[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015179250A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2015179250A
JP2015179250A JP2014234094A JP2014234094A JP2015179250A JP 2015179250 A JP2015179250 A JP 2015179250A JP 2014234094 A JP2014234094 A JP 2014234094A JP 2014234094 A JP2014234094 A JP 2014234094A JP 2015179250 A JP2015179250 A JP 2015179250A
Authority
JP
Japan
Prior art keywords
film
oxide semiconductor
insulating film
pixel
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014234094A
Other languages
English (en)
Other versions
JP2015179250A5 (ja
JP6486660B2 (ja
Inventor
紘慈 楠
Koji Kusunoki
紘慈 楠
三宅 博之
Hiroyuki Miyake
博之 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2014234094A priority Critical patent/JP6486660B2/ja
Publication of JP2015179250A publication Critical patent/JP2015179250A/ja
Publication of JP2015179250A5 publication Critical patent/JP2015179250A5/ja
Application granted granted Critical
Publication of JP6486660B2 publication Critical patent/JP6486660B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0213Addressing of scan or signal lines controlling the sequence of the scanning lines with respect to the patterns to be displayed, e.g. to save power

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of El Displays (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Geometry (AREA)

Abstract

【課題】開口率が高く、且つ容量値を増大させることのできる容量素子を備えるとともに、狭額縁化を図ることのできる表示装置を提供する。
【解決手段】トランジスタは、基板上のゲート電極と、ゲート電極と重なる酸化物半導体膜と、酸化物半導体膜の一方の面に接するゲート絶縁膜と、酸化物半導体膜に接する一対の導電膜と、を有する。容量素子は、ゲート絶縁膜上であって、且つ一対の導電膜の一方と接する金属酸化物膜と、無機絶縁膜と、無機絶縁膜上の第1の透光性を有する導電膜と、を有する。画素電極は、第2の透光性を有する導電膜で形成され、且つ一対の導電膜の一方と接する。ゲート電極でもある第1のゲート線は、4つの副画素のうち、3つの副画素を選択するよう接続し、第2のゲート線は、残りの副画素を選択するとともに、次行の1つの副画素を選択するよう接続する。
【選択図】図1

