[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015018906A - 撮像素子、製造装置、製造方法、電子機器 - Google Patents

撮像素子、製造装置、製造方法、電子機器 Download PDF

Info

Publication number
JP2015018906A
JP2015018906A JP2013144502A JP2013144502A JP2015018906A JP 2015018906 A JP2015018906 A JP 2015018906A JP 2013144502 A JP2013144502 A JP 2013144502A JP 2013144502 A JP2013144502 A JP 2013144502A JP 2015018906 A JP2015018906 A JP 2015018906A
Authority
JP
Japan
Prior art keywords
refractive index
semiconductor substrate
photoelectric conversion
region
conversion unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013144502A
Other languages
English (en)
Inventor
池田 晴美
Harumi Ikeda
晴美 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2013144502A priority Critical patent/JP2015018906A/ja
Priority to CN201410314809.1A priority patent/CN104282706B/zh
Priority to US14/323,518 priority patent/US9356063B2/en
Publication of JP2015018906A publication Critical patent/JP2015018906A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • H01L27/14627
    • H01L27/14621
    • H01L27/14623
    • H01L27/14625
    • H01L27/1464
    • H01L27/14685

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】反射光による影響を低減させる。
【解決手段】受光した光を電荷に変換する光電変換部と、光電変換部を含む半導体基板とを備え、半導体基板の光が入射する面と光電変換部との間に、半導体基板の屈折率とは異なる屈折率を有する領域が多数形成されている。この領域は、半導体基板に光が入射する面に近い深さでは面積が大きく、面から遠い深さでは面積が小さくなる形状で形成されている。本技術は、撮像素子や撮像素子を含む電子機器に適用できる。
【選択図】図19

