1 <SLD2 <SLD3 <SLD4. It is arranged to be.
光合成器11は、反射、屈折の作用を持つ光学素子(ミラーやレンズ,プリズムなど)からなり、複数の半導体レーザLD1~LD4から出力された光を合波端において直径500μm以下のスポットに集める機能を持つ。
The light synthesizer 11 is composed of optical elements (mirrors, lenses, prisms, etc.) having reflection and refraction functions, and collects the light output from the plurality of semiconductor lasers LD1 to LD4 into a spot having a diameter of 500 μm or less at the multiplexing end. have.
即ち、光合成器11は、半導体レーザLD1~LD4のレーザ光を合成するとともに、各々の半導体レーザLD1~LD4から光合成器11内の合波端までの光到達時間が各々の半導体レーザLD1~LD4毎に異なるように、各々の半導体レーザLD1~LD4から光合成器11までの光路長を設定する。
That is, the light combiner 11 combines the laser beams of the semiconductor lasers LD1 to LD4, and the light arrival time from each of the semiconductor lasers LD1 to LD4 to the multiplexing end in the light combiner 11 is for each of the semiconductor lasers LD1 to LD4. In other words, the optical path lengths from the respective semiconductor lasers LD1 to LD4 to the optical combiner 11 are set.
ハーフミラー12は、光合成器11からの合波されたレーザ光をモニタ光と出力光とに分光する。
The half mirror 12 separates the combined laser light from the light combiner 11 into monitor light and output light.
フォトダイオードPDは、本発明の光検知素子に対応し、ハーフミラー12で分光されたレーザ光を検知する。CPU13は、フォトダイオードPDで検知されたレーザ光の出力値をメモリ14に記憶したり、出力値を表示部15に表示させる。
The photodiode PD corresponds to the light detection element of the present invention and detects the laser light dispersed by the half mirror 12. The CPU 13 stores the output value of the laser beam detected by the photodiode PD in the memory 14 or causes the display unit 15 to display the output value.
次にこのように構成された実施例1の半導体レーザ装置の動作を図1を参照しながら説明する。
Next, the operation of the semiconductor laser device of the first embodiment configured as described above will be described with reference to FIG.
まず、LD駆動回路10が、複数の半導体レーザLD1~LD4に電流が供給すると、各半導体レーザLD1~LD4は、LD1,LD2,LD3,LD4の順番にレーザ光を出力する。
First, when the LD driving circuit 10 supplies current to the plurality of semiconductor lasers LD1 to LD4, the semiconductor lasers LD1 to LD4 output laser beams in the order of LD1, LD2, LD3, and LD4.
第1番目に出力された半導体レーザLD1からのレーザ光は、光合成器11、ハーフミラー12を介して第1番目にフォトダイオードPDにより検知される。第2番目に出力された半導体レーザLD2からのレーザ光は、光合成器11、ハーフミラー12を介して第2番目にフォトダイオードPDにより検知される。
The first laser beam emitted from the semiconductor laser LD1 is detected by the photodiode PD first through the light combiner 11 and the half mirror 12. The second laser beam output from the semiconductor laser LD2 is detected second by the photodiode PD via the photo combiner 11 and the half mirror 12.
第3番目に出力された半導体レーザLD3からのレーザ光は、光合成器11、ハーフミラー12を介して第3番目にフォトダイオードPDにより検知される。第4番目に出力された半導体レーザLD4からのレーザ光は、光合成器11、ハーフミラー12を介して第4番目にフォトダイオードPDにより検知される。
The laser beam from the semiconductor laser LD3 output third is detected by the photodiode PD third through the photo combiner 11 and the half mirror 12. The fourth laser light output from the semiconductor laser LD4 is detected by the photodiode PD fourth through the optical combiner 11 and the half mirror 12.
