[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015159069A - 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池 - Google Patents

電池電極用スラリー組成物、およびそれを用いた電極ならびに電池 Download PDF

Info

Publication number
JP2015159069A
JP2015159069A JP2014033934A JP2014033934A JP2015159069A JP 2015159069 A JP2015159069 A JP 2015159069A JP 2014033934 A JP2014033934 A JP 2014033934A JP 2014033934 A JP2014033934 A JP 2014033934A JP 2015159069 A JP2015159069 A JP 2015159069A
Authority
JP
Japan
Prior art keywords
battery
meth
electrode
acrylate
slurry composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014033934A
Other languages
English (en)
Other versions
JP6300078B2 (ja
Inventor
康太郎 田中
Kotaro Tanaka
康太郎 田中
松尾 孝
Takashi Matsuo
孝 松尾
倫之 矢野
Tomoyuki Yano
倫之 矢野
康史 三木
Yasushi Miki
康史 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2014033934A priority Critical patent/JP6300078B2/ja
Publication of JP2015159069A publication Critical patent/JP2015159069A/ja
Application granted granted Critical
Publication of JP6300078B2 publication Critical patent/JP6300078B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】結着性が高くかつ特に電極環境下で酸化劣化を起こさない、環境負荷の小さな水系バインダーおよびそれを用いた電極および電池を提供することを目的とする。【解決手段】(I)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と、(II)多官能(メタ)アクリレートモノマー(B)から誘導される構成単位を含む重合体を含有するバインダーと、(III)アンモニウム塩を有するセルロース系化合物とを含有することを特徴する電池電極用スラリー組成物が開示されている。この電池電極用スラリー組成物を用いて、電極を作製し、リチウムイオン二次電池などの電池に採用する。【選択図】なし