Description

本技術は、撮像素子、製造装置、製造方法、電子機器に関する。詳しくは、感度を向上させ、反射光によるゴーストを抑制することができる撮像素子、製造装置、製造方法、電子機器に関する。
固体撮像装置は、半導体基板の表面に、各受光セルとしてフォトダイオードのような光電変換部が複数個、例えば2次元状(マトリクス状)に配列形成されている。そして、それら個々の光電変換部に光が入射すると、その光に対応して信号電荷が発生し、その信号電荷が転送電極によって映像信号として読み出されるように構成されている。
このような構成の固体撮像装置では、光電変換部の表面と、その光電変換部の表面上に設けられた酸化膜との界面での光の反射に起因して、外部から光電変換部へと入射する光の損失が大きくなる。そのため、光電変換部の受光量が少なくなってしまい、光電変換部における充分な感度を得ることができない可能性があった。
そこで、特許文献1では、光電変換部の基板と絶縁膜との界面に、基板の厚さ方向に凹凸形状を有した部分を形成することで、光電変換部における感度を向上させることが提案されている。
特開2005−72097号公報
上記したように、固体撮像装置において光の反射が生じると、感度が劣化してしまう可能性がある。また、反射した光によるゴーストが発生する可能性もある。そこで、特許文献1のように、光の反射を抑制する手段としてモスアイ構造(表面凹凸構造)が提案されている。しかしながら、凹凸構造とすることで、その後の保護膜形成やカラーフィルタ膜形成でムラや剥がれが生じ、撮像素子の性能を落とす可能性や、歩留まりを低下させるという可能性があった。
本技術は、このような状況に鑑みてなされたものであり、撮像素子の感度を向上させ、反射光によるゴーストを抑制することができるようにするものである。
本技術の一側面の撮像素子は、受光した光を電荷に変換する光電変換部と、前記光電変換部を含む半導体基板とを備え、前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域が多数形成されている。
前記領域は、前記半導体基板に光が入射する面に近い深さでは面積が大きく、前記面から遠い深さでは面積が小さくなる形状で形成されているようにすることができる。
前記領域は、錐形であるようにすることができる。
前記半導体基板上の膜の屈折率を屈折率n1、前記半導体基板の屈折率を屈折率n2、前記領域の屈折率を屈折率n3としたとき、屈折率n1<屈折率n3<屈折率n2の関係が満たされるようにすることができる。
前記半導体基板は、シリコンであるようにすることができる。
前記領域は、非晶質シリコン、SiC、Si3N3、またはSiO2のいずれかを含むようにすることができる。
前記半導体基板上には、酸化膜、または窒化膜が形成されるようにすることができる。
前記領域は、直径100nm乃至300nm、最も深い位置は400nm以下であり、最も深い位置のホール濃度は1E16/cm3以上であるようにすることができる。
前記領域は、前記光電変換部が受光する光の波長に応じて、異なる大きさで形成されているようにすることができる。
前記領域は、テーパーを有するレジストマスク、またはハードマスクが用いられてイオン注入され、レーザーアニールで形成されるようにすることができる。
本技術の一側面の製造装置は、受光した光を電荷に変換する光電変換部と、前記光電変換部を含む半導体基板とを備える撮像素子を製造する製造装置において、前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域を多数形成する。
前記領域は、テーパーを有するレジストマスク、またはハードマスクを用いてイオン注入し、レーザーアニールで形成するようにすることができる。
本技術の一側面の製造方法は、受光した光を電荷に変換する光電変換部と、前記光電変換部を含む半導体基板とを備える撮像素子を製造する製造装置の製造方法において、前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域を多数形成するステップを含む。
本技術の一側面の電子機器は、受光した光を電荷に変換する光電変換部と、前記光電変換部を含む半導体基板であり、前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域が多数形成された半導体基板と、前記光電変換部に入射光を導く光学部と、前記光電変換部からの出力信号を処理する信号処理部とを備える。
本技術の一側面の撮像素子においては、受光した光を電荷に変換する光電変換部と、光電変換部を含む半導体基板とが含まれ、半導体基板の光が入射する面と光電変換部との間に、半導体基板の屈折率とは異なる屈折率を有する領域が多数形成されている。
本技術の一側面の製造装置、製造方法においては、前記撮像素子が製造される。
本技術の一側面の電子機器は、前記撮像素子を含む構成とされている。
本技術の一側面によれば、撮像素子の感度を向上させ、反射光によるゴーストを抑制することが可能となる。
撮像装置の構成を示す図である。 固体撮像素子の構成を示す図である。 半導体パッケージの構成を示す図である。 屈折率の違いによる反射について説明するための図である。 屈折率の違いによる反射について説明するための図である。 半導体パッケージの製造について説明するためのフローチャートである。 半導体パッケージの製造について説明するためのフローチャートである。 領域の第1の作成について説明するためのフローチャートである。 領域の第2の作成について説明するためのフローチャートである。 製造される画素一部分について説明するための図である。 製造される画素一部分について説明するための図である。 製造される画素一部分について説明するための図である。 製造される画素一部分について説明するための図である。 フォトレジストの大きさや配置について説明するための図である。 フォトレジストの形成について説明するための図である。 製造される画素一部分について説明するための図である。 フォトレジストの大きさや配置について説明するための図である。 フォトレジストの形成について説明するための図である。 製造される画素一部分について説明するための図である。 ダミー層と微小粒子の配置について説明するための図である。 ダミー層と微小粒子の配置について説明するための図である。 マスクの形成について説明するため図である。 製造される画素一部分について説明するための図である。 製造される画素一部分について説明するための図である。
以下に、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、説明は、以下の順序で行う。
1.撮像装置の構成について
2.撮像素子の構成について
3.屈折率の異なる領域について
4.製造について
5.領域の第1の作成工程について
6.領域の第2の作成工程について
<撮像機器の構成>
以下に説明する本技術は、デジタルスチルカメラやビデオカメラ等の撮像装置や、携帯電話機などの撮像機能を有する携帯端末装置や、画像読取部に撮像装置を用いる複写機など、画像取込部(光電変換部)に半導体パッケージを用いる電子機器全般に対して適用可能である。
図1は、本技術に係る電子機器、例えば撮像装置の構成の一例を示すブロック図である。図1に示すように、本技術に係る撮像装置10は、レンズ群21等を含む光学系、固体撮像素子(撮像デバイス)22、DSP(Digital Signal Processor)回路23、フレームメモリ24、表示部25、記録部26、操作部27及び電源部28等を有する。そして、DSP回路23、フレームメモリ24、表示部25、記録部26、操作部27および電源部28がバスライン29を介して相互に接続されている。
レンズ群21は、被写体からの入射光(像光)を取り込んで固体撮像素子22の撮像面上に結像する。固体撮像素子22は、レンズ群21によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。
DSP回路23は、固体撮像素子22からの信号を処理する。例えば、詳細は後述するが、固体撮像素子22には、焦点を検出するための画素があり、そのような画素からの信号を処理し、焦点を検出する処理を行う。また、固体撮像素子22には、撮影された被写体の画像を構築するための画素があり、そのような画素からの信号を処理し、フレームメモリ24に展開するといった処理も行う。
表示部25は、液晶表示装置や有機EL(electro luminescence)表示装置等のパネル型表示装置からなり、固体撮像素子22で撮像された動画または静止画を表示する。記録部26は、固体撮像素子22で撮像された動画または静止画を、ビデオテープやDVD(Digital Versatile Disk)等の記録媒体に記録する。
操作部27は、ユーザによる操作の下に、本撮像装置が持つ様々な機能について操作指令を発する。電源部28は、DSP回路23、フレームメモリ24、表示部25、記録部26及び操作部27の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
<撮像素子の構成について>
図2は、固体撮像素子22の構成を示す図であり、例えばX−Yアドレス方式撮像装置の一種であるCMOSイメージセンサの構成の概略を示すシステム構成図である。ここで、CMOSイメージセンサとは、CMOSプロセスを応用して、または、部分的に使用して作成されたイメージセンサである。
図2のCMOSイメージセンサ100は、図示せぬ半導体基板上に形成された画素アレイ部111と、当該画素アレイ部111と同じ半導体基板上に集積された周辺回路部とを有する構成となっている。周辺回路部は、例えば、垂直駆動部112、カラム処理部113、水平駆動部114及びシステム制御部115から構成されている。
CMOSイメージセンサ100は更に、信号処理部118及びデータ格納部119を備えている。信号処理部118及びデータ格納部119については、本CMOSイメージセンサ100と同じ基板上に搭載しても構わないし、本CMOSイメージセンサ100とは別の基板上に配置するようにしても構わない。また、信号処理部118及びデータ格納部119の各処理については、本CMOSイメージセンサ100とは別の基板に設けられる外部信号処理部、例えば、DSP(Digital Signal Processor)回路やソフトウエアによる処理でも構わない。