このため、図2に示すように、フォトダイオードPDの出力は、半導体レーザLD1、半導体レーザLD2、半導体レーザLD3、半導体レーザLD4の順で時間的に得られる。図2に示す例では、各半導体レーザLD1~LD4が正常であるので、フォトダイオードPDの各出力は一定値である。
Therefore, as shown in FIG. 2, the output of the photodiode PD can be obtained temporally in the order of the semiconductor laser LD1, the semiconductor laser LD2, the semiconductor laser LD3, and the semiconductor laser LD4. In the example shown in FIG. 2, since each of the semiconductor lasers LD1 to LD4 is normal, each output of the photodiode PD is a constant value.
しかし、図3に示す例では、第3番目の出力が他の出力に比較して低いので、半導体レーザLD3が劣化していることを判定できる。また、半導体レーザが故障した場合にも、同様にフォトダイオードPDの時間的な出力変化により故障した半導体レーザを検出できる。
However, in the example shown in FIG. 3, since the third output is lower than the other outputs, it can be determined that the semiconductor laser LD3 has deteriorated. Further, even when a semiconductor laser fails, it is possible to detect a failed semiconductor laser due to a temporal output change of the photodiode PD.
このように実施例1の半導体レーザ装置によれば、各々の半導体レーザLD1~LD4の発光タイミングが半導体レーザLD1~LD4毎に異なるように、LD駆動回路10から半導体レーザLD1~LD4までの線路長を調整し、且つ各々の半導体レーザLD1~LD4から合波端までの光到達時間が半導体レーザLD1~LD4毎に異なるように、各々の半導体レーザLD1~LD4から光合成器11までの光路長を調整するので、各々の半導体レーザLD1~LD4の光到達時間と光出力とに基づき、複数の半導体レーザLD1~LD4の一部の故障や劣化を検知できる。また、複雑なタイミング制御回路を用いることなく、単一のフォトダイオードPDにより半導体レーザLD1~LD4の一部の故障や劣化を検知できるので、小型化及び低コスト化を図ることができる。
As described above, according to the semiconductor laser device of the first embodiment, the line length from the LD drive circuit 10 to the semiconductor lasers LD1 to LD4 is set so that the light emission timings of the respective semiconductor lasers LD1 to LD4 are different for the semiconductor lasers LD1 to LD4. And the optical path length from each of the semiconductor lasers LD1 to LD4 to the optical combiner 11 is adjusted so that the light arrival time from each of the semiconductor lasers LD1 to LD4 to the multiplexing end is different for each of the semiconductor lasers LD1 to LD4. Therefore, it is possible to detect a failure or deterioration of a part of the plurality of semiconductor lasers LD1 to LD4 based on the light arrival time and the light output of each of the semiconductor lasers LD1 to LD4. In addition, since a single photodiode PD can detect a failure or deterioration of a part of the semiconductor lasers LD1 to LD4 without using a complicated timing control circuit, it is possible to reduce the size and cost.
(実施例2)
図4は本発明の実施例2に係る半導体レーザ装置の構成を示す図である。実施例2に係る半導体レーザ装置は、LD駆動回路10、バイポーラ型のNPNのトランジスタQ1,Q2、半導体レーザLD1,LD2、光合成器11a、フォトダイオードPD、CPU13、メモリ14、表示部15を備える。 (Example 2)
FIG. 4 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 2 of the present invention. The semiconductor laser device according to the second embodiment includes anLD drive circuit 10, bipolar NPN transistors Q1 and Q2, semiconductor lasers LD1 and LD2, a photosynthesizer 11a, a photodiode PD, a CPU 13, a memory 14, and a display unit 15.
図4は本発明の実施例2に係る半導体レーザ装置の構成を示す図である。実施例2に係る半導体レーザ装置は、LD駆動回路10、バイポーラ型のNPNのトランジスタQ1,Q2、半導体レーザLD1,LD2、光合成器11a、フォトダイオードPD、CPU13、メモリ14、表示部15を備える。 (Example 2)
FIG. 4 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 2 of the present invention. The semiconductor laser device according to the second embodiment includes an
LD駆動回路10とトランジスタQ1との距離S1と、LD駆動回路10とトランジスタQ2との距離S2とは、同じである。LD駆動回路10は、トランジスタQ1,Q2の各々のベースに電圧を印加することによりトランジスタQ1,Q2に電流を流す。
The distance S1 between the LD drive circuit 10 and the transistor Q1 and the distance S2 between the LD drive circuit 10 and the transistor Q2 are the same. The LD driving circuit 10 applies a voltage to the bases of the transistors Q1 and Q2, thereby causing a current to flow through the transistors Q1 and Q2.