Description

本発明は電池の電極に用いられる電池電極用スラリー組成物、該電池電極用スラリー組成物を用いて製造される電極、および該電極を用いて製造される電池に関する。本明細書において、電池とは、電気化学キャパシタを包含しており、一次電池または二次電池である。電池の具体例は、リチウムイオン二次電池およびニッケル水素二次電池である。
電池の電極において、バインダーを用いることが知られている。バインダーを用いた電極を有する電池の代表例として、リチウムイオン二次電池が挙げられる。
リチウムイオン二次電池はエネルギー密度が高く、高電圧であるため、携帯電話やノートパソコン、カムコーダーなどの電子機器に用いられている。最近では環境保護への意識の高まりや関連法の整備により、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池としての応用も進んできている。
リチウムイオン二次電池は一般的に負極、正極、セパレータ、電解液、集電体で構成される。電極に関して、負極はリチウムイオンの挿入脱離が可能なグラファイトやハードカーボンなどの負極活物質と導電助剤、バインダー、溶媒からなる塗工液を銅箔に代表される集電体上に塗布、乾燥して得られる。現在一般的には、バインダーとしてスチレン−ブタジエンゴム( 以下、「SBR」と略す)を水に分散させたものが用いられている。
一方、正極は層状のコバルト酸リチウムやスピネル型マンガン酸リチウム等の正極活物質とカーボンブラック等の導電助剤、ポリフッ化ビニリデンやポリ四フッ化エチレン等のバインダーを混合し、N-メチルピロリドンのような極性溶媒に分散させた塗工液をアルミニウム箔に代表される集電体箔上に負極と同様に塗布、乾燥して製造されている。
これらのリチウムイオン電池のバインダーは、結着力を確保するためにバインダーの添加量を多くする必要があり、そのことによる性能の低下が課題として挙げられる。また、N-メチルピロリドンをスラリー溶媒に用いており、回収、コスト、毒性および環境負荷の観点から、水系バインダーが望まれている。しかしながら、水系であるSBR系バインダーを用いた場合では正極環境下において酸化劣化するといった課題が挙げられる。そのため、依然として正極のバインダーには現行のN-メチルピロリドンを分散溶媒に用いたポリフッ化ビニリデンやポリ四フッ化エチレンがバインダーとして用いられており、集電体と活物質や活物質同士の結着性に優れ、環境負荷が少ない水系であり、かつ耐酸化性の高い二次電池用の電極の製造に適したバインダーの開発が急務となっている。
上記課題を解決するために特許文献1および2では、水系バインダー成分として、芳香族ビニル、共役ジエン、エチレン性不飽和カルボン酸エステルおよび不飽和カルボン酸からなるバインダー、およびスチレン−ブタジエン重合体ラテックスおよびアクリルエマルジョンからなるバインダーを用いて正極または負極を作製することによって、結着性と電池性能が改善されたバインダーの記載がなされている。しかしながら、これらのバインダーを正極に用いた場合、耐酸化性に問題があり、電池特性が悪くなることが懸念される。
特開2006−66400号公報 特開2006−260782号公報
本発明は上記事情に鑑みなされたものであり、結着性が高くかつ正極環境下で酸化劣化を起こさない、環境負荷の小さな水系電池電極用スラリー組成物およびそれを用いた電極および電池を提供することを目的とする。
本発明者らは、上記目的を達成するために検討を重ねた結果、水酸基を有する(メタ)アクリレートモノマーから誘導される構成単位と、多官能(メタ)アクリレートモノマーから誘導される構成単位とを含む重合体を含有するバインダーと、アンモニウム塩を有するセルロース系化合物とを含有する電池電極用スラリー組成物を用いることにより、上記課題を解決することを見出し、本発明をなすに至った。すなわち本発明は以下に関する。
[1]
(I)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と、
(II)多官能(メタ)アクリレートモノマー(B)から誘導される構成単位、
を含む重合体を含有するバインダーと、
(III)アンモニウム塩を有するセルロース系化合物と
を含有することを特徴する電池電極用スラリー組成物。
[2]
水酸基を有する(メタ)アクリレートモノマー(A)の分子量が150〜1000のアルキレングリコールモノ(メタ)アクリレートである[1]記載の電池電極用スラリー組成物。
[3]
多官能(メタ)アクリレートモノマー(B)が3〜5官能の(メタ)アクリレートである[1]または[2]に記載の電池電極用スラリー組成物。
[4]
アンモニウム塩を有するセルロース系化合物がカルボキシメチルセルロースのアンモニウム塩である[1]〜[3]のいずれかに記載の電池電極用スラリー組成物。
[5]
電池が二次電池である[1]〜[4]のいずれかに記載の電池電極用スラリー組成物。
[6]
[1]〜[5]のいずれかに記載の電池電極用スラリー組成物と活物質とを含有することを特徴とする電池用電極。
[7]
[6]記載の電極を有することを特徴とする電池。
本発明の電池電極用スラリー組成物は、活物質、導電助剤および集電体との結着性に優れる。優れた結着性(強い結着性)は、水に分散した重合体の微粒子の表面積が大きいこと、水酸基を有するモノマーから誘導される構成単位を用いていること、およびアンモニウム塩を有するセルロース系化合物を用いていることに起因していると考えられる。
本発明の電池電極用スラリー組成物は、屈曲性に優れる電極を提供する。
本発明の電池電極用スラリー組成物は、電解液への溶解が抑制されており、実質的に電解液に溶解しない。この非溶解性は、架橋剤成分に多官能(メタ)アクリレートモノマーから誘導される構成単位を用いることにより高度に架橋した構造であるためと考えられる。
本発明は、高容量を有し、電池寿命が長い電池、特に二次電池を提供することができる。二次電池は充放電サイクル特性に優れている。
本発明の二次電池は、高電圧で使用でき、かつ優れた耐熱性を有する。
電池電極用スラリー組成物は、水系(媒体が水)であるので、環境への負荷が少なく、有機溶媒の回収装置を必要としない。
本発明の電池電極用スラリー組成物は
(I)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と、
(II)多官能(メタ)アクリレートモノマー(B)から誘導される構成単位、
を含む重合体を含有するバインダーと、
(III)アンモニウム塩を有するセルロース系化合物と
を含有することを特徴する電池電極用スラリー組成物である。
以下に、本発明の重合体の構成単位について詳細に説明する。
水酸基を有する(メタ)アクリレートモノマー(A)としては、分子量が150〜1000のアルキレングリコールモノ(メタ)アクリレートが好ましい。具体例としてはジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、およびポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、およびポリプロピレングリコールモノ(メタ)アクリレートなどが挙げられる。これらは1種又は2種以上併用できる。これらの中でも、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートが好ましい。
架橋剤である多官能(メタ)アクリレートモノマー(B)としては2官能〜5官能(メタ)アクリレートが挙げられる。好ましくは3官能〜5官能(メタ)アクリレートである。(メタ)アクリレートが6官能以上になると、架橋剤そのものの粘度が高くなり、乳化重合で分散が上手くできなくなる。また、バインダーとしての物性(屈曲性、結着性)が悪くなる。
