[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015146438A - Electron-accepting dopant for organic electroluminescent element - Google Patents

Electron-accepting dopant for organic electroluminescent element Download PDF

Info

Publication number
JP2015146438A
JP2015146438A JP2015054766A JP2015054766A JP2015146438A JP 2015146438 A JP2015146438 A JP 2015146438A JP 2015054766 A JP2015054766 A JP 2015054766A JP 2015054766 A JP2015054766 A JP 2015054766A JP 2015146438 A JP2015146438 A JP 2015146438A
Authority
JP
Japan
Prior art keywords
group
charge transporting
solvent
acid
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015054766A
Other languages
Japanese (ja)
Inventor
卓司 吉本
Takuji Yoshimoto
卓司 吉本
智久 山田
Tomohisa Yamada
智久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2015054766A priority Critical patent/JP2015146438A/en
Publication of JP2015146438A publication Critical patent/JP2015146438A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electron-accepting dopant for an organic electroluminescent element, having high solubility to an organic solvent, high oxidizability to a charge transport host material in a hole injection layer, and oxidizability to a hole transport material.SOLUTION: An electron-accepting dopant for an organic electroluminescent element comprises a heteropoly acid compound.

Description

本発明は、有機エレクトロルミネッセンス素子用の電子受容性ドーパントに関し、さらに詳述すると、ヘテロポリ酸化合物からなる、有機エレクトロルミネッセンス素子用の電子受容性ドーパントに関する。   The present invention relates to an electron-accepting dopant for an organic electroluminescence device, and more particularly to an electron-accepting dopant for an organic electroluminescence device comprising a heteropolyacid compound.

従来、低分子有機エレクトロルミネッセンス(以下、OLEDと略す)素子では、正孔注入層として銅フタロシアニン(CuPC)層を設けることによって、駆動電圧の低下や発光効率向上等の初期特性向上、さらには寿命特性向上を実現し得ることが報告されている(非特許文献1)。
また、金属酸化物を真空蒸着させて薄膜を形成し、正孔注入層として用いることで駆動電圧の低下が可能となることが報告されている(非特許文献2)。
Conventionally, in a low molecular organic electroluminescence (hereinafter abbreviated as OLED) element, by providing a copper phthalocyanine (CuPC) layer as a hole injection layer, an initial characteristic improvement such as a decrease in driving voltage and an improvement in luminous efficiency, and a lifetime are achieved. It has been reported that characteristic improvement can be realized (Non-Patent Document 1).
Moreover, it has been reported that a drive voltage can be lowered by forming a thin film by vacuum-depositing a metal oxide and using it as a hole injection layer (Non-patent Document 2).

一方、高分子発光材料を用いた有機エレクトロルミネッセンス(以下、PLEDと略す)素子では、ポリアニリン系材料(特許文献1,非特許文献3)や、ポリチオフェン系材料(非特許文献4)からなる薄膜を正孔輸送層として用いることで、OLED素子と同様の効果が得られることが報告されている。   On the other hand, in an organic electroluminescence (hereinafter abbreviated as PLED) element using a polymer light emitting material, a thin film made of a polyaniline-based material (Patent Document 1, Non-Patent Document 3) or a polythiophene-based material (Non-Patent Document 4) is used. It has been reported that the same effect as an OLED element can be obtained by using it as a hole transport layer.

近年、高溶解性の低分子オリゴアニリン系材料やオリゴチオフェン系材料を利用し、有機溶媒に完全溶解させた均一系溶液からなる電荷輸送性ワニスが見出された。そして、このワニスから得られる正孔注入層を有機エレクトロルミネッセンス(以下、有機ELという)素子中に挿入することで、下地基板の平坦化効果や、優れたEL素子特性が得られることが報告されている(特許文献2,特許文献3)。
当該低分子オリゴマー化合物は、それ自体の粘度が低く、通常の有機溶媒を使用した場合、成膜操作におけるプロセスマージンが狭いため、スピンコート、インクジェット塗布、スプレー塗布等の種々の塗布方式や、種々の焼成条件を用いる場合、高い均一性を有する成膜を行うことは困難であった。
この点、各種添加溶媒を用いることで、粘度や、沸点および蒸気圧の調整が可能となり、種々の塗布方式に対応して高い均一性を有する成膜面を得ることが可能になってきている(特許文献4,特許文献5)。
In recent years, a charge transporting varnish comprising a homogeneous solution completely dissolved in an organic solvent using a highly soluble low molecular weight oligoaniline material or oligothiophene material has been found. And, it has been reported that by inserting a hole injection layer obtained from this varnish into an organic electroluminescence (hereinafter referred to as organic EL) element, a planarization effect of the base substrate and excellent EL element characteristics can be obtained. (Patent Document 2, Patent Document 3).
The low molecular weight oligomer compound itself has a low viscosity, and when a normal organic solvent is used, the process margin in the film forming operation is narrow. Therefore, various coating methods such as spin coating, inkjet coating, spray coating, etc. When using the above baking conditions, it was difficult to form a film having high uniformity.
In this regard, by using various additive solvents, it is possible to adjust the viscosity, boiling point and vapor pressure, and it has become possible to obtain a film-forming surface having high uniformity corresponding to various coating methods. (Patent Literature 4, Patent Literature 5).

しかしながら、有機ELデバイスの本格量産を目前に控えた現在、素子の駆動電圧のさらなる低下が求められている。
一方で近年、金属酸化物を用いた正孔注入層が見直されており、正孔注入層を形成している金属酸化物が正孔輸送層との接触に際してその界面を酸化することで正孔輸送層にドーピング層を生成させ、駆動電圧を低下させうることが報告されている(非特許文献5,非特許文献6)が、正孔輸送材料に対して酸化性を有する塗布型材料は例がなく、新たな材料の開発が求められている。
However, now that the full-scale mass production of the organic EL device is about to start, further reduction in the driving voltage of the element is required.
On the other hand, in recent years, hole injection layers using metal oxides have been reviewed, and the metal oxide forming the hole injection layer oxidizes the interface upon contact with the hole transport layer, thereby generating holes. It has been reported that a doping layer can be formed in the transport layer and the driving voltage can be lowered (Non-Patent Document 5, Non-Patent Document 6). There is no need to develop new materials.

特開平3−273087号公報JP-A-3-230787 特開2002−151272号公報JP 2002-151272 A 国際公開第2005/043962号International Publication No. 2005/043962 国際公開第2004/043117号International Publication No. 2004/043117 国際公開第2005/107335号International Publication No. 2005/107335

アプライド・フィジックス・レターズ、米国、1996年、69巻、p.2160−2162Applied Physics Letters, USA, 1996, 69, p. 2160-2162 ジャーナル・オブ・フィジックス・ディー:アプライド・フィジックス(Journal of Physics D:Applied Physics)、英国、1996年、29巻、p.2750−2753Journal of Physics D: Applied Physics D, UK, 1996, 29, p. 2750-2753 ネイチャー、英国、1992年、第357巻、p.477−479Nature, UK, 1992, 357, p. 477-479 アプライド・フィジックス・レターズ、米国、1998年、72巻、p.2660−2662Applied Physics Letters, USA, 1998, 72, p. 2660-2662 アプライド・フィジックス・レターズ(Applied Physics Letters)、米国、2007年、91巻、p.253504Applied Physics Letters, USA, 2007, Vol. 91, p. 253504 アプライド・フィジックス・レターズ(Applied Physics Letters)、米国、2008年、93巻、p.043308Applied Physics Letters, USA, 2008, 93, p. 043308

本発明は、このような事情に鑑みてなされたものであり、有機溶媒に対する高い溶解性、正孔注入層における電荷輸送性ホスト物質に対する高酸化性、さらには正孔輸送材料に対する酸化性を兼ね備えた有機エレクトロルミネッセンス素子用の電子受容性ドーパントを提供することを目的とする。   The present invention has been made in view of such circumstances, and has high solubility in an organic solvent, high oxidation property for a charge transporting host material in a hole injection layer, and further oxidation property for a hole transport material. Another object of the present invention is to provide an electron-accepting dopant for an organic electroluminescence device.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、リンモリブデン酸等のヘテロポリ酸化合物が、有機溶媒に対する高溶解性、正孔注入層における電荷輸送性ホスト物質に対する高酸化性、さらには正孔輸送材料に対する酸化性を兼ね備えていることを見出すとともに、当該ヘテロポリ酸化合物と電荷輸送性物質とを含む電荷輸送性薄膜をOLED素子の正孔注入層として用いた場合に、駆動電圧を低下させ、素子寿命を向上し得ることを見出し、本発明を完成した。
なお、リンモリブデン酸等のヘテロポリ酸化合物は、代表的に化1で示されるKeggin型あるいは化2で示されるDawson型の化学構造、すなわちヘテロ原子が分子の中心に位置する構造を有している。
As a result of intensive studies to achieve the above object, the present inventors have found that heteropolyacid compounds such as phosphomolybdic acid have high solubility in organic solvents and high oxidation of charge transporting host materials in the hole injection layer. When the charge transporting thin film containing the heteropoly acid compound and the charge transporting substance is used as the hole injection layer of the OLED element, The present inventors have found that the drive voltage can be lowered and the device life can be improved, and the present invention has been completed.
A heteropolyacid compound such as phosphomolybdic acid typically has a Keggin-type chemical structure represented by Chemical Formula 1 or a Dawson-type chemical structure represented by Chemical Formula 2, that is, a structure in which a heteroatom is located at the center of the molecule. .

これらの特殊な化学構造によって、金属の酸素酸のみで構成されるイソポリ酸や単純な金属酸化物とは溶解特性や酸化還元特性に大きな違いを示す。この化合物は、従来、重合触媒や有機化合物の呈色試薬としてよく知られていたが、それ自体を電荷輸送性物質として利用した例は少ない。
本発明者らは、このヘテロポリ酸化合物を、有機EL素子中、極薄膜で層を形成させることで有効な正孔注入層として機能することを見出した。
Due to these special chemical structures, there are significant differences in solubility and oxidation-reduction characteristics from isopolyacids and simple metal oxides composed only of metal oxygen acids. Conventionally, this compound has been well known as a polymerization catalyst or a color reagent for organic compounds, but there are few examples in which the compound itself is used as a charge transporting substance.
The present inventors have found that this heteropolyacid compound functions as an effective hole injection layer by forming a layer with an ultrathin film in an organic EL device.

すなわち、本発明は、
1. ヘテロポリ酸化合物からなる、有機エレクトロルミネッセンス素子用の電子受容性ドーパント、
2. 前記ヘテロポリ酸化合物が、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、リンタングストモリブデン酸またはケイタングステン酸である1の電子受容性ドーパント、
3. 有機エレクトロルミネッセンス素子の正孔注入層用または正孔輸送層用である1又は2の電子受容性ドーパント、
4. 有機エレクトロルミネッセンス素子の正孔注入層用である3の電子受容性ドーパント
を提供する。
That is, the present invention
1. An electron-accepting dopant for an organic electroluminescence device, comprising a heteropolyacid compound,
2. 1 electron-accepting dopant, wherein the heteropolyacid compound is phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, phosphotungstomolybdic acid or silicotungstic acid;
3. 1 or 2 electron-accepting dopants for a hole injection layer or a hole transport layer of an organic electroluminescence device,
4). Three electron-accepting dopants for a hole injection layer of an organic electroluminescence device are provided.

本発明の電荷輸送性材料に含まれるヘテロポリ酸化合物は、一般的な電荷輸送性ワニスの調製に用いられる有機溶媒に対して良好な溶解性を有しており、特に、一旦、良溶媒に溶解させることで、高粘度溶媒や低表面張力溶媒をはじめとした各種有機溶媒に対しても優れた溶解性を示す。このため、高粘度溶媒や低表面張力溶媒を一部、またはほぼ全量使用して低極性有機溶媒系の電荷輸送性ワニスを調製することができる。
このような低極性有機溶媒系の電荷輸送性ワニスは、溶剤耐性が問題となるインクジェット塗布装置にて塗布することができるだけでなく、基板上に絶縁膜や隔壁などの耐溶剤性が問題となる構造物が存在する場合でも用いることができ、その結果、高平坦性を有する非晶質固体薄膜を問題なく作製することができる。
さらに、得られた薄膜は、高電荷輸送性を示すため、正孔注入層または正孔輸送層として使用することで、有機EL素子の駆動電圧を低下させるとともに、素子の長寿命化を実現することができる。
そして、ヘテロポリ酸化合物は一般に高屈折率であることから、有効な光学設計によって光取り出し効率の向上も期待できる。
また、この薄膜は、高平坦性および高電荷輸送性を有しているため、この特性を利用して、当該薄膜を太陽電池のバッファ層あるいは正孔輸送層、燃料電池用電極、コンデンサ電極保護膜、帯電防止膜へ応用することもできる。
The heteropolyacid compound contained in the charge transporting material of the present invention has good solubility in an organic solvent used for the preparation of a general charge transporting varnish, and in particular, once dissolved in a good solvent. By doing so, it exhibits excellent solubility in various organic solvents including high viscosity solvents and low surface tension solvents. For this reason, it is possible to prepare a low-polarity organic solvent-based charge transporting varnish by using a part or almost all of a high viscosity solvent or a low surface tension solvent.
Such a low-polarity organic solvent-based charge transporting varnish can be applied not only by an inkjet coating apparatus in which solvent resistance is a problem, but also has a problem of solvent resistance such as an insulating film and partition walls on the substrate. Even when a structure exists, it can be used. As a result, an amorphous solid thin film having high flatness can be produced without any problem.
Furthermore, since the obtained thin film exhibits high charge transportability, it can be used as a hole injection layer or a hole transport layer, thereby reducing the driving voltage of the organic EL device and extending the life of the device. be able to.
Since heteropoly acid compounds generally have a high refractive index, an improvement in light extraction efficiency can be expected by an effective optical design.
In addition, since this thin film has high flatness and high charge transport properties, this thin film can be used to protect a buffer layer or a hole transport layer of a solar cell, an electrode for a fuel cell, a capacitor electrode, using this property. It can also be applied to films and antistatic films.