トランジスタQ1,Q2のコレクタには電源Vccが接続され、トランジスタQ1のエミッタには半導体レーザLD1のアノードが接続され、トランジスタQ2のエミッタには半導体レーザLD2のアノードが接続されている。
The power source Vcc is connected to the collectors of the transistors Q1 and Q2, the anode of the semiconductor laser LD1 is connected to the emitter of the transistor Q1, and the anode of the semiconductor laser LD2 is connected to the emitter of the transistor Q2.
光合成器11aは、半導体レーザLD1,LD2から光合成器11内の合波端までの距離SLD11,SLD12がSLD11>SLD12となるように配置されている。
The light combiner 11a is arranged such that the distances SLD11 and SLD12 from the semiconductor lasers LD1 and LD2 to the multiplexing end in the light combiner 11 satisfy SLD11> SLD12.
図4に示す光合成器11a、フォトダイオードPD、CPU13、メモリ14、表示部15は、図1に示すそれらと同じであるので、それらの説明は省略する。
4 are the same as those shown in FIG. 1 because the optical combiner 11a, the photodiode PD, the CPU 13, the memory 14, and the display unit 15 shown in FIG. 4 are omitted.
このように実施例2の半導体レーザ装置によれば、LD駆動回路10からの電圧によりトランジスタQ1,Q2がオンすると、半導体レーザLD1,LD2に同時に電流が流れる。すると、半導体レーザLD2からのレーザ光は第1番目に光合成器11aに到達する。一方、半導体レーザLD1からのレーザ光は第2番目に光合成器11aに到達する。
As described above, according to the semiconductor laser device of the second embodiment, when the transistors Q1 and Q2 are turned on by the voltage from the LD driving circuit 10, a current flows through the semiconductor lasers LD1 and LD2 simultaneously. Then, the laser beam from the semiconductor laser LD2 reaches the optical combiner 11a first. On the other hand, the laser beam from the semiconductor laser LD1 reaches the optical combiner 11a second.
従って、最初にフォトダイオードPDで検出される出力は、半導体レーザLD2からのレーザ光の出力であり、次に、フォトダイオードPDで検出される出力は、半導体レーザLD1からのレーザ光の出力である。この時間的な出力の変化により半導体レーザLD1,LD2の劣化、故障を判定することができる。また実施例1では、LD駆動回路10から各々の半導体レーザLD1~LD4までの距離を設定し、且つ各々の半導体レーザLD1~LD4から光合成器11内の合波端までの距離を設定したが、実施例2では、各々の半導体レーザLD1~LD4から光合成器11a内の合波端までの距離(光路長)を設定するのみで、半導体レーザの劣化、故障を判定することができる。
Therefore, the output first detected by the photodiode PD is the output of the laser light from the semiconductor laser LD2, and the output detected by the photodiode PD is the output of the laser light from the semiconductor laser LD1. . The deterioration and failure of the semiconductor lasers LD1 and LD2 can be determined by the change in output with time. In the first embodiment, the distance from the LD drive circuit 10 to each of the semiconductor lasers LD1 to LD4 is set, and the distance from each of the semiconductor lasers LD1 to LD4 to the multiplexing end in the optical combiner 11 is set. In the second embodiment, it is possible to determine the deterioration or failure of the semiconductor laser only by setting the distance (optical path length) from each of the semiconductor lasers LD1 to LD4 to the multiplexing end in the optical combiner 11a.