Description

本発明の一態様は、表示装置に関する。特に本発明の一態様は、表示素子として液晶素子を有する表示装置に関する。
なお本発明は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
近年、三原色、すなわちRGB(赤、緑、青)のカラーフィルタを備えた副画素でカラー表示を行う構成に対して、RGBにW(白)の副画素を追加し、低消費電力化あるいは輝度の向上を図る表示装置が提案されている(特許文献1参照)。
特開平11−295717号公報
RGB(赤、緑、青)のカラーフィルタを備えた副画素にWの副画素を加えることで、各副画素を制御するための配線数が増加する。配線数が増加すると、配線を駆動するための回路面積を大きくする必要があるため、駆動するための回路を内蔵する構成で狭額縁化が難しくなる。
あるいは、画素を構成する副画素の数は増えることで、副画素一つあたりの面積が小さくなる。そのため、開口率の低下、あるいは容量素子において必要な容量値の確保が難しくなる。
そこで、本発明の一態様は、副画素数が増えても配線数の増加を抑制できる、新規な構成の表示装置等を提供することを課題の一とする。または、本発明の一態様は、狭額縁化を実現できる、新規な構成の表示装置等を提供することを課題の一とする。または、本発明の一態様は、開口率の低下を抑制できる、新規な構成の表示装置等を提供することを課題の一とする。または、本発明の一態様は、容量素子において必要な容量値の確保ができる、新規な構成の表示装置等を提供することを課題の一とする。または、本発明の一態様は、表示品位に優れた、新規な構成の表示装置等を提供することを課題の一とする。または、本発明の一態様は、新規な表示装置等を提供することを課題の一とする。
なお本発明の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した記載、及び/又は他の課題のうち、少なくとも一つの課題を解決するものである。
本発明の一態様は、第1乃至第4の副画素を有する第1の画素、及び第1の画素の次行に設けられる第1乃至第4の副画素を有する第2の画素を有し、第1の画素が有する第1乃至第3の副画素を選択するための信号を与える第1の配線と、第1の画素が有する第4の副画素を選択するための第2の配線と、を有し、第2の配線は、第2の画素が有する第4の副画素を選択するための配線である表示装置である。
別の本発明の一態様は、第1乃至第4の副画素を有する第1の画素、及び第1の画素の次行に設けられる第1乃至第4の副画素を有する第2の画素を有し、第1の画素が有する第1乃至第3の副画素を選択するための信号を与える第1の配線と、第1の画素が有する第4の副画素を選択するための第2の配線と、第2の画素が有する第1乃至第3の副画素を選択するための第3の配線と、を有し、第2の配線は、第2の画素が有する第4の副画素を選択するための配線である表示装置である。
本発明の一態様により、副画素数が増えても配線数の増加を抑制できる、新規な構成の表示装置等を提供することができる。または、本発明の一態様は、狭額縁化を実現できる、新規な構成の表示装置等を提供することができる。または、本発明の一態様は、開口率の低下を抑制できる、新規な構成の表示装置等を提供することができる。または、本発明の一態様は、容量素子において必要な容量値の確保ができる、新規な構成の表示装置等を提供することができる。または、本発明の一態様は、表示品位に優れた、新規な構成の表示装置等を提供することができる。または、本発明の一態様は、新規な表示装置等を提供することができる。
なお本発明の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び/又は他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
表示装置の一形態を説明するブロック図及び回路図である。 表示装置の一形態を説明する上面図である。 表示装置の一形態を説明する上面図である。 表示装置の一形態を説明する断面図である。 表示装置の作製方法の一形態を説明する断面図である。 表示装置の作製方法の一形態を説明する断面図である。 表示装置の作製方法の一形態を説明する断面図である。 表示装置の作製方法の一形態を説明する断面図である。 表示装置の作製方法の一形態を説明する断面図である。 表示装置の作製方法の一形態を説明する断面図である。 表示装置の一形態を説明する断面図である。 表示装置の一形態を説明する断面図である。 表示装置の一形態を説明する断面図である。 表示装置の一形態を説明する断面図である。 表示装置の一形態を説明する断面図である。 表示装置の一形態を説明する断面図である。 酸化物半導体の断面TEM像および局所的なフーリエ変換像。 酸化物半導体膜のナノビーム電子回折パターンを示す図、および透過電子回折測定装置の一例を示す図。 透過電子回折測定による構造解析の一例を示す図、および平面TEM像。 表示装置の駆動方法の一例を示す概念図である。 表示モジュールを説明する図である。 実施の形態に係る、電子機器の外観図を説明する図である。 表示装置の一形態を説明する断面図である。 表示装置の一形態を説明する断面図である。 表示装置の一形態を説明する断面図である。 表示装置の一形態を説明する断面図である。 表示装置の一形態を説明する回路図である。 表示装置の一形態を説明する断面図である。 抵抗率の温度依存性を説明する図である。
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同じ物を指し示す符号は異なる図面間において共通とする。
また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
また本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域又はドレイン電極)とソース(ソース端子、ソース領域又はソース電極)の間にチャネル領域を有しており、ドレインとチャネル領域とソースとを介して電流を流すことができるものである。
ここで、ソースとドレインとは、トランジスタの構造又は動作条件等によって変わるため、いずれがソース又はドレインであるかを限定することが困難である。そこで、ソースとして機能する部分、及びドレインとして機能する部分を、ソース又はドレインと呼ばず、ソースとドレインとの一方を第1端子と表記し、ソースとドレインとの他方を第2端子と表記する場合がある。
なお本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではないことを付記する。
なお本明細書において、AとBとが接続されている、とは、AとBとが直接接続されているものの他、電気的に接続されているものを含むものとする。ここで、AとBとが電気的に接続されているとは、AとBとの間で、何らかの電気的作用を有する対象物が存在するとき、AとBとの電気信号の授受を可能とするものをいう。
なお本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
なお図面における各回路ブロックの配置は、説明のため位置関係を特定するものであり、異なる回路ブロックで別々の機能を実現するよう図面で示していても、実際の回路や領域では、同じ回路ブロック内で別々の機能を実現しうるように設けられている場合もある。また図面における各回路ブロックの機能は、説明のため機能を特定するものであり、一つの回路ブロックとして示していても、実際の回路や領域では、一つの回路ブロックで行う処理を複数の回路ブロックで行うよう設けられている場合もある。
なお電圧とは、ある電位と、基準電位(例えばグラウンド電位)との電位差のことを示す場合が多い。よって、電圧、電位、電位差を、各々、電位、電圧、電圧差と言い換えることが可能である。なお電圧とは2点間における電位差のことをいい、電位とはある一点における静電場の中にある単位電荷が持つ静電エネルギー(電気的な位置エネルギー)のことをいう。
なお、一般に、電位や電圧は、相対的なものである。したがって、グラウンド電位は、必ずしも、0ボルトであるとは限定されない。
また本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。従って、−5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。
また本明細書等において、結晶が三方晶または菱面体晶である場合、六方晶系として表す。
(実施の形態1)
本実施の形態では、本発明の一態様である表示装置が有する画素の構成について図面を参照して説明する。
図1(A)に、表示装置の一例として表示装置100を示す。図1(A)に示す表示装置100は、画素部11と、走査線駆動回路12と、信号線駆動回路16と、各々が平行または略平行に配設され、且つ走査線駆動回路12によって電位が制御される走査線17と、各々が平行または略平行に配設され、且つ信号線駆動回路16によって電位が制御される信号線25と、を有する。さらに、画素部11はマトリクス状に配設された画素13を有する。画素は、複数の副画素14を有する。また、信号線25に沿って、各々が平行または略平行に配設され、電位生成回路18の電位を与える容量線19を有する。
なお、表示装置は、複数の画素を駆動させる駆動回路等を含む。また、表示装置は、別の基板上に配置された制御回路、電源回路、信号生成回路及びバックライトモジュール等を含み、液晶モジュールとよばれることもある。なお、走査線駆動回路12は、走査線17を駆動する機能を有する回路であり、単に回路という場合がある。また電位生成回路18は、容量線19に与える電位を生成する機能を有する回路であり、単に回路という場合がある。また、信号線駆動回路16は、信号線25を駆動する機能を有する回路であり、単に回路という場合がある。
画素13は、RGB(赤、緑、青)の3原色にW(白)を加えた4色の光の透過を副画素14にて制御し、これらの光の加法混色に従ってカラー表示を行う機能を有する。RGBの光の透過を制御する副画素は、光源の光を、各色を呈する光にするための、有色膜を有する。なおWの光の透過を制御する副画素は、光源の光が白色であれば、そのまま透過させる。なお白色とは、RGBの加法混色で得られる白色の他、補色の関係の色の混色で得られる白色でもよい。
RGBの光を透過する副画素で得られる白色は、カラーフィルタを透過した光であるため、光源より射出された光の強度より小さくなって得られる白色である。本発明の一態様のように、光源の光をそのまま透過することができるWの光を透過する副画素で得られる白色は、光源より射出される光の強度がほとんど小さくなることなく得られる白色である。そのため本発明の一態様で得られるRGBWの光を透過する副画素で得られる白色は、RGBの光を透過する副画素で得られる白色に比べ、光の強度が大きい白色である。言い換えればRGBWの光を透過する副画素で得られる白色は、光の強度の低下が抑えられた白色である。そのためRGBWの光を透過する副画素を用いる本発明の一態様による構成では、RGBの光を透過する副画素を有する表示装置で白色を得る場合に比べて、光源の光を弱めることができる。その結果、表示装置は、消費電力の低減を図ることができる。
副画素14は、走査信号を与えてトランジスタの導通状態を制御し、容量素子によってデータ信号を保持し、データ信号によって与えられた電荷量に従って表示素子を駆動することで、光の透過を制御する機能を有する。なお副画素14は、RGBWの各色に対応する、第1乃至第4の副画素を有する。
走査線17は、一例として、画素部11においてマトリクス状に配設された副画素14のうち、行ごとに電気的な接続が異なる。例えば、1行目の走査線17は、1行目にある画素13におけるRGBの光の透過を制御する副画素14と電気的に接続される。また2行目の走査線17は、1行目にある画素13におけるWの光の透過を制御する副画素14、及び2行目にある画素13におけるWの光の透過を制御する副画素14と電気的に接続される。また3行目の走査線17は、2行目にある画素13におけるRGBの光の透過を制御する副画素14と電気的に接続される。なお走査線17は、副画素を選択するための信号を与える配線であり、単に配線という場合がある。
信号線25は、一例として、画素部11においてマトリクス状に配設された副画素14のうち、列ごとに電気的な接続が異なる。例えば、1列目の信号線25は、1列目にある画素13におけるRの光の透過を制御する副画素14と電気的に接続される。また2列目の信号線25は、1列目にある画素13におけるGの光の透過を制御する副画素14と電気的に接続される。また3列目の信号線25は、1列目にある信号線に電気的に接続された画素13におけるBの光の透過を制御する副画素14、及びWの光の透過を制御する副画素14、と電気的に接続される。なお信号線25は、副画素にデータ信号によるデータを与える配線であり、単に配線という場合がある。
容量線19は、一例として、1列目の容量線19は、1乃至3列目にある画素13におけるRGBWの光の透過を制御する副画素14と電気的に接続される。なお容量線19は、副画素に固定電位を与えるための配線であり、単に配線という場合がある。
ここで図1(A)に示す表示装置の副画素14に用いることができる回路構成の一例を、図27(A)、(B)に示している。
図27(A)に示す副画素301は、液晶素子31と、トランジスタ103と、容量素子105と、を有する。
液晶素子31の一対の電極の一方の電位は、副画素301の仕様に応じて適宜設定される。液晶素子31は、書き込まれるデータにより配向状態が設定される。また、複数の副画素301のそれぞれが有する液晶素子31の一対の電極の一方に共通の電位(コモン電位)を与えてもよい。また、各行の副画素301毎の液晶素子31の一対の電極の一方に異なる電位を与えてもよい。
なお、液晶素子31は、液晶の光学的変調作用によって光の透過または非透過を制御する素子である。なお、液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界又は斜め方向の電界を含む)によって制御される。なお、液晶素子31としては、ネマチック液晶、コレステリック液晶、スメクチック液晶、サーモトロピック液晶、ライオトロピック液晶、強誘電液晶、反強誘電液晶等が挙げられる。
液晶素子31を有する表示装置の駆動方法としては、例えば、TNモード、VAモード、ASM(Axially Symmetric Aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、MVAモード、PVA(Patterned Vertical Alignment)モード、IPSモード、FFSモード、またはTBA(Transverse Bend Alignment)モードなどを用いてもよい。ただし、これに限定されず、液晶素子及びその駆動方式として様々なものを用いることができる。
また、ブルー相(Blue Phase)を示す液晶とカイラル剤とを含む液晶組成物により液晶素子を構成してもよい。ブルー相を示す液晶は、応答速度が1msec以下と短い。またブルー相を示す液晶は、光学的等方性であるが故に、配向処理が不要であり、且つ視野角依存性が小さい。
図27(A)に示す副画素301の構成において、トランジスタ103のソース電極及びドレイン電極の一方は、信号線25に電気的に接続され、他方は液晶素子31の一対の電極の他方に電気的に接続される。また、トランジスタ103のゲート電極は、走査線17に電気的に接続される。トランジスタ103は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
図27(A)に示す副画素301の構成において、容量素子105の一対の電極の一方は、電位が供給される容量線19に電気的に接続され、他方は、液晶素子31の一対の電極の他方に電気的に接続される。なお、容量線19の電位の値は、副画素301の仕様に応じて適宜設定される。容量素子105は、書き込まれたデータを保持する保持容量としての機能を有する。
例えば、図27(A)の副画素301を有する表示装置では、走査線駆動回路12により各行の副画素301を順次選択し、トランジスタ103をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた副画素301は、トランジスタ103がオフ状態になることで保持状態になる。これを行毎に順次行うことにより、画像を表示できる。
また、図27(B)に示す副画素301は、表示素子のスイッチングを行うトランジスタ43と、画素の駆動を制御するトランジスタ103と、トランジスタ45と、容量素子105と、発光素子41と、を有する。
トランジスタ43のソース電極及びドレイン電極の一方は、データ信号が与えられる信号線25に電気的に接続される。さらに、トランジスタ43のゲート電極は、ゲート信号が与えられる走査線17に電気的に接続される。
トランジスタ43は、オン状態またはオフ状態になることにより、データ信号のデータの書き込みを制御する機能を有する。
トランジスタ103のソース電極及びドレイン電極の一方は、アノード線として機能する配線47と電気的に接続され、トランジスタ103のソース電極及びドレイン電極の他方は、発光素子41の一方の電極に電気的に接続される。さらに、トランジスタ103のゲート電極は、トランジスタ43のソース電極及びドレイン電極の他方、及び容量素子105の一方の電極に電気的に接続される。
トランジスタ103は、オン状態またはオフ状態になることにより、発光素子41に流れる電流を制御する機能を有する。
トランジスタ45のソース電極及びドレイン電極の一方はデータの基準電位が与えられる配線49と接続され、トランジスタ45のソース電極及びドレイン電極の他方は、発光素子41の一方の電極、及び容量素子105の他方の電極に電気的に接続される。さらに、トランジスタ45のゲート電極は、ゲート信号が与えられる走査線17に電気的に接続される。
トランジスタ45は、発光素子41に流れる電流を調整する機能を有する。例えば、発光素子41が劣化等により、発光素子41の内部抵抗が上昇した場合、トランジスタ45のソース電極及びドレイン電極の一方が接続された配線49に流れる電流をモニタリングすることで、発光素子41に流れる電流を補正することができる。配線49に与えられる電位としては、例えば、0Vとすることができる。
容量素子105の一対の電極の一方は、トランジスタ43のソース電極及びドレイン電極の他方、及びトランジスタ103のゲート電極と電気的に接続され、容量素子105の一対の電極の他方は、トランジスタ45のソース電極及びドレイン電極の他方、及び発光素子41の一方の電極に電気的に接続される。
図27(B)に示す副画素301の構成において、容量素子105は、書き込まれたデータを保持する保持容量としての機能を有する。
発光素子41の一対の電極の一方は、トランジスタ45のソース電極及びドレイン電極の他方、容量素子105の一対の電極の他方、及びトランジスタ103のソース電極及びドレイン電極の他方と電気的に接続される。また、発光素子41の一対の電極の他方は、カソード線として機能する配線50に電気的に接続される。
発光素子41としては、例えば有機エレクトロルミネセンス素子(有機EL素子ともいう)などを用いることができる。ただし、発光素子41としては、これに限定されず、無機材料からなる無機EL素子を用いても良い。
なお、配線47及び配線50の一方には、高電源電位VDDが与えられ、他方には、低電源電位VSSが与えられる。図27(B)に示す構成においては、配線47に高電源電位VDDを、配線50に低電源電位VSSを、それぞれ与える構成としている。
図27(B)の副画素301を有する表示装置では、走査線駆動回路12により各行の副画素301を順次選択し、トランジスタ43をオン状態にしてデータ信号のデータを書き込む。
データが書き込まれた副画素301は、トランジスタ43がオフ状態になることで保持状態になる。さらに、トランジスタ43は、容量素子105と接続しているため、書き込まれたデータを長時間保持することが可能となる。また、トランジスタ103により、ソース電極とドレイン電極の間に流れる電流量が制御され、発光素子41は、流れる電流量に応じた輝度で発光する。これを行毎に順次行うことにより、画像を表示できる。
なお、図27(A)及び図27(B)では、表示素子として、液晶素子31や発光素子41を用いた例を示したが、本発明の実施形態の一態様は、これに限定されない。様々な表示素子を用いることも可能である。例えば、EL(エレクトロルミネッセンス)素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)、LED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイ(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、IMOD(インターフェアレンス・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブ、など、電気磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有するものがある。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)又はSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インク又は電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部、または、全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
次いで図1(B)には、図27(A)で説明した回路構成を図1(A)のレイアウトに適用した際の回路構成の例を示す。
図1(B)では、画素13として、m行目(mは自然数)の画素として画素13_1、(m+1)行目の画素として画素13_2を示している。
画素13_1は、Rの光の透過を制御する副画素14R_1、Gの光の透過を制御する副画素14G_1、Bの光の透過を制御する副画素14B_1及びWの光の透過を制御する副画素14W_1を有する。また画素13_2は、Rの光の透過を制御する副画素14R_2、Gの光の透過を制御する副画素14G_2、Bの光の透過を制御する副画素14B_2及びWの光の透過を制御する副画素14W_2を有する。
なお副画素14R_1及び14R_2は、第1の副画素という場合がある。なお副画素14G_1及び14G_2は、第2の副画素という場合がある。なお副画素14B_1及び14B_2は、第3の副画素という場合がある。なお副画素14W_1及び14W_2は、第4の副画素という場合がある。
画素13_1及び画素13_2が有する、副画素14R_1乃至14W_2は、それぞれトランジスタ103、容量素子105及び液晶素子31を有する。
また図1(B)では、走査線17として、M行目(Mは自然数)の走査線として走査線17_1、(M+1)行目の走査線として走査線17_2、(M+2)行目の走査線として走査線17_3を示している。
また図1(B)では、信号線25として、n列目(nは自然数)の信号線として信号線25_1、(n+1)列目の信号線として信号線25_2、(n+2)列目の信号線として信号線25_3を示している。
なお副画素14Rは、第1の副画素という場合がある。なお副画素14Gは、第2の副画素という場合がある。なお副画素14Bは、第3の副画素という場合がある。なお副画素14Wは、第4の副画素という場合がある。
ゲート電極でもある第1のゲート線は、4つの副画素のうち、3つの副画素を選択するよう接続し、第2のゲート線は、残りの副画素を選択するとともに、次行の1つの副画素を選択するよう接続する。
画素13_1及び13_2内の副画素14R_1及び14R_2を図1(A)、(B)のように配置することで、信号線の本数をストライプ配置したRGBの副画素を有する画素の構成と同じ数とすることができる。加えて、走査線の数を2つの画素に対して3本の走査線に抑えることができる。
例えば表示装置は液晶表示装置の場合で、RGBWの4つの副画素をストライプ配置とする場合、データ線の数が4本、走査線の数が1本、容量線の数が1本で、計6本の配線を用いて制御できるものの、信号線の数が増えてしまう。
またRGBWの4つの副画素を2行2列の配置とする場合、データ線の数が2本、走査線の数が2本、容量線の数が1本で、計5本の配線を用いて制御できるものの、走査線の数が1行の画素に対して増えてしまう。この場合、走査線駆動回路12の回路構成が大きくなり、表示装置の狭額縁化が難しくなってしまう。
一方、本発明の一態様で開示する構成では、2行に配置された画素13_1、13_2が有する副画素14R_1乃至14W_2を3行の走査線で駆動することができる。加えて本発明の一態様で開示する構成では、RGBの3つの副画素をストライプ配置した信号線と同じ本数で済むため、RGBWの4つの副画素をストライプ配置した場合に比べ信号線の数を削減することができる。そのため、特に走査線駆動回路12の回路構成を小さくすることができるため、表示装置の狭額縁化を実現することができる。
次いで図28(A)に、表示装置が有するトランジスタ103及び容量素子105の断面図を示す。
図28(A)に示すトランジスタ103は、基板302上に設けられるゲート電極として機能する導電膜304cと、基板302及び導電膜304c上に形成されるゲート絶縁膜51と、ゲート絶縁膜51を介して、導電膜304cと重なる酸化物半導体膜308bと、酸化物半導体膜308bに接する、ソース電極及びドレイン電極として機能する一対の導電膜310d、310eとを有する。
また、ゲート絶縁膜51上には、金属酸化物膜308cが設けられる。なお、金属酸化物膜308cは、トランジスタ103に含まれる一対の導電膜の一方の導電膜310eと接続する。また、トランジスタ103及び金属酸化物膜308c上には無機絶縁膜53が設けられる。無機絶縁膜53上には導電膜316bが設けられる。金属酸化物膜308c、無機絶縁膜53、及び導電膜316bにより容量素子105が構成される。
また、無機絶縁膜53及び導電膜316b上には、有機絶縁膜317が設けられる。また、無機絶縁膜53及び有機絶縁膜317に設けられた開口部において、導電膜310eと接続する導電膜319が、有機絶縁膜317上に設けられる。導電膜319は、画素電極として機能する。
金属酸化物膜308cは、酸化物半導体膜308bと同時に形成された酸化物半導体膜に、水素、ホウ素、リン、窒素、スズ、アンチモン、希ガス元素、アルカリ金属、アルカリ土類金属等の不純物を添加し、酸素欠損を有せしめることで、導電性が向上し、導電性を有する膜となる。なお、酸化物半導体膜は透光性を有するため、金属酸化物膜308cも透光性を有する。
なお酸素欠損が形成された酸化物半導体は、酸素欠損サイトに水素が入ることで伝導帯近傍にドナー準位が形成される。この結果、酸化物半導体は、導電性が高くなり、導電体化する。導電体化された酸化物半導体を金属酸化物膜と呼ぶが、酸化物導電体という場合もある。一般に、酸化物半導体は、エネルギーギャップが大きいため、可視光に対して透光性を有する。一方、酸化物導電体は、伝導帯近傍にドナー準位を有する酸化物半導体である。したがって、該ドナー準位による吸収の影響は小さく、可視光に対して酸化物半導体と同程度の透光性を有する。
また、導電膜316b及び導電膜319は透光性を有する導電膜で形成される。このため、容量素子105は透光性を有する。このため、画素において、容量素子の面積を大きくすることが可能であり、容量素子の容量値及び画素の開口率を高めることが可能である。
無機絶縁膜53は、少なくとも酸化物絶縁膜を有し、さらには酸化物絶縁膜及び窒化物絶縁膜が積層されていることが好ましい。無機絶縁膜53において、酸化物半導体膜308bと接する領域において、酸化物絶縁膜が形成されることで、酸化物半導体膜308bと無機絶縁膜53との界面における欠陥量を低減することが可能である。
また、窒化物絶縁膜は、水、水素等のバリア膜として機能する。酸化物半導体膜308bに水、水素等が含まれると、酸化物半導体膜308bに含まれる酸素と、水、水素等とが反応してしまい、酸素欠損が形成される。酸素欠損により、酸化物半導体膜308b中にはキャリアが生成され、トランジスタのしきい値電圧がマイナスシフトし、ノーマリーオン特性となってしまう。このため、無機絶縁膜53に窒化物絶縁膜を設けることで、外部から酸化物半導体膜308bへの水、水素等の拡散量を低減することが可能であり、酸化物半導体膜308bの欠陥量を低減することが可能である。このため、無機絶縁膜53において、酸化物半導体膜308b側から順に酸化物絶縁膜及び窒化物絶縁膜が積層されていることで、酸化物半導体膜308b及び無機絶縁膜53の界面における欠陥量、及び酸化物半導体膜308bにおける酸素欠損量を低減することが可能であり、ノーマリーオフ特性のトランジスタを作製することが可能である。
有機絶縁膜317は、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂等の有機樹脂で形成されるため、平坦性が高い。また、有機絶縁膜317の厚さは、500nm以上5000nm以下、好ましくは1000nm以上3000nm以下である。
また、有機絶縁膜317上に形成された導電膜319は、トランジスタ103と接続する。導電膜319は、画素電極として機能し、無機絶縁膜53及び有機絶縁膜317に設けられた開口部でトランジスタ103と接続する。即ち、導電膜319は、トランジスタ103との距離が離れているため、トランジスタ103の導電膜310dの電位の影響を受けにくい。この結果、導電膜319をトランジスタ103と重畳させることが可能であり、画素の開口率を高めることができる。
ここで、比較例として無機絶縁膜53上に有機絶縁膜317が形成されないトランジスタ103を有する表示装置において、トランジスタ103のゲート電極として機能する導電膜304cに負の電圧を印加した場合について、説明する。
ゲート電極として機能する導電膜304cに負の電圧が印加されると、電界が発生する。該電界は、酸化物半導体膜308bで遮蔽されず、無機絶縁膜53にまで影響するため、無機絶縁膜53の表面に弱い正の電荷が帯電する。また、ゲート電極として機能する導電膜304cに負の電圧が印加されると、空気中に含まれる正の荷電粒子が無機絶縁膜53の表面に吸着し、無機絶縁膜53の表面に弱い正の電荷が帯電する。