画素アレイ部111は、受光した光量に応じた光電荷を生成しかつ蓄積する光電変換部を有する単位画素(以下、単に「画素」と記述する場合もある)が行方向及び列方向に、即ち、行列状に2次元配置された構成となっている。ここで、行方向とは画素行の画素の配列方向(即ち、水平方向)を言い、列方向とは画素列の画素の配列方向(即ち、垂直方向)を言う。
画素アレイ部111において、行列状の画素配列に対して、画素行ごとに画素駆動線116が行方向に沿って配線され、画素列ごとに垂直信号線117が列方向に沿って配線されている。画素駆動線116は、画素から信号を読み出す際の駆動を行うための駆動信号を伝送する。図1では、画素駆動線116について1本の配線として示しているが、1本に限られるものではない。画素駆動線116の一端は、垂直駆動部112の各行に対応した出力端に接続されている。
垂直駆動部112は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部111の各画素を全画素同時あるいは行単位等で駆動する。すなわち、垂直駆動部112は、当該垂直駆動部112を制御するシステム制御部115と共に、画素アレイ部111の各画素を駆動する駆動部を構成している。この垂直駆動部112はその具体的な構成については図示を省略するが、一般的に、読出し走査系と掃出し走査系の2つの走査系を有する構成となっている。
読出し走査系は、単位画素から信号を読み出すために、画素アレイ部111の単位画素を行単位で順に選択走査する。単位画素から読み出される信号はアナログ信号である。掃出し走査系は、読出し走査系によって読出し走査が行われる読出し行に対して、その読出し走査よりもシャッタスピードの時間分だけ先行して掃出し走査を行う。
この掃出し走査系による掃出し走査により、読出し行の単位画素の光電変換部から不要な電荷が掃き出されることによって当該光電変換部がリセットされる。そして、この掃出し走査系による不要電荷の掃き出す(リセットする)ことにより、所謂電子シャッタ動作が行われる。ここで、電子シャッタ動作とは、光電変換部の光電荷を捨てて、新たに露光を開始する(光電荷の蓄積を開始する)動作のことを言う。
読出し走査系による読出し動作によって読み出される信号は、その直前の読出し動作または電子シャッタ動作以降に受光した光量に対応するものである。そして、直前の読出し動作による読出しタイミングまたは電子シャッタ動作による掃出しタイミングから、今回の読出し動作による読出しタイミングまでの期間が、単位画素における光電荷の露光期間となる。
垂直駆動部112によって選択走査された画素行の各単位画素から出力される信号は、画素列ごとに垂直信号線117の各々を通してカラム処理部13に入力される。カラム処理部113は、画素アレイ部111の画素列ごとに、選択行の各画素から垂直信号線117を通して出力される信号に対して所定の信号処理を行うとともに、信号処理後の画素信号を一時的に保持する。
具体的には、カラム処理部113は、信号処理として少なくとも、ノイズ除去処理、例えばCDS(Correlated Double Sampling;相関二重サンプリング)処理を行う。このカラム処理部113によるCDS処理により、リセットノイズや画素内の増幅トランジスタの閾値ばらつき等の画素固有の固定パターンノイズが除去される。カラム処理部113にノイズ除去処理以外に、例えば、AD(アナログ−デジタル)変換機能を持たせ、アナログの画素信号をデジタル信号に変換して出力することも可能である。
水平駆動部114は、シフトレジスタやアドレスデコーダなどによって構成され、カラム処理部113の画素列に対応する単位回路を順番に選択する。この水平駆動部114による選択走査により、カラム処理部113において単位回路ごとに信号処理された画素信号が順番に出力される。
システム制御部115は、各種のタイミング信号を生成するタイミングジェネレータなどによって構成され、当該タイミングジェネレータで生成された各種のタイミングを基に、垂直駆動部112、カラム処理部113、及び、水平駆動部114などの駆動制御を行う。
信号処理部118は、少なくとも演算処理機能を有し、カラム処理部113から出力される画素信号に対して演算処理等の種々の信号処理を行う。データ格納部119は、信号処理部118での信号処理に当たって、その処理に必要なデータを一時的に格納する。
図3は、本技術が適用される撮像装置である図2のCMOSイメージセンサ100を構成する半導体パッケージの基本的な構成を模式的に示す断面図である。図3の半導体パッケージ200は、裏面照射型のCMOSイメージセンサを構成している。
また後述するように、フォトダイオード214が設けられているシリコン面内には、屈折率が異なる領域が存在するが、図3に示した半導体パッケージ200では、そのような領域を図示していない。また、以下に説明する図3に示した構成は一例であり、他の構成、例えば、以下に説明する各層だけでなく、他の層が追加されたり、または以下に説明する層のうちのいずれかの層が削除されたりするような構成であっても、以下に説明する本技術は適用できる。また、シリコン基板213は光電変換機能を有する他の半導体基板であってもかまわない。
図3に示した有効画素領域内の半導体パッケージ200においては、支持基板211の上に、絶縁層と金属からなる配線層212が配置され、配線層212の上にシリコン基板213が配置されている。支持基板211は、シリコン、ガラスエポキシ、ガラス、プラスチックなどが用いられる。シリコン基板213には、各画素の光電変換部としての複数のフォトダイオード214(光学素子)が、所定の間隔で形成されている。
シリコン基板213及びフォトダイオード214の上には、絶縁物からなる保護膜215が形成されている。保護膜215の上には、隣接する画素への光の漏れ込みを防止するための遮光膜216が、隣接するフォトダイオード214の間に形成されている。
保護膜215及び遮光膜216の上には、カラーフィルタを形成する領域を平坦化するための平坦化膜217が形成されている。平坦化膜217の上には、カラーフィルタ層218が形成されている。カラーフィルタ層218には、複数のカラーフィルタが画素毎に設けられており、各カラーフィルタの色は、例えば、ベイヤ配列に従って並べられている。
カラーフィルタ層218の上には、第1の有機材料層219が形成されている。この第1の有機材料層219は、アクリル系樹脂材料、スチレン系樹脂材料、エポキシ系樹脂材料などが用いられる。第1の有機材料層219の上には、マイクロレンズ220が形成されている。このように、フォトダイオード214を備える複数の層を有する基板上に、マイクロレンズ220が設けられる。マイクロレンズ220には、各画素のフォトダイオード214に光を集めるためのマイクロレンズが画素毎に形成されている。マイクロレンズ220は、無機材料層であり、SiN、SiO、SiOxNy(ただし、0<x≦1、0<y≦1である)が用いられる。
マイクロレンズ220上部には、カバーガラス221が第2の有機材料層222を介して接着されている。カバーガラス221は、ガラスに限らず、樹脂などの透明板が用いられても良い。マイクロレンズ220とカバーガラス221との間に、水分や不純物の浸入を防止するための保護膜が形成されてもよい。第2の有機材料層222は、第1の有機材料層219と同じく、アクリル系樹脂材料、スチレン系樹脂材料、エポキシ系樹脂材料などが用いられる。
<屈折率の異なる領域について>
フォトダイオード214が設けられているシリコン基板213のうち保護膜215と接する領域には、屈折率の異なる領域が存在する。図4Aは、フォトダイオード214が設けられているシリコン基板213と、シリコン基板213上に設けられている保護膜215を図示している。シリコン基板213は、屈折率が屈折率n2であり、保護膜215は、屈折率が屈折率n1である。例えば、保護膜215が酸化膜である場合、屈折率n1は、1.6〜2.1の値となる。また例えば、シリコン基板213の屈折率n2は、3.4〜4.2の値となる。
屈折率n1の保護膜215から、屈折率n2のシリコン基板213に、光は入射する。屈折率n1と屈折率n2のように、異なる屈折率を有する一方の材質から他方の材質に光が進む際、その光の一部は反射される。よって、この場合、シリコン基板213(シリコン基板213に設けられているフォトダイオード214)に入射される光の光量が少なくなり、フォトダイオード214の感度が低下してしまう可能性がある。
図4Bは、横軸に屈折率、縦軸に深さを表した図である。図中、実線は、理想的な屈折率の変化を表す。保護膜215中は、屈折率n1であり、シリコン基板213中は、屈折率n2である。屈折率n1から屈折率n2には、徐々に変化するのが理想的な変化であり、その変化を実線で示した。しかしながら、図中、点線で示すように、シリコン基板213と保護膜215の境界上で、屈折率は、屈折率n1から屈折率n2に急激に変化している。
シリコン基板213と保護膜215の境界上での屈折率の差分Aが大きいと、シリコン基板213と保護膜215との境界上での反射に影響する。換言すれば、差分A、この場合、屈折率n1と屈折率n2の差分Aは小さいのが好ましい。
そこで、屈折率n1から屈折率n2に徐々に変化するような理想的な変化に近づけるために、図5Aに示すような領域301をシリコン基板213内に設ける。領域301は、光電変換部としてのフォトダイオード214(図5では不図示)と、シリコン基板213の光が入射する側の面(保護膜215が設けられている面)との間に多数設けられている。
領域301の屈折率は、屈折率n3であり、
屈折率n1<屈折率n3<屈折率n2
の関係を満たす値である。保護膜215が酸化膜である場合、
屈折率n1(1.6〜2.1)<屈折率n3<屈折率n2(3.4〜4.2)
を満たす値となる。