(実施例3)
図5は本発明の実施例3に係る半導体レーザ装置の構成を示す図である。実施例3に係る半導体レーザ装置は、図1に示す実施例1に係る半導体レーザ装置に対して、さらに、半導体レーザLD4と光合成器11との間の光路にプリズム16a,16bを配置したことを特徴とする。プリズム16a,16bは、本発明の光伝搬調整用の光学素子に対応する。 (Example 3)
FIG. 5 is a diagram showing a configuration of a semiconductor laser apparatus according to Example 3 of the present invention. The semiconductor laser device according to the third embodiment is different from the semiconductor laser device according to the first embodiment shown in FIG. 1 in that prisms 16a and 16b are arranged in the optical path between the semiconductor laser LD4 and the optical combiner 11. Features. The prisms 16a and 16b correspond to the optical element for adjusting light propagation according to the present invention.
図5は本発明の実施例3に係る半導体レーザ装置の構成を示す図である。実施例3に係る半導体レーザ装置は、図1に示す実施例1に係る半導体レーザ装置に対して、さらに、半導体レーザLD4と光合成器11との間の光路にプリズム16a,16bを配置したことを特徴とする。プリズム16a,16bは、本発明の光伝搬調整用の光学素子に対応する。 (Example 3)
FIG. 5 is a diagram showing a configuration of a semiconductor laser apparatus according to Example 3 of the present invention. The semiconductor laser device according to the third embodiment is different from the semiconductor laser device according to the first embodiment shown in FIG. 1 in that
このように実施例3に係る半導体レーザ装置によれば、半導体レーザLD4と光合成器11との間の光路にプリズム16a,16bを配置したので、半導体レーザLD4と光合成器11との間の光到達時間を調整することができる。このため、半導体レーザLD1~LD4の劣化、故障を容易に判定することができる。
As described above, in the semiconductor laser device according to the third embodiment, since the prisms 16a and 16b are arranged in the optical path between the semiconductor laser LD4 and the light combiner 11, light reaches between the semiconductor laser LD4 and the light combiner 11. The time can be adjusted. Therefore, it is possible to easily determine the deterioration or failure of the semiconductor lasers LD1 to LD4.
(実施例4)
図6は本発明の実施例4に係る半導体レーザ装置の構成を示す図である。実施例4に係る半導体レーザ装置は、図1に示す実施例1に係る半導体レーザ装置に対して、各々の半導体レーザLD1~LD4を誘電率が異なる導電パターンPT1~PT4により接続したことを特徴とする。 Example 4
FIG. 6 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 4 of the present invention. The semiconductor laser device according to the fourth embodiment is characterized in that the semiconductor lasers LD1 to LD4 are connected to the semiconductor laser device according to the first embodiment shown in FIG. 1 by conductive patterns PT1 to PT4 having different dielectric constants. To do.
図6は本発明の実施例4に係る半導体レーザ装置の構成を示す図である。実施例4に係る半導体レーザ装置は、図1に示す実施例1に係る半導体レーザ装置に対して、各々の半導体レーザLD1~LD4を誘電率が異なる導電パターンPT1~PT4により接続したことを特徴とする。 Example 4
FIG. 6 is a diagram showing a configuration of a semiconductor laser device according to Embodiment 4 of the present invention. The semiconductor laser device according to the fourth embodiment is characterized in that the semiconductor lasers LD1 to LD4 are connected to the semiconductor laser device according to the first embodiment shown in FIG. 1 by conductive patterns PT1 to PT4 having different dielectric constants. To do.
実施例4に係る半導体レーザ装置によれば、誘電率が異なる導電パターンPT1~PT4により各々の半導体レーザLD1~LD4を接続したので、電流伝達時間が互いに異なる。このため、駆動回路10から各々の半導体レーザLD1~LD4までの電流到達時間を調整することができるので、半導体レーザLD1~LD4の劣化、故障を容易に判定することができる。
In the semiconductor laser device according to Example 4, since the semiconductor lasers LD1 to LD4 are connected by the conductive patterns PT1 to PT4 having different dielectric constants, the current transmission times are different from each other. For this reason, the current arrival time from the drive circuit 10 to each of the semiconductor lasers LD1 to LD4 can be adjusted, so that the deterioration or failure of the semiconductor lasers LD1 to LD4 can be easily determined. *
本発明は、レーザ加工機、レーザ照明機器に適用可能である。
The present invention is applicable to laser processing machines and laser lighting equipment.