無機絶縁膜53の表面に正の電荷が帯電することにより、電場が生じ、該電場が酸化物半導体膜308b及び無機絶縁膜53の界面まで影響する。この結果、酸化物半導体膜308b及び無機絶縁膜53の界面において、実質的に正のバイアスが印加された状態となり、トランジスタのしきい値電圧が負にシフトしてしまう。
一方、図28(A)に示すトランジスタ103は、無機絶縁膜53上に有機絶縁膜317を有する。有機絶縁膜317は厚いため、ゲート電極として機能する導電膜304cに負の電圧が印加されることによって発生する電場の影響が有機絶縁膜317の表面にまで影響せず、有機絶縁膜317の表面に正の電荷が帯電しにくい。また、空気中に含まれる正の荷電粒子が、有機絶縁膜317の表面に吸着しても、有機絶縁膜317は厚いため、有機絶縁膜317の表面に吸着した正の荷電粒子の電場は、酸化物半導体膜308b及び無機絶縁膜53の界面まで影響しにくい。これらの結果、酸化物半導体膜308b及び無機絶縁膜53の界面において、実質的に正のバイアスが印加された状態とならず、トランジスタのしきい値電圧の変動が少ない。
また、有機絶縁膜317において、水等が拡散しやすいが、無機絶縁膜53が窒化物絶縁膜を有することで、窒化物絶縁膜が水のバリア膜となり、有機絶縁膜317に拡散した水が酸化物半導体膜308bに拡散することを防ぐことが可能である。
以上のことから、有機絶縁膜317をトランジスタ上に設けることで、トランジスタの電気特性のばらつきを低減することが可能である。また、ノーマリーオフ特性を有し、信頼性の高いトランジスタを作製することができる。また、有機絶縁膜は、印刷法、塗布法等を用いて形成することが可能であるため、作製時間を短縮することが可能である。また、有機絶縁膜317上に画素電極として機能する導電膜を設けることで、画素における開口率を高めることができる。
<酸化物導電体(金属酸化物膜)について>
ここで、酸化物半導体で形成される膜(以下、酸化物半導体膜(OS)という。)及び酸化物導電体で形成される膜(以下、酸化物導電体膜(OC)という。)それぞれにおける、抵抗率の温度依存性について、図29を用いて説明する。図29において、横軸に測定温度を示し、縦軸に抵抗率を示す。また、酸化物半導体膜(OS)の測定結果を丸印で示し、酸化物導電体膜(OC)の測定結果を四角印で示す。
なお、酸化物半導体膜(OS)を含む試料は、ガラス基板上に、原子数比がIn:Ga:Zn=1:1:1.2のスパッタリングターゲットを用いたスパッタリング法により厚さ35nmのIn−Ga−Zn酸化物膜を形成し、原子数比がIn:Ga:Zn=1:4:5のスパッタリングターゲットを用いたスパッタリング法により厚さ20nmのIn−Ga−Zn酸化物膜を形成し、450℃の窒素雰囲気で加熱処理した後、450℃の窒素及び酸素の混合ガス雰囲気で加熱処理し、さらにプラズマCVD法で酸化窒化シリコン膜を形成して、作製された。
また、酸化物導電体膜(OC)を含む試料は、ガラス基板上に、原子数比がIn:Ga:Zn=1:1:1のスパッタリングターゲットを用いたスパッタリング法により厚さ100nmのIn−Ga−Zn酸化物膜を形成し、450℃の窒素雰囲気で加熱処理した後、450℃の窒素及び酸素の混合ガス雰囲気で加熱処理し、プラズマCVD法で窒化シリコン膜を形成して、作製された。
図29からわかるように、酸化物導電体膜(OC)における抵抗率の温度依存性は、酸化物半導体膜(OS)における抵抗率の温度依存性より小さい。代表的には、80K以上290K以下における酸化物導電体膜(OC)の抵抗率の変化率は、±20%未満である。または、150K以上250K以下における抵抗率の変化率は、±10%未満である。即ち、酸化物導電体は、縮退半導体であり、伝導帯端とフェルミ準位とが一致または略一致していると推定される。このため、酸化物導電体膜を、配線、電極、画素電極等に用いることが可能である。
<変形例1>
図28(A)に示すトランジスタの変形例について、図28(B)を用いて説明する。本変形例に示すトランジスタ103cは、多階調マスクを用いて形成された酸化物半導体膜308e及び一対の導電膜310f、310gを有することを特徴とする。また、トランジスタ103c及び容量素子105が、画素電極として機能する導電膜319で接続されていることを特徴とする。
多階調マスクを用いることで、複数の厚さを有するレジストマスクを形成することが可能であり、該レジストマスクを用い、酸化物半導体膜308eを形成した後、酸素プラズマ等にレジストマスクを曝すことで、レジストマスクの一部が除去され、一対の導電膜を形成するためのレジストマスクとなる。このため、酸化物半導体膜308e及び一対の導電膜310f、310gの作製工程におけるフォトリソグラフィ工程数を削減することができる。
なお、多階調マスクを用いて形成した酸化物半導体膜308eの一部は、平面形状において一対の導電膜310f、310gを超えて伸び、一対の導電膜310f、310gに覆われていない。つまり、酸化物半導体膜308eの一部は、一対の導電膜310f、310gの外側に露出している。
また、図28(B)において、金属酸化物膜308fがゲート絶縁膜51上に形成される。また、金属酸化物膜308f上に、導電膜310f、310gと同時に導電膜310hが形成される。また、導電膜319が導電膜310g及び導電膜310hと接続する。この結果、トランジスタ103c及び容量素子105が電気的に接続する。
<変形例2>
図28(A)に示すトランジスタの変形例について、図28(C)を用いて説明する。本変形例に示すトランジスタ103dは、チャネル保護構造で形成されたトランジスタであることを特徴とする。
チャネル保護構造のトランジスタ103dは、絶縁膜53aに開口部を有し、該開口部で酸化物半導体膜308bと、一対の導電膜310i、310jとが接続される形状となる。該形状とすることで、酸化物半導体膜308bへのダメージを低減することができる。
<変形例3>
図28(A)乃至(C)に示す表示装置において、場合によっては、または、状況に応じて、例えば、導電膜319として、光を反射する機能を有する導電膜を用いて形成してもよい。または、導電膜319として、積層膜を用いて形成し、積層膜の少なくとも一つの膜として、光を反射する機能を有する導電膜を用いてもよい。光を反射する機能を有する導電膜の材料の一例としては、銀、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンなどを用いることができる。または、導電膜319として、銀を用いて形成した膜の上下をITOで挟んだような積層膜を用いて形成してもよい。このような場合、反射型の表示装置、半透過型の表示装置、トップエミッション構造の発光装置などに、図28(A)乃至(C)に示す表示装置を適用することができる。
以上説明した、本発明の一態様における表示装置では、第1乃至第4の副画素を有する第1の画素、及び第1の画素の次行に設けられる第1乃至第4の副画素を有する第2の画素を有する構成において、第1の画素が有する第1乃至第3の副画素を選択するための信号を与える第1の配線と、第1の画素が有する第4の副画素を選択するための第2の配線と、を有し、第2の配線は、第2の画素が有する第4の副画素を選択するための配線である、とする構成とするものである。
そのため、信号線の数を、RGBの3つの副画素をストライプ配置した信号線と同じ本数とすることができるとともに、画素2行分あたりの走査線の数を3本と削減することができるため、走査線駆動回路12の回路構成を小さくすることができる。そして表示装置の狭額縁化を実現することができる。
加えて本発明の一態様における表示装置では、容量素子が透光性を有するため、副画素内に容量素子を大きく(大面積に)形成することができる。従って、開口率を高めつつ、代表的には50%以上、好ましくは60%以上とすることが可能であると共に、容量値を増大させた表示装置を得ることができる。例えば、解像度の高い表示装置、例えば液晶表示装置においては、画素の面積が小さくなり、容量素子の面積も小さくなる。このため、解像度の高い表示装置において、容量素子に蓄積される電荷量が小さくなる。しかしながら、本実施の形態に示す容量素子105は透光性を有するため、当該容量素子を画素に設けることで、各画素において十分な容量値を得つつ、開口率を高めることができる。
また液晶表示装置において、容量素子の容量値を大きくするほど、電界を加えた状況において、液晶素子の液晶分子の配向を一定に保つことができる期間を長くすることができる。静止画を表示させる場合、当該期間を長くできるため、画像データを書き換える回数を低減することが可能であり、消費電力を低減することができる。また、本実施の形態に示す構造により、高解像度の表示装置においても、開口率を高めることができるため、バックライトなどの光源の光を効率よく利用することができ、表示装置の消費電力を低減することができる。
なお、画素は、Rの副画素と、Gの副画素と、Bの副画素と、Wの副画素と、という4種類の副画素を有していてもよいが、本発明の一態様は、これに限定されない。1つの画素は、4種類の副画素のうち、少なくとも、複数の副画素を有していればよい。また、それぞれの画素が有する副画素は、画素によって、異なっていてもよい。
例えば、第1の画素は、Rの副画素、Gの副画素、Bの副画素を有し、第2の画素は、Rの副画素、Gの副画素、Wの副画素を有してもよい。または、第1の画素は、Rの副画素、Gの副画素を有し、第2の画素は、Bの副画素、Wの副画素を有してもよい。または、第1の画素は、Rの副画素、Gの副画素、Bの副画素を有し、第2の画素は、Rの副画素と、Gの副画素と、Bの副画素と、Wの副画素を有してもよい。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、本発明の一態様である表示装置及びその作製方法について、具体的な構成を示す図面を参照して説明する。
まず表示装置に含まれる素子基板の具体的な構成について説明する。ここでは、表示装置としてVA方式の液晶表示装置を用い、該液晶表示装置に含まれる副画素14R_1、14G_1、14B_1、14W_1、14R_2、14G_2、14B_2、14W_2(以下、副画素14という)の上面図を説明する。図2では、副画素14における素子基板側の部材の配置を表す上面図を示す。また図3では、図2に示す素子基板側の部材の上面図に対応する、対向基板側の部材の配置を表す上面図を示す。なお図2及び図3は、図1(B)に示す回路構成に対応する上面図である。
図2において、副画素14R_1、14G_1及び14B_1の走査線として機能する導電膜304c並びに14W_1及び14W_2の走査線として機能する導電膜304dは、信号線として機能する導電膜に略直交する方向(図中左右方向)に延伸して設けられている。信号線として機能する導電膜310dは、走査線として機能する導電膜に略直交する方向(図中上下方向)に延伸して設けられている。なお、走査線として機能する導電膜304cは、走査線駆動回路12(図1(A)を参照。)と電気的に接続されており、信号線として機能する導電膜310dは、信号線駆動回路16(図1(A)を参照。)に電気的に接続されている。
トランジスタ103は、走査線として機能する導電膜及び信号線として機能する導電膜が交差する領域に設けられている。トランジスタ103は、ゲート電極として機能する導電膜304c、ゲート絶縁膜(図2に図示せず。)、ゲート絶縁膜上に形成されたチャネル領域が形成される酸化物半導体膜308b、ソース電極及びドレイン電極として機能する一対の導電膜310d、310eにより構成される。なお、導電膜304cは、走査線として機能する導電膜としても機能し、酸化物半導体膜308bと重畳する領域がトランジスタ103のゲート電極として機能する。また、導電膜310dは、信号線として機能する導電膜としても機能し、酸化物半導体膜308bと重畳する領域がトランジスタ103のソース電極またはドレイン電極として機能する。また、図2において、走査線として機能する導電膜は、上面形状において端部が酸化物半導体膜308bの端部より外側に位置する。このため、走査線として機能する導電膜はバックライトなどの光源からの光を遮る遮光膜として機能する。この結果、トランジスタに含まれる酸化物半導体膜308bに光が照射されず、トランジスタの電気特性の変動を抑制することができる。
また、金属酸化物膜308cは、トランジスタ103に含まれる導電膜310eと接続する。また、金属酸化物膜308c上において、絶縁膜を介して導電膜316bが設けられている。なお、金属酸化物膜308c上に設けられる絶縁膜において、開口部362が設けられている。該開口部362において、金属酸化物膜308cは、絶縁膜に含まれる窒化物絶縁膜(図2に図示せず。)と接する。
容量素子105は、金属酸化物膜308c及び導電膜316bが重なる領域で形成される。金属酸化物膜308c及び導電膜316bは透光性を有する。即ち、容量素子105は透光性を有する。
画素電極として機能する導電膜319は、有機絶縁膜(図2に図示せず。)を介して、導電膜310e及び導電膜316b上に設けられる。また、導電膜319は、開口部364cにおいて導電膜310eと接続する。すなわち、トランジスタ103、容量素子105、及び導電膜319は電気的に接続する。
容量素子105は透光性を有するため、副画素14内に容量素子105を大きく(大面積に)形成することができる。従って、開口率を高めつつ、代表的には50%以上、好ましくは60%以上とすることが可能であると共に、容量値を増大させた表示装置を得ることができる。例えば、解像度の高い表示装置、例えば液晶表示装置においては、画素の面積が小さくなり、容量素子の面積も小さくなる。このため、解像度の高い表示装置において、容量素子に蓄積される電荷量が小さくなる。しかしながら、本実施の形態に示す容量素子105は透光性を有するため、当該容量素子を画素に設けることで、各画素において十分な容量値を得つつ、開口率を高めることができる。代表的には、画素密度が200ppi以上、さらには300ppi以上、更には500ppi以上である高解像度の表示装置に好適に用いることができる。
また、液晶表示装置において、容量素子の容量値を大きくするほど、電界を加えた状況において、液晶素子の液晶分子の配向を一定に保つことができる期間を長くすることができる。静止画を表示させる場合、当該期間を長くできるため、画像データを書き換える回数を低減することが可能であり、消費電力を低減することができる。また、本実施の形態に示す構造により、高解像度の表示装置においても、開口率を高めることができるため、バックライトなどの光源の光を効率よく利用することができ、表示装置の消費電力を低減することができる。
また図3に示す、図2の上面図に対応する対向基板側の上面図では、副画素14の配置例を示している。副画素14では、遮光部BMに設けられる開口部において、有色膜R1、G1、B1、透光性を有する層W1、有色膜R2、G2、B2、透光性を有する層W2が設けられている。
遮光膜BMとしては、特定の波長帯域の光を遮光する機能を有していればよく、金属膜、または黒色顔料等を含んだ有機絶縁膜などを用いることができる。
有色膜R1、G1、B1、R2、G2、B2は、透過する光源の光を所定の色を呈する光にするための層である。代表的には、カラーフィルタを用い、RGBの副画素の対応する、副画素に配置すればよい。
透光性を有する層W1、W2は、光源の光を透過させるための層である。代表的には、アクリル樹脂、ポリイミド、エポキシ樹脂等の有機樹脂を用い、Wの副画素に対応する、副画素に配置すればよい。なお透光性を有する層W1、W2は、配置しなくてもよい。あるいは、透光性を有する層W1、W2を有する層として、特定の波長の光を吸収する層を設ける構成としてもよい。該構成の場合、例えば、光源の光の波長によって適切な白色が得られなくても、ホワイトバランスを調整するできるため、色純度の高い表示を行うことができる。
次いで、図2、図3の線C−D間における断面図を図4に示す。なお、図4において、図1で説明した走査線駆動回路12及び信号線駆動回路16を含む駆動回路部(上面図を省略する。)の断面図をA−Bに示す。本実施の形態においては、表示装置として、VA方式の液晶表示装置について説明する。
本実施の形態に示す液晶表示装置は、一対の基板(基板302と基板342)間に液晶素子322が挟持されている。
液晶素子322は、基板302の上方の導電膜319と、配向性を制御する膜(以下、配向膜320、352という)と、液晶層321と、導電膜350と、を有する。なお、導電膜319は、液晶素子322の一方の電極として機能し、導電膜350は、液晶素子322の他方の電極として機能する。
このように、液晶表示装置とは、液晶素子を有する装置のことをいう。なお、液晶表示装置は、複数の画素を駆動させる駆動回路等を含む。また、液晶表示装置は、別の基板上に配置された制御回路、電源回路、信号生成回路及びバックライトモジュール等を含み、液晶モジュールとよぶこともある。
駆動回路部において、ゲート電極として機能する導電膜304a、ゲート絶縁膜51として機能する絶縁膜305及び絶縁膜306、チャネル領域が形成される酸化物半導体膜308a、ソース電極及びドレイン電極として機能する導電膜310a、310bによりトランジスタ102を構成する。酸化物半導体膜308aは、ゲート絶縁膜51上に設けられる。
画素部において、ゲート電極として機能する導電膜304c、ゲート絶縁膜51として機能する絶縁膜305及び絶縁膜306、ゲート絶縁膜51上に形成されたチャネル領域が形成される酸化物半導体膜308b、ソース電極及びドレイン電極として機能する導電膜310d、310eによりトランジスタ103を構成する。酸化物半導体膜308bは、ゲート絶縁膜51上に設けられる。また、導電膜310d、310e上には、無機絶縁膜53である絶縁膜312、絶縁膜314が保護膜として設けられている。
また、一方の電極として機能する金属酸化物膜308c、誘電体膜として機能する絶縁膜314、他方の電極として機能する導電膜316bにより容量素子105を構成する。金属酸化物膜308cは、ゲート絶縁膜51上に設けられる。
無機絶縁膜53上に有機絶縁膜317が形成される。また、有機絶縁膜317上には、画素電極として機能する導電膜319が形成される。導電膜319は、導電膜310eと接続される。
また、駆動回路部において、導電膜304a、304cと同時に形成された導電膜304bと、導電膜310a、310b、310d、310eと同時に形成された導電膜310cとは、導電膜319と同時に形成された導電膜319aで接続される。
導電膜304b及び導電膜319aは、絶縁膜305、絶縁膜306、絶縁膜312、絶縁膜314、及び有機絶縁膜317に設けられた開口部において接続する。また、導電膜310cと導電膜319aは、絶縁膜312、絶縁膜314、及び有機絶縁膜317に設けられた開口部において接続する。
なお、図示しないが、導電膜316bは、導電膜319、319aと同時に形成された導電膜により、導電膜304a、304b、304cと同時に形成された導電膜、または導電膜310a、310b、310c、310d、310eと同時に形成された導電膜と電気的に接続する。また、導電膜304a、304b、304cと同時に形成された導電膜、または導電膜310a、310b、310c、310d、310eと同時に形成された導電膜を介して、コモン電位、接地電位等の任意の電位が導電膜316bに印加される。
ここで、図4に示す表示装置の構成要素について、以下に説明する。
基板302上には、導電膜304a、304b、304cが形成されている。導電膜304aは、駆動回路部のトランジスタのゲート電極としての機能を有する。また、導電膜304bは、駆動回路部に形成され、導電膜310cと接続する。また、導電膜304cは、画素部11に形成され、画素部のトランジスタのゲート電極として機能する。
基板302の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有している必要がある。例えば、ガラス基板、セラミック基板、石英基板、サファイア基板等を、基板302として用いてもよい。また、シリコンや炭化シリコンを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板等を適用することも可能であり、これらの基板上に半導体素子が設けられたものを、基板302として用いてもよい。なお、基板302として、ガラス基板を用いる場合、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第10世代(2950mm×3400mm)等の大面積基板を用いることで、大型の液晶表示装置を作製することができる。
また、基板302として、可撓性基板を用い、可撓性基板上に直接、トランジスタを形成してもよい。または、基板302とトランジスタの間に剥離層を設けてもよい。剥離層は、その上に素子部を一部あるいは全部完成させた後、基板302より分離し、他の基板に転載するのに用いることができる。その際、トランジスタは耐熱性の劣る基板や可撓性の基板にも転載できる。
導電膜304a、304b、304cとしては、アルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属元素を用いてもよい。また、導電膜304a、304b、304cは、単層構造でも、二層以上の積層構造としてもよい。例えば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する二層構造、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
また、導電膜304a、304b、304cは、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属元素の積層構造とすることもできる。
基板302、及び導電膜304a、304c、304b上には、絶縁膜305、絶縁膜306が形成されている。絶縁膜305、絶縁膜306は、駆動回路部のトランジスタのゲート絶縁膜51、及び画素部11のトランジスタのゲート絶縁膜51としての機能を有する。
絶縁膜305としては、例えば窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウム等の窒化物絶縁膜を用いて形成することが好ましい。
絶縁膜306としては、例えば酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、酸化ガリウムまたはGa−Zn系金属酸化物などを用いればよく、積層または単層で設ける。また、絶縁膜306としては、ハフニウムシリケート(HfSiO)、窒素が添加されたハフニウムシリケート(HfSi)、窒素が添加されたハフニウムアルミネート(HfAl)、酸化ハフニウム、酸化イットリウムなどのhigh−k材料を用いることでトランジスタのゲートリークを低減できる。
絶縁膜305及び絶縁膜306の合計の厚さは、5nm以上400nm以下、より好ましくは10nm以上300nm以下、より好ましくは50nm以上250nm以下とするとよい。
絶縁膜306上には、酸化物半導体膜308a、308b、金属酸化物膜308cが形成されている。酸化物半導体膜308aは、導電膜304aと重畳する位置に形成され、駆動回路部のトランジスタのチャネル領域として機能する。また、酸化物半導体膜308bは、導電膜304cと重畳する位置に形成され、画素部のトランジスタのチャネル領域として機能する。金属酸化物膜308cは、トランジスタ103に含まれる導電膜310eと接続し、且つ容量素子105の電極として機能する。
酸化物半導体膜308a、308b、及び金属酸化物膜308cは、代表的には、In−Ga酸化物、In−Zn酸化物、In−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、Nd、Sn、またはHf)がある。なお、酸化物半導体膜308a、308b、及び金属酸化物膜308cは、透光性を有する。
なお、酸化物半導体膜308a、308b、及び金属酸化物膜308cがIn−M−Zn酸化物であるとき、InとMの原子数比率は、InおよびMの和を100atomic%としたときInが25atomic%以上、Mが75atomic%未満、さらに好ましくはInが34atomic%以上、Mが66atomic%未満とする。
酸化物半導体膜308a、308b、及び金属酸化物膜308cは、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である。このように、エネルギーギャップの広い酸化物半導体を用いることで、トランジスタのオフ電流を低減することができる。
酸化物半導体膜308a、308b、及び金属酸化物膜308cの厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、さらに好ましくは3nm以上50nm以下とする。
酸化物半導体膜308a、308b、及び金属酸化物膜308cとしてIn:Ga:Zn=1:1:1、In:Ga:Zn=1:1:1.2、または3:1:2の原子数比のIn−Ga−Zn酸化物を用いることができる。なお、酸化物半導体膜308a、308b、及び金属酸化物膜308cの原子数比はそれぞれ、誤差として上記の原子数比のプラスマイナス20%の変動を含む。
また、酸化物半導体膜308a、308b、及び金属酸化物膜308cは、例えば非単結晶構造でもよい。非単結晶構造は、例えば、後述するCAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶構造、後述する微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。なお、酸化物半導体膜308a、308b、及び金属酸化物膜308cは、結晶性が同じである。
なお、酸化物半導体膜308a、308b、及び金属酸化物膜308cがそれぞれ、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域の二種以上を有する混合膜であってもよい。混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域を有する単層構造の場合がある。また、混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域の積層構造を有する場合がある。
酸化物半導体膜308a、308bにおいて、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体膜308a、308bにおいて酸素欠損が増加し、n型化してしまう。このため、酸化物半導体膜308a、308bにおけるシリコンや炭素の濃度(二次イオン質量分析法により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体膜308a、308bにおいて、二次イオン質量分析法により得られるアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。アルカリ金属及びアルカリ土類金属は、酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増大してしまうことがある。このため、酸化物半導体膜308a、308bのアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。
また、酸化物半導体膜308a、308bに窒素が含まれていると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。従って、当該酸化物半導体膜において、窒素はできる限り低減されていることが好ましい、例えば、二次イオン質量分析法により得られる窒素濃度は、5×1018atoms/cm以下にすることが好ましい。
酸化物半導体膜308a、308bとしては、キャリア密度の低い酸化物半導体膜を用いる。例えば、酸化物半導体膜308a、308bは、キャリア密度が1×1017/cm以下、好ましくは1×1015/cm以下、さらに好ましくは1×1013/cm以下、特に好ましくは8×1011/cm未満、さらに好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上の酸化物半導体膜を用いる。
なお、これらに限られず、必要とするトランジスタの半導体特性及び電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とするトランジスタの半導体特性を得るために、酸化物半導体膜308a、308bのキャリア密度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
酸化物半導体膜308a、308bは、絶縁膜306及び絶縁膜312等の、酸化物半導体膜との界面特性を向上させることが可能な材料で形成される膜と接しているため、酸化物半導体膜308a、308bは、半導体として機能し、酸化物半導体膜308a、308bを有するトランジスタは、優れた電気特性を有する。
なお、酸化物半導体膜308a、308bとして、不純物濃度が低く、欠陥準位密度の低い酸化物半導体膜を用いることで、優れた電気特性を有するトランジスタを作製することができ好ましい。ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損の少ない)ことを高純度真性または実質的に高純度真性とよぶ。高純度真性または実質的に高純度真性である酸化物半導体は、キャリア発生源が少ないため、キャリア密度を低くすることができる場合がある。従って、当該酸化物半導体膜にチャネル領域が形成されるトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない場合がある。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、オフ電流が著しく小さく、チャネル幅が1×10μmでチャネル長Lが10μmの素子であっても、ソース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから10Vの範囲において、オフ電流が、半導体パラメータアナライザの測定限界以下、すなわち1×10−13A以下という特性を得ることができる。従って、当該酸化物半導体膜にチャネル領域が形成されるトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる場合がある。なお、酸化物半導体膜のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体膜にチャネル領域が形成されるトランジスタは、電気特性が不安定となる場合がある。不純物としては、水素、窒素、アルカリ金属、またはアルカリ土類金属等がある。