以下、本発明についてさらに詳しく説明する。
本発明に係る電荷輸送性材料は、電荷輸送性物質と、電子受容性ドーパントとしてヘテロポリ酸化合物とを含むものである。電荷輸送性物質は、電子受容性ドーパントと併用して用いられる場合には電荷輸送性ホスト物質ともいう。
ここで、電荷輸送性とは、導電性と同義であり、正孔輸送性、電子輸送性、正孔および電子の両電荷輸送性のいずれかを意味する。本発明の電荷輸送性材料は、それ自体に電荷輸送性があるものでもよく、これから得られる固体膜に電荷輸送性があるものでもよい。
Hereinafter, the present invention will be described in more detail.
The charge transport material according to the present invention contains a charge transport material and a heteropolyacid compound as an electron accepting dopant. The charge transporting substance is also referred to as a charge transporting host substance when used in combination with an electron accepting dopant.
Here, the charge transportability is synonymous with conductivity, and means any one of hole transportability, electron transportability, and both charge transportability of holes and electrons. The charge transporting material of the present invention may itself have a charge transporting property, or the solid film obtained therefrom may have a charge transporting property.

上記ヘテロポリ酸化合物とは、バナジウム(V)、モリブデン(Mo)、タングステン(W)等の酸素酸であるイソポリ酸と、異種元素の酸素酸とが縮合してなるポリ酸である。
この場合、異種元素の酸素酸としては、主にケイ素(Si)、リン(P)、ヒ素(As)の酸素酸が挙げられる。
The heteropolyacid compound is a polyacid formed by condensing an isopolyacid that is an oxygen acid such as vanadium (V), molybdenum (Mo), or tungsten (W) and an oxyacid of a different element.
In this case, the oxygen acid of the different element mainly includes silicon (Si), phosphorus (P), and arsenic (As) oxygen acids.

ヘテロポリ酸化合物の具体例としては、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、リンタングストモリブデン酸、ケイタングステン酸等が挙げられるが、本発明においては、有機溶媒に対する高溶解性、電荷輸送性物質に対する高酸化性、並びに有機EL素子中で用いた場合の駆動電圧低下および寿命向上という点から、リンモリブデン酸、リンタングステン酸、リンタングストモリブデン酸が好適であり、リンモリブデン酸が特に好ましい。
なお、これらのヘテロポリ酸化合物は、市販品として入手可能であり、例えば、リンモリブデン酸(Phosphomolybdic acid hydrate 、または12 Molybdo(VI) phosphoric acid n−hydrate,化学式:H3(PMo1240)・nH2O)は、関東化学(株)、和光純薬(株)、シグマアルドリッチジャパン(株)等から入手可能である。
Specific examples of the heteropolyacid compound include phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, phosphotungstomolybdic acid, silicotungstic acid, etc. In the present invention, high solubility in organic solvents, charge transportability From the viewpoints of high oxidizability with respect to substances and reduction in driving voltage and improvement in life when used in an organic EL device, phosphomolybdic acid, phosphotungstic acid, and phosphotungstomolybdic acid are preferred, and phosphomolybdic acid is particularly preferred.
These heteropolyacid compounds are available as commercial products. For example, phosphomolybdic acid (Phosphobomobic acid hydrate, or 12 Polybodo (VI) phosphoric acid n-hydrate, chemical formula: H 3 (PMo 12 O 40 ). nH 2 O) is available from Kanto Chemical Co., Inc., Wako Pure Chemical Industries, Ltd., Sigma-Aldrich Japan Co., Ltd. and the like.

本発明の電荷輸送性材料に使用できる電荷輸送性物質としては、使用する有機溶媒に可溶なものであれば特に限定されるものではないが、有機EL用途に用いる場合、100nm以下、通常20〜50nm程度の極薄膜を高均一に作製する必要があるため、電荷輸送性物質は高溶解性を有すること、不純物成分の混入抑制のために分子量分布のないことが好ましく、特に分子量200〜2000の低分子化合物が好ましい。低分子化合物は自身の粘性が低く高均一に塗布成膜を行うことが困難であることが多いため、高粘度溶媒を併用することが望ましく、このことから、電荷輸送性物質は高粘度溶媒への溶解性を有していることが望ましい。
具体的には、従来高溶解性材料として用いられている低分子オリゴアニリン化合物等のアニリン誘導体化合物、低分子オリゴチオフェン化合物等を用いることができる。
ヘテロポリ酸化合物はプロトン酸を含み、NH基を含有する電荷輸送性物質に対して強く電子受容性物質としての機能を発揮することから、電荷輸送性物質としては、アニリン誘導体化合物が好適であり、さらに高い電荷輸送性という点を考慮すると、アニリン単位を3以上有するオリゴアニリン誘導体化合物がより好ましい。
すなわち、ヘテロポリ酸化合物は、通常2つ以上のプロトン性水素を有しており、NH基を複数含有するオリゴアニリン誘導体化合物とともにイオン性の擬似高分子を形成するため、駆動中の素子内でのマイグレーションが抑制され、寿命が向上されやすくなる。さらには後述するようにヘテロポリ酸化合物は、トリフェニルアミン含有化合物に対する酸化性をも有しているため、これを正孔注入層に用いた場合、正孔注入層内の電荷輸送性ホスト物質とだけではなく、隣接する正孔輸送層に含まれる材料に対する酸化も可能となる。
The charge transporting material that can be used in the charge transporting material of the present invention is not particularly limited as long as it is soluble in the organic solvent to be used, but when used for organic EL applications, it is 100 nm or less, usually 20 Since it is necessary to produce a very thin film of about 50 nm in a highly uniform manner, the charge transporting material preferably has high solubility, and preferably has no molecular weight distribution in order to suppress mixing of impurity components, and particularly has a molecular weight of 200 to 2000. The low molecular weight compound is preferred. Since low-molecular compounds have low viscosity and are often difficult to form uniformly and uniformly, it is desirable to use a high-viscosity solvent together. It is desirable to have the solubility.
Specifically, an aniline derivative compound such as a low-molecular oligoaniline compound, a low-molecular oligothiophene compound, or the like conventionally used as a highly soluble material can be used.
Since the heteropolyacid compound contains a protonic acid and exerts a function as an electron accepting substance strongly against a charge transporting substance containing an NH group, an aniline derivative compound is suitable as the charge transporting substance, In view of higher charge transportability, an oligoaniline derivative compound having 3 or more aniline units is more preferable.
That is, a heteropolyacid compound usually has two or more protic hydrogens, and forms an ionic pseudopolymer with an oligoaniline derivative compound containing a plurality of NH groups. Migration is suppressed and the lifetime is easily improved. Further, as will be described later, since the heteropolyacid compound also has an oxidizability with respect to the triphenylamine-containing compound, when this is used for the hole injection layer, the charge transporting host material in the hole injection layer and In addition, it is possible to oxidize the material contained in the adjacent hole transport layer.

特に、高溶解性および高電荷輸送性を示すとともに、適切なイオン化ポテンシャルを有していることから、下記式(1)で表されるオリゴアニリン誘導体、または式(1)の酸化体であるキノンジイミン誘導体を好適に用いることができ、さらには、溶解性、電荷輸送性、イオン化ポテンシャル(Ip)および本発明のヘテロポリ酸化合物に対する被酸化性の観点から、式(4)または(5)で表されるオリゴアニリン誘導体、またはそれらの酸化体であるキノンジイミン誘導体が最適である。   In particular, since it has high solubility and high charge transportability and has an appropriate ionization potential, it is an oligoaniline derivative represented by the following formula (1), or a quinonediimine that is an oxidant of formula (1) Derivatives can be preferably used, and are further represented by the formula (4) or (5) from the viewpoints of solubility, charge transportability, ionization potential (Ip) and oxidizability to the heteropolyacid compound of the present invention. Oligoaniline derivatives, or quinonediimine derivatives that are oxidants thereof are most suitable.

〔式中、R1、R2およびR3は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基またはスルホン基を示し、AおよびBは、それぞれ独立して、一般式(2)または(3)で表される二価の基を示す。 [Wherein R 1 , R 2 and R 3 are each independently a hydrogen atom, halogen atom, hydroxyl group, amino group, silanol group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group A thioester group, an amide group, a nitro group, a monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group, or a sulfone group. The divalent group represented by Formula (2) or (3) is shown.

(式中、R4〜R11は、それぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、またはスルホン基を示す。)
mおよびnは、それぞれ独立して、1以上の整数で、m+n≦20を満足する。〕
(Wherein R 4 to R 11 are each independently a hydrogen atom, halogen atom, hydroxyl group, amino group, silanol group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, thioester group) Amide group, nitro group, monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, organothio group, acyl group, or sulfone group.)
m and n are each independently an integer of 1 or more and satisfy m + n ≦ 20. ]

(式中、R1〜R7、mおよびnは、上記と同じ意味を示す。) (In the formula, R 1 to R 7 , m and n have the same meaning as described above.)

(式中、R2、R4〜R7、R12〜R35、nおよびmは上記と同じ意味を表す。) (In the formula, R 2 , R 4 to R 7 , R 12 to R 35 , n and m represent the same meaning as described above.)

なお、キノンジイミン体とは、その骨格中に、下記式で示される部分構造を有する化合物を意味する。   In addition, a quinone diimine body means the compound which has the partial structure shown by a following formula in the frame | skeleton.


(式中、R4〜R7は上記と同じ。)

(Wherein R 4 to R 7 are the same as above)

上記各式において、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素原子が挙げられる。
一価炭化水素基の具体例としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、n−ヘキシル基、n−オクチル基、2−エチルヘキシル基、デシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビシクロヘキシル基等のビシクロアルキル基;ビニル基、1−プロペニル基、2−プロペニル基、イソプロペニル基、1−メチル−2−プロペニル基、1または2または3−ブテニル基、ヘキセニル基等のアルケニル基;フェニル基、キシリル基、トリル基、ビフェニル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルシクロヘキシル基等のアラルキル基等や、これらの一価炭化水素基の水素原子の一部または全部がハロゲン原子、水酸基、アルコキシ基、スルホン基などで置換されたものが挙げられる。
In the above formulas, examples of the halogen atom include fluorine, chlorine, bromine and iodine atoms.
Specific examples of monovalent hydrocarbon groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, t-butyl, n-hexyl, and n-octyl. Group, alkyl group such as 2-ethylhexyl group and decyl group; cycloalkyl group such as cyclopentyl group and cyclohexyl group; bicycloalkyl group such as bicyclohexyl group; vinyl group, 1-propenyl group, 2-propenyl group and isopropenyl group , 1-methyl-2-propenyl group, alkenyl group such as 1 or 2 or 3-butenyl group, hexenyl group; aryl group such as phenyl group, xylyl group, tolyl group, biphenyl group, naphthyl group; benzyl group, phenylethyl Group, aralkyl groups such as phenylcyclohexyl group, etc., or some or all of the hydrogen atoms of these monovalent hydrocarbon groups are halogenated Child, a hydroxyl group, an alkoxy group include those substituted with a sulfonic group.

オルガノオキシ基の具体例としては、アルコキシ基、アルケニルオキシ基、アリールオキシ基などが挙げられ、これらのアルキル基、アルケニル基、アリール基としては、先に例示した基と同様のものが挙げられる。
オルガノアミノ基の具体例としては、フェニルアミノ基、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、ノニルアミノ基、デシルアミノ基、ラウリルアミノ基等のアルキルアミノ基;ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、ジヘプチルアミノ基、ジオクチルアミノ基、ジノニルアミノ基、ジデシルアミノ基等のジアルキルアミノ基;シクロヘキシルアミノ基、モルホリノ基などが挙げられる。
Specific examples of the organooxy group include an alkoxy group, an alkenyloxy group, and an aryloxy group, and examples of the alkyl group, alkenyl group, and aryl group include the same groups as those exemplified above.
Specific examples of the organoamino group include phenylamino group, methylamino group, ethylamino group, propylamino group, butylamino group, pentylamino group, hexylamino group, heptylamino group, octylamino group, nonylamino group, decylamino group. Alkylamino groups such as laurylamino group; dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group, dinonylamino group, didecylamino group, etc. A dialkylamino group; a cyclohexylamino group, a morpholino group, and the like.

オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、オクチルジメチルシリル基、デシルジメチルシリル基などが挙げられる。
オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基などのアルキルチオ基が挙げられる。
Specific examples of the organosilyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group, Examples include decyldimethylsilyl group.
Specific examples of the organothio group include alkylthio groups such as methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group and laurylthio group.

アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
リン酸エステル基としては、−P(O)(OQ1)(OQ2)が挙げられる。
エステル基としては、−C(O)OQ1、−OC(O)Q1が挙げられる。
チオエステル基としては、−C(S)OQ1、−OC(S)Q1が挙げられる。
アミド基としては、−C(O)NHQ1、−NHC(O)Q1、−C(O)NQ12、−NQ1C(O)Q2が挙げられる。
ここで、上記Q1およびQ2は、アルキル基、アルケニル基またはアリール基を示し、これらについては、上記一価炭化水素基で例示した基と同様のものが挙げられる。
Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
Examples of the phosphate ester group include -P (O) (OQ 1 ) (OQ 2 ).
Examples of the ester group include —C (O) OQ 1 and —OC (O) Q 1 .
Examples of the thioester group include —C (S) OQ 1 and —OC (S) Q 1 .
Examples of the amide group include —C (O) NHQ 1 , —NHC (O) Q 1 , —C (O) NQ 1 Q 2 , and —NQ 1 C (O) Q 2 .
Here, Q 1 and Q 2 represent an alkyl group, an alkenyl group, or an aryl group, and examples thereof include the same groups as those exemplified for the monovalent hydrocarbon group.