Claims (4)
- 複数の半導体レーザと、
前記複数の半導体レーザに電流を供給する駆動回路と、
前記複数の半導体レーザのレーザ光を合成する光合成器と、
前記光合成器で合成された前記複数の半導体レーザのレーザ光を検知する光検知素子を備え、
前記光合成器は、前記複数の半導体レーザの各々の半導体レーザから前記光合成器内の合波端までの光到達時間が前記各々の半導体レーザ毎に異なるように、前記各々の半導体レーザから前記光合成器までの光路長を設定する半導体レーザ装置。 A plurality of semiconductor lasers;
A drive circuit for supplying current to the plurality of semiconductor lasers;
A light combiner that combines the laser beams of the plurality of semiconductor lasers;
Comprising a light detecting element for detecting laser light of the plurality of semiconductor lasers combined by the light combiner;
The optical synthesizer is configured so that the light arrival time from the semiconductor laser of each of the plurality of semiconductor lasers to the multiplexing end in the optical synthesizer is different for each of the semiconductor lasers. Semiconductor laser device that sets the optical path length up to. - 前記駆動回路に前記複数の半導体レーザを直列に接続することにより、前記駆動回路から前記各々の半導体レーザまでの線路長を調整する請求項1記載の半導体レーザ装置。 The semiconductor laser device according to claim 1, wherein a line length from the drive circuit to each of the semiconductor lasers is adjusted by connecting the plurality of semiconductor lasers in series to the drive circuit.
- 前記光到達時間を調整するために、光路に光伝搬調整用の光学素子を配置した請求項1又は請求項2記載の半導体レーザ装置。 3. The semiconductor laser device according to claim 1, wherein an optical element for adjusting light propagation is disposed in an optical path in order to adjust the light arrival time.
- 前記駆動回路から前記各々の半導体レーザまでの電流到達時間を調整するために、誘電率が異なる導電パターンにより前記各々の半導体レーザを接続した請求項1乃至請求項3のいずれか1項記載の半導体レーザ装置。 4. The semiconductor according to claim 1, wherein each semiconductor laser is connected by a conductive pattern having a different dielectric constant in order to adjust a current arrival time from the drive circuit to each of the semiconductor lasers. Laser device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016530694A JP6245364B2 (en) | 2014-06-30 | 2014-06-30 | Semiconductor laser device |
PCT/JP2014/067375 WO2016001969A1 (en) | 2014-06-30 | 2014-06-30 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/067375 WO2016001969A1 (en) | 2014-06-30 | 2014-06-30 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016001969A1 true WO2016001969A1 (en) | 2016-01-07 |
Family
ID=55018571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/067375 WO2016001969A1 (en) | 2014-06-30 | 2014-06-30 | Semiconductor laser device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6245364B2 (en) |
WO (1) | WO2016001969A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108988122A (en) * | 2018-09-30 | 2018-12-11 | 无锡源清瑞光激光科技有限公司 | A kind of quasi-continuous semiconductor laser control system of QCW suitable for laser spot welding |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57112147A (en) * | 1980-12-29 | 1982-07-13 | Fujitsu Ltd | Laser transmitter |
JPS6328089A (en) * | 1986-07-22 | 1988-02-05 | Iwatsu Electric Co Ltd | Semiconductor laser light pulse generator |
JPH118444A (en) * | 1997-06-13 | 1999-01-12 | Oki Electric Ind Co Ltd | High-frequency electric wiring board |
JP2004207420A (en) * | 2002-12-25 | 2004-07-22 | Toshiba Corp | Laser equipment and display unit |
JP2008244339A (en) * | 2007-03-28 | 2008-10-09 | Sumitomo Osaka Cement Co Ltd | Optical pulse laser system |
JP2011228457A (en) * | 2010-04-19 | 2011-11-10 | Mitsubishi Electric Corp | Image display apparatus and laser light source apparatus |
JP2012018122A (en) * | 2010-07-09 | 2012-01-26 | Olympus Corp | Observation device |
US8599891B2 (en) * | 2011-03-21 | 2013-12-03 | Soreq Nuclear Research Center | Laser diode driver |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0529658A (en) * | 1991-07-24 | 1993-02-05 | Shimadzu Corp | LED or LD drive circuit |