金属酸化物膜308cは、酸化物半導体膜308a、308bと同時に形成された酸化物半導体膜を加工して形成される。このため、金属酸化物膜308cは、酸化物半導体膜308a、308bと同様の金属元素を有する膜である。また、酸化物半導体膜308a、308bと同様の結晶構造、または異なる結晶構造を有する膜である。しかしながら、酸化物半導体膜308a、308bと同時に形成された酸化物半導体膜に、不純物または酸素欠損を有せしめることで、導電性を有する膜となり、容量素子の電極として機能する。酸化物半導体膜に含まれる不純物としては、水素がある。なお、水素の代わりに不純物として、ホウ素、リン、スズ、アンチモン、希ガス元素、アルカリ金属、アルカリ土類金属等が含まれていてもよい。または、金属酸化物膜308cは、酸化物半導体膜308a、308bと同時に形成された膜であり、プラズマダメージ等により酸素欠損が形成され、導電性が高められた膜である。または、金属酸化物膜308cは、酸化物半導体膜308a、308bと同時に形成された膜であり、且つ不純物を含むと共に、プラズマダメージ等により酸素欠損が形成され、導電性が高められた膜である。
このため、酸化物半導体膜308a、308b及び金属酸化物膜308cは共に、絶縁膜306上に形成されるが、不純物濃度が異なる。具体的には、酸化物半導体膜308a、308bと比較して、金属酸化物膜308cの不純物濃度が高い。例えば、酸化物半導体膜308a、308bに含まれる水素濃度は、5×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、好ましくは1×1018atoms/cm以下、より好ましくは5×1017atoms/cm以下、さらに好ましくは1×1016atoms/cm以下であり、金属酸化物膜308cに含まれる水素濃度は、8×1019atoms/cm以上、好ましくは1×1020atoms/cm以上、より好ましくは5×1020atoms/cm以上である。また、酸化物半導体膜308a、308bと比較して、金属酸化物膜308cに含まれる水素濃度は2倍、好ましくは10倍以上である。
また、酸化物半導体膜308a、308bと同時に形成された酸化物半導体膜をプラズマに曝すことにより、酸化物半導体膜にダメージを与え、酸素欠損を形成することができる。例えば、酸化物半導体膜上に、プラズマCVD法またはスパッタリング法で膜を成膜すると、酸化物半導体膜がプラズマに曝され、酸素欠損が生成される。または、絶縁膜312を形成するためのエッチング処理において酸化物半導体膜がプラズマに曝されることで、酸素欠損が生成される。または、酸化物半導体膜が水素、希ガス、アンモニア、酸素及び水素の混合ガス等のプラズマに曝されることで、酸素欠損が生成される。この結果、酸化物半導体膜は導電性が高くなり、導電性を有する膜となり、金属酸化物膜308cとして機能する。
即ち、金属酸化物膜308cは、導電性の高い酸化物半導体膜で形成されるともいえる。また金属酸化物膜308cは、導電性の高い金属酸化物膜で形成されるともいえる。
また、絶縁膜314として、窒化シリコン膜を用いる場合、窒化シリコン膜は水素を含む。このため、絶縁膜314の水素が酸化物半導体膜308a、308bと同時に形成された酸化物半導体膜に拡散すると、該酸化物半導体膜において水素は酸素と結合し、キャリアである電子が生成される。また、窒化シリコン膜をプラズマCVD法またはスパッタリング法で成膜すると、酸化物半導体膜がプラズマに曝され、酸素欠損が生成される。当該酸素欠損に、窒化シリコン膜に含まれる水素が入ることで、キャリアである電子が生成される。これらの結果、酸化物半導体膜は導電性が高くなり、金属酸化物膜308cとなる。
金属酸化物膜308cは、酸化物半導体膜308a、308bより抵抗率が低い。金属酸化物膜308cの抵抗率が、酸化物半導体膜308a、308bの抵抗率の1×10−8倍以上1×10−1倍未満であることが好ましく、代表的には1×10−3Ωcm以上1×10Ωcm未満、さらに好ましくは、抵抗率が1×10−3Ωcm以上1×10−1Ωcm未満であるとよい。
ただし、本発明の実施形態の一態様は、これに限定されず、金属酸化物膜308cは、場合によっては、絶縁膜314と接していないことも可能である。
また、本発明の実施形態の一態様は、これに限定されず、金属酸化物膜308cは、場合によっては、酸化物半導体膜308a、または、308bと別々の工程で形成されてもよい。その場合には、金属酸化物膜308cは、酸化物半導体膜308a、308bと、異なる材質を有していても良い。例えば、金属酸化物膜308cは、インジウム錫酸化物(以下、ITOと示す。)、または、インジウム亜鉛酸化物等を用いて形成してもよい。
本実施の形態に示す液晶表示装置は、容量素子は、透光性を有する。この結果、容量素子の占有面積を大きくしつつ、画素の開口率を高めることができる。
導電膜310a、310b、310c、310d、310eは、、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンからなる単体金属、またはこれを主成分とする合金を単層構造または積層構造として用いる。例えば、シリコンを含むアルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する二層構造、タングステン膜上にチタン膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
絶縁膜306、酸化物半導体膜308a、308b、金属酸化物膜308c、及び導電膜310a、310b、310c、310d、310e上には、無機絶縁膜53として、絶縁膜312及び絶縁膜314が形成されている。絶縁膜312は、絶縁膜306と同様に、酸化物半導体膜との界面特性を向上させることが可能な材料を用いることが好ましく、酸化物絶縁膜を用いて形成することができる。ここでは、絶縁膜312としては、絶縁膜312a、312bを積層して形成する。
絶縁膜312aは、酸素を透過する酸化物絶縁膜である。なお、絶縁膜312aは、後に形成する絶縁膜312bを形成する際の、酸化物半導体膜308a、308b、及び金属酸化物膜308cへのダメージ緩和膜としても機能する。
絶縁膜312aとしては、厚さが5nm以上150nm以下、好ましくは5nm以上50nm以下の酸化シリコン膜、酸化窒化シリコン膜等を用いることができる。なお、本明細書中において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多い膜を指し、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多い膜を指す。
また、絶縁膜312aは、酸化物絶縁膜であり、該酸化物絶縁膜は、窒素を含み、且つ欠陥量の少ないことが好ましい。
窒素を含み、且つ欠陥量の少ない酸化物絶縁膜の代表例としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜等がある。
欠陥の少ない酸化物絶縁膜は、100K以下のESRで測定して得られたスペクトルにおいてg値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下の第3のシグナルが観測される。なお、第1のシグナル及び第2のシグナルのスプリット幅、並びに第2のシグナル及び第3のシグナルのスプリット幅は、XバンドのESR測定において約5mTである。また、g値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下である第3のシグナルのスピンの密度の合計が1×1018spins/cm未満であり、代表的には1×1017spins/cm以上1×1018spins/cm未満である。
なお、100K以下のESRスペクトルにおいてg値が2.037以上2.039以下の第1シグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下の第3のシグナルは、窒素酸化物(NOx、xは0以上2以下、好ましくは1以上2以下)起因のシグナルに相当する。窒素酸化物の代表例としては、一酸化窒素、二酸化窒素等がある。即ち、g値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下である第3のシグナルのスピンの密度の合計が少ないほど、酸化物絶縁膜に含まれる窒素酸化物の含有量が少ないといえる。
絶縁膜312aが、上記のように、窒素酸化物の含有量が少ないと、絶縁膜312aと酸化物半導体膜との界面におけるキャリアのトラップを低減することが可能である。この結果、表示装置に含まれるトランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。
また、絶縁膜312aは、SIMS(Secondary Ion Mass Spectrometry)で測定される窒素濃度が6×1020atoms/cm以下であることが好ましい。この結果、絶縁膜312aにおいて、窒素酸化物が生成されにくくなり、絶縁膜312aと、酸化物半導体膜308a、308bとの界面におけるキャリアのトラップを低減することが可能である。また、表示装置に含まれるトランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。
なお、絶縁膜312aにおいて、膜中に窒素酸化物及びアンモニアが含まれると、作製工程のプロセスにおける加熱処理において、窒素酸化物及びアンモニアが反応し、窒素酸化物が窒素ガスとなって脱離する。この結果、絶縁膜312aの窒素濃度及び窒素酸化物の含有量を低減することができる。また、絶縁膜312aと、酸化物半導体膜308a、308bとの界面におけるキャリアのトラップを低減することが可能である。また、表示装置に含まれるトランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。
なお、絶縁膜312aにおいては、外部から絶縁膜312aに入った酸素が全て絶縁膜312aの外部に移動せず、絶縁膜312aにとどまる酸素もある。また、絶縁膜312aに酸素が入ると共に、絶縁膜312aに含まれる酸素が絶縁膜312aの外部へ移動することで絶縁膜312aにおいて酸素の移動が生じる場合もある。
絶縁膜312aとして酸素を透過する酸化物絶縁膜を形成すると、絶縁膜312a上に設けられる、絶縁膜312bから脱離する酸素を、絶縁膜312aを介して酸化物半導体膜308a、308bに移動させることができる。
絶縁膜312aに接するように絶縁膜312bが形成されている。絶縁膜312bは、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を用いて形成する。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜は、加熱により酸素の一部が脱離する。化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜は、TDS分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物絶縁膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上500℃以下の範囲が好ましい。
絶縁膜312bとしては、厚さが30nm以上500nm以下、好ましくは50nm以上400nm以下の、酸化シリコン、酸化窒化シリコン等を用いることができる。
また、絶縁膜312bは、欠陥量が少ないことが好ましく、代表的には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が1.5×1018spins/cm未満、更には1×1018spins/cm以下であることが好ましい。なお、絶縁膜312bは、絶縁膜312aと比較して酸化物半導体膜308a、308bから離れているため、絶縁膜312aより、欠陥密度が多くともよい。
絶縁膜314として、酸素、水素、水、アルカリ金属、アルカリ土類金属等のブロッキング効果を有する窒化物絶縁膜を設けることで、酸化物半導体膜308a、308b、及び金属酸化物膜308cからの酸素の外部への拡散を防ぐことができる。窒化物絶縁膜としては、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウム等がある。
なお、酸素、水素、水、アルカリ金属、アルカリ土類金属等のブロッキング効果を有する窒化物絶縁膜上に、酸素、水素、水等のブロッキング効果を有する酸化物絶縁膜を設けてもよい。酸素、水素、水等のブロッキング効果を有する酸化物絶縁膜としては、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム等がある。また、容量素子の容量値を制御するため、酸素、水素、水、アルカリ金属、アルカリ土類金属等のブロッキング効果を有する窒化物絶縁膜上に窒化物絶縁膜または酸化絶縁膜を適宜設けてもよい。
また、絶縁膜314上には導電膜316bが形成されている。導電膜316bは、絶縁膜314上に形成され、容量素子の電極として機能することができる。
導電膜316bとしては、透光性を有する導電性材料を用いて形成することができる。透光性を有する導電性材料としては、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、ITO、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などがある。
有機絶縁膜317としては、アクリル樹脂、ポリイミド、エポキシ樹脂等の有機樹脂を用いることができる。なお、有機絶縁膜317は、500nm以上5000nm以下、好ましくは1000nm以上3000nm以下とする。有機絶縁膜317の厚さを上記の厚さとすることで、導電膜316b上の凹部に有機絶縁膜317を充填させることが可能であり、配向膜320が形成される領域の凹凸を低減することができる。
有機樹脂を用いて有機絶縁膜317を形成することで、少なくとも導電膜316bの凹部を有機絶縁膜317で充填することが可能であり、液晶層321を構成する液晶材料の配向ムラを低減することが可能である。
また、有機絶縁膜317上には、導電膜319、319aが形成されている。導電膜319は、画素電極として機能する。導電膜319aは、開口部364a(図9(A)参照。)において導電膜304bと電気的に接続され、開口部364b(図9(A)参照。)において導電膜310cと電気的に接続される。即ち、導電膜304b及び導電膜310cを接続する接続電極として機能する。
有機絶縁膜317は、これに限定されない。例えば、有機絶縁膜317は、カラーフィルタや、ブラックマトリックスの機能を有することも可能である。例えば、有機絶縁膜317が、カラーフィルタの機能を有する場合には、例えば、赤色の画素、青色の画素、緑色の画素に合わせて、各色ごとに、有色性を有する有機絶縁膜317を形成すればよい。
導電膜319、319aは、導電膜316bと同様に透光性を有する導電性材料を用いて形成することができる。
なお、導電膜304b及び導電膜310cが直接接するような接続構造とするには、導電膜310cを形成する前に、絶縁膜305、絶縁膜306に開口部を形成するために、パターニングのためのマスクを形成する必要がある。しかしながら、図4のように、導電膜319aにより、導電膜304b及び導電膜310cを接続することで、導電膜304b及び導電膜310cが直接接する接続部を作製する必要が無くなり、フォトマスクを1枚少なくすることができる。即ち、液晶表示装置の作製工程を削減することが可能である。
配向膜320としては、透光性を有することが望ましく、代表的には、アクリル樹脂、ポリイミド、エポキシ樹脂等の有機樹脂を用いることができる。
また、基板342上には、有色性を有する膜(以下、有色膜346という。)が形成されている。有色膜346は、カラーフィルタとしての機能を有する。また、有色膜346に隣接する遮光膜344が基板342上に形成される。遮光膜344は、ブラックマトリクスとして機能する。また、有色膜346は、必ずしも設ける必要はなく、例えば、液晶表示装置が白黒の場合等によって、有色膜346を設けない構成としてもよい。
有色膜346としては、特定の波長帯域の光を透過する有色膜であればよく、例えば、赤色の波長帯域の光を透過する赤色(R)のカラーフィルタ、緑色の波長帯域の光を透過する緑色(G)のカラーフィルタ、青色の波長帯域の光を透過する青色(B)のカラーフィルタなどを用いることができる。または有色膜346としては、光源の光をそのまま透過する、透光性を有する層を用いることができる。例えば透光性を有する層には、アクリル樹脂、ポリイミド、エポキシ樹脂等の有機樹脂を用いることができる。
遮光膜344としては、特定の波長帯域の光を遮光する機能を有していればよく、金属膜または黒色顔料等を含んだ有機絶縁膜などを用いることができる。
また、有色膜346上には、絶縁膜348が形成されている。絶縁膜348は、平坦化層としての機能、または有色膜346が含有しうる不純物を液晶素子側へ拡散するのを抑制する機能を有する。
また、絶縁膜348上には、導電膜350が形成されている。導電膜350は、画素部の液晶素子が有する一対の電極の他方としての機能を有する。なお、導電膜319、319a上には、配向膜320が形成され、導電膜350上には、配向膜352が形成される。
また、導電膜319、319aと導電膜350との間には、液晶層321が形成されている。また液晶層321は、シール材(図示しない)を用いて、基板302と基板342の間に封止されている。なお、シール材は、外部からの水分等の入り込みを抑制するために、無機材料と接触する構成が好ましい。
また、導電膜319、319aと導電膜350との間に液晶層321の厚さ(セルギャップともいう)を維持するスペーサを設けてもよい。
図4に示す液晶表示装置に示す基板302上に設けられた素子部の作製方法について、図5乃至図8を用いて説明する。なお、ここでは、基板302上に設けられた素子部としては、基板302と配向膜320に挟まれた領域のことをさす。
トランジスタを構成する膜(絶縁膜、酸化物半導体膜、金属酸化物膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD)法、真空蒸着法、パルスレーザー堆積(PLD)法を用いて形成することができる。あるいは、塗布法や印刷法で形成することができる。成膜方法としては、スパッタリング法、プラズマ化学気相堆積(PECVD)法が代表的であるが、熱CVD法でもよい。熱CVD法の例として、MOCVD(有機金属化学堆積)法やALD(原子層成膜)法を使ってもよい。
熱CVD法は、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を大気圧または減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで成膜を行ってもよい。このように、熱CVD法は、プラズマを発生させない成膜方法であるため、プラズマダメージにより欠陥が生成されることが無いという利点を有する。
また、ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスが順次にチャンバーに導入され、そのガス導入の順序を繰り返すことで成膜を行ってもよい。例えば、それぞれのスイッチングバルブ(高速バルブともよぶ)を切り替えて2種類以上の原料ガスを順番にチャンバーに供給し、複数種の原料ガスが混ざらないように第1の原料ガスと同時またはその後に不活性ガス(アルゴン、或いは窒素など)などを導入し、第2の原料ガスを導入する。なお、同時に不活性ガスを導入する場合には、不活性ガスはキャリアガスとなり、また、第2の原料ガスの導入時にも同時に不活性ガスを導入してもよい。また、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着して第1の層を成膜し、後から導入される第2の原料ガスと反応して、第2の層が第1の層上に積層されて薄膜が形成される。
このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入順序を繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微細なトランジスタを作製する場合に適している。
まず、基板302を準備する。ここでは、基板302としてガラス基板を用いる。
次に、基板302上に導電膜を形成し、該導電膜を所望の形状に加工することで、導電膜304a、304b、304cを形成する。なお、導電膜304a、304b、304cの形成は、所望の領域に第1のパターニングによるマスクの形成を行い、該マスクに覆われていない領域をエッチングすることで形成することができる。
また、導電膜304a、304b、304cとしては、代表的には、スパッタリング法、真空蒸着法、パルスレーザー堆積(PLD)法、熱CVD法等を用いて形成することができる。
また、ALDを利用する成膜装置により導電膜304a、304b、304cとしてタングステン膜を成膜することができる。この場合には、WFガスとBガスを順次繰り返し導入して初期タングステン膜を形成し、その後、WFガスとHガスを同時に導入してタングステン膜を形成する。なお、Bガスに代えてSiHガスを用いてもよい。
次に、基板302、及び導電膜304a、304b、304c上に、絶縁膜305を形成し、絶縁膜305上に絶縁膜306を形成する(図5(A)参照。)。
絶縁膜305及び絶縁膜306は、スパッタリング法、CVD法、真空蒸着法、パルスレーザー堆積(PLD)法、熱CVD法等により形成することができる。なお、絶縁膜305及び絶縁膜306は、真空中で連続して形成すると不純物の混入が抑制され好ましい。
絶縁膜305及び絶縁膜306として酸化シリコン膜または酸化窒化シリコン膜を形成する場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
また、絶縁膜305及び絶縁膜306として酸化ガリウム膜を形成する場合、MOCVD(Metal Organic Chemical Vapor Deposition)法を用いて形成することができる。
また、絶縁膜305及び絶縁膜306として、MOCVD法やALD法などの熱CVD法を用いて、酸化ハフニウム膜を形成する場合には、溶媒とハフニウム前駆体化合物を含む液体(ハフニウムアルコキシド溶液、代表的にはテトラキスジメチルアミドハフニウム(TDMAH))を気化させた原料ガスと、酸化剤としてオゾン(O)の2種類のガスを用いる。なお、テトラキスジメチルアミドハフニウムの化学式はHf[N(CHである。また、他の材料液としては、テトラキス(エチルメチルアミド)ハフニウムなどがある。
また、絶縁膜305及び絶縁膜306として、MOCVD法やALD法などの熱CVD法を用いて、酸化アルミニウム膜を形成する場合には、溶媒とアルミニウム前駆体化合物を含む液体(トリメチルアルミニウム(TMA)など)を気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。なお、トリメチルアルミニウムの化学式はAl(CHである。また、他の材料液としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、アルミニウムトリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)などがある。
また、絶縁膜305及び絶縁膜306として、MOCVD法やALD法などの熱CVD法を用いて、酸化シリコン膜を形成する場合には、ヘキサクロロジシランを被成膜面に吸着させ、吸着物に含まれる塩素を除去し、酸化性ガス(O、一酸化二窒素)のラジカルを供給して吸着物と反応させる。
次に、絶縁膜306上に酸化物半導体膜307を形成する(図5(B)参照。)。
酸化物半導体膜307は、スパッタリング法、塗布法、パルスレーザー蒸着法、レーザーアブレーション法、熱CVD法等などを用いて形成することができる。
スパッタリングガスは、希ガス(代表的にはアルゴン)、酸素、希ガス及び酸素の混合ガスを適宜用いる。なお、希ガス及び酸素の混合ガスの場合、希ガスに対して酸素のガス比を高めることが好ましい。
また、ターゲットは、形成する酸化物半導体膜の組成にあわせて、適宜選択すればよい。
なお、酸化物半導体膜を形成する際に、例えば、スパッタリング法を用いる場合、基板温度を150℃以上750℃以下、好ましくは150℃以上450℃以下、さらに好ましくは200℃以上350℃以下として、酸化物半導体膜を成膜することで、CAAC−OS膜を形成することができる。
また、CAAC−OS膜を成膜するために、以下の条件を適用することが好ましい。
成膜時の不純物混入を抑制することで、不純物によって結晶状態が崩れることを抑制できる。例えば、成膜室内に存在する不純物濃度(水素、水、二酸化炭素及び窒素など)を低減すればよい。また、成膜ガス中の不純物濃度を低減すればよい。具体的には、露点が−80℃以下、好ましくは−100℃以下である成膜ガスを用いる。
ALDを利用する成膜装置により酸化物半導体膜、例えばIn−Ga−Zn−O膜を成膜する場合には、In(CHガスとOガスを順次繰り返し導入してIn−O層を形成し、その後、Ga(CHガスとOガスを同時に導入してGaO層を形成し、更にその後Zn(CHとOガスを同時に導入してZnO層を形成する。なお、これらの層の順番はこの例に限らない。また、これらのガスを混ぜてIn−Ga−O層やIn−Zn−O層、Ga−Zn−O層などの混合化合物層を形成してもよい。なお、Oガスに変えてAr等の不活性ガスでバブリングしたHOガスを用いてもよいが、Hを含まないOガスを用いる方が好ましい。また、In(CHガスにかえて、In(Cガスを用いてもよい。また、Ga(CHガスにかえて、Ga(Cガスを用いてもよい。また、Zn(CHガスを用いてもよい。
次に、酸化物半導体膜307を所望の形状に加工することで、島状の酸化物半導体膜308a、308b、308dを形成する。なお、酸化物半導体膜308a、308b、308dの形成は、所望の領域に第2のパターニングによるマスクの形成を行い、該マスクに覆われていない領域をエッチングすることで形成することができる。エッチングとしては、ドライエッチング、ウエットエッチング、または双方を組み合わせたエッチングを用いることができる(図5(C)参照。)。
なお、この後、加熱処理を行って、酸化物半導体膜308a、308b、308dに含まれる水素、水等を脱離させ、酸化物半導体膜308a、308b、308dに含まれる水素濃度及び水濃度を低減してもよい。この結果、高純度化された酸化物半導体膜308a、308b、308dを形成することができる。該加熱処理の温度は、代表的には、250℃以上650℃以下、好ましくは300℃以上500℃以下とする。なお、該加熱処理の温度を、代表的には、300℃以上400℃以下、好ましくは320℃以上370℃以下とすることで、大面積基板においても基板の反りやシュリンクを低減することが可能であり、歩留まりが向上する。
当該加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いることで、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱処理時間を短縮することが可能であり、加熱処理中の基板の反りを低減することが可能であり、大面積基板において特に好ましい。
また、加熱処理は、窒素、酸素、超乾燥空気(水の含有量が20ppm以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、ヘリウム等)の雰囲気下で行えばよい。なお、上記窒素、酸素、超乾燥空気、または希ガスに水素、水等が含まれないことが好ましい。また、窒素または希ガス雰囲気で加熱処理した後、酸素または超乾燥空気雰囲気で加熱してもよい。この結果、酸化物半導体膜中に含まれる水素、水等を脱離させると共に、酸化物半導体膜中に酸素を供給することができる。この結果、酸化物半導体膜中に含まれる酸素欠損量を低減することができる。
なお、後に形成される絶縁膜311aの成膜温度を280℃以上400℃以下とする場合、酸化物半導体膜308a、308b、308dに含まれる水素、水等を脱離させることが可能であるため、当該加熱処理は不要である。
次に、絶縁膜306、及び酸化物半導体膜308a、308b、308d上に導電膜309を形成する(図6(A)参照。)。
導電膜309としては、スパッタリング法、真空蒸着法、パルスレーザー堆積(PLD)法、熱CVD法等を用いて形成することができる。
次に、導電膜309を所望の形状に加工することで、導電膜310a、310b、310c、310d、310eを形成する。なお、導電膜310a、310b、310c、310d、310eの形成は、所望の領域に第3のパターニングによるマスクの形成を行い、該マスクに覆われていない領域をエッチングすることで、形成することができる(図6(B)参照。)。
次に、絶縁膜306、酸化物半導体膜308a、308b、308d、及び導電膜310a、310b、310c、310d、310e上を覆うように、絶縁膜311a、311bが積層された絶縁膜311を形成する(図6(C)参照。)。絶縁膜311は、スパッタリング法、CVD法、蒸着法等を用いて形成することができる。
なお、絶縁膜311aを形成した後、大気に曝すことなく、連続的に絶縁膜311bを形成することが好ましい。絶縁膜311aを形成した後、大気開放せず、原料ガスの流量、圧力、高周波電力及び基板温度の一以上を調整して、絶縁膜311bを連続的に形成することで、絶縁膜311a、311bにおける界面の大気成分由来の不純物濃度を低減することができると共に、絶縁膜311bに含まれる酸素を酸化物半導体膜308a、308b、308dに移動させることが可能であり、酸化物半導体膜308a、308b、308dの酸素欠損量を低減することができる。
絶縁膜311aとしては、堆積性気体に対する酸化性気体を20倍より大きく100倍未満、好ましくは40倍以上80倍以下とし、処理室内の圧力を100Pa未満、好ましくは50Pa以下とするCVD法を用いることで、窒素を含み、且つ欠陥量の少ない酸化物絶縁膜を形成することができる。
絶縁膜311aの原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
