[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2015005337A - 放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム - Google Patents

放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム Download PDF

Info

Publication number
JP2015005337A
JP2015005337A JP2013128091A JP2013128091A JP2015005337A JP 2015005337 A JP2015005337 A JP 2015005337A JP 2013128091 A JP2013128091 A JP 2013128091A JP 2013128091 A JP2013128091 A JP 2013128091A JP 2015005337 A JP2015005337 A JP 2015005337A
Authority
JP
Japan
Prior art keywords
radiation
target
electron beam
radiation generating
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013128091A
Other languages
English (en)
Inventor
義勇 鈴木
Yoshio Suzuki
義勇 鈴木
惟之 吉武
Koreyuki Yoshitake
惟之 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013128091A priority Critical patent/JP2015005337A/ja
Publication of JP2015005337A publication Critical patent/JP2015005337A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Abstract

【課題】ターゲット材料として低融点金属や飛散し易い材料を、高融点金属で覆った構造を有するターゲットにおいて、ターゲット材料の飛散を防止し、さらに、放射線発生効率の向上を図る。【解決手段】ターゲット材料3を、基材1と電子線透過部材2との間に形成した密閉空間内に配置し、係る密閉空間において、ターゲット材料3の周囲に空隙4を設けることによって、電子線照射によるターゲット材料3の変形、脱ガスによる熱応力を緩和し、電子線透過部材2の厚さの低減を図って、放射線発生効率を高める。【選択図】図1

Description

本発明は、例えば医療機器、非破壊検査装置等に適用できる放射線発生管及びそれを備えた放射線発生装置と放射線撮影システムに関し、特に放射線発生管の構成部材である放射線発生ターゲットに関する。
一般に、X線等の放射線を発生させる放射線発生管は電子放出源から放出される電子を70kV乃至150kV程度の高エネルギーに加速し、高加速電子をターゲット材料に衝突させて放射線を発生させている。このような放射線発生管においては、電子線衝突部は非常に高温となるため、ターゲット材料は高融点金属に限定されることが多かった。
特許文献1には、熱伝導率が低い希土類金属からなるターゲット層の放熱性を向上することを目的として、希土類金属からなるターゲット層の電子照射面を高融点金属で覆うことが開示されている。
特開2007−188732号公報
放射線発生管の焦点サイズにより放射線撮影装置の取得画像の分解能が決定されるため、電子線の焦点が形成されるターゲット材料は融点以上の高温となる場合がある。特許文献1に記載のように、ターゲット材料の電子入射面を被覆したターゲットの構成においては、ターゲット材料と被覆部材との間の線膨張量の差に起因する熱応力により被覆部材にマイクロクラックが発生し、ターゲットの寿命が制限される場合があった。