上記一価炭化水素基、オルガノオキシ基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、リン酸エステル基、エステル基、チオエステル基およびアミド基などにおける炭素数は、特に限定されるものではないが、一般に炭素数1〜20、好ましくは1〜8である。
好ましい置換基としては、フッ素、スルホン基、オルガノオキシ基、アルキル基、オルガノシリル基等が挙げられる。
なお、置換基において、置換基同士が連結されて環状である部分を含んでいてもよい。
The number of carbon atoms in the monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, organothio group, acyl group, phosphate ester group, ester group, thioester group, and amide group is not particularly limited. Generally, it has 1 to 20 carbon atoms, preferably 1 to 8 carbon atoms.
Preferred substituents include fluorine, sulfone group, organooxy group, alkyl group, organosilyl group and the like.
In addition, in a substituent, substituents may be connected and the cyclic | annular part may be included.

一般式(1)、(4)および(5)において、m+nは、良好な電荷輸送性を発揮させるという点から3以上であることが好ましく、溶媒に対する溶解性を確保するという点から16以下であることが好ましい。
また、式(1)および(4)のオリゴアニリン誘導体は、溶解性を高めるとともに、電荷輸送性を均一にするということを考慮すると、分子量分布のない、換言すれば、分散度が1のオリゴアニリン誘導体であることが好ましい。
その分子量は、材料の揮発の抑制および電荷輸送性発現のために、下限として通常200以上、好ましくは300以上であり、また溶解性向上のために、上限として通常5000以下、好ましくは2000以下である。
これらの電荷輸送性物質は1種類のみを使用してもよく、また2種類以上の物質を組み合わせて使用してもよい。
このような化合物の具体例としては、下記式(6)で表されるN,N,N’,N’−テトラフェニル−p−C−アミノペンタアニリン、式(7)で表されるN−フェニルトリアニリン、式(8)で表されるN−フェニルテトラアニリン、テトラアニリン(アニリン4量体)、オクタアニリン(アニリン8量体)等の有機溶媒に可溶なオリゴアニリン誘導体が挙げられる。
In the general formulas (1), (4) and (5), m + n is preferably 3 or more from the viewpoint of exhibiting good charge transportability, and is 16 or less from the viewpoint of ensuring solubility in a solvent. Preferably there is.
In addition, the oligoaniline derivatives of the formulas (1) and (4) have no molecular weight distribution, in other words, an oligodispersity of 1 in view of increasing solubility and making charge transport properties uniform. An aniline derivative is preferred.
The molecular weight is usually 200 or more, preferably 300 or more as a lower limit for suppressing volatilization of the material and manifesting charge transport properties, and is usually 5000 or less, preferably 2000 or less as an upper limit for improving solubility. is there.
These charge transport materials may be used alone or in combination of two or more materials.
Specific examples of such a compound include N, N, N ′, N′-tetraphenyl-p-C-aminopentaaniline represented by the following formula (6), and N— represented by formula (7). Oligoaniline derivatives soluble in organic solvents such as phenyltrianiline, N-phenyltetraaniline represented by the formula (8), tetraaniline (aniline tetramer), octaaniline (aniline octamer) and the like can be mentioned.

なお、これらの電荷輸送性物質の合成法としては、特に限定されないが、国際公開第2008/129947号記載の方法、オリゴアニリン合成法(ブレティン・オブ・ケミカル・ソサエティ・オブ・ジャパン(Bulletin of Chemical Society of Japan)、1994年、第67巻、p.1749−1752、シンセティック・メタルズ(Synthetic Metals)、米国、1997年、第84巻、p.119−120参照)や、オリゴチオフェン合成法(例えば、ヘテロサイクルズ(Heterocycles)、1987年、第26巻、p.939−942、ヘテロサイクルズ(Heterocycles)、1987年、第26巻、p.1793−1796参照)等が挙げられる。
また、オリゴアニリン誘導体化合物を酸化してキノンジイミン化合物とする方法としては、国際公開第2008/01047号記載の方法等が挙げられる。
The method for synthesizing these charge transporting substances is not particularly limited, but the method described in International Publication No. 2008/129947, oligoaniline synthesis method (Bulletin of Chemical Society of Japan (Bulletin of Chemical) Society of Japan), 1994, Vol. 67, p. 1749-1752, Synthetic Metals, USA, 1997, Vol. 84, p. 119-120), oligothiophene synthesis methods (for example, Heterocycles, 1987, Vol. 26, p. 939-942, Heterocycles, 1987, Vol. 26, p. 1793-1796) and the like.
Moreover, as a method of oxidizing an oligoaniline derivative compound into a quinonediimine compound, a method described in International Publication No. 2008/01047 may be mentioned.

本発明に係る電荷輸送性ワニスは、上述した電荷輸送性物質と、電子受容性ドーパントとしてヘテロポリ酸化合物とを含んで構成される電荷輸送性材料と、有機溶媒とを含み、電荷輸送性物質およびヘテロポリ酸化合物が、有機溶媒に均一に溶解しているものである。
電荷輸送性ワニスを調製する際に用いられる有機溶媒としては、電荷輸送性物質およびヘテロポリ酸化合物の溶解能を有する良溶媒を用いることができる。
ここで、良溶媒とは、溶媒分子の極性が高く、高極性化合物を良く溶解することのできる溶媒を意味する。
このような良溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン、ジメチルスルホキシド、N−シクロヘキシル−2−ピロリジノン等が挙げられる。これらの溶媒は1種単独で、または2種以上混合して用いることができ、その使用量は、ワニスに使用する溶媒全体に対して5〜100質量%とすることができる。
A charge transporting varnish according to the present invention includes the charge transporting material described above, a charge transporting material configured to include a heteropolyacid compound as an electron-accepting dopant, and an organic solvent. The heteropolyacid compound is uniformly dissolved in an organic solvent.
As the organic solvent used when preparing the charge transporting varnish, a good solvent having the ability to dissolve the charge transporting substance and the heteropolyacid compound can be used.
Here, the good solvent means a solvent in which the polarity of the solvent molecule is high and the high polarity compound can be dissolved well.
Examples of such a good solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, N-cyclohexyl-2- Examples include pyrrolidinone. These solvents can be used alone or in combination of two or more, and the amount used can be 5 to 100% by mass with respect to the total solvent used in the varnish.

本発明で用いるヘテロポリ酸化合物は、有機溶媒に対する溶解性に優れているため、上記良溶媒とともに、高粘度溶媒および/または低表面張力溶媒を用いることもできる。良溶媒、高粘度溶媒および低表面張力溶媒は、それぞれお互いの性質を兼ねていてもよい。
高粘度溶媒とは、各種塗布装置における噴霧や塗布に適した粘性を付与して均一なウェット膜を形成し、焼成時にはウェット膜の凝集や凹凸の発生を抑制しながら溶媒揮発を生じさせ、高度な膜厚均一性を有する薄膜を形成し得る溶媒を意味する。
高粘度溶媒としては、25℃で10〜200mPa・s、特に50〜150mPa・sの粘度を有するものが挙げられ、具体的には、常圧で沸点50〜300℃、特に150〜250℃の高粘度溶媒であるシクロヘキサノール、エチレングリコール、1,3−オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3−ブタンジオール、2,3−ブタンジオール、1,4−ブタンジオール、プロピレングリコール、へキシレングリコール、o−クレゾール、m−クレゾール、p−クレゾール等が好適である。
これらの高粘度溶媒を使用する場合、その使用割合は、ワニス中の溶媒全体に対して10〜90質量%が好ましく、20〜80質量%がより好ましい。
Since the heteropolyacid compound used in the present invention is excellent in solubility in an organic solvent, a high viscosity solvent and / or a low surface tension solvent can be used together with the good solvent. The good solvent, the high-viscosity solvent, and the low surface tension solvent may each have properties of each other.
A high-viscosity solvent gives a viscosity suitable for spraying and coating in various coating devices to form a uniform wet film. During firing, it causes solvent volatilization while suppressing the aggregation of the wet film and the occurrence of irregularities. It means a solvent capable of forming a thin film having uniform film thickness uniformity.
Examples of the high-viscosity solvent include those having a viscosity of 10 to 200 mPa · s, particularly 50 to 150 mPa · s at 25 ° C., and specifically, those having a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure. Cyclohexanol, ethylene glycol, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, 2,3-butanediol, 1,4 which are high viscosity solvents -Butanediol, propylene glycol, hexylene glycol, o-cresol, m-cresol, p-cresol and the like are suitable.
When using these high-viscosity solvents, 10-90 mass% is preferable with respect to the whole solvent in a varnish, and 20-80 mass% is more preferable.

低表面張力溶媒とは、表面張力の低下、揮発性の付与等によって基板に対する濡れ性の向上や、各種塗布装置における噴霧や塗布に適した物性を付与したり、塗布装置に対する腐食性の低下を可能にしたりする溶媒を意味する。
このような低表面張力溶媒としては、例えば、ベンゼン、トルエン、エチルベンゼン、p−キシレン、o−キシレン、スチレン等の芳香族炭化水素類;n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、n−デカン等の炭化水素類;アセトン、メチルエチルケトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチルn−ブチルケトン、シクロヘキサノン、エチルn−アミルケトン等のケトン類;酢酸エチル、酢酸イソプロピル、酢酸n−プロピル、酢酸i−ブチル、酢酸n−ブチル、酢酸n−アミル、酢酸n−ヘキシル、カプロン酸メチル、酢酸−2−メチルペンチル、乳酸n−エチル、乳酸n−ブチル等のエステル類;エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコール等のグリコールエステルまたはグリコールエーテル類;メタノール、エタノール、イソプロパノール、t−ブタノール、アリルアルコール、n−プロパノール、2−メチル−2−ブタノール、イソブタノール、n−ブタノール、2−メチル−1−ブタノール、1−ペンタノール、2−メチル−1−ペンタノール、2−エチルヘキサノール、1−オクタノール、1−メトキシ−2−ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、ベンジルアルコール等のアルコール類;ジエチルエーテル、ジ−n−プロピルエーテル、ジ−i−プロピルエーテル、i−プロピルエーテル、1,4−ジオキサン、酢酸、γ−ブチルラクトン等のエーテルまたはカルボン酸類などが挙げられる。
A low surface tension solvent means improved wettability to the substrate by reducing surface tension, imparting volatility, imparting physical properties suitable for spraying and coating in various coating devices, and reducing corrosivity to coating devices. It means the solvent that makes it possible.
Examples of such a low surface tension solvent include aromatic hydrocarbons such as benzene, toluene, ethylbenzene, p-xylene, o-xylene, and styrene; n-pentane, n-hexane, n-heptane, and n-octane. , N-nonane, n-decane and the like hydrocarbons; acetone, methyl ethyl ketone, methyl isopropyl ketone, diethyl ketone, methyl isobutyl ketone, methyl n-butyl ketone, cyclohexanone, ethyl n-amyl ketone, and the like; ethyl acetate, isopropyl acetate , Esters such as n-propyl acetate, i-butyl acetate, n-butyl acetate, n-amyl acetate, n-hexyl acetate, methyl caproate, 2-methylpentyl acetate, n-ethyl lactate, n-butyl lactate Ethylene glycol dimethyl ether, propylene glycol Methyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol methyl ether acetate, propylene glycol monomethyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol Dimethyl ether, propylene glycol monobutyl ether, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol dimethyl ether Glycol esters or glycol ethers such as ter, diethylene glycol monoethyl ether acetate, diethylene glycol; methanol, ethanol, isopropanol, t-butanol, allyl alcohol, n-propanol, 2-methyl-2-butanol, isobutanol, n-butanol, 2-methyl-1-butanol, 1-pentanol, 2-methyl-1-pentanol, 2-ethylhexanol, 1-octanol, 1-methoxy-2-butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl Alcohols such as alcohol and benzyl alcohol; diethyl ether, di-n-propyl ether, di-i-propyl ether, i-propyl ether, 1,4-dioxane, acetic acid, γ-butyl And ether or carboxylic acids such Rurakuton like.

良溶媒と高粘度溶媒および/または低表面張力溶媒とを併用する場合、それらの使用割合は特に限定されるものではないが、高粘度溶媒や低表面張力溶媒の使用割合を多くすると、上述のように、粘度の向上、表面張力の低下、揮発性の付与、基板表面に対する塗れ性の向上、塗布、噴霧性の向上等の新たな好ましい物性を付与することが可能となる。また、得られたワニスの極性が低くなる結果、溶剤耐性が問題となる塗布装置や基板などを用いることができるようになり、その応用範囲が広がる。
低表面張力溶媒を使用する場合には、具体的に良溶媒と高粘度溶媒および/または低表面張力溶媒との比率は、質量比で9:1〜1:9程度が好ましく、1:1〜1:4程度がより好ましい。
また、溶媒を2種以上混合して用いる場合には、良溶媒の沸点はその他の溶媒と同等かまたはそれ以上であることが望ましい。
When a good solvent and a high-viscosity solvent and / or a low surface tension solvent are used in combination, their use ratio is not particularly limited. Thus, it becomes possible to provide new preferable physical properties such as improvement in viscosity, reduction in surface tension, provision of volatility, improvement in paintability on the substrate surface, application, and improvement in sprayability. Moreover, as a result of the polarity of the obtained varnish being lowered, it becomes possible to use a coating apparatus, a substrate or the like in which solvent resistance is a problem, and the application range is expanded.
When a low surface tension solvent is used, the ratio of the good solvent to the high viscosity solvent and / or the low surface tension solvent is preferably about 9: 1 to 1: 9 by mass ratio, and 1: 1 to About 1: 4 is more preferable.
In addition, when two or more solvents are used as a mixture, the boiling point of the good solvent is desirably equal to or higher than that of other solvents.