上記条件を用いることで、絶縁膜311aとして酸素を透過する酸化物絶縁膜を形成することができる。また、絶縁膜311aを設けることで、後に形成する絶縁膜311bの形成工程において、酸化物半導体膜308a、308b、308dへのダメージ低減が可能である。
絶縁膜311bとしては、プラズマCVD装置の真空排気された処理室内に載置された基板を180℃以上280℃以下、さらに好ましくは200℃以上240℃以下に保持し、処理室に原料ガスを導入して処理室内における圧力を100Pa以上250Pa以下、さらに好ましくは100Pa以上200Pa以下とし、処理室内に設けられる電極に0.17W/cm以上0.5W/cm以下、さらに好ましくは0.25W/cm以上0.35W/cm以下の高周波電力を供給する条件により、酸化シリコン膜または酸化窒化シリコン膜を形成する。
絶縁膜311bの原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラン、トリシラン、フッ化シラン等がある。酸化性気体としては、酸素、オゾン、一酸化二窒素、二酸化窒素等がある。
絶縁膜311bの成膜条件として、上記圧力の反応室において上記パワー密度の高周波電力を供給することで、プラズマ中で原料ガスの分解効率が高まり、酸素ラジカルが増加し、原料ガスの酸化が進むため、絶縁膜311b中における酸素含有量が化学量論比よりも多くなる。しかしながら、基板温度が、上記絶縁膜311bの成膜温度であると、シリコンと酸素の結合力が弱いため、加熱により酸素の一部が脱離する。この結果、化学量論的組成を満たす酸素よりも多くの酸素を含み、加熱により酸素の一部が脱離する酸化物絶縁膜を形成することができる。また、酸化物半導体膜308a、308b、308d上に絶縁膜311aが設けられている。このため、絶縁膜311bの形成工程において、絶縁膜311aが酸化物半導体膜308a、308b、308dの保護膜となる。この結果、酸化物半導体膜308a、308b、308dへのダメージを低減しつつ、高いパワー密度の高周波電力を用いて絶縁膜311bを形成することができる。
なお、絶縁膜311bの成膜条件において、酸化性気体に対するシリコンを含む堆積性気体の流量を増加することで、絶縁膜311bの欠陥量を低減することが可能である。代表的には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が6×1017spins/cm未満、好ましくは3×1017spins/cm以下、好ましくは1.5×1017spins/cm以下である欠陥量の少ない酸化物絶縁膜を形成することができる。この結果トランジスタの信頼性を高めることができる。
次に、加熱処理を行う。該加熱処理の温度は、代表的には、150℃以上基板歪み点未満、好ましくは200℃以上450℃以下、更に好ましくは300℃以上450℃以下とする。なお、該加熱処理の温度を、代表的には、300℃以上400℃以下、好ましくは320℃以上370℃以下とすることで、大面積基板においても基板の反りやシュリンクを低減することが可能であり、歩留まりが向上する。
該加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いることで、短時間に限り、基板の歪み点以上の温度で熱処理を行うことができる。そのため加熱処理時間を短縮することができる。
加熱処理は、窒素、酸素、超乾燥空気(水の含有量が20ppm以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、ヘリウム等)の雰囲気下で行えばよい。なお、上記窒素、酸素、超乾燥空気、または希ガスに水素、水等が含まれないことが好ましい。
当該加熱処理により、絶縁膜311bに含まれる酸素の一部を酸化物半導体膜308a、308b、308dに移動させ、酸化物半導体膜308a、308b、308dに含まれる酸素欠損を低減することが可能である。この結果、酸化物半導体膜308a、308b、308dに含まれる酸素欠損量をさらに低減することができる。
また、絶縁膜311a、311bに水、水素等が含まる場合、水、水素等をブロッキングする機能を有する絶縁膜313を後に形成し、加熱処理を行うと、絶縁膜311a、311bに含まれる水、水素等が、酸化物半導体膜308a、308b、308dに移動し、酸化物半導体膜308a、308b、308dに欠陥が生じてしまう。しかしながら、当該加熱により、絶縁膜311a、311bに含まれる水、水素等を脱離させることが可能であり、トランジスタの電気特性のばらつきを低減すると共に、しきい値電圧の変動を抑制することができる。
なお、加熱しながら絶縁膜311bを絶縁膜311a上に形成することで、酸化物半導体膜308a、308b、308dに酸素を移動させ、酸化物半導体膜308a、308b、308dに含まれる酸素欠損を低減することが可能であるため、当該加熱処理を行わなくともよい。
また、導電膜310a、310b、310d、310eを形成する際、導電膜のエッチングによって、酸化物半導体膜308a、308b、308dはダメージを受け、酸化物半導体膜308a、308bのバックチャネル(酸化物半導体膜308a、308bにおいて、ゲート電極として機能する導電膜304a、304cと対向する面と反対側の面)側に酸素欠損が生じる。しかし、絶縁膜311bに化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜を適用することで、加熱処理によって当該バックチャネル側に生じた酸素欠損を修復することができる。これにより、酸化物半導体膜308a、308bに含まれる欠陥を低減することができるため、トランジスタの信頼性を向上させることができる。
なお、当該加熱処理は、後に形成される開口部362を形成した後に行ってもよい。
次に、絶縁膜311を所望の形状に加工することで、絶縁膜312、及び開口部362を形成する。なお、絶縁膜312、及び開口部362の形成は、所望の領域に第4のパターニングによるマスクの形成を行い、該マスクに覆われていない領域をエッチングすることで、形成することができる(図7(A)参照。)。
なお、開口部362は、酸化物半導体膜308dの表面が露出するように形成する。開口部362の形成方法としては、例えば、ドライエッチング法を用いることができる。ドライエッチング法により、絶縁膜311をエッチングすることが好ましい。この結果、酸化物半導体膜308dはエッチング処理においてプラズマに曝されるため、酸化物半導体膜308dの酸素欠損を増加させることが可能である。ただし、開口部362の形成方法としては、これに限定されず、ウエットエッチング法、またはドライエッチング法とウエットエッチング法を組み合わせた形成方法としてもよい。
次に、絶縁膜312及び酸化物半導体膜308d上に絶縁膜313を形成する(図7(B)参照。)。
絶縁膜313としては、外部からの不純物、例えば、酸素、水素、水、アルカリ金属、アルカリ土類金属等が、酸化物半導体膜へ拡散するのを防ぐ材料を用いることが好ましく、更には水素を含むことが好ましく、代表的には窒素を含む無機絶縁材料、例えば窒化物絶縁膜を用いることができる。絶縁膜313としては、例えば、CVD法、スパッタリング法を用いて形成することができる。
絶縁膜313をプラズマCVD法またはスパッタリング法で成膜すると、酸化物半導体膜がプラズマに曝され、酸化物半導体膜に酸素欠損が生成される。また、絶縁膜313は、外部からの不純物、例えば、水、アルカリ金属、アルカリ土類金属等が、酸化物半導体膜へ拡散するのを防ぐ材料で形成される膜であり、更には水素を含む。このため、絶縁膜313の水素が酸化物半導体膜308dに拡散すると、該酸化物半導体膜308dにおいて水素は酸素と結合し、キャリアである電子が生成される。または、酸化物半導体膜に含まれる酸素欠損に水素が入ることで、キャリアである電子が生成される。これらの結果、酸化物半導体膜308dは、導電性が高くなり、金属酸化物膜308cとなる。
また、上記窒化絶縁膜は、ブロック性を高めるために、高温で成膜されることが好ましく、例えば基板温度100℃以上400℃以下、より好ましくは300℃以上400℃以下の温度で加熱して成膜することが好ましい。また高温で成膜する場合は、酸化物半導体膜308a、308bとして用いる酸化物半導体から酸素が脱離し、キャリア濃度が上昇する現象が発生することがあるため、このような現象が発生しない温度とする。
次に、絶縁膜313上に導電膜315を形成する(図8(A)参照。)。
導電膜315としては、例えば、スパッタリング法を用いて形成することができる。
次に、導電膜315を所望の形状に加工することで、導電膜316bを形成する。なお、導電膜316bの形成は、所望の領域に第5のパターニングによるマスクの形成を行い、該マスクに覆われていない領域をエッチングすることで形成することができる(図8(B)参照。)。
次に、絶縁膜313、導電膜316bを覆うように有機絶縁膜317を形成する(図8(C)参照。)。平坦化膜として機能する有機絶縁膜317は、絶縁膜313の一部が露出されるように開口部を有する。
有機絶縁膜317としては、スピンコート法、ディップコート法等の塗布法を用いて感光性の組成物を絶縁膜313及び導電膜316b上に塗布した後、第6のフォトマスクを用いたフォトリソグラフィ工程により組成物を露光及び現像し、その後加熱処理を行う。なお、非感光性の組成物を絶縁膜313及び導電膜316b上に塗布した場合、非感光性の組成物上にレジストを塗布し、第6のフォトマスクを用いたフォトリソグラフィ工程によりレジストを加工してマスクを形成し、該マスクを用いて非感光性の組成物をエッチングすることで、有機絶縁膜317を形成することができる。
なお、有機絶縁膜317として、インクジェット法、印刷法等の湿式法を用いて形成することで、フォトマスク枚数を削減することができる。
次に、有機絶縁膜317をマスクとして、絶縁膜305、絶縁膜306、絶縁膜312、及び絶縁膜313それぞれの一部をエッチングして、導電膜304bを露出する開口部364a、導電膜310cを露出する開口部364b、及び導電膜310eを露出する開口部364cを形成する(図9(A)参照。)。
次に、導電膜318を形成する(図9(B)参照。)。
導電膜318としては、例えば、スパッタリング法を用いて形成することができる。
次に、導電膜318を所望の形状に加工することで、導電膜319、319aを形成する。なお、導電膜319、319aの形成は、所望の領域に第7のパターニングによるマスクの形成を行い、該マスクに覆われていない領域をエッチングすることで形成することができる(図9(C)参照。)。
以上の工程で基板302上に、トランジスタを有する画素部及び駆動回路部を形成することができる。なお、本実施の形態に示す作製工程においては、第1乃至第7のパターニング、すなわち7枚のフォトマスクで、トランジスタ及び容量素子を同時に形成することができる。
なお、本実施の形態では、絶縁膜313に含まれる水素を酸化物半導体膜308dに拡散させて、酸化物半導体膜308dの導電性を高めたが、酸化物半導体膜308a、308bをマスクで覆い、酸化物半導体膜308dに不純物、代表的には、水素、ホウ素、リン、スズ、アンチモン、希ガス元素、アルカリ金属、アルカリ土類金属等を添加して、酸化物半導体膜308dの導電性を高めてもよい。酸化物半導体膜308dに水素、ホウ素、リン、スズ、アンチモン、希ガス元素等を添加する方法としては、イオンドーピング法、イオン注入法等がある。一方、酸化物半導体膜308dにアルカリ金属、アルカリ土類金属等を添加する方法としては、該不純物を含む溶液を酸化物半導体膜308dに塗布する方法がある。
次に、基板302に対向して設けられる基板342上に設けられた素子部について、以下説明を行う。なお、ここでは、基板342上に設けられた素子部としては、基板342と配向膜352に挟まれた領域のことをさす。
まず、基板342を準備する。基板342としては、基板302に示す材料を援用することができる。次に、基板342上に遮光膜344、有色膜346を形成する(図10(A)参照。)。
遮光膜344及び有色膜346は、様々な材料を用いて、印刷法、インクジェット法、フォトリソグラフィ技術を用いたエッチング方法などでそれぞれ所望の位置に形成する。
次に、遮光膜344、及び有色膜346上に絶縁膜348を形成する(図10(B)参照。)。
絶縁膜348としては、例えば、アクリル樹脂、エポキシ樹脂、ポリイミド等の有機絶縁膜を用いることができる。絶縁膜348を形成することによって、例えば、有色膜346中に含まれる不純物等を液晶層321側に拡散することを抑制することができる。ただし、絶縁膜348は、必ずしも設ける必要はなく、絶縁膜348を形成しない構造としてもよい。
次に、絶縁膜348上に導電膜350を形成する(図10(C)参照。)。導電膜350としては、導電膜315に示す材料を援用することができる。
以上の工程で基板342上に形成される構造を形成することができる。
次に、基板302と基板342上、より詳しくは基板302上に形成された絶縁膜317、導電膜319、319a上と、基板342上に形成された導電膜350上とに、それぞれ配向膜320と配向膜352を形成する。配向膜320、配向膜352は、ラビング法、光配向法等を用いて形成することができる。その後、基板302と、基板342との間に液晶層321を形成する。液晶層321の形成方法としては、ディスペンサ法(滴下法)や、基板302と基板342とを貼り合わせてから毛細管現象を用いて液晶を注入する注入法を用いることができる。
以上の工程で、図4に示す液晶表示装置を作製することができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、実施の形態1と異なるトランジスタを有する液晶表示装置について、図11乃至図15を用いて説明する。
図11に示す液晶表示装置は、A−Bに示す駆動回路部において、デュアルゲート構造のトランジスタ102aを有することを特徴とする。
駆動回路部に設けられたトランジスタ102aは、基板302上に設けられるゲート電極として機能する導電膜304aと、ゲート絶縁膜51として機能する絶縁膜305、306と、絶縁膜306上に形成される酸化物半導体膜308aと、酸化物半導体膜308aに接する、ソース電極及びドレイン電極として機能する導電膜310a、310bとを有する。また、酸化物半導体膜308a及び導電膜310a、310b上に無機絶縁膜53が形成され、無機絶縁膜53上にゲート電極として機能する導電膜316dが形成される。ゲート電極として機能する導電膜316dは、ゲート絶縁膜51及び無機絶縁膜53に設けられた開口部(図示しない。)において、ゲート電極として機能する導電膜304aと接続する。即ち、導電膜304a及び導電膜316dは同電位である。
このため、トランジスタ102aの各ゲート電極に同電位の電圧を印加することで、初期特性バラつきの低減、−GBTストレス試験の劣化の抑制及び異なるドレイン電圧におけるオン電流の立ち上がり電圧の変動の抑制が可能である。また、酸化物半導体膜308aにおいてキャリアの流れる領域が膜厚方向においてより大きくなるため、キャリアの移動量が増加する。この結果、トランジスタ102aのオン電流が大きくなる共に、電界効果移動度が高くなり、代表的には電界効果移動度が20cm/V・s以上となる。
エッチング等で加工された酸化物半導体膜の端部においては、加工におけるダメージにより欠陥が形成される共に、不純物付着などにより汚染されるため、電界などのストレスが与えられることによって活性化しやすく、それによりn型(低抵抗)となりやすい。そのため、ゲート電極として機能する導電膜304aと重なる酸化物半導体膜308aの端部において、n型化しやすくなる。当該n型化された端部が、ソース電極及びドレイン電極として機能する導電膜310a、310bの間に設けられると、n型化された領域がキャリアのパスとなってしまい、寄生チャネルが形成される。しかしながら、チャネル幅方向において、ゲート電極として機能する導電膜316dが、設けられることで、ゲート電極として機能する導電膜316dの電界の影響により、酸化物半導体膜308aの側面、または側面及びその近傍を含む端部における寄生チャネルの発生が抑制される。この結果、しきい値電圧におけるドレイン電流の上昇が急峻である、電気特性の優れたトランジスタとなる。
なお、ゲート電極として機能する導電膜316dは、実施の形態2に示す導電膜316bと同様の材料を適宜用いることができる。
<変形例1>
実施の形態3の図11に示す液晶表示装置は、駆動回路部のトランジスタとして、デュアルゲート構造のトランジスタを用いて作製されているが、図12に示すように、A−Bに示す駆動回路部にデュアルゲート構造のトランジスタ102aを有するとともに、C−Dに示す画素部にデュアルゲート構造のトランジスタ103aを用いてもよい。
トランジスタ103aは、基板302上に設けられるゲート電極として機能する導電膜304cと、ゲート絶縁膜51として機能する絶縁膜305、306と、絶縁膜306上に形成される酸化物半導体膜308bと、酸化物半導体膜308bに接する、ソース電極及びドレイン電極として機能する導電膜310d、310eとを有する。また、酸化物半導体膜308b及び導電膜310d、310e上に無機絶縁膜53が形成され、無機絶縁膜53上にゲート電極として機能する導電膜316eが形成される。ゲート電極として機能する導電膜316eは、ゲート絶縁膜51及び無機絶縁膜53に設けられた開口部(図示しない。)において、ゲート電極として機能する導電膜304cと接続する。即ち、導電膜304c及び導電膜316eは同電位である。
駆動回路部と共に画素部に、信頼性が高く、オン電流が大きく、電界効果移動度の高いデュアルゲート構造のトランジスタを設けることで、表示品質の優れた液晶表示装置を作製することができる。
<変形例2>
実施の形態2または実施の形態3に示す液晶表示装置において、図13に示すように、駆動回路部に設けられたトランジスタ102aと重なる領域であって、且つ有機絶縁膜317上に、導電膜319と同時に形成された導電膜319bを設けてもよい。導電膜319bは、コモン電位、接地電位等の任意の電位とすることができる。デュアルゲート構造のトランジスタ102aと重なる導電膜319bを設けることで、トランジスタ102aのゲート電極として機能する導電膜316dに印加された電圧により発生する電界を導電膜319bが遮蔽することが可能である。この結果、該電界による液晶層321の配向不良を防ぐことができる。
<変形例3>
実施の形態2または実施の形態3において、駆動回路部及び画素部に有機絶縁膜317を有する液晶表示装置を説明したが、図14に示すように、画素部にのみ有機絶縁膜317aを設けてもよい。
なお、図14に示す液晶表示装置において、図7(B)に示すように絶縁膜313を形成した後、パターニングによるマスクの形成を行い、該マスクを用いて絶縁膜305、306、312、313をそれぞれエッチングして、開口部を形成する。次に、図8(A)に示す導電膜315を形成した後、図8(B)に示す導電膜316bを形成すると同時に、導電膜304b及び導電膜310cを接続する導電膜316aを形成する。こののち、有機絶縁膜317a及び導電膜319を形成する。
なお、図15に示すように、駆動回路部に有機絶縁膜317aを設けない場合、デュアルゲート構造のトランジスタ102aのゲート電極として機能する導電膜316d上に、導電膜319と同時に形成された導電膜319cを設けてもよい。
<変形例4>
なお、実施の形態2及び実施の形態3において、表示素子の一例として液晶素子を用いて説明したが、様々な表示素子を用いることができる。一例として、有機EL素子を用いた場合の例を、図23、図24、図25、及び図26に示す。有機EL素子を有する表示装置は、アクリル樹脂、ポリイミド、エポキシ樹脂等の有機樹脂膜371、有機樹脂膜上に設けられるEL層373、及びEL層上に設けられる共通電極375を有する。また、導電膜319、EL層373、及び共通電極375により有機EL素子を構成する。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態4)
実施の形態2及び実施の形態3に示すトランジスタ102、102a、103、103aにおいて、必要に応じて、酸化物半導体膜を積層構造とすることができる。ここでは、トランジスタ103を用いて説明する。
図16に示すトランジスタは、絶縁膜306及び導電膜310d、310eの間に、酸化物半導体膜を含む多層膜336が形成されている。
多層膜336は、酸化物半導体膜336a及び酸化物半導体膜336bを有する。即ち、多層膜336は2層構造である。また、酸化物半導体膜336aの一部がチャネル領域として機能する。また、多層膜336に接するように、絶縁膜312aが形成されており、絶縁膜312aに接するように酸化物半導体膜336bが形成されている。即ち、酸化物半導体膜336aと絶縁膜312aとの間に、酸化物半導体膜336bが設けられている。
酸化物半導体膜336bは、酸化物半導体膜336aを構成する元素の一種以上から構成される。酸化物半導体膜336bは、酸化物半導体膜336aを構成する元素の一種以上から構成されるため、酸化物半導体膜336aと酸化物半導体膜336bとの界面において、界面散乱が起こりにくい。従って、該界面においてはキャリアの動きが阻害されないため、トランジスタの電界効果移動度が高くなる。
酸化物半導体膜336bは、代表的には、In−Ga酸化物、In−Zn酸化物、In−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHf)であり、且つ酸化物半導体膜336aよりも伝導帯の下端のエネルギーが真空準位に近く、代表的には、酸化物半導体膜336bの伝導帯の下端のエネルギーと、酸化物半導体膜336aの伝導帯の下端のエネルギーとの差が、0.05eV以上、0.07eV以上、0.1eV以上、または0.15eV以上、且つ2eV以下、1eV以下、0.5eV以下、または0.4eV以下である。即ち、酸化物半導体膜336bの電子親和力と、酸化物半導体膜336aの電子親和力との差が、0.05eV以上、0.07eV以上、0.1eV以上、または0.15eV以上、且つ2eV以下、1eV以下、0.5eV以下、または0.4eV以下である。
酸化物半導体膜336bは、Inを含むことで、キャリア移動度(電子移動度)が高くなるため好ましい。
酸化物半導体膜336bとして、Al、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHfをInより高い原子数比で有することで、以下の効果を有する場合がある。(1)酸化物半導体膜336bのエネルギーギャップを大きくする。(2)酸化物半導体膜336bの電子親和力を小さくする。(3)外部からの不純物を遮蔽する。(4)酸化物半導体膜336aと比較して、絶縁性が高くなる。(5)Al、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHfは酸素との結合力が強い金属元素であるため、Al、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHfをInより高い原子数比で有することで、酸素欠損が生じにくくなる。
酸化物半導体膜336bがIn−M−Zn酸化物であるとき、InとMの原子数比率は、InおよびMの和を100atomic%としたときInが50atomic%未満、Mが50atomic%以上、さらに好ましくは、Inが25atomic%未満、Mが75atomic%以上とする。
また、酸化物半導体膜336a、及び酸化物半導体膜336bがIn−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHf)の場合、酸化物半導体膜336aと比較して、酸化物半導体膜336bに含まれるM(Al、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHf)の原子数比が大きく、代表的には、酸化物半導体膜336aに含まれる上記原子と比較して、1.5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上高い原子数比である。
また、酸化物半導体膜336a、及び酸化物半導体膜336bがIn−M−Zn酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHf)の場合、酸化物半導体膜336bをIn:M:Zn=x:y:z[原子数比]、酸化物半導体膜336aをIn:M:Zn=x:y:z[原子数比]とすると、y/xがy/xよりも大きく、好ましくは、y/xがy/xよりも1.5倍以上である。さらに好ましくは、y/xがy/xよりも2倍以上大きく、より好ましくは、y/xがy/xよりも3倍以上大きい。このとき酸化物半導体膜336bにおいて、yがx以上であると、当該酸化物半導体膜を用いたトランジスタに安定した電気特性を付与できるため好ましい。ただし、yがxの3倍以上になると、当該酸化物半導体膜を用いたトランジスタの電界効果移動度が低下してしまうため、yはxの3倍未満であると好ましい。
例えば、酸化物半導体膜336aとしてIn:Ga:Zn=1:1:1、In:Ga:Zn=1:1:1.2、または3:1:2の原子数比のIn−Ga−Zn酸化物を用いることができる。また、酸化物半導体膜336bとしてIn:Ga:Zn=1:3:n(nは2以上8以下の整数)、1:6:m(mは2以上10以下の整数)、または1:9:6の原子数比のIn−Ga−Zn酸化物を用いることができる。なお、酸化物半導体膜336a、及び酸化物半導体膜336bの原子数比はそれぞれ、誤差として上記の原子数比のプラスマイナス20%の変動を含む。なお、酸化物半導体膜336aにおいて、Znの割合がGa以上であるとCAAC−OSが形成されやすく好ましい。
酸化物半導体膜336bは、後に形成される絶縁膜312bを形成する際の、酸化物半導体膜336aへのダメージ緩和膜としても機能する。
酸化物半導体膜336bの厚さは、3nm以上100nm以下、好ましくは3nm以上50nm以下とする。
また、酸化物半導体膜336bは、酸化物半導体膜336aと同様に、例えば非単結晶構造でもよい。非単結晶構造は、例えば、後述するCAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶構造、後述する微結晶構造、または非晶質構造を含む。
なお、酸化物半導体膜336a及び酸化物半導体膜336bがそれぞれ、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域の二種以上を有する混合膜であってもよい。混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域を有する単層構造の場合がある。また、混合膜は、例えば、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のいずれか二種以上の領域の積層構造を有する場合がある。
ここでは、酸化物半導体膜336a及び絶縁膜312aの間に、酸化物半導体膜336bが設けられている。このため、酸化物半導体膜336bと絶縁膜312aの間において、不純物及び欠陥によりトラップ準位が形成されても、当該トラップ準位と酸化物半導体膜336aとの間には隔たりがある。この結果、酸化物半導体膜336aを流れる電子がトラップ準位に捕獲されにくく、トランジスタのオン電流を増大させることが可能であると共に、電界効果移動度を高めることができる。また、トラップ準位に電子が捕獲されると、該電子がマイナスの固定電荷となってしまう。この結果、トランジスタのしきい値電圧が変動してしまう。しかしながら、酸化物半導体膜336aとトラップ準位との間に隔たりがあるため、トラップ準位における電子の捕獲を低減することが可能であり、しきい値電圧の変動を低減することができる。
また、酸化物半導体膜336bは、外部からの不純物を遮蔽することが可能であるため、外部から酸化物半導体膜336aへ移動する不純物量を低減することが可能である。また、酸化物半導体膜336bは、酸素欠損を形成しにくい。これらのため、酸化物半導体膜336aにおける不純物濃度及び酸素欠損量を低減することが可能である。
なお、酸化物半導体膜336a及び酸化物半導体膜336bは、各膜を単に積層するのではなく連続接合(ここでは特に伝導帯の下端のエネルギーが各膜の間で連続的に変化する構造)が形成されるように作製する。すなわち、各膜の界面においてトラップ中心や再結合中心のような欠陥準位を形成するような不純物が存在しないような積層構造とする。仮に、積層された酸化物半導体膜336a及び酸化物半導体膜336bの間に不純物が混在していると、エネルギーバンドの連続性が失われ、界面でキャリアがトラップされ、あるいは再結合して、消滅してしまう。
連続接合を形成するためには、ロードロック室を備えたマルチチャンバー方式の成膜装置(スパッタリング装置)を用いて各膜を大気に触れさせることなく連続して積層することが必要となる。スパッタリング装置における各チャンバーは、酸化物半導体膜にとって不純物となる水等を可能な限り除去すべくクライオポンプのような吸着式の真空排気ポンプを用いて高真空排気(5×10−7Pa乃至1×10−4Pa程度まで)することが好ましい。または、ターボ分子ポンプとコールドトラップを組み合わせて排気系からチャンバー内に気体、特に炭素または水素を含む気体が逆流しないようにしておくことが好ましい。
なお、図16において、多層膜336を酸化物半導体膜336a及び酸化物半導体膜336bの2層構造としたが、絶縁膜306と酸化物半導体膜336aの間に、さらに酸化物半導体膜336bと同様の膜を設ける3層構造としてもよい。この場合、絶縁膜306及び酸化物半導体膜336aの間に設ける酸化物膜の膜厚は、酸化物半導体膜336aより小さいと好ましい。酸化物膜の厚さを1nm以上5nm以下、好ましくは1nm以上3nm以下とすることで、トランジスタのしきい値電圧の変動量を低減することが可能である。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、上記実施の形態で説明した表示装置に含まれているトランジスタにおいて、酸化物半導体膜に適用可能な一態様について説明する。
酸化物半導体膜は、単結晶構造の酸化物半導体(以下、単結晶酸化物半導体という。)、多結晶構造の酸化物半導体(以下、多結晶酸化物半導体という。)、微結晶構造の酸化物半導体(以下、微結晶酸化物半導体という。)、及び非晶質構造の酸化物半導体(以下、非晶質酸化物半導体という。)の一以上で構成されてもよい。また、酸化物半導体膜は、CAAC−OS膜で構成されていてもよい。また、酸化物半導体膜は、非晶質酸化物半導体及び結晶粒を有する酸化物半導体で構成されていてもよい。以下に、代表例として、CAAC−OS及び微結晶酸化物半導体について説明する。