本発明の課題は、ターゲット材料と、基材と、電子線を透過する電子線透過部材とからなり、基材と電子線透過部材とにより規定された密閉空間にターゲット材料が配置されたターゲット構成において、熱応力に起因するマイクロクラックを抑制することにある。本発明の課題は、さらに、信頼性の高いターゲットを備えた放射線発生装置を提供することにある。
本発明の第1は、電子線の照射により放射線を放出するターゲット材料を備えた放射線発生ターゲットであって、
前記ターゲット材料が、電子線透過部材と基材との間に形成された密閉空間内に配置され、前記密閉空間が前記ターゲット材料の周囲の少なくとも一部に空隙を有することを特徴とする。
本発明の第2は、絶縁管と、前記絶縁管の一方の開口に接合された陰極と、前記絶縁管の他方の開口に接合された陽極と、前記陰極に接続された電子放出源と、前記陽極に接続されたターゲットとを有する放射線発生管において、前記ターゲットが、前記本発明第1の放射線発生ターゲットであることを特徴とする。
本発明の第3は、前記本発明第2の放射線発生管と、前記放射線発生管と前記駆動回路とを収容した収納容器とを備え、前記収納容器は、前記放射線発生管から生じる放射線を取り出すための放出窓を有し、前記放射線発生管を収容した内部の余剰空間には絶縁性液体が満たされていることを特徴とする放射線発生装置である。
本発明の第4は、前記本発明第3の放射線発生装置と、
前記放射線発生装置から放出され、被検体を透過した放射線を検出する放射線検出装置と、
前記放射線発生装置と前記放射線検出装置とを連携制御する制御装置とを備えたことを特徴とする放射線撮影システムである。
本発明によれば、電子線照射によって溶融や蒸発の可能性のあるターゲット材料を用いた場合にも、電子線透過部材と基材とで形成された密閉空間内に封じ込めるため、ターゲットから放射線発生管の内部空間へのターゲット材料の飛散を防止することができる。
また、密閉空間においてターゲット材料の周囲に配置した空隙により、ターゲット材料の動作時の変形、脱ガスによる熱応力を緩和することができる。その結果、電子線透過部材を薄くしても、密閉空間を維持することが可能となり、電子線の吸収を低減し、放射線発生効率を向上させることができる。
さらに、ターゲット材料の周囲の空隙を周囲に向かって漸減する構成とし、電子線透過部材や基材の表面を溶融時のターゲット材料の濡れ性が低い材料とすることにより、ターゲット材料を所定の位置に保持することができる。
またさらに、電子線照射位置をターゲット材料の周辺部にずらすことにより、ターゲット材料からの脱ガスと膨張気体とをターゲット材料の周囲の空隙に効率良く逃すことができ、熱応力を緩和することができる。
本発明の放射線発生ターゲットの一実施形態の断面模式図である。 本発明の放射線発生ターゲットの他の実施形態の断面模式図である。 本発明の放射線発生ターゲットの他の実施形態の断面模式図である。 本発明の放射線発生ターゲットの他の実施形態の断面模式図である 本発明の放射線発生ターゲットの他の実施形態の断面模式図である 本発明の放射線発生管の一実施形態の断面模式図である。 本発明の放射線発生装置の一実施形態の概略図である。 本発明の放射線発生装置の一実施形態のブロック図である。 本発明の実施例で作製した放射線発生ターゲットの断面模式図である。
以下、図面を用いて本発明の実施形態を説明するが、本発明はこれらの実施形態に限定されない。尚、本明細書で特に図示又は記載されない部分に関しては、当該技術分野の周知または公知技術を適用する。
〔第1の実施形態〕
先ず、図1を用いて本発明の第1の実施形態について説明する。図1は本実施形態の放射線発生ターゲットの断面模式図である。
図1において、1は基材であり、ターゲット10を透過型ターゲットとする場合には、基材1に炭素の同素体、ベリリウム、窒化シリコン等の放射線透過部材を用いる。基材1としては、高融点で低原子番号の材料で溶融金属に対して濡れ性が小さく、熱伝導の大きい材料であることが望ましい。また、透過型として使用する場合には、0.5mm乃至3mmの厚みのものが用いられる。炭素の同素体としては、高融点と高熱伝導率の観点から、ダイヤモンドが好ましい態様である。ダイヤモンドから基材1を構成した場合は、0.1ppm以上10ppm以下のホウ素を含有させることで、基材1に導電性を付与することが可能である。