図5Bは、図4Bと同じく、横軸に屈折率、縦軸に深さを表した図である。図中、実線は、理想的な屈折率の変化を表す。図5Aに示した構成の場合、図5B中に点線で表したように、保護膜215中は、屈折率n1であり、シリコン基板213中は、屈折率n3から屈折率n2に徐々に変化する。屈折率n1から屈折率n2には、徐々に変化するのが理想的な変化であり、その変化を実線で示したが、屈折率n3の領域301を設けることで、実線に近い変化になることがわかる。
シリコン基板213と保護膜215の境界上で、屈折率は、屈折率n1から屈折率n3に変化し、シリコン基板213内で屈折率n3から屈折率n2に変化している。シリコン基板213と保護膜215の境界上での屈折率の差分Bは、この場合、屈折率n1と屈折率n3との差分となる。
屈折率n1<屈折率n3<屈折率n2の関係が満たされているため、屈折率n1と屈折率n2の差分Aよりも、屈折率n1と屈折率n3の差分Bの方が小さくなる。シリコン基板213と保護膜215の境界上での屈折率の差分は、シリコン基板213保護膜215との境界上での反射に影響し、小さい値になることが好ましい。よって、領域301をシリコン基板213内に設けることで、差分が小さくなり、シリコン基板213と保護膜215との境界上での反射への影響を低減できるようになる。
領域301の屈折率n3が屈折率n1となることが好ましく、屈折率n3=屈折率n1である場合、図5Bに実線で示したように、シリコン基板213内で、屈折率n1(屈折率n3)から屈折率n2に徐々に変化するため、シリコン基板213保護膜215との境界上での反射を最も抑制することが可能となる。
図5Aに示したように、領域301は、シリコン基板213内に設けられ、シリコン基板213上に設けられているわけではない。すなわち、シリコン基板213上には凹凸がない状態で保護膜215が設けられている。よって、シリコン基板213上に保護膜215やカラーフィルタ層218を形成する際、シリコン基板213上には凹凸があると発生する可能性があるムラや剥がれが生じるようなことを防ぐことができ、歩留まりを低下させてしまうようなことを防ぐことが可能となる。
図5Aを参照するに、断面で見たとき、領域301は、三角形状で構成されている。底辺が保護膜215側にあり、頂点が配線層212(不図示)側にある。図示はしないが、領域301は、円錐形状で設けられている。領域301の形状は、円錐形状に限定されるわけではなく、他の形状であっても良い。例えば、台形などの所定の形状の回転体の形状とされていても良い。
換言すれば、領域301は、シリコン基板213の光が入射する面(保護膜215が設けられている側の面)に近い深さでは面積が大きく、その面から遠い深さ(フォトダイオード214に近づく方向)では面積が小さくなる形状とされている。
また図5Aでは、領域301が、規則的に配置されている例を示したが、規則的に配置されていなくても良い。換言すれば、領域301は、ランダムに設けられていても良い。また、図5Aでは、領域301の高さは、同一である場合を示したが、異なる高さで設けられても良い。高さだけでなく、底辺(底面)も異なる大きさで設けられるようにしても良い。
すなわち、領域301の個々の形状や大きさ、領域301の配置の場所などは、図5Aに示した例に限定されるわけではなく、変更可能な要素である。
なお、領域301は、シリコン基板213の界面とフォトダイオード214との間に設けられるため、この間に収まる大きさ(高さ)で形成されるのが好ましい。例えば、シリコン基板213の界面とフォトダイオード214との間の距離が、500nmであった場合、領域301の最も深い位置(高さ)は、400nm以下とされる。
領域301の個々の形状や大きさは、シリコン基板213面に入射する光の波長毎に最適化されているように構成することも可能である。例えば、カラーフィルタ層218を透過した光の波長に応じて最適化された領域301の形状や大きさで、領域301が構成されるようにしても良い。カラーフィルタ層218が、RGB(Red、Green、Blue)である場合、R、G、Bの各々のカラーフィルタ層218を透過した光の波長に応じて、領域301の各々が最適化されているように構成することができる。
形状、大きさ、配置の場所については、後述する製造工程において、さらに説明を追加する。また、領域301は、後述するように、テーパーレジストとイオン注入、メタルとレジストマスク、レーザ等を用いて形成される。すなわち、領域301は、一例として、テーパーを有するレジストマスクまたはハードマスクを用いてイオン注入し、レーザーアニールで形成することができる。
領域301がシリコン基板213に設けられ、シリコン基板213上に成膜される保護膜215が酸化膜であり、その酸化膜の屈折率が、1.6〜2.1である場合、シリコン基板213に設けられる微少な屈折率が異なる領域301は、例えば、a-Si、SiO2、SiN、SiCで構成される。
なお保護膜215を窒化膜などで構成することも可能であり、また、保護膜215以外の膜、例えば、さらなる反射を抑制するために反射防止膜を設けた構成とすることも可能である。シリコン基板213上に設けられる膜の屈折率により、領域301の構成は適宜、適切なものに変更可能である。
また後述するように、領域301は、上記したa-Si、SiO2、SiN、SiC以外に、例えば、非晶質シリコンや、Si3N3などを含む構成とすることも可能である。
<製造について>
次に、領域301を有する撮像素子の製造について説明を加える。図6乃至図9のフローチャートを参照して説明する。
図6のステップS11乃至S16の処理において製造される画素の一部分について、先に説明する。図10は、製造される撮像素子を光が入射する側から見たときの撮像素子の一部分の構成を示す図である。ここでは、4画素共有画素構造であり、裏面照射型の撮像素子であり、領域301を有する撮像素子の製造について説明するが、他の構造の撮像素子にも以下に説明する製造方法を適用することはできる。また、製造する撮像素子に合わせて、工程の順番を入れ替えるなどの変更も、本技術の適用範囲である。
4画素共有画素構造とは、隣接する4画素で増幅トランジスタ、選択トランジスタ、リセットトランジスタ、フローティングディフュージョンの少なくとも1つを共有し、各画素にフォトダイオードと転送トランジスタを搭載する構成とされた画素構造である。
図10Aに示した画素は、縦2画素×横2画素で構成される4画素(フォトダイオード214−1乃至214−4)でトランジスタを共有する構成とされている。4画素の中心に、フローティングディフュージョン(図8)の領域が形成され、これを囲むように隣接4画素の転送トランジスタ351−1乃至351−4が配置されている。
図10Aに示した画素には、フォトダイオード214−1乃至214−4で共有して用いられる増幅トランジスタ352と、リセットトランジスタ353が設けられている。フォトダイオード214の周りには、画素分離領域とされている。これらのフォトダイオード214−1乃至214−4の4個の画素で、増幅トランジスタ352、フローティングディフュージョン371(図11)、リセットトランジスタ353を共有した構成とされている。
図10Aに示した画素を断面Aおよび断面Bで切り出したときの断面の構成は、図10Bに示すようになる。フォトダイオード214の周りは、P型のwell層が設けられ、画素分離領域とされている。フォトダイオード214の下側には、酸化膜361とシリコン基板362が設けられている。
このような画素を製造する場合、ステップS11(図6)において、SOI基板がセッティングされる。ここでは、SOI基板を用い、電荷蓄積層をn型として構成する場合を例にあげて説明するが、Bulk基板を用いて、電荷蓄積層をp型に構成する場合などにおいても本技術は適用できる。
ステップS12において、酸化膜361付近のシリコン基板213に、p型領域となるBottom p+層363が形成される。またステップS13において、シリコン基板213の表面(酸化膜361が設けられている面とは逆側の面)付近に、トランジスタのwellが形成される。
p型領域となるBottom p+層363やP-well層の形成は、例えば、ボロンイオン注入と1000℃アニールが用いられて形成される。具体的には、p型領域となるBottom p+層363は、ボロンを2.5MeVで5E12/cm2注入し、濃度が1E16〜1E18/cm3程度となるように形成される。
ステップS14において、n型領域となる電荷蓄積領域が形成される。図10においては、フォトダイオード214に該当する領域である。ステップS15において、p型の画素分離領域が形成される。
n型領域となる電荷蓄積領域は、例えば、リンイオン注入にて形成される。p型領域となる画素分離領域(分離P-Well)は、例えば、ボロンイオン注入と1000℃アニールにて形成される。
ステップS16において、転送トランジスタ351、増幅トランジスタ352、およびリセットトランジスタ353のそれぞれのゲート部分が形成される。これらのトランジスタのゲート部分は、例えば、CVDによるポリシリコン成膜およびリソグラフィのパターニングにて形成される。
このような処理により、図10に示した画素を構成する一部分が形成される。次に、ステップS17乃至S19の処理が行われることで、図11に示す画素を構成する一部分が形成される。
ステップS17において、p型領域となる正孔蓄積領域が形成される。正孔蓄積領域372は、図11Bに示すようにシリコン基板213のフォトダイオード214が位置する部分に形成される。p型領域となる正孔蓄積領域372は、例えば、ボロンイオン注入で形成される。
ステップS18において、n型領域となるフローティングディフュージョン(FD)371が形成され、ステップS19において、増幅トランジスタ352とリセットトランジスタ353のそれぞれのソースとドレイン領域(ND)が形成される。
フローティングディフュージョン371と、増幅トランジスタ352とリセットトランジスタ353のソース・ドレイン領域(ND)は、一例として砒素イオン注入と1100℃の短時間アニールにて形成することができる。