2官能(メタ)アクリレートの具体例としてはトリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレートなどが挙げられる。
3官能(メタ)アクリレートの具体例としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、トリメチロールプロパンPO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2,2,2-トリス(メタ)アクリロイロキシメチルエチルコハク酸、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ε−カプロラクトン変性トリス−(2−(メタ)アクリロキシエチル)イソシアヌレート、グリセリンEO付加トリ(メタ)アクリレート、グリセリンPO付加トリ(メタ)アクリレートおよびトリス(メタ)アクリロイルオキシエチルフォスフェートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、トリメチロールプロパンPO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが好ましい。
4官能(メタ)アクリレートの具体例としては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートおよびペンタエリスリトールEO付加テトラ(メタ)アクリレートなどが挙げられる。
5官能(メタ)アクリレートの具体例としては、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。
これらの架橋剤である多官能(メタ)アクリレートは1種又は2種以上併用できる。
本発明の電池電極用スラリー組成物中のアンモニウム塩を有するセルロース系化合物は、通常、増粘剤として機能する成分である。
アンモニウム塩を有するセルロース系化合物としては、セルロース系半合成系高分子を各種誘導基により置換されたアルキルセルロースのアンモニウム塩などが挙げられる。具体例としては、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)のアンモニウム塩等が挙げられる。カルボキシメチルセルロースのアンモニウム塩が特に好ましい。これらのアンモニウム塩を有するセルロース系化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
本発明で用いられるアンモニウム塩を有するセルロース系化合物の使用量は重合体の量に対して5重量%〜500重量%、好ましくは20重量%〜400重量%、更に好ましくは50重量%〜300重量%の範囲である。
本発明の重合体は水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位、架橋剤である多官能(メタ)アクリレートモノマー(B)から誘導される構成単位の他に(メタ)アクリル酸エステルモノマーおよび/または有機酸ビニルエステルモノマー(C)から誘導される構成単位および(メタ)アクリル酸モノマー(D)から誘導される構成単位を有していてもよい。
(メタ)アクリル酸エステルモノマー(C)の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸2−エチルヘキシル、および(メタ)アクリル酸ラウリルなどの(メタ)アクリル酸アルキルエステルが挙げられる。好ましくは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピルである。これら(メタ)アクリル酸エステルモノマーは1種又は2種以上併用できる。
有機酸ビニルエステルモノマー(C)の具体例としては、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、トリメチル酢酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルなどが挙げられる。好ましくは、酢酸ビニル、プロピオン酸ビニルである。これらは1種又は2種以上併用できる。
(メタ)アクリル酸モノマー(D)の具体例としては、メタアクリル酸、アクリル酸が挙げられ、1種又は2種併用できる。
重合体において、水酸基を有するモノマー(A)から誘導される構成単位、架橋剤である多官能(メタ)アクリレート(B)から誘導される構造単位、(メタ)アクリル酸エステルモノマーおよび/または有機酸ビニルエステルモノマー(C)から誘導される構成単位、(メタ)アクリル酸モノマー(D)から誘導される構造単位の量は、
水酸基を有するモノマー(A)100重量部に対して、
(B)0.5〜100重量部、好ましくは1〜90重量部、更に好ましくは2〜80重量部、
(C)0〜500重量部、好ましくは1〜400重量部、更に好ましくは2〜300重量部、および
(D)0〜100重量部、好ましくは1〜80重量部、更に好ましくは2〜60重量部、
であってよい。
本発明の電池電極用スラリー組成物中の重合体を得る方法としては一般的な乳化重合法、ソープフリー乳化重合法、シード重合法、シード粒子にモノマー等を膨潤させた後に重合する方法等を使用することができる。具体的には、攪拌機および加熱装置付きの密閉容器に室温でモノマー、乳化剤、重合開始剤、水、必要に応じて分散剤、連鎖移動剤、pH調整剤等を含んだ組成物を不活性ガス雰囲気下で攪拌することでモノマー等を水に乳化させる。乳化の方法は撹拌、剪断、超音波等による方法等が適用でき、撹拌翼、ホモジナイザー等を使用することができる。次いで、攪拌しながら温度を上昇させて重合を開始させることで、重合体が水に分散した球形の重合体のエマルジョンを得ることができる。また、生成した球形の重合体を別途単離した後に、分散剤等を用いてN−メチル−2−ピロリドン等の有機溶剤に分散させて使用してもよい。さらには、再度、モノマー、乳化剤や分散剤等を用いて水中に分散させて、重合体のエマルジョンを得る方法もある。重合時のモノマーの添加方法は、一括仕込みの他に、モノマー滴下やプレエマルジョン滴下等でもよく、これらの方法を2種以上併用してもよい。
また本発明の電池電極用スラリー組成物中の重合体の粒子構造は特に限定されない。例えば、シード重合によって作製された、コア−シェル構造の複合重合体粒子を含む重合体のエマルジョンを用いることができる。シード重合法は、例えば、「分散・乳化系の化学」(発行元:工学図書(株))に記載された方法を用いることができる。具体的には、上記の方法で作製したシード粒子を分散した系にモノマー、重合開始剤、乳化剤を添加し、核粒子を成長させる方法であり、上記方法を1回以上繰り返してもよい。
シード重合には本発明の重合体または公知のポリマーを用いた粒子を採用しても良い。公知のポリマーとしては、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリスチレン、ポリ(メタ)アクリレートおよびポリエーテルなどが例示できるが、限定されるものではなく、他の公知のポリマーを用いることができる。また、1種のホモポリマーまたは2種以上の共重合体またはブレンド体を用いても良い。
本発明の電池電極用スラリー組成物中の重合体の粒子形状としては球形以外に、板状、中空構造、複合構造、局在構造、だるま状構造、いいだこ状構造、ラズベリー状構造等があげられ、本発明を逸脱しない範囲で2種類以上の構造および組成の粒子を用いることができる。
本発明の電池電極用スラリー組成物中における上記重合体の粒子径は、動的光散乱法、透過型電子顕微鏡法や光学顕微鏡法などによって計測できる。動的光散乱法を用いて得た散乱強度により算出した平均粒径は、0.001μm〜1mm、好ましくは0.001μm〜0.500mmである。具体的な測定装置としてはスペクトリス製のゼータサイザーナノ等が例示できる。