また、本発明のターゲットを反射型ターゲットとして使用する場合には、基材1として放射線反射部材を用いる。かかる放射線反射部材としては、比重の高い金属を少なくとも含有するものであれば適用可能であり、タングステン、タンタル、モリブデン、レニウム等から選択される。
2は電子線透過部材であり、高融点で低原子番号の材料で、溶融金属に対して濡れ性の小さい材料が好ましく用いられる。具体的には、前記した放射線透過部材と同じ材料が好ましく用いられる。電子線5が透過する部分の厚さは内部圧力を保持できる範囲内で薄いほうが望ましく、10μm乃至300μmの範囲が望ましい。
3は電子線の照射により放射線を発生するターゲット材料であり、具体的には、タングステン、タンタル、モリブデン等の高融点金属に加えて、亜鉛、銀、金、スズ、鉛、ビスマス等の低融点金属も用いることができる。発生した放射線がターゲット材料3を透過する際に生じる吸収を軽減するため、ターゲット材料3の厚みは数μm乃至十数μm程度となるようにターゲット材料3が収納される密閉空間の形状を設計する。
4はターゲット材料3ととともに、基材1及び電子線透過部材2により形成された密閉区間に形成された空隙である。空隙4は、ターゲット材料の熱膨張、熱変形による密閉空間内の熱応力を緩和する作用を発現する。空隙4は、真空であっても不活性ガスを含有していても良い。入射電子の平均自由行程の確保、密閉空間の圧力上昇を抑制する観点からは、真空が好ましい形態である。尚、本発明において真空とは、1Pa以下であることを意味する。空隙4の詳細な形態については、後述する。
基材1と電子線透過部材2とが溶融金属に対して濡れ性の低い材料で構成されている場合には、最外周部の位置においてメタライズ処理を行って、溶融金属に対する濡れ性を局所的に高めた後、銀ろう付けによって接合すればよい。尚、本発明において接合方法はこの方式に限定されるものではなく、高真空中でのドライエッチ後の常温接合などを用いても構わない。また真空機密が保てるならば外周部をクランプして加圧保持することも可能である。
ターゲット材料3は基材1と電子線透過部材2とによって囲まれた密閉空間内に配置されており、この密閉空間はターゲット材料3の体積に加えて空間の周辺部に空隙4を有するように構成されていることが本発明の特徴である。本発明において、係る空隙4は、ターゲット材料3の周囲の少なくとも一部に形成され、好ましくは、基材1と電子線透過部材2の対向面に平行な方向において、ターゲット材料3の周囲の少なくとも一部である。この空隙4によって、電子線照射時のターゲット材料3の昇温によって生じる内部圧力上昇を緩和し、電子線透過部材2をより薄くすることが可能となる。電子線透過部材2が薄くなれば、電子線透過部材2で吸収される電子線5が低減し、ターゲット材料3における放射線6の発生量が増え、放射線発生効率が向上する。
非動作時、即ち電子線非照射時における空隙4のターゲット材料3に対する体積比は、動作時のターゲット材料3の熱膨張を考慮して定められ、0.05以上であることが好ましく、0.5以上であることがより一層好ましい。また、放射線発生管の非動作時における空隙4のターゲット材料3に対する体積比は、密閉空間内の真空度の維持を考慮して定められ、100以下であることが好ましく、10以下であることがより一層好ましい。尚、本発明において非動作時とは、室温を含み動作時(電子線照射時)よりもターゲットが低温にある状態を意味し、本実施例においては、25℃を代表温度とした。
本発明のターゲット10に50kV乃至150kV程度に加速された電子線5を照射すると、大部分の電子線5は電子線透過部材2を透過しターゲット材料3に入射し、放射線6が発生する。この時、放射線6は、基材1に向かって出射されるが同時に後方側にも出射されている。よって、基材1を放射線透過部材とした場合には、基材1側から放射線を取り出すことが可能となり、基材1を放射線反射部材として場合には、電子線透過部材2側から放射線を取り出すことが可能となる。ターゲット10を反射型とする場合には、電子線透過部材2が電子線及び放射線を透過する部材を用いる。
〔第2の実施形態〕