まずは、CAAC−OS膜について説明する。
CAAC−OS膜は、c軸配向した複数の結晶部を有する酸化物半導体膜の一つである。
CAAC−OS膜を透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって観察すると、明確な結晶部同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を確認することができない。そのため、CAAC−OS膜は、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
CAAC−OS膜を、試料面と概略平行な方向からTEMによって観察(断面TEM観察)すると、結晶部において、金属原子が層状に配列していることを確認できる。金属原子の各層は、CAAC−OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸を反映した形状であり、CAAC−OS膜の被形成面または上面と平行に配列する。
一方、CAAC−OS膜を、試料面と概略垂直な方向からTEMによって観察(平面TEM観察)すると、結晶部において、金属原子が三角形状または六角形状に配列していることを確認できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られない。
図17(a)は、CAAC−OS膜の断面TEM像である。また、図17(b)は、図17(a)をさらに拡大した断面TEM像であり、理解を容易にするために原子配列を強調表示している。
図17(c)は、図17(a)のA−O−A’間において、丸で囲んだ領域(直径約4nm)の局所的なフーリエ変換像である。図17(c)より、各領域においてc軸配向性が確認できる。また、A−O間とO−A’間とでは、c軸の向きが異なるため、異なるグレインであることが示唆される。また、A−O間では、c軸の角度が14.3°、16.6°、26.4°のように少しずつ連続的に変化していることがわかる。同様に、O−A’間では、c軸の角度が−18.3°、−17.6°、−15.9°と少しずつ連続的に変化していることがわかる。
なお、CAAC−OS膜に対し、電子回折を行うと、配向性を示すスポット(輝点)が観測される。例えば、CAAC−OS膜の上面に対し、例えば1nm以上30nm以下の電子線を用いる電子回折(ナノビーム電子回折ともいう。)を行うと、スポットが観測される(図18(A)参照。)。
断面TEM観察および平面TEM観察より、CAAC−OS膜の結晶部は配向性を有していることがわかる。
なお、CAAC−OS膜に含まれるほとんどの結晶部は、一辺が100nm未満の立方体内に収まる大きさである。従って、CAAC−OS膜に含まれる結晶部は、一辺が10nm未満、5nm未満または3nm未満の立方体内に収まる大きさの場合も含まれる。ただし、CAAC−OS膜に含まれる複数の結晶部が連結することで、一つの大きな結晶領域を形成する場合がある。例えば、平面TEM像において、2500nm以上、5μm以上または1000μm以上となる結晶領域が観察される場合がある。
CAAC−OS膜に対し、X線回折(XRD:X−Ray Diffraction)装置を用いて構造解析を行うと、例えばInGaZnOの結晶を有するCAAC−OS膜のout−of−plane法による解析では、回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に概略垂直な方向を向いていることが確認できる。
一方、CAAC−OS膜に対し、c軸に概略垂直な方向からX線を入射させるin−plane法による解析では、2θが56°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(110)面に帰属される。InGaZnOの単結晶酸化物半導体膜であれば、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行うと、(110)面と等価な結晶面に帰属されるピークが6本観察される。これに対し、CAAC−OS膜の場合は、2θを56°近傍に固定してφスキャンした場合でも、明瞭なピークが現れない。
以上のことから、CAAC−OS膜では、異なる結晶部間ではa軸およびb軸の配向は不規則であるが、c軸配向性を有し、かつc軸が被形成面または上面の法線ベクトルに平行な方向を向いていることがわかる。従って、前述の断面TEM観察で確認された層状に配列した金属原子の各層は、結晶のab面に平行な面である。
なお、結晶部は、CAAC−OS膜を成膜した際、または加熱処理などの結晶化処理を行った際に形成される。上述したように、結晶のc軸は、CAAC−OS膜の被形成面または上面の法線ベクトルに平行な方向に配向する。従って、例えば、CAAC−OS膜の形状をエッチングなどによって変化させた場合、結晶のc軸がCAAC−OS膜の被形成面または上面の法線ベクトルと平行にならないこともある。
また、CAAC−OS膜中において、c軸配向した結晶部の分布が均一でなくてもよい。例えば、CAAC−OS膜の結晶部が、CAAC−OS膜の上面近傍からの結晶成長によって形成される場合、上面近傍の領域は、被形成面近傍の領域よりもc軸配向した結晶部の割合が高くなることがある。また、不純物の添加されたCAAC−OS膜は、不純物が添加された領域が変質し、部分的にc軸配向した結晶部の割合の異なる領域が形成されることもある。
なお、InGaZnOの結晶を有するCAAC−OS膜のout−of−plane法による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、CAAC−OS膜中の一部に、c軸配向性を有さない結晶が含まれることを示している。CAAC−OS膜は、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さないことが好ましい。
CAAC−OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素、シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリコンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜の原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不純物は、キャリアトラップやキャリア発生源となる場合がある。
また、CAAC−OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化物半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによってキャリア発生源となることがある。
不純物濃度が低く、欠陥準位密度が低い(酸素欠損の少ない)ことを、高純度真性または実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリア発生源が少ないため、キャリア密度を低くすることができる。従って、当該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導体膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が高く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定となる場合がある。
また、CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性の変動が小さい。
次に、微結晶酸化物半導体膜について説明する。
微結晶酸化物半導体膜は、TEMによる観察像では、明確に結晶部を確認することができない場合がある。微結晶酸化物半導体膜に含まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大きさであることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微結晶であるナノ結晶(nc:nanocrystal)を有する酸化物半導体膜を、nc−OS(nanocrystalline Oxide Semiconductor)膜と呼ぶ。また、nc−OS膜は、例えば、TEMによる観察像では、結晶粒界を明確に確認できない場合がある。
nc−OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別が付かない場合がある。例えば、nc−OS膜に対し、結晶部よりも大きい径のX線を用いるXRD装置を用いて構造解析を行うと、out−of−plane法による解析では、結晶面を示すピークが検出されない。また、nc−OS膜に対し、結晶部よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子回折(制限視野電子回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、結晶部の大きさと近いか結晶部より小さいプローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、nc−OS膜に対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。また、nc−OS膜に対しナノビーム電子回折を行うと、リング状の領域内に複数のスポットが観測される場合がある(図18(B)参照。)。
nc−OS膜は、非晶質酸化物半導体膜よりも規則性の高い酸化物半導体膜である。そのため、nc−OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低くなる。ただし、nc−OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc−OS膜は、CAAC−OS膜と比べて欠陥準位密度が高くなる。
なお、酸化物半導体膜は、例えば、非晶質酸化物半導体膜、微結晶酸化物半導体膜、CAAC−OS膜のうち、二種以上を有する積層膜であってもよい。
酸化物半導体膜が複数の構造を有する場合、ナノビーム電子回折を用いることで構造解析が可能となる場合がある。
図18(C)に、電子銃室70と、電子銃室70の下の光学系72と、光学系72の下の試料室74と、試料室74の下の光学系76と、光学系76の下の観察室80と、観察室80に設置されたカメラ78と、観察室80の下のフィルム室82と、を有する透過電子回折測定装置を示す。カメラ78は、観察室80内部に向けて設置される。なお、フィルム室82を有さなくても構わない。
また、図18(D)に、図18(C)で示した透過電子回折測定装置内部の構造を示す。透過電子回折測定装置内部では、電子銃室70に設置された電子銃から放出された電子が、光学系72を介して試料室74に配置された物質88に照射される。物質88を通過した電子は、光学系76を介して観察室80内部に設置された蛍光板92に入射する。蛍光板92では、入射した電子の強度に応じたパターンが現れることで透過電子回折パターンを測定することができる。
カメラ78は、蛍光板92を向いて設置されており、蛍光板92に現れたパターンを撮影することが可能である。カメラ78のレンズの中央、および蛍光板92の中央を通る直線と、蛍光板92の上面と、の為す角度は、例えば、15°以上80°以下、30°以上75°以下、または45°以上70°以下とする。該角度が小さいほど、カメラ78で撮影される透過電子回折パターンは歪みが大きくなる。ただし、あらかじめ該角度がわかっていれば、得られた透過電子回折パターンの歪みを補正することも可能である。なお、カメラ78をフィルム室82に設置しても構わない場合がある。例えば、カメラ78をフィルム室82に、電子84の入射方向と対向するように設置してもよい。この場合、蛍光板92の裏面から歪みの少ない透過電子回折パターンを撮影することができる。
試料室74には、試料である物質88を固定するためのホルダが設置されている。ホルダは、物質88を通過する電子を透過するような構造をしている。ホルダは、例えば、物質88をX軸、Y軸、Z軸などに移動させる機能を有していてもよい。ホルダの移動機能は、例えば、1nm以上10nm以下、5nm以上50nm以下、10nm以上100nm以下、50nm以上500nm以下、100nm以上1μm以下などの範囲で移動させる精度を有すればよい。これらの範囲は、物質88の構造によって最適な範囲を設定すればよい。
次に、上述した透過電子回折測定装置を用いて、物質の透過電子回折パターンを測定する方法について説明する。
例えば、図18(D)に示すように物質におけるナノビームである電子84の照射位置を変化させる(スキャンする)ことで、物質の構造が変化していく様子を確認することができる。このとき、物質88がCAAC−OS膜であれば、図18(A)に示したような回折パターンが観測される。または、物質88がnc−OS膜であれば、図18(B)に示したような回折パターンが観測される。
ところで、物質88がCAAC−OS膜であったとしても、部分的にnc−OS膜などと同様の回折パターンが観測される場合がある。したがって、CAAC−OS膜の良否は、一定の範囲におけるCAAC−OS膜の回折パターンが観測される領域の割合(CAAC化率ともいう。)で表すことができる場合がある。例えば、良質なCAAC−OS膜であれば、CAAC化率は、50%以上、好ましくは80%以上、さらに好ましくは90%以上、より好ましくは95%以上となる。なお、CAAC−OS膜と異なる回折パターンが観測される領域の割合を非CAAC化率と表記する。
一例として、成膜直後(as−sputteredと表記。)、または酸素を含む雰囲気における450℃加熱処理後のCAAC−OS膜を有する各試料の上面に対し、スキャンしながら透過電子回折パターンを取得した。ここでは、5nm/秒の速度で60秒間スキャンしながら回折パターンを観測し、観測された回折パターンを0.5秒ごとに静止画に変換することで、CAAC化率を導出した。なお、電子線としては、プローブ径が1nmのナノビームを用いた。なお、同様の測定は6試料に対して行った。そしてCAAC化率の算出には、6試料における平均値を用いた。
各試料におけるCAAC化率を図19(A)に示す。成膜直後のCAAC−OS膜のCAAC化率は75.7%(非CAAC化率は24.3%)であった。また、450℃加熱処理後のCAAC−OS膜のCAAC化率は85.3%(非CAAC化率は14.7%)であった。成膜直後と比べて、450℃加熱処理後のCAAC化率が高いことがわかる。即ち、高い温度(例えば400℃以上)における加熱処理によって、非CAAC化率が低くなる(CAAC化率が高くなる)ことがわかる。また、500℃未満の加熱処理においても高いCAAC化率を有するCAAC−OS膜が得られることがわかる。
ここで、CAAC−OS膜と異なる回折パターンのほとんどはnc−OS膜と同様の回折パターンであった。また、測定領域において非晶質酸化物半導体膜は、確認することができなかった。したがって、加熱処理によって、nc−OS膜と同様の構造を有する領域が、隣接する領域の構造の影響を受けて再配列し、CAAC化していることが示唆される。
図19(B)および図19(C)は、成膜直後および450℃加熱処理後のCAAC−OS膜の平面TEM像である。図19(B)と図19(C)とを比較することにより、450℃加熱処理後のCAAC−OS膜は、膜質がより均質であることがわかる。即ち、高い温度における加熱処理によって、CAAC−OS膜の膜質が向上することがわかる。
このような測定方法を用いれば、複数の構造を有する酸化物半導体膜の構造解析が可能となる場合がある。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態6)
実施の形態2で述べたように、酸化物半導体膜を用いたトランジスタは、オフ状態における電流値(オフ電流値)を低く制御することができる。よって、画像信号等の電気信号の保持時間を長くすることができ、書き込み間隔も長く設定できる。
本実施の形態の液晶表示装置は、オフ電流値の低いトランジスタを適用することで、少なくとも2つの駆動方法(モード)で表示を行う液晶表示装置とすることができる。第1の駆動モードは、従来の液晶表示装置の駆動方法であり、1フレームごとにデータを逐次書き換える駆動方法である。第2の駆動モードは、データの書き込み処理を実行した後、データの書き換えを停止する駆動方法である。すなわち、リフレッシュレートを低減した駆動モードである。
動画の表示は、第1の駆動モードにより行われる。静止画の表示は、フレームごとの画像データに変化がないため、1フレームごとにデータの書き換えを行う必要がない。そこで、静止画を表示する際は、第2の駆動モードで動作させると、画面のちらつきをなくすとともに、電力消費を削減することができる。
また、本実施の形態の液晶表示装置に適用される液晶素子は、面積の大きい容量素子を有し、容量素子で蓄積する電荷量が大きい。このため、画素電極の電位を保持する時間を長くすることが可能であり、リフレッシュレートを低減する駆動モードを適用できる。さらに、液晶表示装置においてリフレッシュレートを低減する駆動モードを適用した場合であっても、液晶層に印加された電圧の変化を長期間抑制することが可能であるため、使用者による画像のちらつきの知覚をより防止することができる。したがって、低消費電力化と表示品質の向上を図ることができる。
ここで、リフレッシュレートを低減する効果に関して説明する。
目の疲労には、神経系の疲労と、筋肉系の疲労の2種類がある。神経系の疲労は、長時間液晶表示装置の発光、点滅画面を見続けることで、その明るさが眼の網膜や神経、脳を刺激して疲れさせるものである。筋肉系の疲労は、ピント調節のときに使用する毛様体の筋肉を酷使することにより疲れさせるものである。
図20(A)に、従来の液晶表示装置の表示を表す模式図を示す。図20(A)に示すように、従来の液晶表示装置の表示では、1秒間に60回の画像の書き換えが行われている。このような画面を長時間見続けることにより、使用者の眼の網膜や神経、脳を刺激して眼の疲労が引き起こされるおそれがあった。
本発明の一態様では、液晶表示装置の画素部に、オフ電流の極めて低いトランジスタ、例えば酸化物半導体を用いたトランジスタを適用する。また、液晶素子は、面積の大きい容量素子を有する。これらによって、容量素子に蓄積された電荷のリークを抑制することが可能となるため、フレーム周波数を下げても、液晶表示装置の輝度の維持が可能となる。
つまり、図20(B)に示すように、例えば、5秒間に1回の画像の書き換えが可能となるため、極力同じ映像を見ることが可能となり、使用者に視認される画面のちらつきが低減される。これにより、使用者の眼の網膜や神経、脳の刺激が低減され、神経系の疲労が軽減される。
本発明の一態様によれば、目に優しい液晶表示装置を提供することができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
(実施の形態7)
本実施の形態では、本発明の一態様の表示装置が適用された電子機器の構成例について説明する。また、本実施の形態では、本発明の一態様の表示装置を適用した表示モジュールについて、図21を用いて説明を行う。
図21に示す表示モジュール8000は、上部カバー8001と下部カバー8002との間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続された表示パネル8006、バックライトユニット8007、フレーム8009、プリント基板8010、バッテリー8011を有する。なお、バックライトユニット8007、バッテリー8011、タッチパネル8004などは、設けられない場合もある。
本発明の一態様の表示装置は、例えば、表示パネル8006に用いることができる。
上部カバー8001及び下部カバー8002は、タッチパネル8004及び表示パネル8006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル8006に重畳して用いることができる。また、表示パネル8006の対向基板(封止基板)に、タッチパネル機能を持たせるようにすることも可能である。または、表示パネル8006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。または、表示パネル8006の各画素内にタッチセンサ用電極を設け、容量型式のタッチパネルとすることも可能である。
バックライトユニット8007は、光源8008を有する。光源8008をバックライトユニット8007の端部に設け、光拡散板を用いる構成としてもよい。
フレーム8009は、表示パネル8006の保護機能の他、プリント基板8010の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号及びクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリー8011による電源であってもよい。バッテリー8011は、商用電源を用いる場合には、省略可能である。
また、表示モジュール8000には、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
図22は、本発明の一態様の表示装置を含む電子機器の外観図である。
電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ等のカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
図22(A)は、携帯型の情報端末であり、本体1001、筐体1002、表示部1003a、1003bなどによって構成されている。表示部1003bはタッチパネルとなっており、表示部1003bに表示されるキーボードボタン1004を触れることで画面操作や、文字入力を行うことができる。勿論、表示部1003aをタッチパネルとして構成してもよい。上記実施の形態で示したトランジスタをスイッチング素子として液晶パネルや有機発光パネルを作製して表示部1003a、1003bに適用することにより、信頼性の高い携帯型の情報端末とすることができる。
図22(A)に示す携帯型の情報端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報を操作又は編集する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。また、筐体の裏面や側面に、外部接続用端子(イヤホン端子、USB端子など)、記録媒体挿入部などを備える構成としてもよい。
また、図22(A)に示す携帯型の情報端末は、無線で情報を送受信できる構成としてもよい。無線により、電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすることも可能である。
図22(B)は、携帯音楽プレイヤーであり、本体1021には表示部1023と、耳に装着するための固定部1022と、スピーカー、操作ボタン1024、外部メモリスロット1025等が設けられている。上記実施の形態で示したトランジスタをスイッチング素子として液晶パネルや有機発光パネルを作製して表示部1023に適用することにより、より信頼性の高い携帯音楽プレイヤーとすることができる。
さらに、図22(B)に示す携帯音楽プレイヤーにアンテナやマイク機能や無線機能を持たせ、携帯電話と連携させれば、乗用車などを運転しながらワイヤレスによるハンズフリーでの会話も可能である。
図22(C)は、携帯電話であり、筐体1030及び筐体1031の二つの筐体で構成されている。筐体1031には、表示パネル1032、スピーカー1033、マイクロフォン1034、ポインティングデバイス1036、カメラ1037、外部接続端子1038などを備えている。また、筐体1030には、携帯電話の充電を行う太陽電池1040、外部メモリスロット1041などを備えている。また、アンテナは筐体1031内部に内蔵されている。上記実施の形態で説明するトランジスタを表示パネル1032に適用することにより、信頼性の高い携帯電話とすることができる。
また、表示パネル1032はタッチパネルを備えており、図22(C)には映像表示されている複数の操作キー1035を点線で示している。なお、太陽電池1040で出力される電圧を各回路に必要な電圧に昇圧するための昇圧回路も実装している。
表示パネル1032は、使用形態に応じて表示の方向が適宜変化する。また、表示パネル1032と同一面上にカメラ1037を備えているため、テレビ電話が可能である。スピーカー1033及びマイクロフォン1034は音声通話に限らず、テレビ電話、録音、再生などが可能である。さらに、筐体1030と筐体1031は、スライドし、図22(C)のように展開している状態から重なり合った状態とすることができ、携帯に適した小型化が可能である。
外部接続端子1038はACアダプタ及びUSBケーブルなどの各種ケーブルと接続可能であり、充電及びパーソナルコンピュータなどとのデータ通信が可能である。また、外部メモリスロット1041に記録媒体を挿入し、より大量のデータ保存及び移動に対応できる。
また、上記機能に加えて、赤外線通信機能、テレビ受信機能などを備えたものであってもよい。
図22(D)は、テレビジョン装置の一例を示している。テレビジョン装置1050は、筐体1051に表示部1053が組み込まれている。表示部1053により、映像を表示することが可能である。また、筐体1051を支持するスタンド1055にCPUが内蔵されている。上記実施の形態で説明するトランジスタを表示部1053及びCPUに適用することにより、信頼性の高いテレビジョン装置1050とすることができる。
テレビジョン装置1050の操作は、筐体1051が備える操作スイッチや、別体のリモートコントローラにより行うことができる。また、リモコン操作機に、当該リモコン操作機から出力する情報を表示する表示部を設ける構成としてもよい。
なお、テレビジョン装置1050は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
また、テレビジョン装置1050は、外部接続端子1054や、記憶媒体再生録画部1052、外部メモリスロットを備えている。外部接続端子1054は、USBケーブルなどの各種ケーブルと接続可能であり、パーソナルコンピュータなどとのデータ通信が可能である。記憶媒体再生録画部1052では、ディスク状の記録媒体を挿入し、記録媒体に記憶されているデータの読み出し、記録媒体への書き込みが可能である。また、外部メモリスロットに差し込まれた外部メモリ1056にデータ保存されている画像や映像などを表示部1053に映し出すことも可能である。
また、上記実施の形態で説明するトランジスタのオフリーク電流が極めて小さい場合は、当該トランジスタを外部メモリ1056やCPUに適用することにより、消費電力が十分に低減された信頼性の高いテレビジョン装置1050とすることができる。
なお、本実施の形態に示す構成及び方法などは、他の実施の形態に示す構成及び方法などと適宜組み合わせて用いることができる。
11 画素部
13 画素
13_1 画素
13_2 画素
14 副画素
14B 副画素
14B_1 副画素
14B_2 副画素
14G 副画素
14G_1 副画素
14G_2 副画素
14R 副画素
14R_1 副画素
14R_2 副画素
14W_1 副画素
14W_2 副画素
16 信号線駆動回路
17 走査線
17_1 走査線
17_2 走査線
17_3 走査線
18 電位生成回路
19 容量線
25 信号線
25_1 信号線
25_2 信号線
25_3 信号線
31 液晶素子
41 発光素子
43 トランジスタ
45 トランジスタ
47 配線
49 配線
50 配線
51 ゲート絶縁膜
53 無機絶縁膜
53a 絶縁膜
70 電子銃室
72 光学系
74 試料室
76 光学系
78 カメラ
80 観察室
82 フィルム室
84 電子
88 物質
92 蛍光板
100 表示装置
102 トランジスタ
102a トランジスタ
103 トランジスタ
103a トランジスタ
103d トランジスタ
105 容量素子
302 基板
304a 導電膜
304b 導電膜
304c 導電膜
304d 導電膜
305 絶縁膜
306 絶縁膜
307 酸化物半導体膜
308a 酸化物半導体膜
308b 酸化物半導体膜
308c 金属酸化物膜
308d 酸化物半導体膜
308e 酸化物半導体膜
308f 金属酸化物膜
309 導電膜
310a 導電膜
310b 導電膜
310c 導電膜
310d 導電膜
310e 導電膜
310f 導電膜
310g 導電膜
310h 導電膜
310i 導電膜
310j 導電膜
311 絶縁膜
311a 絶縁膜
311b 絶縁膜
312 絶縁膜
312a 絶縁膜
312b 絶縁膜
313 絶縁膜
314 絶縁膜
315 導電膜
316a 導電膜
316b 導電膜
316d 導電膜
316e 導電膜
317 有機絶縁膜
317a 有機絶縁膜
318 導電膜
319 導電膜
319a 導電膜
319b 導電膜
320 配向膜
321 液晶層
322 液晶素子
336 多層膜
336a 酸化物半導体膜
336b 酸化物半導体膜
342 基板
344 遮光膜
346 有色膜
348 絶縁膜
350 導電膜
352 配向膜
362 開口部
364a 開口部
364b 開口部
364c 開口部
364d 開口部
371 有機樹脂膜
373 EL層
375 共通電極
1001 本体
1002 筐体
1003a 表示部
1003b 表示部
1004 キーボードボタン
1021 本体
1022 固定部
1023 表示部
1024 操作ボタン
1025 外部メモリスロット
1030 筐体
1031 筐体
1032 表示パネル
1033 スピーカー
1034 マイクロフォン
1035 操作キー
1036 ポインティングデバイス
1037 カメラ
1038 外部接続端子
1040 太陽電池
1041 外部メモリスロット
1050 テレビジョン装置
1051 筐体
1052 記憶媒体再生録画部
1053 表示部
1054 外部接続端子
1055 スタンド
1056 外部メモリ
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチパネル
8005 FPC
8006 表示パネル
8007 バックライトユニット
8008 光源
8009 フレーム
8010 プリント基板
8011 バッテリー