電荷輸送性ワニスの調製法としては、特に限定されるものではなく、各成分および溶媒を任意の順序で混合して調製することができるが、上述したヘテロポリ酸化合物は、一旦、良溶媒に溶解させると、より極性の低い高粘度溶媒および/または低表面張力溶媒を添加しても析出が生じにくいという性質を有しているため、電荷輸送性物質およびヘテロポリ酸化合物を良溶媒に溶解させた溶液に対し、高粘度溶媒および/または低表面張力溶媒を加えて調製することが好ましい。
このような手法を用いると、電荷輸送性ワニス中における高粘度溶媒や低表面張力溶媒の割合を増加させることができる。
The method for preparing the charge transporting varnish is not particularly limited and can be prepared by mixing each component and solvent in an arbitrary order. However, the above-mentioned heteropolyacid compound is once dissolved in a good solvent. In this case, the charge transporting substance and the heteropolyacid compound were dissolved in a good solvent because it has the property that precipitation does not easily occur even when a less viscous high viscosity solvent and / or a low surface tension solvent is added. It is preferable to prepare the solution by adding a high viscosity solvent and / or a low surface tension solvent.
When such a method is used, the ratio of the high viscosity solvent or the low surface tension solvent in the charge transporting varnish can be increased.

電荷輸送性ワニスの固形分濃度は、特に限定されるものではないが、通常、0.01〜50質量%程度であり、0.1〜200nmの薄膜を形成させることを考慮すると、0.1〜10質量%が好ましく、0.5〜5質量%がより好ましい。
また、電荷輸送性物質とヘテロポリ酸化合物との混合割合は、特に限定されるものではないが、得られる薄膜の電荷輸送性をより向上させることを考慮すると、質量比で、電荷輸送性物質:ヘテロポリ酸化合物=1:0.01〜10.0が好ましく、1:0.05〜4.0がより好ましい。
電荷輸送性ワニスの粘度は、特に限定されるものではないが、スピンコート法、インクジェット法あるいはスプレーコート法で0.1〜200nmの薄膜を高い膜厚均一性で作製することを考慮すると、25℃で1〜100mPa・sが好ましく、3〜30mPa・sがより好ましく、5〜20mPa・sがより一層好ましい。
The solid content concentration of the charge transporting varnish is not particularly limited, but is usually about 0.01 to 50% by mass, and considering that a thin film of 0.1 to 200 nm is formed, 0.1% 10 mass% is preferable, and 0.5-5 mass% is more preferable.
In addition, the mixing ratio of the charge transporting substance and the heteropolyacid compound is not particularly limited. However, in consideration of further improving the charge transporting property of the obtained thin film, the charge transporting substance in mass ratio: Heteropoly acid compound = 1: 0.01-10.0 are preferable and 1: 0.05-4.0 are more preferable.
The viscosity of the charge transporting varnish is not particularly limited, but it is 25 considering that a thin film having a thickness of 0.1 to 200 nm is produced with high film thickness uniformity by a spin coating method, an ink jet method or a spray coating method. It is preferably 1 to 100 mPa · s, more preferably 3 to 30 mPa · s, and even more preferably 5 to 20 mPa · s at ° C.

本発明の電荷輸送性ワニスでは、その電荷輸送能等を向上させるために、必要に応じて上述したヘテロポリ酸化合物以外のドーパント物質を、電荷輸送性物質に対して、0.1〜90質量%程度の添加量で用いてもよい。
ドーパント物質としては、高い電子受容性を有する電子受容性ドーパント物質が好ましい。ドーパント物質の溶解性に関しては、ワニスに使用する少なくとも一種の溶媒に溶解するものであれば特に限定されない。
In the charge transporting varnish of the present invention, in order to improve the charge transporting ability and the like, 0.1 to 90% by mass of a dopant substance other than the heteropolyacid compound described above is added to the charge transporting substance as necessary. You may use by the addition amount of a grade.
As the dopant material, an electron-accepting dopant material having a high electron-accepting property is preferable. The solubility of the dopant substance is not particularly limited as long as it is soluble in at least one solvent used for the varnish.

電子受容性ドーパント物質の具体例としては、塩化水素、硫酸、硝酸、リン酸等の無機強酸;塩化アルミニウム(III)(AlCl3)、四塩化チタン(IV)(TiCl4)、三臭化ホウ素(BBr3)、三フッ化ホウ素エーテル錯体(BF3・OEt2)、塩化鉄(III)(FeCl3)、塩化銅(II)(CuCl2)、五塩化アンチモン(V)(SbCl5)、五フッ化砒素(V)(AsF5)、五フッ化リン(PF5)、トリス(4−ブロモフェニル)アルミニウムヘキサクロロアンチモナート(TBPAH)等のルイス酸;ベンゼンスルホン酸、トシル酸、カンファスルホン酸、ヒドロキシベンゼンスルホン酸、5−スルホサリチル酸、ドデシルベンゼンスルホン酸、ポリスチレンスルホン酸、国際公開第2005/000832号記載の1,4−ベンゾジオキサンジスルホン酸誘導体、国際公開第2006/025342号記載のアリールスルホン酸誘導体、特開2005−108828号公報記載のジノニルナフタレンスルホン酸誘導体等の有機強酸;7,7,8,8−テトラシアノキノジメタン(TCNQ)、2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン(DDQ)、ヨウ素等の有機または無機酸化剤が挙げられるが、これらに限定されるものではない。 Specific examples of the electron-accepting dopant material include inorganic strong acids such as hydrogen chloride, sulfuric acid, nitric acid and phosphoric acid; aluminum chloride (III) (AlCl 3 ), titanium tetrachloride (IV) (TiCl 4 ), boron tribromide (BBr 3 ), boron trifluoride ether complex (BF 3 · OEt 2 ), iron chloride (III) (FeCl 3 ), copper (II) chloride (CuCl 2 ), antimony pentachloride (V) (SbCl 5 ), Lewis acids such as arsenic pentafluoride (V) (AsF 5 ), phosphorus pentafluoride (PF 5 ), tris (4-bromophenyl) aluminum hexachloroantimonate (TBPAH); benzenesulfonic acid, tosylic acid, camphorsulfonic acid Hydroxybenzenesulfonic acid, 5-sulfosalicylic acid, dodecylbenzenesulfonic acid, polystyrenesulfonic acid, International Publication No. 2005/000 Organic strong acids such as 1,4-benzodioxane disulfonic acid derivative described in No. 32, aryl sulfonic acid derivatives described in International Publication No. 2006/025342, dinonylnaphthalene sulfonic acid derivative described in JP-A-2005-108828; Examples include organic or inorganic oxidizing agents such as 7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and iodine. It is not limited to.

特に好ましい電子受容性ドーパント物質としては、5−スルホサリチル酸、ドデシルベンゼンスルホン酸、ポリスチレンスルホン酸、国際公開第2005/000832号記載の1,4−ベンゾジオキサンジスルホン酸誘導体、特開2005−108828号公報記載のジノニルナフタレンスルホン酸誘導体、国際公開第2006/025342号記載のナフタレンジスルホン酸誘導体等の有機強酸である電子受容性ドーパント物質が挙げられる。   Particularly preferred electron-accepting dopant materials include 5-sulfosalicylic acid, dodecylbenzenesulfonic acid, polystyrenesulfonic acid, 1,4-benzodioxane disulfonic acid derivatives described in WO2005 / 000832, and JP-A-2005-108828. Examples thereof include electron-accepting dopant materials which are strong organic acids such as dinonylnaphthalenesulfonic acid derivatives described above and naphthalenedisulfonic acid derivatives described in WO2006 / 025342.

以上で説明した電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることで基材上に電荷輸送性薄膜を形成させることができる。
ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられる。
溶媒の蒸発法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、適切な雰囲気下、すなわち、大気、窒素等の不活性ガス、真空中等で蒸発させればよい。これにより、均一な成膜面を有する薄膜を得ることが可能である。
焼成温度は、溶媒を蒸発させることができれば特に限定されないが、40〜250℃で行うことが好ましい。この場合、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよい。
A charge transporting thin film can be formed on a substrate by applying the charge transporting varnish described above on the substrate and evaporating the solvent.
The method for applying the varnish is not particularly limited, and examples thereof include a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an ink jet method, a spray method, and a slit coating method.
The method for evaporating the solvent is not particularly limited. For example, the solvent may be evaporated in a suitable atmosphere, that is, in an inert gas such as air or nitrogen, in a vacuum, or the like using a hot plate or an oven. Thereby, a thin film having a uniform film formation surface can be obtained.
Although a calcination temperature will not be specifically limited if a solvent can be evaporated, It is preferable to carry out at 40-250 degreeC. In this case, two or more stages of temperature changes may be applied for the purpose of developing higher uniform film forming properties or allowing the reaction to proceed on the substrate.

電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子内で電荷注入層として用いる場合、0.1〜200nmが好ましく、1〜100nmがより好ましく、10〜50nmがさらに好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。   The thickness of the charge transporting thin film is not particularly limited, but is preferably 0.1 to 200 nm, more preferably 1 to 100 nm, and even more preferably 10 to 50 nm when used as a charge injection layer in an organic EL device. As a method of changing the film thickness, there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate during coating.

本発明の電荷輸送性ワニスを用いてOLED素子を作製する場合の使用材料や、作製方法としては、下記のようなものが挙げられるが、これらに限定されるものではない。
使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にオゾン処理、酸素−プラズマ処理等の表面処理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
Examples of materials used and methods for producing an OLED element using the charge transporting varnish of the present invention include the following, but are not limited thereto.
The electrode substrate to be used is preferably cleaned in advance by cleaning with a detergent, alcohol, pure water, or the like. For example, the anode substrate is subjected to surface treatment such as ozone treatment or oxygen-plasma treatment immediately before use. Is preferred. However, when the anode material is mainly composed of an organic material, the surface treatment may not be performed.

正孔輸送性ワニスをOLED素子に使用する場合、以下の方法を挙げることができる。
陽極基板上に当該正孔輸送性ワニスを塗布し、上記の方法により蒸発、焼成を行い、電極上に正孔輸送性薄膜を作製して正孔注入層または正孔輸送層とする。これを真空蒸着装置内に導入し、正孔輸送層、発光層、電子輸送層、電子注入層、陰極金属を順次蒸着してOLED素子とする。ただし、必要に応じていずれか一層または複数層を除いて素子を作製してもよい。発光領域をコントロールするために任意の層間にキャリアブロック層を設けてもよい。
陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
When using a hole transporting varnish for an OLED element, the following method can be mentioned.
The hole transporting varnish is applied onto the anode substrate, evaporated and baked by the above method, and a hole transporting thin film is formed on the electrode to form a hole injection layer or a hole transport layer. This is introduced into a vacuum deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode metal are sequentially deposited to form an OLED element. However, the element may be manufactured by removing any one layer or plural layers as necessary. In order to control the light emitting region, a carrier block layer may be provided between arbitrary layers.
Examples of the anode material include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), and those subjected to planarization treatment are preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used.

正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体(TPD)、(α−ナフチルジフェニルアミン)ダイマー(α−NPD)、[(トリフェニルアミン)ダイマー]スピロダイマー(Spiro−TAD)等のトリアリールアミン類、4,4’,4”−トリス[3−メチルフェニル(フェニル)アミノ]トリフェニルアミン(m−MTDATA)、4,4’,4”−トリス[1−ナフチル(フェニル)アミノ]トリフェニルアミン(1−TNATA)等のスターバーストアミン類、5,5”−ビス−{4−[ビス(4−メチルフェニル)アミノ]フェニル}−2,2’:5’,2”−ターチオフェン(BMA−3T)等のオリゴチオフェン類を挙げることができる。
本発明で用いるヘテロポリ酸化合物に対して還元性を有している正孔輸送材料は、有機EL素子特性における駆動電圧低下の観点において好ましい。特にトリフェニルアミン、トリアリールアミン類あるいはスターバーストアミン類は、本発明で用いるヘテロポリ酸化合物によって酸化されやすいため、これらの化合物を含む層を、当該へテロポリ酸化合物を含有する正孔注入層に隣接する正孔輸送層として使用すると好適である。
As a material for forming the hole transport layer, (triphenylamine) dimer derivative (TPD), (α-naphthyldiphenylamine) dimer (α-NPD), [(triphenylamine) dimer] spiro-dimer (Spiro-TAD) Triarylamines such as 4,4 ′, 4 ″ -tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA), 4,4 ′, 4 ″ -tris [1-naphthyl (phenyl) ) Starburstamines such as amino] triphenylamine (1-TNATA), 5,5 ″ -bis- {4- [bis (4-methylphenyl) amino] phenyl} -2,2 ′: 5 ′, 2 And oligothiophenes such as “-terthiophene (BMA-3T)”.
The hole transport material having reducibility with respect to the heteropolyacid compound used in the present invention is preferable from the viewpoint of lowering the driving voltage in the organic EL device characteristics. In particular, triphenylamines, triarylamines or starburst amines are easily oxidized by the heteropolyacid compound used in the present invention. Therefore, the layer containing these compounds is used as the hole injection layer containing the heteropolyacid compound. It is preferable to use it as an adjacent hole transport layer.