次に、図2を用いて本発明の第2の実施形態を説明する。本例は、第1の実施形態における電子線透過部材2の厚さを、電子線照射領域11の中心から周辺に向かって漸増する形態とする。このように、電子線照射領域11を薄く、周囲の保持部12を厚くすることにより、ターゲット材料3の温度上昇による熱応力に対して強度的に有利な構造となる。その結果、電子線透過部材2の最も薄い部分を第1の実施形態よりも薄く設計することができ、放射線の発生効率をより高めることが可能となる。
〔第3の実施形態〕
次に、図3を用いて本発明の第3の実施形態を説明する。本例は、第1の実施形態におけるターゲット材料3を収納する密閉空間の高さを中央部から周辺に向かって漸減する形態とする。そして、基材1及び電子線透過部材2の少なくとも一方、好ましくは両方を、溶融したターゲット材料3に対する濡れ性が低い材料で形成する。係る構成により、ターゲット材料3が電子線照射によって溶融した場合でも、溶融したターゲット材料3が、基材1や電子線透過部材2との接触面積が最小となる位置と形状に移行する。その結果、密閉空間の中央部にターゲット材料3を保持することができる。
〔第4の実施形態〕
図4を用いて本発明の第4の実施形態を説明する。図4(a)は本例のターゲットの電子線透過部材2を取り外して上方から見た平面模式図を示し、図4(b)は図4(a)中のA−A’に相当する本例のターゲットの断面模式図である。
本例は、第3の実施形態における密閉空間を第1の空間41とし、その外側に距離を置いて第2の空間42を配置し、該第1の空間41と第2の空間42とを連通する通路43を設けた形態である。第1の空間41と第2の空間42との間は、通路43以外は基材1と電子線透過部材2とが密着する接続部1aである。
係る構成により、ターゲット材料3の周辺には第1の空間41の空隙4aと、第2の空間42とが空隙として確保され、ターゲット材料3の昇温によって生じる熱応力をより高度に緩和することができる。また、第1の空間41と第2の空間42と連通する通路43を十分に細くしておくことにより、ターゲット材料3が溶融した状態でも、ターゲット材料3が第2の空間に流出することがない。通路43の濡れ性が低いため、ターゲット材料3が細い通路43を通過するためには大きなエネルギーが必要となるためである。
本実施形態のような構成では、外周部に形成された第2の空間42の内部に、放出ガスを吸収するため不図示の非蒸着ゲッター材(NEG)などを設置することも可能である。非蒸着ゲッター材(NEG)を配置した場合は、酸素ガスなどを有効に吸収できるためターゲット材料3の酸化や電子線透過部材2や基材1の酸化を防止することができる。
〔第5の実施形態〕
図5を用いて本発明の第5の実施形態を説明する。本例は、前記第2の実施形態と第3の実施形態とを組み合わせた構成において、ターゲット材料3の中心位置51に対して電子線透過部材2の最も薄い部位、即ち、電子線照射領域の中心52を外側にずらした構成としたものである。
電子線照射の初期においてはターゲット材料3の中心部が溶融しても、周辺部は未だ固体状態である場合もあり、その場合、電子線照射領域の中心52をターゲット材料3の中心位置51とすると、照射点から発生した脱ガスが周囲へ脱出する経路が無い。本例では、電子線照射領域の中心52をターゲット材料3の周辺部へずらすことによって、電子線照射点から発生した脱ガスや膨張気体を効果的に周囲の空隙4aへ逃がすことができるため電子線透過部材2の最も薄い部分をより薄くすることが可能である。
〔放射線発生管〕
次に、図6を用いて本発明の放射線発生管について説明する。図6は、透過型のターゲットを用いた透過型放射線発生管の一実施形態の断面模式図である。
本例の放射線発生管60は、絶縁管61の一方の開口に陰極62が、他方の開口に陽極63が接合されて真空容器を構成している。陰極62には電子放出源64が接続され、陽極63には放射線遮蔽部材67が取り付けられ、係る放射線遮蔽部材67の電子線通過路に本発明のターゲット10が接合されている。
絶縁管61は通常、円管が用いられるが、本発明においては管状であれば断面が楕円形や多角形であってもよい。絶縁管61の材料としては、Al23(アルミナ)、Si34、SiC、AlN、ZrO3等の所謂セラミック材料が挙げられるが、絶縁性を有する材料であれば適用される。
陰極62、陽極63の材料としては、鉄鋼、合金鋼、SUS材、或いは、Ag、Cu、Ti、Mn、Mo、Ni等の金属やこれらの合金等が挙げられる。