-
2014
- 2014-06-30 JP JP2016530694A patent/JP6245364B2/en not_active Expired - Fee Related
- 2014-06-30 WO PCT/JP2014/067375 patent/WO2016001969A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57112147A (en) * | 1980-12-29 | 1982-07-13 | Fujitsu Ltd | Laser transmitter |
JPS6328089A (en) * | 1986-07-22 | 1988-02-05 | Iwatsu Electric Co Ltd | Semiconductor laser light pulse generator |
JPH118444A (en) * | 1997-06-13 | 1999-01-12 | Oki Electric Ind Co Ltd | High-frequency electric wiring board |
JP2004207420A (en) * | 2002-12-25 | 2004-07-22 | Toshiba Corp | Laser equipment and display unit |
JP2008244339A (en) * | 2007-03-28 | 2008-10-09 | Sumitomo Osaka Cement Co Ltd | Optical pulse laser system |
JP2011228457A (en) * | 2010-04-19 | 2011-11-10 | Mitsubishi Electric Corp | Image display apparatus and laser light source apparatus |
JP2012018122A (en) * | 2010-07-09 | 2012-01-26 | Olympus Corp | Observation device |
US8599891B2 (en) * | 2011-03-21 | 2013-12-03 | Soreq Nuclear Research Center | Laser diode driver |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108988122A (en) * | 2018-09-30 | 2018-12-11 | 无锡源清瑞光激光科技有限公司 | A kind of quasi-continuous semiconductor laser control system of QCW suitable for laser spot welding |
Also Published As
Publication number | Publication date |
---|---|
JP6245364B2 (en) | 2017-12-13 |
JPWO2016001969A1 (en) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6228237B2 (en) | Control method, control device, and light source device | |
CN109877444B (en) | Laser processing apparatus | |
JPWO2013121744A1 (en) | Relay device, pump light supply device used therefor, and pump light supply method | |
JP6316792B2 (en) | Laser power supply device for controlling a plurality of light emitting elements | |
JP6010632B2 (en) | Light source unit, light source unit control method, program, and recording medium | |
WO2015145742A1 (en) | Laser-diode drive circuit and laser device | |
WO2016001969A1 (en) | Semiconductor laser device | |
JP2011198971A (en) | Laser diode controller and method of controlling laser diode | |
CN102288888B (en) | Device and method for monitoring performance of semiconductor laser device of electric pump | |
JP4274244B2 (en) | Laser diode pumped solid state laser oscillator and laser diode control method in the oscillator | |
JP2009043784A (en) | Laser diode driving circuit and laser diode driving method | |
CN108886234B (en) | Laser light source module and method for determining fault laser diode | |
JP2007214170A (en) | Optical fiber amplifier, optical fiber laser device, and fault detection method | |
JP6546766B2 (en) | Light source device | |
JP2011142137A (en) | Method of controlling optical transmitter | |
JP2008180653A (en) | Multiple optical axis photoelectric sensor | |
JP6172151B2 (en) | Light source for pumping optical amplifier and control method thereof | |
JP2006238185A (en) | Light projection head for photoelectric switch | |
JP7705084B2 (en) | Optical window inspection device and laser radar device | |
JP6278200B2 (en) | Optical fiber output type multi-wavelength laser light source device | |
JP7620794B2 (en) | Laser processing head and laser processing device | |
JP6273704B2 (en) | Optical repeater | |
JP2021068826A (en) | Laser processing device | |
JP2005123536A (en) | Laser driving circuit | |
JP2007292591A (en) | Substrate unit for reliability test, and apparatus and method for reliability test |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14896863 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016530694 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14896863 Country of ref document: EP Kind code of ref document: A1 |