発光層を形成する材料としては、トリス(8−キノリノラート)アルミニウム(III)(Alq3)、ビス(8−キノリノラート)亜鉛(II)(Znq2)、ビス(2−メチル−8−キノリノラート)(p−フェニルフェノラート)アルミニウム(III)(BAlq)および4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(DPVBi)等が挙げられ、電子輸送材料または正孔輸送材料と発光性ドーパントとを共蒸着することによって、発光層を形成してもよい。
電子輸送材料としては、Alq3、BAlq、DPVBi、(2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール)(PBD)、トリアゾール誘導体(TAZ)、バソクプロイン(BCP)、シロール誘導体等が挙げられる。
Examples of the material for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato) ( p-phenylphenolate) aluminum (III) (BAlq) and 4,4′-bis (2,2-diphenylvinyl) biphenyl (DPVBi), and the like. The light emitting layer may be formed by co-evaporation.
As an electron transport material, Alq 3 , BAlq, DPVBi, (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole) (PBD), triazole derivatives ( TAZ), bathocuproine (BCP), silole derivatives and the like.

発光性ドーパントとしては、キナクリドン、ルブレン、クマリン540、4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピラン(DCM)、トリス(2−フェニルピリジン)イリジウム(III)(Ir(ppy)3)、(1,10−フェナントロリン)−トリス(4,4,4−トリフルオロ−1−(2−チエニル)−ブタン−1,3−ジオナート)ユーロピウム(III)(Eu(TTA)3phen)等が挙げられる。 Examples of the luminescent dopant include quinacridone, rubrene, coumarin 540, 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), tris (2-phenylpyridine) iridium ( III) (Ir (ppy) 3 ), (1,10-phenanthroline) -tris (4,4,4-trifluoro-1- (2-thienyl) -butane-1,3-dionate) europium (III) ( Eu (TTA) 3 phen) and the like.

キャリアブロック層を形成する材料としては、PBD、TAZ、BCP等が挙げられる。
電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)、フッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化ストロンチウム(SrF2)、Liq、Li(acac)、酢酸リチウム、安息香酸リチウム等が挙げられる。
陰極材料としては、アルミニウム、マグネシウム−銀合金、アルミニウム−リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
Examples of the material for forming the carrier block layer include PBD, TAZ, and BCP.
Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), magnesium fluoride (MgF 2 ), and strontium fluoride. (SrF 2 ), Liq, Li (acac), lithium acetate, lithium benzoate and the like.
Examples of the cathode material include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.

また、電子輸送性ワニスをOLED素子に使用する場合、以下の方法を挙げることができる。
陰極基板上に当該電子輸送性ワニスを塗布して電子輸送性薄膜を作製し、これを真空蒸着装置内に導入し、上記と同様の材料を用いて電子輸送層、発光層、正孔輸送層、正孔注入層を形成した後、陽極材料をスパッタリング等の方法により成膜してOLED素子とする。
Moreover, when using an electron transport varnish for an OLED element, the following method can be mentioned.
An electron transporting varnish is applied onto a cathode substrate to produce an electron transporting thin film, which is introduced into a vacuum deposition apparatus, and using the same materials as described above, an electron transporting layer, a light emitting layer, and a hole transporting layer After forming the hole injection layer, the anode material is deposited by a method such as sputtering to obtain an OLED element.

本発明の電荷輸送性ワニスを用いたPLED素子の作製方法は、特に限定されないが、以下の方法が挙げられる。
上記OLED素子作製において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行う代わりに、発光性電荷輸送性高分子層を形成することによって本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を含むPLED素子を作製することができる。
具体的には、陽極基板上に、本発明の電荷輸送性ワニス(正孔輸送性ワニス)を塗布して上記の方法により正孔輸送性薄膜を作製し、その上部に発光性電荷輸送性高分子層を形成し、さらに陰極電極を蒸着してPLED素子とする。発光効率向上および素子寿命向上のために、正孔輸送性薄膜と発光性高分子層の間にインターレイヤーを設けてもよい。
Although the manufacturing method of the PLED element using the charge transportable varnish of this invention is not specifically limited, The following methods are mentioned.
In the preparation of the OLED element, the charge transporting varnish of the present invention is formed by forming a light emitting charge transporting polymer layer instead of performing vacuum deposition operation of the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer. A PLED element including a charge transporting thin film formed by the above can be produced.
Specifically, on the anode substrate, the charge transporting varnish (hole transporting varnish) of the present invention is applied to prepare a hole transporting thin film by the above-described method, and a luminescent charge transporting property is high on the upper part. A molecular layer is formed, and a cathode electrode is further deposited to form a PLED element. An interlayer may be provided between the hole transporting thin film and the light emitting polymer layer in order to improve light emission efficiency and device lifetime.

使用する陰極および陽極材料としては、上記OLED素子作製時と同様の物質が使用でき、同様の洗浄処理、表面処理を行うことができる。
発光性電荷輸送性高分子層の形成法としては、発光性電荷輸送性高分子材料、またはこれに発光性ドーパントを加えた材料に溶媒を加えて溶解するか、均一に分散し、正孔注入層を形成してある電極基板に塗布した後、溶媒の蒸発により成膜する方法が挙げられる。
発光性電荷輸送性高分子材料としては、ポリ(9,9−ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2−メトキシ−5−(2’−エチルヘキソキシ)−1,4−フェニレンビニレン)(MEH−PPV)等のポリフェニレンビニレン誘導体、ポリ(3−アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)などが挙げられる。
As the cathode and anode material to be used, the same substances as those used in the production of the OLED element can be used, and the same cleaning treatment and surface treatment can be performed.
As a method for forming the light emitting charge transporting polymer layer, a solvent is added to the light emitting charge transporting polymer material or a material obtained by adding a light emitting dopant to the material, and the solution is dissolved or evenly dispersed to inject holes. An example is a method in which a film is formed by evaporation of a solvent after application to an electrode substrate on which a layer is formed.
Examples of the light-emitting charge transporting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), and poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene. And polyphenylene vinylene derivatives such as (MEH-PPV), polythiophene derivatives such as poly (3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).

溶媒としては、トルエン、キシレン、クロロホルム等を挙げることができ、溶解または均一分散法としては撹拌、加熱撹拌、超音波分散等の方法が挙げられる。
塗布方法としては、特に限定されるものではなく、インクジェット法、スプレー法、ディップ法、スピンコート法、スリットコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが望ましい。
溶媒の蒸発法としては、不活性ガス下または真空中、オーブンまたはホットプレートで加熱する方法が挙げられる。
Examples of the solvent include toluene, xylene, chloroform, and the like. Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
The application method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dip method, a spin coating method, a slit coating method, a transfer printing method, a roll coating method, and a brush coating method. Application is preferably performed under an inert gas such as nitrogen or argon.
Examples of the solvent evaporation method include a method of heating in an oven or a hot plate under an inert gas or in a vacuum.

以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお使用したヘテロポリ酸化合物中の正確な水分量が不明であるため、以下に記載する固形分濃度は秤量値のまま水分量を差し引かずに算出した。秤量に際しても水分除去等の前処理は行わず、購入した化合物をそのまま使用した。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. In addition, since the exact moisture content in the used heteropolyacid compound is unknown, the solid content concentration described below was calculated without subtracting the moisture content as it was as the weighed value. In the weighing, pretreatment such as water removal was not performed, and the purchased compound was used as it was.

[1]電荷輸送性ワニスおよび電荷輸送性薄膜の作製
[実施例1]
上記式(6)で表されるN,N,N’,N’−テトラフェニル−p−C−アミノペンタアニリン(以下、TPAPAと略す)270mgおよびリンモリブデン酸(関東化学(株)製、以下、PMAと略す)540mgの混合物に対し、窒素雰囲気中で良溶媒であるDMI11.47gを加えて溶解した。この溶液に、プロピレングリコール5.73gおよび40℃まで加熱して融解させたシクロヘキサノール17.20gを加え、室温まで放冷して緑黒色透明溶液を得た。
得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、緑黒色透明の電荷輸送性ワニスを得た(固形分濃度2.3質量%、粘度11mPa・s、25℃)。
30分間オゾン洗浄を行ったITO基板上に、得られたワニスをスピンコート法により塗布し、ホットプレート上、大気中220℃で30分間焼成して電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。
なお、式(6)で表されるTPAPAは国際公開第2008/129947号記載の方法に従って合成した。
[1] Preparation of charge transporting varnish and charge transporting thin film [Example 1]
270 mg of N, N, N ′, N′-tetraphenyl-pC-aminopentaaniline (hereinafter abbreviated as TPAPA) represented by the above formula (6) and phosphomolybdic acid (manufactured by Kanto Chemical Co., Inc., hereinafter) In a nitrogen atmosphere, 11.47 g of DMI, which is a good solvent, was added to and dissolved in a 540 mg mixture. To this solution, 5.73 g of propylene glycol and 17.20 g of cyclohexanol melted by heating to 40 ° C. were added and allowed to cool to room temperature to obtain a greenish black transparent solution.
The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a greenish black transparent charge transporting varnish (solid content concentration 2.3 mass%, viscosity 11 mPa · s, 25 ° C.).
The obtained varnish was applied by spin coating on an ITO substrate that had been subjected to ozone cleaning for 30 minutes, and baked at 220 ° C. for 30 minutes in the air on a hot plate to form a charge transporting thin film. The thin film obtained was a uniform amorphous solid.
The TPAPA represented by the formula (6) was synthesized according to the method described in International Publication No. 2008/129947.

[実施例2]
上記式(8)で表されるN−フェニルテトラアニリン(以下、PTAという)270mgおよびPMA540mgの混合物に対し、窒素雰囲気中で良溶媒であるDMI11.47gを加えて溶解した。この溶液に、プロピレングリコール5.73gおよび40℃まで加熱して融解させたシクロヘキサノール17.20gを加え、室温まで放冷して緑黒色透明溶液を得た。
得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、緑黒色透明の電荷輸送性ワニスを得た(粘度11mPa・s、25℃)。
30分間オゾン洗浄を行ったITO基板上に、得られたワニスをスピンコート法により塗布し、ホットプレート上、大気中220℃で30分間焼成して電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。
なお、上記式(8)で表されるPTAは、ブレティン・オブ・ケミカル・ソサエティ・オブ・ジャパン(Bulletin of Chemical Society of Japan)、1994年、第67巻、p.1749−1752に記載されている方法に従って合成した。
[Example 2]
To a mixture of 270 mg of N-phenyltetraaniline (hereinafter referred to as PTA) represented by the above formula (8) and 540 mg of PMA, 11.47 g of DMI which is a good solvent was added and dissolved in a nitrogen atmosphere. To this solution, 5.73 g of propylene glycol and 17.20 g of cyclohexanol melted by heating to 40 ° C. were added and allowed to cool to room temperature to obtain a greenish black transparent solution.
The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a green-black transparent charge transporting varnish (viscosity 11 mPa · s, 25 ° C.).
The obtained varnish was applied by spin coating on an ITO substrate that had been subjected to ozone cleaning for 30 minutes, and baked at 220 ° C. for 30 minutes in the air on a hot plate to form a charge transporting thin film. The thin film obtained was a uniform amorphous solid.
In addition, PTA represented by the said Formula (8) is Bulletin of Chemical Society of Japan (1994), 67th volume, p. Synthesized according to the method described in 1749-1752.

[実施例3]
下記式(9)で表される酸化型N,N,N’,N’−テトラフェニル−p−C−アミノテトラアニリン(以下、ox−TPATAと略す)270mgおよびPMA540mgの混合物に対し、窒素雰囲気中で良溶媒であるDMI11.47gを加えて溶解した。この溶液に、プロピレングリコール5.73gおよび40℃まで加熱して融解させたシクロヘキサノール17.20gを加え、室温まで放冷して緑黒色透明溶液を得た。
得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、緑黒色透明の電荷輸送性ワニスを得た(固形分濃度2.3質量%、粘度11mPa・s、25℃)。
30分間オゾン洗浄を行ったITO基板上に、得られたワニスをスピンコート法により塗布し、ホットプレート上、大気中220℃で30分間焼成して電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。
なお、式(9)で表されるox−TPATAは国際公開第2008/129947号および国際公開第2008/01047号記載の方法に従って合成した。
[Example 3]
Nitrogen atmosphere for a mixture of 270 mg of oxidized N, N, N ′, N′-tetraphenyl-pC-aminotetraaniline (hereinafter abbreviated as ox-TPATA) represented by the following formula (9) and 540 mg of PMA Among them, 11.47 g of DMI which is a good solvent was added and dissolved. To this solution, 5.73 g of propylene glycol and 17.20 g of cyclohexanol melted by heating to 40 ° C. were added and allowed to cool to room temperature to obtain a greenish black transparent solution.
The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a greenish black transparent charge transporting varnish (solid content concentration 2.3 mass%, viscosity 11 mPa · s, 25 ° C.).
The obtained varnish was applied by spin coating on an ITO substrate that had been subjected to ozone cleaning for 30 minutes, and baked at 220 ° C. for 30 minutes in the air on a hot plate to form a charge transporting thin film. The thin film obtained was a uniform amorphous solid.
In addition, ox-TPATA represented by the formula (9) was synthesized according to the methods described in International Publication No. 2008/129947 and International Publication No. 2008/01047.