このような処理により図11に示した画素を構成する一部分が形成される。次に、ステップS20乃至S23(図7)の処理が行われることで、図12に示す画素を構成する一部分が形成される。ステップS20において、サリサイドブロック膜が形成され、ステップS21において、層間絶縁膜が形成され、コンタクトプラグが形成される。さらに、ステップS22において、配線層が形成される。
このような工程が実行されることで、図12に示すように、転送トランジスタ351、増幅トランジスタ352、リセットトランジスタ353、フローティングディフュージョン371上に配線層212が形成される。配線層212が形成されることで、転送トランジスタ351、増幅トランジスタ352、リセットトランジスタ353、フローティングディフュージョン371をコントロールし、得られた画素毎の信号を出力させることができる構成とされる。
ステップS23において、平坦化層391と密着層392が形成される。平坦化層391は、配線層212上に形成され、密着層392は、平坦化層391上に形成される。平坦化層391と密着層392は、裏面照射型の構造にするため、支持基板との接合のために形成される。
次に、ステップS24乃至S271の処理が行われることで、図13に示す画素を構成する一部分が形成される。まずステップS24において、支持基板211が張り付けられる。支持基板211は、図13に示すように、密着層392と貼り合わせられる。貼り合わせは、有機接着剤が用いられたり、プラズマ接合が適用されたりして行われる。
ステップS25において、ウェハが反転される。図13では、既に反転された状態を示し、図12では、上側に示してあった密着層392が、図13では、下側に配置されている。ステップS26において、酸化膜361とシリコン基板362が除去され、ステップS27において、SOI(シリコン基板213)のBottom p+層363を露出される。
図10に示した画素の一部分では、酸化膜361とシリコン基板362がシリコン基板213の下側に設けられているが、図13に示した画素の一部分では、既に除去された後を示しているため、シリコン基板213上にはない状態である。また、図13の上側に示したBottom p+層363が露出した面が光照射面となる。
ステップS28において、領域301の作成が行われる。領域301の作成に関して、複数の作成の仕方を例にあげて説明する。図8は、領域301の第1の作成の工程について説明するためのフローチャートである。
<領域の第1の作成工程について>
ステップS51において、シリコン基板213の界面にテーパー形状のレジストリパターニングが実施される。図14は、シリコン基板213の界面にテーパー形状のレジストリパターニングが実施された後の光照射面からシリコン基板213を見たときの図であり、図中“PR”との表示は、フォトレジストを表し、四角形は、各フォトレジストの形状、大きさ、形成された位置を表している。
フォトレジストは、四角形状でパターニングされるが、フォトレジストの特性から、形成される領域301は、円形になる。よって、以下に説明するように、形成される領域301は、円錐形の形状となる。またここでは、シリコン基板213の光照射面側から見たときのフォトレジストの形状は、四角形として説明を続けるが、三角形や円形であっても良い。
フォトレジストの大きさや形成される位置は、規則性があるようにしても良いが、ランダムの方が好ましい。例えば、同じ大きさで、規則正しくフォトレジストがパターニングされた場合、形成される領域301も、同じ大きさで、規則正しく配置されていることになる。このような場合、その規則性に基づくパターンが、例えばゴーストなどといった形で現れる可能性がある。このようなことを防ぐために、パターニングされるフォトレジストの大きさや配置位置は、規則性を有さず、ランダムなものにされる。
なお、ここでは、パターニングされるフォトレジストの大きさや配置位置は、ランダムであるとして説明を続けるが、どちらか一方のみがランダムであっても良い。例えば、フォトレジストの大きさは全て同じに形成されるが、配置位置はランダムであるようにしても良い。
パターニングされるフォトレジストは、密に配置されるのが望ましい。図5を参照して説明したように、領域301は、屈折率の違いを吸収し、シリコン基板213の界面で光が反射されることを抑制するために設けられる。仮に、領域301がシリコン基板213上に粗く設けられた場合、屈折率の違いを吸収できず、反射を抑制できない部分ができてしまう可能性がある。このようなことを防ぐために、領域301は密に設けられるようにし、そのために、フォトレジストのパターニングも密な状態になるようなパターニングとされる。
またフォトレジストのパターニングは、フォーカスずらしパターニングとされ、図15に示すような形状のフォトレジストが形成される。図15は、フォーカスずらしパターニング終了後の画素の断面を表す図である。
フォトレジストは、断面で見たとき、シリコン基板213の界面を底辺とする三角形または台形とされている。シリコン基板213の界面を下側とし、シリコン基板213の界面から離れる方向を上側とした場合、フォトレジストは、下から上に行く方向で、上に行くほど細くなる形状となる。また、上記したように、フォトレジストの形状は、錐形になる。
図15に示したように、フォトレジストの形状は基本的に錐形であり、断面で見たときには三角形や台形となっている。また、フォトレジストの大きさは、さまざまであり、錐形の直径の大きさが異なるようにパターニングされる。また、ここでは、シリコン基板213の光照射面側から見たときのフォトレジストの形状は、四角形であるため、フォトレジストの形状は、四角錐となるが、底面の形状は四角形に限定されるわけではないため、例えば、三角錐や円錐などの形状にフォトレジストの形状がなるようにパターニングされても良い。
このように、フォトレジストは、フォーカスをずらすことで、立体的にパターニングされる。なお、図15では、錐形の高さは、全て同じに図示してあるが、高さも異なる高さとすることも可能である。後述するように、高さに上限があるため、その上限までの範囲内で高さを変えることは可能である。
ステップS51(図8)において、上記したように、Bottom p+層363が露出したシリコン面(光照射面)に、四角錐形、三角錐形、または円錐形のレジストパターニングが行われる。レジストパターニングの時に、フォーカスをずらして露光することで錐形のパターニングが作成される。
ステップS52において、イオン注入が実行され、ステップS53において、レジストが除去される。そして、ステップS54において、必要に応じて、アニールが実行される。ステップS52乃至S54が実行されることで、図16に示すような画素の一部分が形成される。
図14と図15に示したフォトレジストがパターニングされたシリコン基板213に対して、例えば、Siが300keVで1E16/cm2以上イオン注入される。一例として、非晶質層が深さ400nm程度まで連続して生成される。また、イオン注入時の温度を室温より下げると、自己アニールでの結晶回復が抑制されるため、より低いエネルギーやドーズで非晶質層を形成することも可能である。
シリコン内の非晶質層は、フォトレジストのパターニングにより、深さ方向に非晶質領域が減少するテーパー状となる。また、非晶質シリコンの屈折率は2.4〜3.5と結晶シリコン3.4〜4.2よりも低いため、目的となる微小な屈折率が異なる領域301を有する構造が形成できる。イオン注入後、レジストはアッシンングや硫酸過水で除去される。
このようにイオン注入がされ、フォトレジストが除去されると、パターニングされていたフォトレジストに対応する領域301が形成されたシリコン基板213を得ることができる。
または、カーボンや窒素や酸素を、非晶質層形成後に100keVで1E17/cm2以上注入する。深さ300nm程度に1E22/cm3弱のカーボンや窒素や酸素が注入される。続いて50keVで5E16/cm2以上、30keVで5E16/cm2以上のイオン注入を追加して、シリコン基板213の界面に近いほどカーボンや窒素や酸素の存在確率が高くなるようにする。
レジストを除去後にレーザーアニールを行うとSiC、Si3N4、SiO2が一部析出される。これらの屈折率はSiCで2.6、Si3N4で1.3〜2、SiO2で1.6〜2.1のため、一部ではあるが、屈折率を下げることができる。また、表面に近い部分であれば、クラスタイオン注入を用いることで、より、カーボンや窒素や酸素の濃度を上げること、自己アニールによる結晶化促進を行うことが可能である。
このようにイオン注入がされ、フォトレジストが除去されるようにした場合も、パターニングされていたフォトレジストに対応する領域301が形成されたシリコン基板213を得ることができる。
これらの微小な屈折率が異なる領域301は、Bottom p+層363のホール濃度が1E16/cm3以上を保つ深さ(例えば、500nm程度)より浅い領域に形成される。このような条件を満たすように形成することで、領域301の形成における欠陥が原因で発生した電子はホールと再結合するため、発生電子がフォトダイオード214で検知されて暗電流や白点になることを防ぐことができる。
ところで、このようにして、領域301が形成された後、後述するように、カラーフィルタ層218などがさらに形成される。カラーフィルタ層218によりフォトダイオード214に入射される光は、透過してきたカラーフィルタ層218に依存する波長の光となる。シリコン基板213の界面での反射を抑制する場合、カラーフィルタ層218を透過して入射される光の波長を考慮することで、より効率良く反射を抑制することができる。
例えば、カラーフィルタ層218が、RGB(Red、Green、Blue)である場合、R、G、Bのそれぞれの光の波長に適した領域301が形成されるようなフォトレジストの形状となるパターニングが行われるようにしても良い。
図17のように、カラーフィルタ層218が配置され、フォトダイオード214のそれぞれが、カラーフィルタ層218を透過した光を受光するとする。すなわち、図17に示した例では、フォトダイオード214−1とフォトダイオード214−3が緑(Gr、Gb)の光を受光し、フォトダイオード214−2が赤(R)の光を受光し、フォトダイオード214−4が青(B)の光を受光する。