乳化剤は特に限定されず、乳化重合法おいて一般的に用いられるノニオン性乳化剤およびアニオン性乳化剤等を使用することができる。ノニオン乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステルおよびポリオキシエチレンソルビタン脂肪酸エステル等があげられ、アニオン性乳化剤としては、アルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸塩等があげられ、これらを1種または2種以上用いてもよい。アニオン性乳化剤の代表例としてはドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムが挙げられる。
乳化剤の使用量は乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量に対して、0.01〜10重量%の範囲であり、好ましくは0.05〜5重量%、更に好ましくは0.5〜3重量%である。
重合開始剤は特に限定されず、乳化重合法おいて一般的に用いられる重合開始剤を使用することができる。その具体例としては、過硫酸カリウム、過硫酸ナトリウムおよび過硫酸アンモニウムなどの過硫酸塩に代表される水溶性の重合開始剤、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイドに代表される油溶性の重合開始剤、ハイドロパーオキサイド、4−4’−アゾビス(4−シアノ吉草酸)、2−2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン、2−2’−アゾビス(プロパン−2−カルボアミジン)2−2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロパンアミド、2−2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル]プロパン}、2−2’−アゾビス(1−イミノ−1−ピロリジノ−2−メチルプロパン)および2−2’−アゾビス{2−メチル−N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロパンアミド}などのアゾ系開始剤、レドックス開始剤等が挙げられる。これら重合開始剤は1種または2種以上組み合わせて用いてもよい。
重合開始剤の使用量は乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量に対して、0.01〜5重量%の範囲であり、好ましくは0.05〜3重量%、更に好ましくは0.1〜1重量%である。
連鎖移動剤は、必要に応じて用いることができる。連鎖移動剤の具体例としては、n−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタン等のアルキルメルカプタン、2,4−ジフェニル−4−メチル−1−ペンテン、2,4−ジフェニル−4−メチル−2−ペンテン、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物、ターピノレンや、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物、2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等のフェノール系化合物、アリルアルコール等のアリル化合物、ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物、α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミド等のビニルエーテル、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート等が挙げられ、これらを1種または2種以上用いてもよい。これらの連鎖移動剤の量は特に限定されないが、通常、仕込モノマー量100重量部に対して0〜5重量部にて使用される。
重合時間および重合温度は特に限定されない。使用する重合開始剤の種類等から適宜選択できるが、一般的に、重合温度は20〜100℃であり、重合時間は0.5〜100時間である。
さらに上記の方法によって得られた重合体は、必要に応じてpH調整剤として塩基を用いることでpHを調整することができる。塩基の具体例としては、アルカリ金属(Li、Na、K、Rb、Cs)水酸化物、アンモニア、無機アンモニウム化合物、有機アミン化合物等が挙げられる。pHの範囲はpH2〜11、好ましくはpH3〜10、更に好ましくはpH4〜9の範囲である。
電池電極用スラリー組成物の調整方法
本発明の電池電極用スラリー組成物を使用したリチウムイオン二次電池用電極の調整方法としては特に限定されず、正極活物質あるいは負極活物質、バインダー、増粘剤、導電助剤、水等を通常の攪拌機、分散機、混練機、遊星型ボールミル、ホモジナイザーなど用いて分散させればよい。分散の効率を上げるために材料に影響を与えない範囲で加温してもよい。
本発明の電池電極用スラリー組成物を作製する際に用いる水は特に限定されず、一般的に用いられる水を使用することができる。その具体例としては水道水、蒸留水、イオン交換水および超純水などが挙げられる。その中でも、好ましくは蒸留水、イオン交換水および超純水である。
電池電極用スラリー組成物の塗布性を改善するために、必要に応じて分散剤をバインダーを含む水溶液に予め添加あるいは電池電極用スラリー組成物に添加することもでき、種類および使用量は特に限定されず、一般的に用いられる分散剤を任意の量で自由に使用することができる。具体例としてはヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム、ピロリン酸ナトリウム、ポリアクリル酸またはそのナトリウム塩、ポリエチレンイミン、アクリル酸/マレイン酸コポリマーまたはそのナトリウム塩等が挙げられる。これらの分散剤は、それぞれ単独で、または2種以上を混合して使用できる。
電池電極用スラリー組成物の塗布性を改善するために、消泡剤をバインダーを含む水溶液に予め添加あるいは電池電極用スラリー組成物に添加することもできる。消泡剤を添加すると電池電極用スラリー調整時に、各成分の分散性が良好になり、スラリーの塗布性が改善(塗工で泡が残った箇所が欠陥)され、電極に気泡が残るのを抑制できる。消泡剤としてはシリコーン系消泡剤、鉱油系消泡剤、ポリエーテル系消泡剤などがある。シリコーン系および鉱油系消泡剤が好ましい。
シリコーン系消泡剤としてはジメチルシリコーン系、メチルフェニルシリコーン系、メチルビニルシリコーン系消泡剤があり、好ましくはジメチルシリコーン系である。また、消泡剤を界面活性剤と共に水中に分散してなるエマルジョン型消泡剤として用いることができる。これらの消泡剤は、それぞれ単独で、または2種以上を混合して使用できる。
本発明の電池電極用スラリー組成物の固形分濃度は、10〜90重量%、好ましくは20〜80重量%、より好ましくは30〜70重量%である。
本発明の電池電極用スラリー組成物の固形分中の重合体量の割合は、0.1〜15重量%、好ましくは0.2〜10重量%、より好ましくは0.3〜7重量%である。
リチウムイオン二次電池用電極の作製方法
電池用の電極の作製方法は特に限定されず一般的な方法が用いられる。電池電極用スラリー組成物(塗工液)をドクターブレード法やシルクスクリーン法などにより集電体(金属電極基板)表面上に適切な厚さに均一に塗布することより行われる。
例えばドクターブレード法では、電池電極用スラリー組成物を金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な有機溶剤および水を除去するため、例えば、100℃の熱風や80℃真空状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極材が製造される。プレス後に再度熱処理を施して水、溶剤、乳化剤等を除去してもよい。