[実施例4]
PTA200mg、NSO−2 204mgおよびPMA204mgの混合物に対し、窒素雰囲気中で良溶媒であるDMI13.30gを加えて溶解した。この溶液に、プロピレングリコール6.65gおよび40℃まで加熱して融解させたシクロヘキサノール19.95gを加え、室温まで放冷して緑黒色透明溶液を得た。
得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、緑黒色透明の電荷輸送性ワニスを得た(粘度11mPa・s、25℃)。
30分間オゾン洗浄を行ったITO基板上に、得られたワニスをスピンコート法により塗布し、ホットプレート上、大気中220℃で30分間焼成して電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。
なお、下式で示されるNSO−2は、国際公開第2006/025342号に従って合成した。
[Example 4]
To a mixture of 200 mg of PTA, 204 mg of NSO-2 and 204 mg of PMA, 13.30 g of DMI as a good solvent was added and dissolved in a nitrogen atmosphere. To this solution, 6.65 g of propylene glycol and 19.95 g of cyclohexanol melted by heating to 40 ° C. were added and allowed to cool to room temperature to obtain a greenish black transparent solution.
The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a green-black transparent charge transporting varnish (viscosity 11 mPa · s, 25 ° C.).
The obtained varnish was applied by spin coating on an ITO substrate that had been subjected to ozone cleaning for 30 minutes, and baked at 220 ° C. for 30 minutes in the air on a hot plate to form a charge transporting thin film. The thin film obtained was a uniform amorphous solid.
NSO-2 represented by the following formula was synthesized according to International Publication No. 2006/025342.

[実施例5]
TPAPA200mgおよびPMA400mgの混合物に対し、窒素雰囲気中でDMI13.79gを加えて溶解した。この溶液に、2,3−ブタンジオール19.70gおよび酢酸−n−ヘキシル5.91gを加え、室温で撹拌して緑黒色透明溶液を得た。
得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、緑黒色透明の電荷輸送性ワニスを得た(粘度8mPa・s、25℃)。
30分間オゾン洗浄を行ったITO基板上に、スプレー塗布装置(NVD200、(株)藤森技術研究所製)を用いて、得られたワニスをスプレーコート法により塗布し、ホットプレート上、大気中220℃で30分間焼成して電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。
[Example 5]
To a mixture of 200 mg of TPAPA and 400 mg of PMA, 13.79 g of DMI was added and dissolved in a nitrogen atmosphere. To this solution, 19.70 g of 2,3-butanediol and 5.91 g of acetic acid-n-hexyl were added and stirred at room temperature to obtain a greenish black transparent solution.
The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a green-black transparent charge transporting varnish (viscosity 8 mPa · s, 25 ° C.).
The obtained varnish was applied to the ITO substrate that had been subjected to ozone cleaning for 30 minutes using a spray coating apparatus (NVD200, manufactured by Fujimori Research Laboratory Co., Ltd.) by a spray coating method. A charge transporting thin film was formed by baking at 30 ° C. for 30 minutes. The thin film obtained was a uniform amorphous solid.

[比較例1]
PTA50mgおよびNSO−2 102mgの混合物に対し、窒素雰囲気中でDMI1.68mLを加えて溶解した。この溶液に、プロピレングリコール0.85mLおよび40℃まで加熱して融解させたシクロヘキサノール2.78mLを加え、室温まで放冷して緑色透明溶液を得た。
得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、緑色透明の電荷輸送性ワニスを得た(粘度11mPa・s、25℃)。
30分間オゾン洗浄を行ったITO基板上に、得られたワニスをスピンコート法により塗布し、ホットプレート上、大気中220℃で30分間焼成して電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。
[Comparative Example 1]
To a mixture of 50 mg of PTA and 102 mg of NSO-2, 1.68 mL of DMI was added and dissolved in a nitrogen atmosphere. To this solution, 0.85 mL of propylene glycol and 2.78 mL of cyclohexanol melted by heating to 40 ° C. were added and allowed to cool to room temperature to obtain a green transparent solution.
The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a green transparent charge transporting varnish (viscosity 11 mPa · s, 25 ° C.).
The obtained varnish was applied by spin coating on an ITO substrate that had been subjected to ozone cleaning for 30 minutes, and baked at 220 ° C. for 30 minutes in the air on a hot plate to form a charge transporting thin film. The thin film obtained was a uniform amorphous solid.

[比較例2]
PEDOT/PSS(H.C.Starck社製、グレード名CH8000)をスピンコート法によりITO基板上に塗布し、ホットプレート上、大気中100℃で60分間焼成して電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。
[Comparative Example 2]
PEDOT / PSS (manufactured by HC Starck, grade name CH8000) was applied on the ITO substrate by spin coating, and baked on the hot plate at 100 ° C. for 60 minutes in the air to form a charge transporting thin film. The thin film obtained was a uniform amorphous solid.

[比較例3]
電荷輸送性ホスト物質としてPTAを用い、電荷受容性ドーパント物質として酸化モリブデン(関東化学(株)製、MoO3)、モリブデン酸(関東化学(株)製、H2MoO4)、モリブデン酸アンモニウム(関東化学(株)製、(NH46Mo724)、酸化タングステン(関東化学(株)製、WO3)、酸化バナジウム(関東化学(株)製、V25)、酸化マンガン(関東化学(株)製、MnO2)を用いて電荷輸送性ワニスの調製を試みたが、それぞれ上記良溶媒に対して溶解性が極めて低いことから均一溶液は得られなかった。
[Comparative Example 3]
PTA is used as a charge transporting host material, and molybdenum oxide (manufactured by Kanto Chemical Co., Ltd., MoO 3 ), molybdic acid (manufactured by Kanto Chemical Co., Ltd., H 2 MoO 4 ), ammonium molybdate (as a charge transporting host material) Manufactured by Kanto Chemical Co., Inc., (NH 4 ) 6 Mo 7 O 24 ), tungsten oxide (manufactured by Kanto Chemical Co., Ltd., WO 3 ), vanadium oxide (manufactured by Kanto Chemical Co., Inc., V 2 O 5 ), manganese oxide Although an attempt was made to prepare a charge transporting varnish using MnO 2 (manufactured by Kanto Chemical Co., Ltd.), a homogeneous solution could not be obtained because the solubility in each of the good solvents was extremely low.

[比較例4]
PTA100mgおよび酢酸マンガン(関東化学(株)製、Mn(OCOCH33)200mgの混合物に対し、窒素雰囲気中でDMI5.70gを加えて溶解した。PTAの酸化(脱水素)反応が生じて液は黒色化し、黒色固体が析出した。PMAを用いた場合にはPTAの脱水素反応は生じないことから固体の析出は無く、酢酸マンガンは電荷輸送性ワニスの安定性において、より劣っていることがわかる。なお、国際公開第2008/01047号に示されているとおり、PTAの酸化体(キノンジイミン体)は溶解性が低く、固体析出が生じやすいため、電荷輸送性ワニスの状態および塗布時には酸化体を含まないことが望ましい。ただし、その後、電荷輸送性向上の観点から大気中で焼成して基板上で酸化体を生成させることが望ましい。N−フェニルトリアニリンおよびその類縁体では酸化(脱水素)によっても固体の析出が生じにくいがその数は絞られるため、酢酸マンガンでは適用可能なホスト物質の範囲が狭いことがわかる。
[Comparative Example 4]
To a mixture of 100 mg of PTA and 200 mg of manganese acetate (manufactured by Kanto Chemical Co., Inc., Mn (OCOCH 3 ) 3 ), 5.70 g of DMI was added and dissolved in a nitrogen atmosphere. Oxidation (dehydrogenation) reaction of PTA occurred, and the liquid turned black and a black solid was deposited. When PMA is used, PTA dehydrogenation reaction does not occur, so there is no solid precipitation, and it is understood that manganese acetate is inferior in the stability of the charge transporting varnish. In addition, as shown in International Publication No. 2008/01047, an oxidized form of PTA (quinone diimine form) has low solubility and is likely to cause solid precipitation, so that it contains an oxidized form in the state of charge transporting varnish and during coating. Desirably not. However, after that, it is desirable to generate an oxidant on the substrate by firing in the air from the viewpoint of improving the charge transportability. In N-phenyltrianiline and its analogs, solid precipitation hardly occurs even by oxidation (dehydrogenation), but the number is narrowed, so that it can be seen that manganese acetate has a narrow range of applicable host materials.

実施例1〜5および比較例1,2のワニスの固形分濃度、薄膜の膜厚およびイオン化ポテンシャル(Ip)を表1に示す。また、実施例1および2で得られた薄膜の450nmおよび650nmにおける屈折率を併せて表1に示す。
なお、イオン化ポテンシャルは、理研計器(株)製 光電子分光装置 AC−2を使用して測定した。膜厚は、(株)小坂研究所製 サーフコーダET−4000Aを使用して測定した。屈折率は、ジェー・エー・ウーラム・ジャパン製 M−2000を使用して測定した。
Table 1 shows the solid content concentration, thin film thickness, and ionization potential (Ip) of the varnishes of Examples 1 to 5 and Comparative Examples 1 and 2. In addition, Table 1 shows the refractive indexes at 450 nm and 650 nm of the thin films obtained in Examples 1 and 2.
The ionization potential was measured using a photoelectron spectrometer AC-2 manufactured by Riken Keiki Co., Ltd. The film thickness was measured using Surfcorder ET-4000A manufactured by Kosaka Laboratory. The refractive index was measured using M-2000 manufactured by JA Woollam Japan.

[2]OLED素子の作製
[実施例6]
実施例4と同様の方法によりITO基板上に正孔輸送性薄膜を形成した後、この基板を真空蒸着装置内に導入し、α−NPD、容量比7%のルブレンをドープしたAlq3、Alq3、LiF、Alを順次蒸着し、OLED素子を作製した(発光面積:4mm2)。膜厚は、それぞれ30nm、30nm、30nm、0.8nm、150nmとし、それぞれ2×10-4Pa以下の圧力となってから蒸着操作を行った。蒸着レートは、α−NPDおよびAlq3では0.1〜0.2nm/s、ルブレンおよびLiFでは0.01〜0.02nm/s、Alでは0.2〜0.4nm/sとした。蒸着操作間の移動操作は真空中で行った。
[2] Fabrication of OLED element [Example 6]
After forming a hole transporting thin film on the ITO substrate by the same method as in Example 4, this substrate was introduced into a vacuum deposition apparatus, and α-NPD and Alq 3 doped with rubrene at a capacity ratio of 7%, Alq 3 , LiF and Al were sequentially deposited to produce an OLED element (light emitting area: 4 mm 2 ). The film thicknesses were 30 nm, 30 nm, 30 nm, 0.8 nm, and 150 nm, respectively, and the vapor deposition operation was performed after the pressure became 2 × 10 −4 Pa or less. The deposition rate was 0.1 to 0.2 nm / s for α-NPD and Alq 3 , 0.01 to 0.02 nm / s for rubrene and LiF, and 0.2 to 0.4 nm / s for Al. The transfer operation between the vapor deposition operations was performed in a vacuum.

[比較例5]
比較例1と同様の方法によりITO基板上に電荷輸送性薄膜を形成した後、実施例6と同様の方法で各膜を蒸着し、OLED素子を作製した(発光面積:4mm2)。
実施例6および比較例5で得られたOLED素子の特性を、有機EL発光効率測定装置(EL1003、プレサイスゲージ(株)製)を使用して測定した。測定結果を表2に示す。
[Comparative Example 5]
After a charge transporting thin film was formed on the ITO substrate by the same method as in Comparative Example 1, each film was deposited by the same method as in Example 6 to produce an OLED element (light emitting area: 4 mm 2 ).
The characteristics of the OLED elements obtained in Example 6 and Comparative Example 5 were measured using an organic EL light emission efficiency measuring device (EL1003, manufactured by Precise Gauge Co., Ltd.). The measurement results are shown in Table 2.

表2に示されるように、実施例6で得られたOLED特性は、比較例5のそれと比較して半減輝度時間が著しく長く、寿命特性が良好であることがわかる。また、電流密度、電圧に関してもほぼ同等であることがわかる。   As shown in Table 2, it can be seen that the OLED characteristics obtained in Example 6 have a remarkably long half-luminance time as compared with that of Comparative Example 5 and good lifetime characteristics. It can also be seen that the current density and voltage are almost the same.

[実施例7〜9]
実施例1〜3と同様の方法によりITO基板上に正孔輸送性薄膜をそれぞれ形成した後、この基板をそれぞれ真空蒸着装置内に導入し、α−NPD、Alq3、LiF、Alを順次蒸着し、OLED素子を作製した(発光面積:100mm2)。膜厚は、それぞれ40nm、60nm、0.8nm、150nmとし、それぞれ2×10-4Pa以下の圧力となってから蒸着操作を行った。蒸着レートは、α−NPDおよびAlq3では0.1〜0.2nm/s、LiFでは0.01〜0.02nm/s、Alでは0.2〜0.4nm/sとした。蒸着操作間の移動操作は真空中で行った。
[Examples 7 to 9]
After forming a hole transporting thin film on the ITO substrate by the same method as in Examples 1 to 3, this substrate was introduced into a vacuum deposition apparatus, and α-NPD, Alq 3 , LiF, and Al were sequentially deposited. Then, an OLED element was produced (light emitting area: 100 mm 2 ). The film thicknesses were 40 nm, 60 nm, 0.8 nm, and 150 nm, respectively, and the vapor deposition operation was performed after the pressure became 2 × 10 −4 Pa or less. The deposition rate was 0.1 to 0.2 nm / s for α-NPD and Alq 3 , 0.01 to 0.02 nm / s for LiF, and 0.2 to 0.4 nm / s for Al. The transfer operation between the vapor deposition operations was performed in a vacuum.

[比較例6]
正孔注入層を設けず、正孔輸送層であるα−NPDの膜厚を70nmとした以外は、実施例7と同様にして、OLED素子を作製した。
[Comparative Example 6]
An OLED element was fabricated in the same manner as in Example 7 except that the hole injection layer was not provided and the film thickness of α-NPD as the hole transport layer was set to 70 nm.