フォトレジストの直径を、光の波長に最適化された直径とすることができる。一例として、フォトレジストの直径は、目的の感知したい光の波長の半分以下、例えば600nmの光を感知したいならば300nm以下で形成されるようにする。
画素(フォトダイオード214)によって感知する光の波長が違う場合、例えば図17に示したような場合であり、画素毎にパターニングの直径を最適化する場合、例えば、青画素では150nm、緑画素では250nm、赤画素では300nmの直径とすることができる。
この場合、青の光を受光するフォトダイオード214−4の領域に作成されるフォトレジストの直径は、150nmとされる。同様に、緑の光を受光するフォトダイオード214−1とフォトダイオード214−3のそれぞれの領域に作成されるフォトレジストの直径は、250nmとされる。さらに同様に、赤の光を受光するフォトダイオード214−2の領域に作成されるフォトレジストの直径は、300nmとされる。
よって、図17に示したように、各フォトダイオード214上に形成されるフォトレジストの直径(大きさ)は、異なる大きさになる。
図18は、図17中に線を引いた部分でカットしたときの断面を表し、図18中、左側に緑(Gr)の光を受光するフォトダイオード214−1が配置され、右側に赤(R)の光を受光するフォトダイオード214−2が配置されている。
上述してきた場合と同じく、フォトレジストは、断面で見たとき、シリコン基板213の界面を底辺とする三角形または台形とされている。三角形や台形の底辺の長さが、フォトダイオード214−1とフォトダイオード214−2では異なるように、フォトレジストが形成されている。図18に示したように、緑の光を受光するフォトダイオード214−1上のフォトレジストの直径(250nm)は、赤の光を受光するフォトダイオード214−2上のフォトレジストの直径(300nm)よりも小さく形成されている。
このように、受光する光の波長に合わせた領域301を形成する場合も、基本的な製造工程は、図8に示したフローチャートの各工程に従って行われる。図8に示したフローチャートの説明は既にしたので、ここではその説明は省略する。
図8に示したフローチャートの工程が実行されることで、図19に示すような領域301が形成される。図18と図19を参照するに、図18に示したように、緑の光を受光するフォトダイオード214−1上に形成されるフォトレジストは、赤の光を受光するフォトダイオード214−2上に形成されるフォトレジストよりも小さく形成されているため、形成される領域301も、図19に示すように、フォトダイオード214−1上に形成された領域301の方が、フォトダイオード214−2上に形成された領域301よりも小さく形成される。
<領域の第2の作成工程について>
次に、図9のフローチャートを参照し、領域301の第2の作成工程について説明する。ステップS71において、ダミー層が形成される。ステップS72において、微小粒子が配列される。そして、ステップS73において、ドライエッチングが施される。
すなわち、領域301の第2の作成工程においては、第1の作成工程のレジストパターニングとは異なり、酸化膜や樹脂層のダミー層を成膜し、微細粒子を配列させてエッチングすることによってテーパー状のダミー層マスクが形成される。このような作成は、例えば、本出願人が先に出願した特開2010-239003号公報に記載があることを適用することができる。
図20は、ダミー膜が作成され、微細粒子が配列されたときの光照射面側から見たときの画素の図であり、図21は、断面図である。図21に示すように、シリコン基板213上にダミー膜501が形成され、その上に、微細粒子502が配列されている。
また、図20に示すように、微細粒子502の個々の大きさは、ランダムでも良いし、所定の大きさで統一されていても良い。また、画素の色に合わせた大きさとされていても良い。また、微細粒子502の配列は、図20に示したようなランダムな配列でも良いし、規則性がある配列でも良い。しかしながら、第1の作成工程と同じく、規則性があると、規則性に依存するゴーストなどが発生する可能性があるため、ランダムな配列や大きさである方が好ましいと考えられる。
このようなダミー層501を設け、微小粒子502が配列された後、ドライエッチングされることで、図15に示すようなダミー層501のマスクが作成される。微小粒子502が配列されていない部分に、ドライエッチングが施されることにより、マスクとして残る。
図22に示した画素の状態は、例えば、図15に示した画素の状態であり、この後の処理は、図15に示した画素に対する処理と同様に行うことができる。すなわち、ステップS74乃至S76の処理は、図8のステップS52乃至S54の処理と同様に行うことができる。
ステップS74において、イオン注入が行われることで、領域301が形成される。そして、ステップS75において、ダミーマスク(ダミー層501)が除去され、ステップS76において、必要に応じてアニールが施される。
このようにして、ダミー層501と微小粒子502を用いて、マスクを作成し、イオン注入により領域301を形成するようにしても良い。
第1の作成工程または第2の作成工程により、シリコン基板213内にシリコン基板213とは異なる屈折率を有する領域301を形成することができる。このようにして、領域301が形成されると、ステップS29(図7)に処理が進められる。
ステップS29において、保護膜215がシリコン基板213上であり、領域301が形成された側に成膜される。例えば、保護膜215は、P-TEOSで100nm成膜される。保護膜215が成膜されるシリコン基板213面には、凹凸が無いためムラがない成膜が可能である。
ステップS30において、遮光膜216、平坦化膜217、マイクロレンズ220がそれぞれ形成されることで、裏面照射型の固体撮像素子が製造される。なお、これらの膜は低背化目的、工程削減の目的等で一部削減されていても良い。
このように、シリコン基板213にシリコン基板213や、シリコン基板213上に成膜される保護膜215とは異なる屈折率を有する領域301を形成することで、屈折率の違いにより発生する光の反射を抑制させることが可能となる。
光の反射が抑制されることで、フォトダイオード214に入射される光量を増すことが可能となり、感度を向上させることが可能となる。また、反射が抑制されることで、反射光によるゴーストを抑制することが可能となる。さらに、シリコン基板213上に凹凸が無い構成とすることができるため、シリコン基板213上に設けられる膜をムラ無く形成することが可能となる。よって、感度ムラ抑制による歩留まりを改善することが可能となる。
なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
なお、本技術は以下のような構成も取ることができる。
(1)
受光した光を電荷に変換する光電変換部と、
前記光電変換部を含む半導体基板と
を備え、
前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域が多数形成されている
撮像素子。
(2)
前記領域は、前記半導体基板に光が入射する面に近い深さでは面積が大きく、前記面から遠い深さでは面積が小さくなる形状で形成されている
前記(1)に記載の撮像素子。
(3)
前記領域は、錐形である
前記(1)または(2)に記載の撮像素子。
(4)
前記半導体基板上の膜の屈折率を屈折率n1、前記半導体基板の屈折率を屈折率n2、前記領域の屈折率を屈折率n3としたとき、屈折率n1<屈折率n3<屈折率n2の関係が満たされる
前記(1)乃至(3)のいずれかに記載の撮像素子。
(5)
前記半導体基板は、シリコンである
前記(1)乃至(4)のいずれかに記載の撮像素子。
(6)
前記領域は、非晶質シリコン、SiC、Si3N3、またはSiO2のいずれかを含む
前記(1)乃至(5)のいずれかに記載の撮像素子。
(7)
前記半導体基板上には、酸化膜、または窒化膜が形成される
前記(1)乃至(6)のいずれかに記載の撮像素子。
(8)
前記領域は、直径100nm乃至300nm、最も深い位置は400nm以下であり、最も深い位置のホール濃度は1E16/cm3以上である
前記(1)乃至(7)のいずれかに記載の撮像素子。
(9)
前記領域は、前記光電変換部が受光する光の波長に応じて、異なる大きさで形成されている
前記(1)乃至(8)のいずれかに記載の撮像素子。
(10)
前記領域は、テーパーを有するレジストマスク、またはハードマスクが用いられてイオン注入され、レーザーアニールで形成される
前記(1)乃至(9)のいずれかに記載の撮像素子。
(11)
受光した光を電荷に変換する光電変換部と、
前記光電変換部を含む半導体基板と
を備える撮像素子を製造する製造装置において、
前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域を多数形成する
製造装置。
(12)
前記領域は、テーパーを有するレジストマスク、またはハードマスクを用いてイオン注入し、レーザーアニールで形成する
前記(11)に記載の製造装置。
(13)
受光した光を電荷に変換する光電変換部と、
前記光電変換部を含む半導体基板と
を備える撮像素子を製造する製造装置の製造方法において、
前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域を多数形成する
ステップを含む製造方法。
(14)
受光した光を電荷に変換する光電変換部と、
前記光電変換部を含む半導体基板であり、前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域が多数形成された半導体基板と、
前記光電変換部に入射光を導く光学部と、
前記光電変換部からの出力信号を処理する信号処理部と
を備える電子機器。
211 支持基板, 212 配線層, 213 シリコン基板, 214 フォトダイオード, 215 保護膜, 216 遮光膜, 217 平坦化膜, 218 カラーフィルタ層, 301 領域