陰極62と陽極63及び絶縁管61とは真空気密接合し形成され、真空容器が形成される。接合手段としては、ろう付け、溶接等が適用可能である。
電子放出源64にはタングステンフィラメントや、含浸型カソードのような熱陰極、又はカーボンナノチューブ等の冷陰極を用いることができる。電子放出源64より放出された電子線5は、放射線遮蔽部材67の電子線通過路に侵入してターゲット10に入射し、放射線6が発生する。本発明の放射線発生管60には、図6に示すように引き出し電極65とレンズ電極66を設けても良い。これらを設けた場合、引き出し電極65によって形成される電界によって電子放出源64から電子が放出され、放出された電子はレンズ電極66で収束され、ターゲット10に入射する。この時、電子放出源64とターゲット10間に印加される電圧は、放射線の使用用途によって異なるものの、概ね40kV乃至150kV程度である。
放射線発生管60の内部は、10-4Pa乃至10-8Pa程度の真空に保たれている。放射線発生管60には不図示の排気管を設けても良く、排気管を設けた場合、例えば排気管を通じて放射線発生管60内を真空に排気した後、排気管の一部を封止することで放射線発生管60内を真空にすることができる。また、放射線発生管60の内部には真空度を保つために、不図示のゲッターを配置しても良い。
〔放射線発生装置〕
次に、本発明の放射線発生装置について説明する。図7は図6の放射線発生管60を備える放射線発生装置の構成の一例を示す断面模式図である。本発明の放射線発生装置70は、図7に示すように、本発明の放射線発生管60と、これを収容する収納容器71とを備え、収納容器71の余剰空間には絶縁性液体73が満たされている。また、収納容器71には、放射線発生管60から生じる放射線を取り出すための放射線放出窓72を備えている。
収納容器71の内部には、不図示の回路基盤及び絶縁トランス等から構成される駆動回路74を設けても良い。駆動回路74を設けた場合、例えば放射線発生管60に配線を介して駆動回路74から所定の電圧信号が印加され、放射線の発生を制御することができる。
収納容器71は、容器としての十分な強度を有していれば良く、金属やプラスチックス材料等から構成される。収納容器71には、放射線を透過し収納容器21の外部に放射線を取り出すための放出窓72が設けられている。放射線発生管60から放出された放射線はこの放出窓72を通して外部に放出される。放出窓72には、ガラス、アルミニウム、ベリリウム等が用いられる。
絶縁性液体73は、電気絶縁性が高く、冷却能力が高く、熱による変質の少ない物が好ましく、例えば、シリコーン油、トランス油、フッ素系オイル等の電気絶縁油、ハイドロフルオロエーテル等のフッ素系の絶縁性液体等が使用可能である。
〔放射線撮影システム〕
次に、図8に基づいて、本発明に係る放射線撮影システムの一実施形態を説明する。
図8に示すように、本発明の放射線発生装置70は、必要に応じて、その放射線放出窓72部分に設けられた可動絞りユニット79を備えている。可動絞りユニット79は、放射線発生装置70から照射される放射線6の照射野の広さを調整する機能を有する。また、可動絞りユニット79として、放射線6の照射野を可視光により模擬表示できる機能が付加されたものを用いることもできる。
システム制御装置202は、放射線発生装置70と放射線検出装置201とを連携制御する。駆動回路74は、システム制御装置202による制御の下に、放射線発生管60に各種の制御信号を出力する。この制御信号により、放射線発生装置70から放出される放射線6の放出状態が制御される。放射線発生装置70から放出された放射線6は、被検体204を透過して検出器206で検出される。検出器206は、検出した放射線を画像信号に変換して信号処理部205に出力する。信号処理部205は、システム制御装置202による制御の下に、画像信号に所定の信号処理を施し、処理された画像信号をシステム制御装置202に出力する。システム制御装置202は、処理された画像信号に基づいて、表示装置203に画像を表示させるための表示信号を表示装置203に出力する。表示装置203は、表示信号に基づく画像を、被検体204の撮影画像としてスクリーンに表示する。