正極材料の金属電極基板には、例えばアルミニウムが用いられるが、これに限るものではなく、ニッケル、ステンレス、金、白金、チタン等であってもよい。
本発明で使用される正極活物質は、LiMO2、LiM24、Li2MO3、LiMEO4のいずれかの組成からなるリチウム金属含有複合酸化物粉末である。ここで式中のMは主として遷移金属からなり、Co、Mn、Ni、Cr、Fe、Tiの少なくとも一種を含んでいる。Mは遷移金属からなるが、遷移金属以外にもAl、Ga、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどが添加されていてもよい。EはP、Siの少なくとも1種を含んでいる。正極活物質の粒子径には50μm以下が好ましく、更に好ましくは20μm以下のものを用いる。これらの活物質は、3V(vs. Li/Li+)以上の起電力を有するものである。
正極活物質の具体例としては、コバルト酸リチウム、ニッケル酸リチウム、ニッケル/マンガン/コバルト酸リチウム(3元系)、スピネル型マンガン酸リチウム、リン酸鉄リチウムなどが挙げられる。
負極材料の金属電極基板には、例えば銅が用いられるが、これに限るものではなく、ニッケル、ステンレス、金、白金、チタン等であってもよい。
本発明で使用される負極活物質としてはリチウムイオンを吸蔵・放出可能な構造(多孔質構造)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属からなる粉末である。粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。なお負極活物質にはその気孔率が、70%程度のものを用いるのが望ましい。
導電助剤の具体例としては、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、または金属粉末等が挙げられる。これら導電助剤は1種または2種以上用いてもよい。
リチウムイオン二次電池の製造方法
本発明の電極を用いたリチウムイオン二次電池の製造方法は特に限定されず、正極、負極、セパレータ、電解液、集電体で構成され、公知の方法にて製造される。例えば、コイン型のリチウムイオン電池場合、正極、セパレータ、負極を外装缶に挿入する。これに電解液を入れ含浸する。その後、封口体とタブ溶接などで接合して、封口体を封入し、かしめることで蓄電池が得られる。電池の形状は限定されないが、例としてはコイン型、円筒型、シート型などがあげられ、2個以上の電池を積層した構造でもよい。
セパレータとしては正極と負極が直接接触して電池内でショートすることを防止するものであり、公知の材料を用いることができる。具体的には、ポリオレフィンなどの多孔質高分子フィルムあるいは紙などからなっている。この多孔質高分子フィルムとしては、ポリエチレン、ポリプロピレンなどのフィルムが電解液によって影響を受けないため好ましい。
電解液は電解質リチウム塩化合物および溶媒として非プロトン性有機溶剤等からなる溶液である。電解質リチウム塩化合物としては、リチウムイオン電池に一般的に利用されているような、広い電位窓を有するリチウム塩化合物が用いられる。たとえば、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22,LiN(C25SO22,LiN[CF3SC(C25SO23]2などを挙げられるが、これらに限定されるものではない。これらは、単独で用いても、2種類以上を混合して用いても良い。
非プロトン性有機溶剤としてはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル、ジエチルエーテルなどの直鎖エーテルを使用することができ、2種類以上混合して使用してもよい。
また、溶媒として、常温溶融塩を用いることができる。常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電源が通常作動すると想定される温度範囲をいう。電源が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は−40℃程度、場合によっては−20℃程度である。
常温溶融塩はイオン性液体とも呼ばれており、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムカチオンが好ましい。
なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。
また、アルキルピリジウムイオンとしては、N−メチルピリジウムイオン、N−エチルピリジニウムイオン、N−プロピルピリジニウムイオン、N−ブチルピリジニウムイオン、1−エチル−2メチルピリジニウムイオン、1−ブチル−4−メチルピリジニウムイオン、1−ブチル−2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
イミダゾリウムカチオンとしては、1,3−ジメチルイミダゾリウムイオン、1−エチル−3−メチルイミダゾリウムイオン、1−メチル−3−エチルイミダゾリウムイオン、1−メチル−3−ブチルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾリウムイオン、1,2,3−トリメチルイミダゾリウムイオン、1,2−ジメチル−3−エチルイミダゾリウムイオン、1,2−ジメチル−3−プロピルイミダゾリウムイオン、1−ブチル−2,3−ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。
なお、これらのカチオンを有する常温溶融塩は、単独で用いてもよく、または2種以上を混合して用いても良い。
電解液には必要に応じて種々の添加剤を使用することができる。例えば、難燃剤や不燃剤として、臭素化エポキシ化合物、ホスファゼン化合物、テトラブロムビスフェノールA 、塩素化パラフィン等のハロゲン化物、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、リン酸エステル、ポリリン酸塩、及びホウ酸亜鉛等が例示できる。負極表面処理剤としてはビニレンカーボネート、フルオロエチレンカーボネート、ポリエチレングリコールジメチルエーテル等が例示できる。正極表面処理剤として炭素や金属酸化物(MgОやZrO等)の無機化合物やオルト−ターフェニル等の有機化合物等が例示できる。過充電防止剤としてはビフェニルや1−(p−トリル)アダマンタン等が例示できる。
本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。
本実施例では、本発明の電池電極用スラリー組成物を用いて電極及びコイン電池を作製し、電極の評価として剥離試験、コイン電池の評価として充放電サイクル特性性能を以下の実験にて行った。
[作製した電極の評価]
作製した電極の評価としては剥離試験を行った。評価結果を表1にまとめて示した。
剥離試験(結着試験)
剥離試験はミネベアのTG−200Nを使用し、90°剥離試験にて行った。具体的にはプレス後の電極を幅2.5cm×長さ6.5cmに切り、電極スラリー塗工面が上になるように両面テープで基板に接着した後、テープ(セロテープ:ニチバン製)を貼り付け、90°剥離試験でのピール強度を測定した。剥離速度は50mm/minで行った。試験は3回実施し、その平均値を求めた。
[作製した電池の評価]
作製した電池の評価としては充放電装置を用いて充放電サイクル特性試験を行い、容量維持率を求めた。評価結果を表1にまとめて示した。
容量維持率