Claims (14)

  1. 受光した光を電荷に変換する光電変換部と、
    前記光電変換部を含む半導体基板と
    を備え、
    前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域が多数形成されている
    撮像素子。
  2. 前記領域は、前記半導体基板に光が入射する面に近い深さでは面積が大きく、前記面から遠い深さでは面積が小さくなる形状で形成されている
    請求項1に記載の撮像素子。
  3. 前記領域は、錐形である
    請求項1に記載の撮像素子。
  4. 前記半導体基板上の膜の屈折率を屈折率n1、前記半導体基板の屈折率を屈折率n2、前記領域の屈折率を屈折率n3としたとき、屈折率n1<屈折率n3<屈折率n2の関係が満たされる
    請求項1に記載の撮像素子。
  5. 前記半導体基板は、シリコンである
    請求項1に記載の撮像素子。
  6. 前記領域は、非晶質シリコン、SiC、Si3N3、またはSiO2のいずれかを含む
    請求項1に記載の撮像素子。
  7. 前記半導体基板上には、酸化膜、または窒化膜が形成される
    請求項1に記載の撮像素子。
  8. 前記領域は、直径100nm乃至300nm、最も深い位置は400nm以下であり、最も深い位置のホール濃度は1E16/cm3以上である
    請求項1に記載の撮像素子。
  9. 前記領域は、前記光電変換部が受光する光の波長に応じて、異なる大きさで形成されている
    請求項1に記載の撮像素子。
  10. 前記領域は、テーパーを有するレジストマスク、またはハードマスクが用いられてイオン注入され、レーザーアニールで形成される
    請求項1に記載の撮像素子。
  11. 受光した光を電荷に変換する光電変換部と、
    前記光電変換部を含む半導体基板と
    を備える撮像素子を製造する製造装置において、
    前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域を多数形成する
    製造装置。
  12. 前記領域は、テーパーを有するレジストマスク、またはハードマスクを用いてイオン注入し、レーザーアニールで形成する
    請求項11に記載の製造装置。
  13. 受光した光を電荷に変換する光電変換部と、
    前記光電変換部を含む半導体基板と
    を備える撮像素子を製造する製造装置の製造方法において、
    前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域を多数形成する
    ステップを含む製造方法。
  14. 受光した光を電荷に変換する光電変換部と、
    前記光電変換部を含む半導体基板であり、前記半導体基板の光が入射する面と前記光電変換部との間に、前記半導体基板の屈折率とは異なる屈折率を有する領域が多数形成された半導体基板と、
    前記光電変換部に入射光を導く光学部と、
    前記光電変換部からの出力信号を処理する信号処理部と
    を備える電子機器。
JP2013144502A 2013-07-10 2013-07-10 撮像素子、製造装置、製造方法、電子機器 Pending JP2015018906A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013144502A JP2015018906A (ja) 2013-07-10 2013-07-10 撮像素子、製造装置、製造方法、電子機器
CN201410314809.1A CN104282706B (zh) 2013-07-10 2014-07-03 图像传感器、制造设备、制造方法和电子装置
US14/323,518 US9356063B2 (en) 2013-07-10 2014-07-03 Image sensor, production apparatus, production method, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013144502A JP2015018906A (ja) 2013-07-10 2013-07-10 撮像素子、製造装置、製造方法、電子機器