Claims (7)

  1. 第1乃至第4の副画素を有する第1の画素、及び前記第1の画素の次行に設けられる第1乃至第4の副画素を有する第2の画素を有し、
    前記第1の画素が有する前記第1乃至第3の副画素を選択するための信号を与える第1の配線と、
    前記第1の画素が有する前記第4の副画素を選択するための第2の配線と、を有し、
    前記第2の配線は、前記第2の画素が有する第4の副画素を選択するための配線であることを特徴とする表示装置。
  2. 第1乃至第4の副画素を有する第1の画素、及び前記第1の画素の次行に設けられる第1乃至第4の副画素を有する第2の画素を有し、
    前記第1の画素が有する前記第1乃至第3の副画素を選択するための信号を与える第1の配線と、
    前記第1の画素が有する前記第4の副画素を選択するための第2の配線と、
    前記第2の画素が有する前記第1乃至第3の副画素を選択するための第3の配線と、を有し、
    前記第2の配線は、前記第2の画素が有する第4の副画素を選択するための配線であることを特徴とする表示装置。
  3. 請求項1又は2において、前記第1の画素及び前記第2の画素が有する、前記第1乃至第4の副画素は、
    基板上のトランジスタと、
    前記トランジスタと接する無機絶縁膜と、
    前記無機絶縁膜と接する有機絶縁膜と、
    前記トランジスタと電気的に接続する容量素子と、
    前記有機絶縁膜上に形成され、且つ前記トランジスタと電気的に接続する画素電極と、
    を有し、
    前記トランジスタは、前記基板上のゲート電極と、
    前記ゲート電極と重なる酸化物半導体膜と、
    前記酸化物半導体膜の一方の面に接するゲート絶縁膜と、
    前記酸化物半導体膜に接する一対の導電膜と、を有し、
    前記容量素子は、前記ゲート絶縁膜上であって、且つ前記一対の導電膜の一方と接する金属酸化物膜と、
    前記無機絶縁膜と、
    前記無機絶縁膜上の第1の透光性を有する導電膜と、を有し、
    前記画素電極は、第2の透光性を有する導電膜で形成され、且つ前記一対の導電膜の一方と接することを特徴とする表示装置。
  4. 請求項1乃至3のいずれか一において、
    前記無機絶縁膜は、前記酸化物半導体膜の他方の面に接する酸化物絶縁膜と、
    前記酸化物絶縁膜に接する窒化物絶縁膜と、
    を有すること特徴とする表示装置。
  5. 請求項1乃至4のいずれか一において、
    前記金属酸化物膜は、前記窒化物絶縁膜に接して形成され、且つ前記酸化物半導体膜と同じ金属元素を含むことを特徴とする表示装置。
  6. 請求項1乃至5のいずれか一において、
    前記酸化物半導体膜は、In−Ga酸化物、In−Zn酸化物、またはIn−M−Zn酸化物(MはAl、Ga、Y、Zr、Sn、La、Ce、Nd、Sn、またはHf)を有することを特徴とする表示装置。
  7. 請求項1乃至6のいずれか一において、
    前記酸化物半導体膜は、第1の膜及び第2の膜を含む多層構造であり、
    前記第1の膜は、前記第2の膜と金属元素の原子数比が異なることを特徴とする表示装置。
JP2014234094A 2013-11-27 2014-11-19 表示装置 Active JP6486660B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014234094A JP6486660B2 (ja) 2013-11-27 2014-11-19 表示装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013245172 2013-11-27
JP2013245172 2013-11-27
JP2014038159 2014-02-28
JP2014038159 2014-02-28
JP2014234094A JP6486660B2 (ja) 2013-11-27 2014-11-19 表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019028258A Division JP6753970B2 (ja) 2013-11-27 2019-02-20 表示装置