正極活物質としてマンガン酸リチウムを使用した場合、電気化学特性は(株)東洋システム製の充放電装置を用い、4.3Vを上限、3.0Vを下限とし、初回8時間で所定の充電および放電が行える試験条件(C/8)、4回目以降1Cにて一定電流通電により正極の充放電サイクル特性を評価した。試験温度は25℃環境とした。可逆容量は4サイクル目の容量の値を、容量維持率は充放電を100サイクル行った後の容量と4サイクル目の容量の比で評価した。
バインダーの合成例
[バインダーの実施合成例1]
攪拌機付き反応容器に、メタアクリル酸メチル40.9重量部、ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP−400)40.9重量部、アクリル酸1.2重量部、メタアクリル酸3.4重量部、トリメチロールプロパントリアクリレート(新中村化学製:A−TMPT)13.6重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液をpH8.1に調整し、バインダーA(重合転化率99%以上)(固形分濃度17wt%)を得た。得られた重合体の平均粒子径は0.097μmであった。
[バインダーの実施合成例2]
攪拌機付き反応容器に、ポリエチレングリコールモノアクリレート(日油製:ブレンマーAE−400)30重量部、酢酸ビニル55重量部、アクリル酸2重量部、トリメチロールプロパントリアクリレート(新中村化学製:A−TMPT)13重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液のpHを8.2に調整し、バインダーB(重合転化率99%以上)(固形分濃度16wt%)を得た。得られた重合体の平均粒子径は0.233μmであった。
[バインダーの比較合成例1]
攪拌機付き反応容器に、メタアクリル酸メチル90重量部、アクリル酸1.3重量部、メタアクリル酸3.7重量部、トリメチロールプロパントリアクリレート(新中村化学製:A−TMPT)5重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温し5時間重合し、その後冷却した。冷却後、24%水酸化ナトリウム水溶液を用いて、重合液のpHを8.1に調整し、バインダーC(重合転化率99%以上)(固形分濃度16wt%)を得た。得られた重合体の平均粒子径は0.101μmであった。
[バインダーの比較合成例2]
攪拌機付き反応容器に、メタアクリル酸メチル42重量部、ポリプロピレングリコールモノアクリレート(日油製:ブレンマーAP−400)50重量部、アクリル酸2重量部、メタアクリル酸6重量部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1重量部、イオン交換水500重量部および重合開始剤として過硫酸カリウム1重量部を入れ、ホモジナイザーを用いて十分乳化させた後、窒素雰囲気下で60℃に加温した。重合体は微粒子にならずに、撹拌を停止すると1時間程度で沈降した。撹拌しながら冷却後水酸化ナトリウム水溶液を用いて、重合液のpHを8.1に調整し、バインダーD(重合転化率99%以上)(固形分濃度15wt%)を得た。
電極の作製例
[電極の実施作製例1]
正極活物質としてマンガン酸リチウム95重量部に、導電助剤としてアセチレンブラック3重量部、バインダーの実施合成例1で得られたバインダーAの固形分として1重量部および増粘剤としてカルボキシメチルセルロースのアンモニウム塩1重量部を加え、さらにスラリーの固形分濃度が55重量%となるように水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た。
得られた正極スラリーを厚さ20μmのアルミ集電体上に100μmギャップのベーカー式アプリケーターを用いて塗布し、110℃真空状態で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ30μmの正極を作製した。剥離強度の評価結果を表1の実施例1に示す。
[電極の実施作製例2]
バインダーの実施合成例2で得られたバインダーBを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは35μmであった。剥離強度の評価結果を表1の実施例2に示す。
[電極の比較作製例1]
増粘剤としてカルボキシメチルセルロースのナトリウム塩を使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは35μmであった。剥離強度の評価結果を表1の比較例1に示す。
[電極の比較作製例2]
増粘剤としてカルボキシメチルセルロースのナトリウム塩を使用した以外は、電極の実施作製例2と同様にして正極を作製した。得られた正極の厚みは35.5μmであった。剥離強度の評価結果を表1の比較例2に示す。
[電極の比較作製例3]
バインダーの比較合成例1で得られたバインダーCを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは30μmであった。剥離強度の評価結果を表1の比較例3に示す。
[電極の比較作製例4]
バインダーの比較合成例2で得られたバインダーDを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは31μmであった。剥離強度の評価結果を表1の比較例4に示す。
電池の製造例
[コイン電池の実施製造例1]
アルゴンガスで置換されたグローブボックス内において、電極の実施作製例1で得た正極、セパレータとして厚み18μmのポリプロピレン/ポリエチレン/ポリプロピレン多孔質膜を2枚、更に対極として厚さ300μmの金属リチウム箔を貼り合わせた積層物に、電解液として1mol/Lの6フッ化リン酸リチウムのエチレンカーボネートとエチルメチルカーボネートとジエチルカーボネート(体積比3:5:2)を十分に含浸させてかしめ、試験用2032型コイン電池を製造した。100サイクル後の容量維持率の評価結果を表1の実施例1に示す。
[コイン電池の実施製造例2]
電極の実施作製例2で得た正極を用いた以外は、電極の実施作製例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の実施例2に示す。
[コイン電池の比較製造例1]
電極の比較作製例1で得た正極を用いた以外は、電極の実施作製例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例1に示す。
[コイン電池の比較製造例2]
電極の比較作製例2で得た正極を用いた以外は、電極の実施作製例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例2に示す。
[コイン電池の比較製造例3]
電極の比較作製例3で得た正極を用いた以外は、電極の実施作製例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例3に示す。
[コイン電池の比較製造例4]
電極の比較作製例4で得た正極を用いた以外は、電極の実施作製例1と同様にしてコイン電池を作製した。100サイクル後の容量維持率の評価結果を表1の比較例4に示す。
表1に実施例および比較例を示す。
Figure 2015159069
本発明の電池電極用スラリー組成物である実施例1および実施例2は比較例1〜比較例4と比べて、ピール強度(結着性)が格段に優れており、コイン電池の100サイクル後の容量維持率においても、優れていることが示された。
本発明の電池電極用スラリー組成物は、高い結着力、環境負荷の小さい水系であるという利点、温度に性能が影響しないという利点を有する。本発明の電池電極用スラリー組成物を用いた携帯電話やノートパソコン、カムコーダーなどの電子機器など小型の電池から、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池といった大型の電池用途に好適に利用可能である。