[比較例7]
PEDOT/PSS(H.C.Starck社製、グレード名AI4083)をスピンコート法によりITO基板上に塗布し、ホットプレート上、100℃で60分間焼成して電荷輸送性薄膜を形成した。
この基板を用いた以外は、実施例7と同様にして、正孔注入層がPEDOT/PSS薄膜であるOLED素子を作製した。
実施例7〜9および比較例6,7で得られたOLED素子の特性を測定した結果を表3に示す。
[Comparative Example 7]
PEDOT / PSS (manufactured by HC Starck, grade name AI4083) was applied on the ITO substrate by a spin coating method, and baked on a hot plate at 100 ° C. for 60 minutes to form a charge transporting thin film.
An OLED element in which the hole injection layer is a PEDOT / PSS thin film was produced in the same manner as in Example 7 except that this substrate was used.
Table 3 shows the results of measuring the characteristics of the OLED elements obtained in Examples 7 to 9 and Comparative Examples 6 and 7.

表3に示されるように、実施例7〜9の素子中の正孔注入層を構成する薄膜は、PEDOT/PSS薄膜と比べて平坦性が極めて高いため、発光面積100mm2でも特性の安定性に問題がなかった。寿命において、発光面積が大きいにもかかわらず同等以上であり、特に適切なホスト材料との組み合わせによって、大きく改善されることがわかる。 As shown in Table 3, thin film constituting the hole injection layer in the device of Example 7-9 has an extremely high flatness as compared with the PEDOT / PSS film, the stability of characteristics even light-emitting area 100 mm 2 There was no problem. It can be seen that the lifetime is equivalent or better in spite of a large light emitting area, and is greatly improved by combination with an appropriate host material.

[3]導電率測定
[実施例10]
導電率測定を行うために以下の実験を行った。溶媒をDMAcに変更した以外は、実施例2と同様の方法を用いて、電荷輸送性ワニスとして、PTA/PMA(質量比1/2)の30質量%DMAc溶液を調製した。なお、導電率測定においてはサンプル薄膜自体の抵抗値が測定素子の抵抗を充分に上回る必要があり、厚膜を形成させる必要がある。そのため高濃度ワニスを調製した。
30分間オゾン洗浄を行ったITO基板上に、得られたワニスをスピンコート法により塗布し、ホットプレート上、大気中220℃で30分間焼成して膜厚360nmの電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。
[3] Conductivity measurement [Example 10]
The following experiment was conducted to conduct the conductivity measurement. A 30 mass% DMAc solution of PTA / PMA (mass ratio 1/2) was prepared as a charge transporting varnish using the same method as in Example 2 except that the solvent was changed to DMAc. In the conductivity measurement, the resistance value of the sample thin film itself needs to sufficiently exceed the resistance of the measuring element, and it is necessary to form a thick film. Therefore, a high concentration varnish was prepared.
The obtained varnish was applied by spin coating on an ITO substrate that had been subjected to ozone cleaning for 30 minutes, and baked at 220 ° C. for 30 minutes in the air on a hot plate to form a charge transporting thin film having a thickness of 360 nm. The thin film obtained was a uniform amorphous solid.

[比較例8]
PEDOT/PSS(H.C.Starck社製、グレード名CH8000)をスピンコート法によりITO基板上に塗布し、ホットプレート上、大気中100℃で60分間焼成して電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。
上記実施例10および比較例8で得られた薄膜の導電率を表4に示す。
なお、導電率は、得られたそれぞれの基板を真空蒸着装置内に導入し、蒸着マスクによってAlを膜厚150nm蒸着したサンドイッチ型素子(ITO/sample/Al(150nm))を用いて測定した(電極面積0.2mm2、電流密度100mA/cm2時)。
[Comparative Example 8]
PEDOT / PSS (manufactured by HC Starck, grade name CH8000) was applied on the ITO substrate by spin coating, and baked on the hot plate at 100 ° C. for 60 minutes in the air to form a charge transporting thin film. The thin film obtained was a uniform amorphous solid.
Table 4 shows the electrical conductivity of the thin films obtained in Example 10 and Comparative Example 8.
The conductivity was measured using a sandwich-type element (ITO / sample / Al (150 nm)) in which each of the obtained substrates was introduced into a vacuum deposition apparatus and Al was deposited with a thickness of 150 nm using a deposition mask ( Electrode area 0.2 mm 2 , current density 100 mA / cm 2 ).

表4に示されるように、実施例10で用いたPTA/PMAは導電率の電界依存性が小さく、わずかな電圧で良好な電荷輸送性を示し、正孔注入層材料として充分な高導電率を示した(一般に10-7S/cm以上が必要)。なお、電極からの電界注入障壁が小さい材料では、Ip値は正孔輸送材料に近い値かより深い値、すなわち5.4eV程度かより深い値であることが望ましいが、Ip値は適正な範囲であった。 As shown in Table 4, the PTA / PMA used in Example 10 has a small electric field dependency of conductivity, shows a good charge transport property at a slight voltage, and has a high conductivity sufficient as a hole injection layer material. (In general, 10 −7 S / cm or more is necessary). Note that, in a material having a small electric field injection barrier from the electrode, the Ip value is desirably a value close to or deeper than that of the hole transport material, that is, about 5.4 eV or deeper, but the Ip value is within an appropriate range. Met.

[4]トリアリールアミン含有材料に対する酸化性評価
[実施例11]
現在、正孔注入層に隣接して積層される正孔輸送層には、ほとんどトリフェニルアミン含有材料をはじめとしたトリアリールアミン含有材料が使用されている。本発明のヘテロポリ酸化合物のトリフェニルアミン含有化合物に対する酸化性について評価するため、以下の実験を行った。
トリフェニルアミン含有化合物は正孔輸送層材料として使用されているその他のトリアリールアミン含有化合物と物性が類似しているため、これによりトリアリールアミン系正孔輸送層材料全般に対する酸化性を評価できる。正孔輸送層材料に対して酸化性を有するということは、正孔輸送層の一部に静電的にキャリアを生成させることができることを意味しており、これにより有機EL素子における駆動電圧を低下させることが可能となる。
[4] Oxidation evaluation for triarylamine-containing material [Example 11]
Currently, triarylamine-containing materials such as triphenylamine-containing materials are mostly used for the hole transport layer laminated adjacent to the hole injection layer. In order to evaluate the oxidizability of the heteropolyacid compound of the present invention to a triphenylamine-containing compound, the following experiment was conducted.
Since triphenylamine-containing compounds are similar in physical properties to other triarylamine-containing compounds used as hole transport layer materials, it is possible to evaluate the oxidation properties of triarylamine-based hole transport layer materials in general. . Having an oxidizing property with respect to the hole transport layer material means that carriers can be generated electrostatically in a part of the hole transport layer, thereby reducing the driving voltage in the organic EL element. It can be reduced.

下式で示されるトリフェニルアミン2量体0.15gおよび上記リンモリブデン酸0.30g(重量比でトリフェニルアミン2量体の2倍)に対し、DMI7.05gを加え、60℃で加熱撹拌して溶解し、室温まで放冷して均一溶液を得た。
得られた溶液を孔径0.2μmのPTFE製フィルターを用いて濾過し、淡褐色透明の電荷輸送性ワニスを得た(固形分濃度6.0質量%)。
30分間オゾン洗浄を行った石英基板上に、得られたワニスをスピンコート法により塗布し、ホットプレート上、大気中150℃で30分間焼成して電荷輸送性薄膜を形成した。得られた薄膜は均一な非晶質固体であった。得られた薄膜のUV−VISスペクトルを測定した(測定装置:UV−3100、(株)島津製作所製)ところ、550nmおよび730nmにブロードの吸収ピークが発生した。
7.05 g of DMI is added to 0.15 g of the triphenylamine dimer represented by the following formula and 0.30 g of the phosphomolybdic acid (twice that of the triphenylamine dimer in weight ratio), and the mixture is heated and stirred at 60 ° C. And dissolved, and allowed to cool to room temperature to obtain a homogeneous solution.
The obtained solution was filtered using a PTFE filter having a pore size of 0.2 μm to obtain a light brown transparent charge transporting varnish (solid content concentration 6.0 mass%).
The obtained varnish was applied by spin coating on a quartz substrate that had been subjected to ozone cleaning for 30 minutes, and baked on a hot plate at 150 ° C. for 30 minutes in the atmosphere to form a charge transporting thin film. The thin film obtained was a uniform amorphous solid. The UV-VIS spectrum of the obtained thin film was measured (measurement apparatus: UV-3100, manufactured by Shimadzu Corporation), and broad absorption peaks were generated at 550 nm and 730 nm.

トリフェニルアミン2量体のみの薄膜およびリンモリブデン酸のみの薄膜ではこれらの吸収ピークは存在しないことから、この吸収ピークトリフェニルアミン2量体のカチオンあるいはジカチオン由来と考えられる。なおトリアリールアミン系材料のカチオン生成についてはα−NPDを用いた研究がよく行われており、カチオンでは490nmおよび1330nmに吸収ピークが発生し、作用させる酸化剤を増量させることでジカチオン由来である610nmおよび810nmへと吸収ピークが移行することがわかっている。
以上の結果より、リンモリブデン酸はトリフェニルアミン2量体に対する酸化性を有していることがわかる。このことから、リンモリブデン酸からなる正孔注入層はトリフェニルアミンあるいはその類縁骨格を含有する正孔輸送材料からなる正孔輸送層に対し、その接触界面を酸化してドーピング層を形成することが可能であり、それにより有機EL素子の駆動電圧低下に寄与しうることがわかる。
These absorption peaks do not exist in the triphenylamine dimer-only thin film and the phosphomolybdic acid-only thin film, and it is considered that this absorption peak is derived from the cation or dication of the triphenylamine dimer. In addition, about the cation production | generation of a triarylamine-type material, the research using (alpha) -NPD is performed well, and in a cation, an absorption peak generate | occur | produces in 490 nm and 1330 nm, and it originates in a dication by increasing the oxidizing agent to act. It has been found that absorption peaks shift to 610 nm and 810 nm.
From the above results, it can be seen that phosphomolybdic acid has an oxidizability to triphenylamine dimer. Therefore, a hole injection layer made of phosphomolybdic acid forms a doping layer by oxidizing the contact interface with a hole transport layer made of a hole transport material containing triphenylamine or an analogous skeleton thereof. It can be seen that this can contribute to a decrease in driving voltage of the organic EL element.

[比較例9]
実施例5におけるリンモリブデン酸をジノニルナフタレンジスルホン酸(Aldrich製)に変更した以外は、同様にして電荷輸送性薄膜を形成した。得られた薄膜のUV−VISスペクトルを測定したところ、それぞれの単体膜で得られる吸収ピーク以外の新たな吸収ピークは発生しなかった。5−スルホサチリル酸はトリフェニルアミン2量体に対する酸化性を有していないことがわかる。
[Comparative Example 9]
A charge transporting thin film was formed in the same manner except that the phosphomolybdic acid in Example 5 was changed to dinonylnaphthalenedisulfonic acid (manufactured by Aldrich). When the UV-VIS spectrum of the obtained thin film was measured, no new absorption peak other than the absorption peak obtained in each single film was generated. It can be seen that 5-sulfosaticylic acid does not have oxidizability for triphenylamine dimer.

Claims (4)

ヘテロポリ酸化合物からなる、有機エレクトロルミネッセンス素子用の電子受容性ドーパント。   An electron-accepting dopant for an organic electroluminescence device, comprising a heteropolyacid compound. 前記ヘテロポリ酸化合物が、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、リンタングストモリブデン酸またはケイタングステン酸である請求項1記載の電子受容性ドーパント。   The electron-accepting dopant according to claim 1, wherein the heteropolyacid compound is phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, phosphotungstomolybdic acid or silicotungstic acid. 有機エレクトロルミネッセンス素子の正孔注入層用または正孔輸送層用である請求項1又は2記載の電子受容性ドーパント。   The electron-accepting dopant according to claim 1 or 2, which is used for a hole injection layer or a hole transport layer of an organic electroluminescence element. 有機エレクトロルミネッセンス素子の正孔注入層用である請求項3記載の電子受容性ドーパント。   The electron-accepting dopant according to claim 3, which is used for a hole injection layer of an organic electroluminescence element.
JP2015054766A 2008-11-19 2015-03-18 Electron-accepting dopant for organic electroluminescent element Pending JP2015146438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015054766A JP2015146438A (en) 2008-11-19 2015-03-18 Electron-accepting dopant for organic electroluminescent element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008295909 2008-11-19
JP2008295909 2008-11-19
JP2015054766A JP2015146438A (en) 2008-11-19 2015-03-18 Electron-accepting dopant for organic electroluminescent element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014018323A Division JP5729496B2 (en) 2008-11-19 2014-02-03 Charge transport material

Publications (1)

Publication Number Publication Date
JP2015146438A true JP2015146438A (en) 2015-08-13

Family

ID=42198216

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010539232A Active JP5488473B2 (en) 2008-11-19 2009-11-18 Charge transport varnish
JP2014018323A Active JP5729496B2 (en) 2008-11-19 2014-02-03 Charge transport material
JP2015054766A Pending JP2015146438A (en) 2008-11-19 2015-03-18 Electron-accepting dopant for organic electroluminescent element

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2010539232A Active JP5488473B2 (en) 2008-11-19 2009-11-18 Charge transport varnish
JP2014018323A Active JP5729496B2 (en) 2008-11-19 2014-02-03 Charge transport material

Country Status (3)

Country Link
JP (3) JP5488473B2 (en)
TW (1) TWI492999B (en)
WO (1) WO2010058777A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7072792B2 (en) 2017-12-11 2022-05-23 国立大学法人神戸大学 Bispecific antibody