Publications (1)

Publication Number Publication Date
JP2015018906A true JP2015018906A (ja) 2015-01-29

Family

ID=52257435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013144502A Pending JP2015018906A (ja) 2013-07-10 2013-07-10 撮像素子、製造装置、製造方法、電子機器

Country Status (3)

Country Link
US (1) US9356063B2 (ja)
JP (1) JP2015018906A (ja)
CN (1) CN104282706B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126329A1 (ja) 2016-01-21 2017-07-27 ソニー株式会社 撮像素子および電子機器
US9996035B2 (en) 2016-03-18 2018-06-12 Ricoh Company, Ltd. Fixing device and image forming apparatus with a movable presser which moves a fixing belt
US10095166B2 (en) 2016-06-10 2018-10-09 Ricoh Company, Ltd. Fixing device and image forming apparatus
US10879407B2 (en) 2016-09-27 2020-12-29 Nec Corporation Optical sensor and method for forming same
US11195963B2 (en) 2017-03-31 2021-12-07 Nec Corporation Texture structure manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220313A (ja) 2014-05-16 2015-12-07 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
US20160050376A1 (en) * 2014-08-18 2016-02-18 Ron Fridental Image sensor with sub-wavelength resolution
EP3343619A1 (en) * 2016-12-29 2018-07-04 Thomson Licensing An image sensor comprising at least one sensing unit with light guiding means
CN111106190A (zh) * 2018-10-25 2020-05-05 光程研创股份有限公司 波导结构及包含波导结构的光电子元件
EP3671837B1 (en) 2018-12-21 2023-11-29 ams Sensors Belgium BVBA Pixel of a semiconductor image sensor and method of manufacturing a pixel
EP4071819A4 (en) * 2019-12-31 2023-03-15 Huawei Technologies Co., Ltd. IMAGE SENSOR, LIGHT DIVIDING COLOR FILTER DEVICE AND METHOD FOR MAKING THE IMAGE SENSOR
US11756978B2 (en) * 2021-02-24 2023-09-12 Meta Platforms Technologies, Llc Multi-spectral image sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4442157B2 (ja) * 2003-08-20 2010-03-31 ソニー株式会社 光電変換装置及び固体撮像装置
CN100452414C (zh) * 2004-12-10 2009-01-14 索尼株式会社 获取物理信息的方法、装置及装置的制造方法
JP5197823B2 (ja) * 2011-02-09 2013-05-15 キヤノン株式会社 光電変換装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126329A1 (ja) 2016-01-21 2017-07-27 ソニー株式会社 撮像素子および電子機器
JPWO2017126329A1 (ja) * 2016-01-21 2018-11-15 ソニー株式会社 撮像素子および電子機器
US10727261B2 (en) 2016-01-21 2020-07-28 Sony Corporation Image pickup device and electronic apparatus
US11094728B2 (en) 2016-01-21 2021-08-17 Sony Corporation Image pickup device and electronic apparatus
US12015039B2 (en) 2016-01-21 2024-06-18 Sony Group Corporation Image pickup device and electronic apparatus
US9996035B2 (en) 2016-03-18 2018-06-12 Ricoh Company, Ltd. Fixing device and image forming apparatus with a movable presser which moves a fixing belt
US10095166B2 (en) 2016-06-10 2018-10-09 Ricoh Company, Ltd. Fixing device and image forming apparatus
US10879407B2 (en) 2016-09-27 2020-12-29 Nec Corporation Optical sensor and method for forming same
US11195963B2 (en) 2017-03-31 2021-12-07 Nec Corporation Texture structure manufacturing method

Also Published As

Publication number Publication date
CN104282706B (zh) 2019-03-22
US20150015758A1 (en) 2015-01-15
US9356063B2 (en) 2016-05-31
CN104282706A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
JP2015018906A (ja) 撮像素子、製造装置、製造方法、電子機器
US11843015B2 (en) Image sensors
JP7301936B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
US10950642B2 (en) Image sensor including partition patterns
JP5644177B2 (ja) 固体撮像装置、および、その製造方法、電子機器
TWI636557B (zh) Solid-state imaging device, manufacturing method thereof, and electronic device
JP6327480B2 (ja) 半導体装置、電子機器
JP4987917B2 (ja) 固体撮像装置の製造方法
US20150085168A1 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP2015060855A (ja) 固体撮像装置およびその製造方法、並びに電子機器
JP2015065270A (ja) 固体撮像装置およびその製造方法、並びに電子機器
JP2015170620A (ja) 固体撮像装置
JP2012169530A (ja) 固体撮像装置、および、その製造方法、電子機器
JP2018046145A (ja) 固体撮像素子、撮像装置、及び固体撮像素子の製造方法
JP2012199489A (ja) 固体撮像装置、固体撮像装置の製造方法、及び電子機器
US11462582B2 (en) Solid-state image pickup device, manufacturing method, and electronic apparatus
JP2012028459A (ja) 半導体装置、固体撮像装置、半導体装置の製造方法、固体撮像装置の製造方法、電子機器
JP2014089432A (ja) 固体撮像装置、固体撮像装置におけるマイクロレンズの形成方法、及び、電子機器
JP2010141280A (ja) 固体撮像装置、および、その製造方法、カメラ
JP2014225536A (ja) 固体撮像装置及びカメラ
JP2011146714A (ja) 光子屈折用マイクロレンズを備える単位画素、該単位画素を備えるバックサイドイルミネーションcmosイメージセンサ及び該単位画素の形成方法
JP2010182765A (ja) 固体撮像装置および電子機器
TW201301493A (zh) 成像器件,驅動方法及電子裝置
US20090160001A1 (en) Image sensor and method for manufacturing the sensor
JP6028768B2 (ja) 固体撮像装置、固体撮像装置の製造方法、電子機器