Claims (7)

  1. (I)水酸基を有する(メタ)アクリレートモノマー(A)から誘導される構成単位と、
    (II)多官能(メタ)アクリレートモノマー(B)から誘導される構成単位、
    を含む重合体を含有するバインダーと、
    (III)アンモニウム塩を有するセルロース系化合物と
    を含有することを特徴する電池電極用スラリー組成物。
  2. 水酸基を有する(メタ)アクリレートモノマー(A)の分子量が150〜1000のアルキレングリコールモノ(メタ)アクリレートである請求項1記載の電池電極用スラリー組成物。
  3. 多官能(メタ)アクリレートモノマー(B)が3〜5官能の(メタ)アクリレートである請求項1または2に記載の電池電極用スラリー組成物。
  4. アンモニウム塩を有するセルロース系化合物がカルボキシメチルセルロースのアンモニウム塩である請求項1〜3のいずれかに記載の電池電極用スラリー組成物。
  5. 電池が二次電池である請求項1〜4のいずれかに記載の電池電極用スラリー組成物。
  6. 請求項1〜5のいずれかに記載の電池電極用スラリー組成物と活物質とを含有することを特徴とする電池用電極。
  7. 請求項6記載の電極を有することを特徴とする電池。
JP2014033934A 2014-02-25 2014-02-25 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池 Active JP6300078B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014033934A JP6300078B2 (ja) 2014-02-25 2014-02-25 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014033934A JP6300078B2 (ja) 2014-02-25 2014-02-25 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池