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058777A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge transporting material and charge transporting varnish
JP5760334B2 (en) 2009-06-19 2015-08-05 大日本印刷株式会社 Organic electronic device and manufacturing method thereof
JP6086131B2 (en) * 2009-06-19 2017-03-01 大日本印刷株式会社 Organic electronic device and manufacturing method thereof
GB201111742D0 (en) * 2011-07-08 2011-08-24 Cambridge Display Tech Ltd Solution
WO2013042623A1 (en) * 2011-09-21 2013-03-28 日産化学工業株式会社 Charge-transporting varnish
EP2789668B1 (en) 2011-12-05 2018-03-28 Nissan Chemical Industries, Ltd. Composition for forming antistatic film and oligomer compound
JP6106917B2 (en) * 2011-12-20 2017-04-05 セイコーエプソン株式会社 Film forming ink, film forming method, and light emitting element manufacturing method
US10233337B2 (en) 2012-03-02 2019-03-19 Nissan Chemical Industries, Ltd. Charge-transporting varnish
CN104956511B (en) * 2013-01-28 2018-10-30 日产化学工业株式会社 Charge-transporting varnish
WO2014119782A1 (en) * 2013-02-04 2014-08-07 日産化学工業株式会社 Buffer layer for organic thin film solar cells, and organic thin film solar cell
KR102212771B1 (en) 2013-02-26 2021-02-05 닛산 가가쿠 가부시키가이샤 Charge-transporting varnish
WO2014132917A1 (en) * 2013-02-28 2014-09-04 日産化学工業株式会社 Charge-transporting varnish
CN105074949B (en) * 2013-03-11 2018-04-10 日产化学工业株式会社 Charge-transporting varnish
JP6004083B2 (en) * 2013-03-18 2016-10-05 日産化学工業株式会社 Charge transport varnish
CN105122493A (en) * 2013-04-16 2015-12-02 日产化学工业株式会社 Hole transporting varnish for metal positive electrodes and composite metal positive electrode
KR102219003B1 (en) 2013-05-17 2021-02-23 닛산 가가쿠 가부시키가이샤 Charge-transporting varnish
WO2014188998A1 (en) 2013-05-20 2014-11-27 日産化学工業株式会社 Triphenylamine derivative and use therefor
WO2014203818A1 (en) 2013-06-18 2014-12-24 日産化学工業株式会社 Thiophene derivative, use thereof, and production method of thiophene derivative
US10164196B2 (en) * 2013-06-21 2018-12-25 Nissan Chemical Industries, Ltd. Aniline derivative, charge-transporting varnish and organic electroluminescent device
WO2015050057A1 (en) * 2013-10-01 2015-04-09 日産化学工業株式会社 Charge-transporting varnish
TWI630193B (en) * 2013-10-04 2018-07-21 日產化學工業股份有限公司 Charge-transporting varnish, charge-transporting film, organic electroluminescence element, and method for manufacturing charge-transporting film
CN104513512B (en) * 2013-10-04 2018-10-09 日产化学工业株式会社 Charge-transporting varnish, charge-transporting film and organic electroluminescent device
TWI614249B (en) 2013-10-04 2018-02-11 Nissan Chemical Ind Ltd Charge transport varnish, charge transporting film and organic electroluminescent element
WO2015050253A1 (en) 2013-10-04 2015-04-09 日産化学工業株式会社 Aniline derivatives and uses thereof
EP3056484A4 (en) * 2013-10-09 2017-07-05 Nissan Chemical Industries, Ltd. Arylsulfonic acid compound, use thereof, and method for producing arylsulfonic acid compound
US10020449B2 (en) 2013-12-09 2018-07-10 Nissan Chemical Industries, Ltd. Composition for anode buffer layer of organic thin film solar cell and organic thin film solar cell
JP6433128B2 (en) * 2014-02-13 2018-12-05 国立大学法人山形大学 Organic electroluminescence device
EP3118190A4 (en) * 2014-03-14 2017-11-08 Nissan Chemical Industries, Ltd. Aniline derivative and use thereof
JP6551395B2 (en) * 2014-03-14 2019-07-31 日産化学株式会社 Aniline derivative and use thereof
JP6597597B2 (en) 2014-03-14 2019-10-30 日産化学株式会社 Aniline derivatives and uses thereof
KR102344149B1 (en) * 2014-03-27 2021-12-28 닛산 가가쿠 가부시키가이샤 Triarylamine derivative and use of same
CN106133075B (en) * 2014-03-27 2019-06-11 日产化学工业株式会社 Charge-transporting varnish
US20170133589A1 (en) 2014-03-28 2017-05-11 Nissan Chemical Industries, Ltd. Fluorene derivative and use thereof
JPWO2015182667A1 (en) * 2014-05-30 2017-04-20 日産化学工業株式会社 Thin film flattening method, flattened thin film forming method, and varnish for thin film formation
US11018303B2 (en) 2014-06-05 2021-05-25 Nissan Chemical Industries, Ltd. Charge-transporting varnish
TWI718099B (en) 2014-07-11 2021-02-11 日商日產化學工業股份有限公司 Charge-transporting varnish and manufacturing method of charge-transporting film
CN106575709B (en) 2014-07-23 2020-01-07 日产化学工业株式会社 Charge-transporting material
WO2016013556A1 (en) * 2014-07-24 2016-01-28 日産化学工業株式会社 Charge-transporting material
WO2016039360A1 (en) * 2014-09-10 2016-03-17 日産化学工業株式会社 Charge-transporting varnish
EP3249710B1 (en) * 2015-01-21 2019-11-13 Nissan Chemical Corporation Charge-transporting varnish, charge-transporting film, and organic electroluminescent element
KR102635397B1 (en) 2015-02-24 2024-02-08 닛산 가가쿠 가부시키가이샤 Aniline derivatives and their uses
KR102543967B1 (en) * 2015-03-13 2023-06-15 닛산 가가쿠 가부시키가이샤 A composition for forming a charge-transporting thin film for organic electroluminescent devices, a charge-transporting thin film for organic electroluminescent devices, and an organic electroluminescent device
WO2016148184A1 (en) 2015-03-17 2016-09-22 日産化学工業株式会社 Composition for forming hole collecting layer of photosensor element, and photosensor element
KR102355334B1 (en) 2015-04-22 2022-01-24 닛산 가가쿠 가부시키가이샤 Method for producing charge-transporting film, charge-transporting film, organic electroluminescence element, method for producing organic electroluminescence element, and method for improving charge transport properties of charge-transporting film
EP3306692B1 (en) 2015-05-27 2020-03-11 Nissan Chemical Corporation Charge-transporting varnish, and organic electroluminescent element
WO2017036572A1 (en) * 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
KR20180101510A (en) 2016-01-14 2018-09-12 닛산 가가쿠 가부시키가이샤 Fluorine atom-containing compounds and their use
CN108886099B (en) 2016-02-03 2022-05-10 日产化学株式会社 Charge-transporting varnish
KR102656454B1 (en) 2016-03-03 2024-04-12 닛산 가가쿠 가부시키가이샤 Charge-transporting varnish
US20190084920A1 (en) 2016-03-24 2019-03-21 Nissan Chemical Corporation Arylamine derivative and use thereof
CN110073509A (en) 2016-12-16 2019-07-30 日产化学株式会社 The hole trapping layer composition of organic photoelectric converter
US20190359832A1 (en) * 2017-01-18 2019-11-28 Nissan Chemical Corporation Charge transporting varnish and charge transporting thin film using the same
WO2018147204A1 (en) 2017-02-07 2018-08-16 日産化学工業株式会社 Charge transporting varnish
KR102476004B1 (en) 2017-03-24 2022-12-09 닛산 가가쿠 가부시키가이샤 Fluorine atom-containing polymer and use thereof
EP3608983A4 (en) 2017-04-05 2021-01-13 Nissan Chemical Corporation Charge-transporting varnish
CN110692145A (en) * 2017-05-25 2020-01-14 日产化学株式会社 Method for producing charge-transporting thin film
BR112020011922A2 (en) 2017-12-15 2020-11-24 Nissan Chemical Corporation orifice collection layer composition for organic photoelectric conversion element
US20210078934A1 (en) 2017-12-20 2021-03-18 Nissan Chemical Corporation Charge-transporting varnish
KR20200132914A (en) 2018-03-15 2020-11-25 닛산 가가쿠 가부시키가이샤 Charge transport composition
WO2019177043A1 (en) 2018-03-16 2019-09-19 日産化学株式会社 Aniline derivative and use thereof
US20210159421A1 (en) 2018-07-05 2021-05-27 Nissan Chemical Corporation Composition for forming charge-transporting thin film
US20210296588A1 (en) 2018-07-24 2021-09-23 Nissan Chemical Corporation Charge transporting composition
TW202033680A (en) * 2018-09-17 2020-09-16 天光材料科技股份有限公司 Polymer-polyoxometalate composite ink and application thereof
US20230200203A1 (en) 2020-06-02 2023-06-22 Nissan Chemical Corporation Composition for hole collecting layer of organic photoelectric conversion element
WO2023008176A1 (en) 2021-07-26 2023-02-02 日産化学株式会社 Fluorinated arylsulfonate polymer compound and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085713A (en) * 1999-09-14 2001-03-30 Fuji Photo Film Co Ltd Photoelectric transducer and solar battery
JP2005294072A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor element
JP2005353318A (en) * 2004-06-08 2005-12-22 Mitsubishi Electric Corp Dye sensitized solar battery
WO2006090838A1 (en) * 2005-02-25 2006-08-31 Nissan Motor Co., Ltd. Organic electroluminescent element and method for manufacturing same
WO2007028733A1 (en) * 2005-09-05 2007-03-15 Siemens Aktiengesellschaft Novel materials for improving the hole injection in organic electronic devices and use of the material
JP2008108680A (en) * 2006-10-27 2008-05-08 Fuji Electric Holdings Co Ltd Manufacturing method of organic el element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625598B1 (en) * 1987-12-30 1990-05-04 Commissariat Energie Atomique ELECTRONIC CONDUCTIVE POLYMERS DOPED BY HETEROPOLYANIONS, PROCESS FOR THEIR PREPARATION AND THEIR USE IN CHEMICAL AND ELECTROCHEMICAL CATALYSIS
JP2001094130A (en) * 1999-09-21 2001-04-06 Fuji Photo Film Co Ltd Photoelectric conversion element, solar cell and novel oligopyrol compound
JP4565730B2 (en) * 2000-10-23 2010-10-20 日本カーリット株式会社 Solid capacitor and manufacturing method thereof
KR101062235B1 (en) * 2002-11-07 2011-09-05 닛산 가가쿠 고교 가부시키 가이샤 Charge transport varnish
TW200502277A (en) * 2003-05-20 2005-01-16 Nissan Chemical Ind Ltd Charge-transporting varnish
KR101413129B1 (en) * 2005-10-28 2014-07-01 닛산 가가쿠 고교 가부시키 가이샤 Charge-transporting varnish for spray or inkjet application
JP2007250466A (en) * 2006-03-17 2007-09-27 Japan Carlit Co Ltd:The Conductive polymer coating material and metal coating method
US20070224244A1 (en) * 2006-03-22 2007-09-27 Jan Weber Corrosion resistant coatings for biodegradable metallic implants
US7842733B2 (en) * 2006-09-11 2010-11-30 Advent Technologies Sa Aromatic polyether copolymers and polymer blends and fuel cells comprising same
KR101493435B1 (en) * 2006-09-13 2015-02-13 닛산 가가쿠 고교 가부시키 가이샤 Oligoaniline compounds
US20080071340A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Scimed, Inc. Implantable electrodes with polyoxometalates
US8298444B2 (en) * 2007-04-12 2012-10-30 Nissan Chemical Industries, Ltd. Oligoaniline compound
WO2010058776A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge-transporting material and charge-transporting varnish
WO2010058777A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge transporting material and charge transporting varnish

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085713A (en) * 1999-09-14 2001-03-30 Fuji Photo Film Co Ltd Photoelectric transducer and solar battery
JP2005294072A (en) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd Organic semiconductor element
JP2005353318A (en) * 2004-06-08 2005-12-22 Mitsubishi Electric Corp Dye sensitized solar battery
WO2006090838A1 (en) * 2005-02-25 2006-08-31 Nissan Motor Co., Ltd. Organic electroluminescent element and method for manufacturing same
WO2007028733A1 (en) * 2005-09-05 2007-03-15 Siemens Aktiengesellschaft Novel materials for improving the hole injection in organic electronic devices and use of the material
JP2008108680A (en) * 2006-10-27 2008-05-08 Fuji Electric Holdings Co Ltd Manufacturing method of organic el element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7072792B2 (en) 2017-12-11 2022-05-23 国立大学法人神戸大学 Bispecific antibody

Also Published As

Publication number Publication date
JP5729496B2 (en) 2015-06-03
JP2014131057A (en) 2014-07-10
JPWO2010058777A1 (en) 2012-04-19
TW201024385A (en) 2010-07-01
TWI492999B (en) 2015-07-21
WO2010058777A1 (en) 2010-05-27
JP5488473B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5729496B2 (en) Charge transport material
JP5617640B2 (en) Hole or electron transport thin film varnish
JP6519617B2 (en) Charge transporting varnish
JP5720709B2 (en) Charge transport varnish for spray coating
JP4591681B2 (en) Charge transport varnish
JP5262717B2 (en) Charge transport varnish
JP5446267B2 (en) Oligoaniline compounds and uses thereof
JP5196175B2 (en) Charge transport varnish
JP5024498B2 (en) Charge transporting varnish, charge transporting thin film, and organic electroluminescence device
US20070205400A1 (en) Varnish Containing Good Solvent And Poor Solvent
WO2018135580A1 (en) Charge-transporting varnish and charge-transporting thin film
JP4561997B2 (en) Charge transport varnish
JP2010123930A (en) Charge transporting material and charge transporting varnish

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160803