Publications (3)

Publication Number Publication Date
JP2015179250A true JP2015179250A (ja) 2015-10-08
JP2015179250A5 JP2015179250A5 (ja) 2017-12-28
JP6486660B2 JP6486660B2 (ja) 2019-03-20

Family

ID=53181874

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2014234094A Active JP6486660B2 (ja) 2013-11-27 2014-11-19 表示装置
JP2019028258A Active JP6753970B2 (ja) 2013-11-27 2019-02-20 表示装置
JP2020139333A Withdrawn JP2021002044A (ja) 2013-11-27 2020-08-20 表示装置
JP2022017863A Active JP7265658B2 (ja) 2013-11-27 2022-02-08 表示装置
JP2023066445A Active JP7498332B2 (ja) 2013-11-27 2023-04-14 表示装置
JP2024087816A Pending JP2024116196A (ja) 2013-11-27 2024-05-30 表示装置

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2019028258A Active JP6753970B2 (ja) 2013-11-27 2019-02-20 表示装置
JP2020139333A Withdrawn JP2021002044A (ja) 2013-11-27 2020-08-20 表示装置
JP2022017863A Active JP7265658B2 (ja) 2013-11-27 2022-02-08 表示装置
JP2023066445A Active JP7498332B2 (ja) 2013-11-27 2023-04-14 表示装置
JP2024087816A Pending JP2024116196A (ja) 2013-11-27 2024-05-30 表示装置

Country Status (4)

Country Link
US (1) US9880437B2 (ja)
JP (6) JP6486660B2 (ja)
KR (2) KR102240809B1 (ja)
TW (2) TWI675461B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107181A (ja) * 2015-10-30 2017-06-15 株式会社半導体エネルギー研究所 表示装置、電子機器およびその作製方法
JP2017161521A (ja) * 2016-03-04 2017-09-14 株式会社半導体エネルギー研究所 半導体装置、表示パネル、および電子機器
JP2018022061A (ja) * 2016-08-04 2018-02-08 株式会社半導体エネルギー研究所 表示装置
US10276594B2 (en) 2016-09-12 2019-04-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
WO2019087023A1 (ja) * 2017-11-02 2019-05-09 株式会社半導体エネルギー研究所 表示装置および電子機器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027597A (ja) * 2013-12-06 2016-02-18 株式会社半導体エネルギー研究所 半導体装置
DE112015004166T5 (de) 2014-09-12 2017-05-24 Semiconductor Energy Laboratory Co., Ltd. Anzeigevorrichtung
CN104991364B (zh) * 2015-07-21 2018-10-30 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示面板、显示装置
CN105093611B (zh) * 2015-07-21 2018-09-11 京东方科技集团股份有限公司 一种阵列基板及其驱动方法、显示面板、显示装置
US10573667B2 (en) 2015-12-11 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Display device
US10797113B2 (en) 2016-01-25 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with layered electrode structures
KR102583770B1 (ko) * 2016-09-12 2023-10-06 삼성디스플레이 주식회사 메모리 트랜지스터 및 이를 갖는 표시장치
CN108628044B (zh) * 2017-03-22 2021-10-26 鸿富锦精密工业(深圳)有限公司 显示面板
WO2019092558A1 (en) * 2017-11-09 2019-05-16 Semiconductor Energy Laboratory Co., Ltd. Display device, operation method thereof, and electronic device
JP7225112B2 (ja) * 2017-11-09 2023-02-20 株式会社半導体エネルギー研究所 表示装置、電子機器
CN116864510A (zh) * 2019-03-19 2023-10-10 群创光电股份有限公司 具有晶体管元件的工作模块
CN111161639B (zh) * 2020-01-03 2022-04-19 厦门天马微电子有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523862A (ja) * 2003-04-17 2006-10-19 サムスン エレクトロニクス カンパニー リミテッド 液晶表示装置
JP2010156963A (ja) * 2008-12-05 2010-07-15 Semiconductor Energy Lab Co Ltd 半導体装置
WO2011148537A1 (ja) * 2010-05-24 2011-12-01 シャープ株式会社 薄膜トランジスタ基板及びその製造方法
JP2013175714A (ja) * 2012-01-26 2013-09-05 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2016061858A (ja) * 2014-09-16 2016-04-25 株式会社ジャパンディスプレイ 画像表示パネル、画像表示装置及び電子機器

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
US5126865A (en) * 1990-12-31 1992-06-30 Honeywell Inc. Liquid crystal display with sub-pixels
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
WO1997006554A2 (en) 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JPH11295717A (ja) 1998-04-13 1999-10-29 Hitachi Ltd 液晶表示装置
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW478014B (en) * 1999-08-31 2002-03-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing thereof
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4700156B2 (ja) * 1999-09-27 2011-06-15 株式会社半導体エネルギー研究所 半導体装置
TWI282457B (en) * 2000-04-06 2007-06-11 Chi Mei Optoelectronics Corp Liquid crystal display component with defect restore ability and restoring method of defect
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
US6919681B2 (en) * 2003-04-30 2005-07-19 Eastman Kodak Company Color OLED display with improved power efficiency
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US20050116615A1 (en) * 2003-09-30 2005-06-02 Shoichiro Matsumoto Light emissive display device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
EP2226847B1 (en) 2004-03-12 2017-02-08 Japan Science And Technology Agency Amorphous oxide and thin film transistor
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
KR101090247B1 (ko) * 2004-04-19 2011-12-06 삼성전자주식회사 4색 표시 장치의 구동 장치 및 방법
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP4476076B2 (ja) * 2004-08-26 2010-06-09 シャープ株式会社 多原色表示装置及び液晶表示装置
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP4349628B2 (ja) 2004-09-11 2009-10-21 徹 勝呂 人工指関節
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
CA2585190A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
RU2358355C2 (ru) 2004-11-10 2009-06-10 Кэнон Кабусики Кайся Полевой транзистор
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
EP1810335B1 (en) 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7382384B2 (en) * 2004-12-07 2008-06-03 Eastman Kodak Company OLED displays with varying sized pixels
JP4642785B2 (ja) * 2005-01-12 2011-03-02 シャープ株式会社 液晶表示装置
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI562380B (en) 2005-01-28 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) * 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
US7898623B2 (en) * 2005-07-04 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device and method of driving display device
JP5613360B2 (ja) * 2005-07-04 2014-10-22 株式会社半導体エネルギー研究所 表示装置、表示モジュール及び電子機器
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
EP1998373A3 (en) 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
WO2007058329A1 (en) 2005-11-15 2007-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4528859B2 (ja) * 2006-06-19 2010-08-25 シャープ株式会社 表示装置
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP5403860B2 (ja) * 2006-10-10 2014-01-29 株式会社ジャパンディスプレイ カラー液晶表示装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR20080057040A (ko) * 2006-12-19 2008-06-24 엘지디스플레이 주식회사 액정패널
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP2009122652A (ja) * 2007-10-23 2009-06-04 Sony Corp 表示装置及び電子機器
WO2009072452A1 (en) 2007-12-03 2009-06-11 Semiconductor Energy Laboratory Co., Ltd. Tft arrangement for display device
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
KR20090083197A (ko) * 2008-01-29 2009-08-03 삼성전자주식회사 컬러필터기판의 제조 방법
JP5396913B2 (ja) * 2008-09-17 2014-01-22 凸版印刷株式会社 画像表示装置
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5337603B2 (ja) 2009-07-08 2013-11-06 株式会社ジャパンディスプレイ 液晶表示装置
KR101605467B1 (ko) * 2009-10-16 2016-04-04 삼성디스플레이 주식회사 박막 트랜지스터 표시판
KR101847656B1 (ko) * 2009-10-21 2018-05-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
JP5497417B2 (ja) * 2009-12-10 2014-05-21 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
EP2530516A4 (en) * 2010-01-29 2014-07-02 Sharp Kk LIQUID CRYSTAL DISPLAY DEVICE
US8610180B2 (en) * 2010-06-11 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Gas sensor and method for manufacturing the gas sensor
JP5770073B2 (ja) 2011-11-25 2015-08-26 株式会社ジャパンディスプレイ 表示装置及び電子機器
KR101970783B1 (ko) * 2012-05-07 2019-04-23 삼성디스플레이 주식회사 반도체 장치
KR101411656B1 (ko) * 2012-06-27 2014-06-25 엘지디스플레이 주식회사 유기전계발광 표시장치 및 이의 제조 방법
TWI481937B (zh) * 2012-08-27 2015-04-21 Au Optronics Corp 顯示面板
KR101325325B1 (ko) * 2012-11-30 2013-11-08 엘지디스플레이 주식회사 액정표시장치와 그 제조 방법
KR102002986B1 (ko) * 2013-01-11 2019-07-24 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
WO2014141832A1 (ja) * 2013-03-12 2014-09-18 シャープ株式会社 アクティブマトリクス基板、及び、表示装置
JP2014186257A (ja) * 2013-03-25 2014-10-02 Sony Corp 表示装置および電子機器
JP5849981B2 (ja) * 2013-03-25 2016-02-03 ソニー株式会社 表示装置および電子機器
CN103217846B (zh) * 2013-04-23 2015-12-02 京东方科技集团股份有限公司 阵列基板及显示装置
CN103472644B (zh) * 2013-09-25 2015-11-25 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
KR102021106B1 (ko) * 2013-11-12 2019-09-11 엘지디스플레이 주식회사 액정표시장치용 어레이 기판 및 그 제조방법
JP2015099331A (ja) * 2013-11-20 2015-05-28 株式会社ジャパンディスプレイ 液晶表示装置
TWI559048B (zh) * 2013-12-27 2016-11-21 友達光電股份有限公司 主動元件基板與應用其之顯示面板
JP6324207B2 (ja) * 2014-05-16 2018-05-16 株式会社ジャパンディスプレイ 表示装置
TWI525379B (zh) * 2014-06-04 2016-03-11 聯詠科技股份有限公司 顯示裝置及其驅動模組
CN104078490B (zh) * 2014-06-19 2016-08-24 京东方科技集团股份有限公司 基板及显示装置
JP2016085365A (ja) * 2014-10-27 2016-05-19 株式会社ジャパンディスプレイ 表示装置
JP6483411B2 (ja) * 2014-11-19 2019-03-13 株式会社ジャパンディスプレイ 表示装置
TWI587041B (zh) * 2014-12-02 2017-06-11 聯詠科技股份有限公司 顯示裝置及其驅動模組
TWI574078B (zh) * 2014-12-02 2017-03-11 聯詠科技股份有限公司 顯示裝置及其驅動模組
TWI556048B (zh) * 2014-12-02 2016-11-01 聯詠科技股份有限公司 顯示裝置及其驅動模組
JP2016161920A (ja) * 2015-03-05 2016-09-05 株式会社ジャパンディスプレイ 表示装置
JP2016200769A (ja) * 2015-04-14 2016-12-01 株式会社ジャパンディスプレイ 表示装置
KR102326806B1 (ko) * 2015-04-24 2021-11-15 엘지디스플레이 주식회사 서브 픽셀 배열 구조를 갖는 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006523862A (ja) * 2003-04-17 2006-10-19 サムスン エレクトロニクス カンパニー リミテッド 液晶表示装置
JP2010156963A (ja) * 2008-12-05 2010-07-15 Semiconductor Energy Lab Co Ltd 半導体装置
WO2011148537A1 (ja) * 2010-05-24 2011-12-01 シャープ株式会社 薄膜トランジスタ基板及びその製造方法
JP2013175714A (ja) * 2012-01-26 2013-09-05 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2016061858A (ja) * 2014-09-16 2016-04-25 株式会社ジャパンディスプレイ 画像表示パネル、画像表示装置及び電子機器

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107181A (ja) * 2015-10-30 2017-06-15 株式会社半導体エネルギー研究所 表示装置、電子機器およびその作製方法
JP2021144226A (ja) * 2015-10-30 2021-09-24 株式会社半導体エネルギー研究所 表示装置
JP2017161521A (ja) * 2016-03-04 2017-09-14 株式会社半導体エネルギー研究所 半導体装置、表示パネル、および電子機器
JP2018022061A (ja) * 2016-08-04 2018-02-08 株式会社半導体エネルギー研究所 表示装置
US10276594B2 (en) 2016-09-12 2019-04-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JPWO2019087023A1 (ja) * 2017-11-02 2020-12-17 株式会社半導体エネルギー研究所 表示装置および電子機器
CN111247580A (zh) * 2017-11-02 2020-06-05 株式会社半导体能源研究所 显示装置以及电子设备
WO2019087023A1 (ja) * 2017-11-02 2019-05-09 株式会社半導体エネルギー研究所 表示装置および電子機器
US11189643B2 (en) 2017-11-02 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP7121743B2 (ja) 2017-11-02 2022-08-18 株式会社半導体エネルギー研究所 表示装置および電子機器
JP2022164698A (ja) * 2017-11-02 2022-10-27 株式会社半導体エネルギー研究所 表示装置、電子機器
JP7177962B2 (ja) 2017-11-02 2022-11-24 株式会社半導体エネルギー研究所 表示装置、電子機器
US11715740B2 (en) 2017-11-02 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11935897B2 (en) 2017-11-02 2024-03-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP7477672B2 (ja) 2017-11-02 2024-05-01 株式会社半導体エネルギー研究所 表示装置

Also Published As

Publication number Publication date
KR20150061578A (ko) 2015-06-04
JP6753970B2 (ja) 2020-09-09
TW201530744A (zh) 2015-08-01
TWI675461B (zh) 2019-10-21
KR102493175B1 (ko) 2023-01-27
JP7498332B2 (ja) 2024-06-11
JP2019117384A (ja) 2019-07-18
JP2024116196A (ja) 2024-08-27
TW201937712A (zh) 2019-09-16
KR20210036899A (ko) 2021-04-05
JP2022070929A (ja) 2022-05-13
JP7265658B2 (ja) 2023-04-26
JP6486660B2 (ja) 2019-03-20
JP2023099018A (ja) 2023-07-11
JP2021002044A (ja) 2021-01-07
TWI703713B (zh) 2020-09-01
KR102240809B1 (ko) 2021-04-14
US20150144945A1 (en) 2015-05-28
US9880437B2 (en) 2018-01-30

Similar Documents

Publication Publication Date Title
JP7265658B2 (ja) 表示装置
JP6868675B2 (ja) 半導体装置
JP7030919B2 (ja) 表示装置
JP7500696B2 (ja) 表示装置
JP7302067B2 (ja) 表示装置
JP6495612B2 (ja) 表示装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190220

R150 Certificate of patent or registration of utility model

Ref document number: 6486660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250