Publications (2)

Publication Number Publication Date
JP2015159069A true JP2015159069A (ja) 2015-09-03
JP6300078B2 JP6300078B2 (ja) 2018-03-28

Family

ID=54182917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014033934A Active JP6300078B2 (ja) 2014-02-25 2014-02-25 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池

Country Status (1)

Country Link
JP (1) JP6300078B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047640A1 (ja) * 2015-09-14 2017-03-23 株式会社大阪ソーダ 非水電解質二次電池用の正極材料
WO2017110654A1 (ja) * 2015-12-24 2017-06-29 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2019146720A1 (ja) * 2018-01-26 2019-08-01 花王株式会社 リチウムイオン二次電池用正極
JP2019133908A (ja) * 2018-01-26 2019-08-08 花王株式会社 リチウムイオン二次電池用正極
CN114752012A (zh) * 2022-05-07 2022-07-15 佛山市瑞纳新材科技有限公司 一种用于正极导电银浆的聚丙烯酸酯树脂及其制备方法
CN115084422A (zh) * 2021-03-15 2022-09-20 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的锂离子电池
CN115084438A (zh) * 2021-03-15 2022-09-20 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的锂离子电池
CN115084434A (zh) * 2021-03-15 2022-09-20 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的锂离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076731A (ja) * 1999-09-03 2001-03-23 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー、およびその利用
WO2005052968A1 (ja) * 2003-11-28 2005-06-09 Zeon Corporation 電気二重層キャパシタ用バインダー
WO2007032374A1 (ja) * 2005-09-16 2007-03-22 Zeon Corporation 電気化学素子電極用複合粒子、その製造方法、電気化学素子電極材料及び電気化学素子電極
WO2011013756A1 (ja) * 2009-07-30 2011-02-03 日本ゼオン株式会社 電気化学素子用電極および電気化学素子
JP2011204704A (ja) * 2008-08-08 2011-10-13 Nippon Zeon Co Ltd リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
JP2013165250A (ja) * 2012-06-07 2013-08-22 Japan Capacitor Industrial Co Ltd 集電体及び電極、これを用いた蓄電素子
WO2013180103A1 (ja) * 2012-05-31 2013-12-05 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2014021401A1 (ja) * 2012-07-31 2014-02-06 日本ゼオン株式会社 リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076731A (ja) * 1999-09-03 2001-03-23 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー、およびその利用
WO2005052968A1 (ja) * 2003-11-28 2005-06-09 Zeon Corporation 電気二重層キャパシタ用バインダー
WO2007032374A1 (ja) * 2005-09-16 2007-03-22 Zeon Corporation 電気化学素子電極用複合粒子、その製造方法、電気化学素子電極材料及び電気化学素子電極
JP2011204704A (ja) * 2008-08-08 2011-10-13 Nippon Zeon Co Ltd リチウムイオンキャパシタ用電極およびリチウムイオンキャパシタ
WO2011013756A1 (ja) * 2009-07-30 2011-02-03 日本ゼオン株式会社 電気化学素子用電極および電気化学素子
WO2013180103A1 (ja) * 2012-05-31 2013-12-05 ダイソー株式会社 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2013165250A (ja) * 2012-06-07 2013-08-22 Japan Capacitor Industrial Co Ltd 集電体及び電極、これを用いた蓄電素子
WO2014021401A1 (ja) * 2012-07-31 2014-02-06 日本ゼオン株式会社 リチウムイオン二次電池電極用のスラリー組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047640A1 (ja) * 2015-09-14 2017-03-23 株式会社大阪ソーダ 非水電解質二次電池用の正極材料
WO2017110654A1 (ja) * 2015-12-24 2017-06-29 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
CN108370038A (zh) * 2015-12-24 2018-08-03 日本瑞翁株式会社 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极及非水系二次电池
JPWO2017110654A1 (ja) * 2015-12-24 2018-10-11 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
CN111656575A (zh) * 2018-01-26 2020-09-11 花王株式会社 锂离子二次电池用正极
JP2019133908A (ja) * 2018-01-26 2019-08-08 花王株式会社 リチウムイオン二次電池用正極
WO2019146720A1 (ja) * 2018-01-26 2019-08-01 花王株式会社 リチウムイオン二次電池用正極
CN115084422A (zh) * 2021-03-15 2022-09-20 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的锂离子电池
CN115084438A (zh) * 2021-03-15 2022-09-20 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的锂离子电池
CN115084434A (zh) * 2021-03-15 2022-09-20 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的锂离子电池
WO2022194174A1 (zh) * 2021-03-15 2022-09-22 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的锂离子电池
CN115084422B (zh) * 2021-03-15 2024-07-16 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的锂离子电池
CN115084434B (zh) * 2021-03-15 2024-07-16 珠海冠宇电池股份有限公司 一种负极极片及含该负极极片的锂离子电池
CN114752012A (zh) * 2022-05-07 2022-07-15 佛山市瑞纳新材科技有限公司 一种用于正极导电银浆的聚丙烯酸酯树脂及其制备方法

Also Published As

Publication number Publication date
JP6300078B2 (ja) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6341271B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP5447720B1 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6269510B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6164303B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6300078B2 (ja) 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
JP6268988B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2017110901A1 (ja) 電池電極用バインダー、電極、及び電池
JP2020057579A (ja) 負極、及び蓄電デバイス
JP6874682B2 (ja) 非水電解質二次電池用の正極材料
JP2016046231A (ja) 電池正極用バインダー組成物、およびそれを用いた電極ならびに電池
CN110139881B (zh) 电极用粘结剂
JP6395107B2 (ja) 電池電極用バインダー組成物、およびそれを用いた電極ならびに電池
JPWO2017047639A1 (ja) 非水電解質二次電池用の正極材料
JP2016192267A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP7215420B2 (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
JP2017117522A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2017091789A (ja) 正極、二次電池およびその製造方法
JP7088171B2 (ja) 電極用バインダー、電極材料、電極、及び蓄電デバイス
JP2017069006A (ja) 電池電極用バインダー組成物およびその製造方法
JP2019021575A (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
JPWO2019017480A1 (ja) 電極及び蓄電デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180215

R150 Certificate of patent or registration of utility model

Ref document number: 6300078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150