放射線の代表例はX線であり、本発明の放射線発生装置と放射線撮影システムは、X線発生装置とX線撮影システムとして利用することができる。X線撮影システムは、工業製品の非破壊検査や人体や動物の病理診断に用いることができる。
(実施例1)
第1の実施形態のターゲット10を作製した。
ターゲット10の基材1は直径が6mm、厚さが1.5mmでホウ素を10ppmドープして導電性を付与したダイヤモンド基板を用いた。基材1には溝加工により直径が3mmで高さが15μmの凹部を形成した。電子線透過部材2は、直径が6mm、厚さが1mmのホウ素を10ppmドープして導電性を付与したダイヤモンド基板である。ターゲット材料3としては銀を用いた。
基材1と電子線透過部材2とは、対向するそれぞれの最外周部の位置においてメタライズ処理を行って、溶融銀に対する濡れ性を局所的に高めた後、銀ろう付けによって1×10-3Paの真空中にて接合した。
本実施例のターゲット10において、25℃における空隙4のターゲット材料3に対する体積比は、0.2であった。
以上のような構成のターゲット10を図6に示した放射線発生管60に装着し、電子放出源64とターゲット10との間に100kV電圧を印加してターゲット10に電子線を照射した。その結果、電子線透過部材2の破損を生じることなく銀の特性放射線を含む放射線を発生させることができた。
(実施例2)
図9に示すように、第4の実施形態と第5の実施形態とを組み合わせたターゲット10を作製した。
基材1は直径が6mm、厚さが1.5mmでホウ素を10ppmドープして導電性を付与したダイヤモンド基板を用いた。基材1の中央部は溝加工により30μm掘り下げ、該中央部から直径3mmの範囲で外側に向かって深さが浅くなる第1の空間41を形成した。さらに、該第1の空間41の外周から0.5mmの距離をおいて、幅が0.5mm、深さ0.4mmのリング状の第2の空間42を形成し、第1の空間41と第2の空間42とは、幅が100μm、深さが10μmの通路43で連通させた。通路43は等間隔に5本形成した。
電子線透過部材2は、直径が6mm、厚さが1mmのホウ素を10ppmドープして導電性を付与したダイヤモンド基板上の一部を薄くしたもので、電子線照射領域として直径約2mmの領域を中央部が最も深くなるように掘り下げて、最薄部を40μmとした。
電子線照射領域の中心である最薄部は、ターゲット材料3の中心から750μm外側へずらした位置とした。
ターゲット材料3としてはスズを用いた。
電子線透過部材2の最外周部の保持部の位置においてメタライズ処理を行って濡れ性を局所的に高めた。次に、基材1に対しても、最外周部をメタライズ処理した。さらに、メタライズ処理した面同士が対向するように、基材1と電子線透過部材2とを銀ろう付けによって、1×10-3Paの真空中にて、接合した。さらに、外周部をクランプ91,92で加圧保持した。
本実施例のターゲット10において、25℃における空隙4のターゲット材料3に対する体積比は、9であった。
以上のような構成のターゲット10を図6に示した放射線発生管60に装着し、電子放出源64とターゲット10との間に100kV電圧を印加してターゲット10に電子線を照射した。その結果、電子線透過部材2の破損を生じることなくスズの特性放射線を含む放射線を発生させることができた。
1:基材、2:電子線透過部材、3:ターゲット材料、4:空隙、5:電子線、6:放射線、10:放射線発生ターゲット、11:電子線照射領域、12:保持部、41:第1の空間、42:第2の空間、43:通路、60:放射線発生管、61:絶縁管、62:陰極、63:陽極、64:電子放出源、70:放射線発生装置、71:収納容器、73:絶縁性液体、72:放射線放出窓、201:放射線検出装置、202:システム制御装置、204:被検体

Claims (16)

  1. 電子線の照射により放射線を放出するターゲット材料を備えた放射線発生ターゲットであって、
    前記ターゲット材料が、電子線透過部材と基材との間に形成された密閉空間内に配置され、前記密閉空間が前記ターゲット材料の周囲の少なくとも一部に空隙を有することを特徴とする放射線発生ターゲット。
  2. 前記空隙が真空である請求項1に記載の放射線発生ターゲット。
  3. 前記空隙のターゲット材料に対する体積比が、25℃において0.05以上、100以下である請求項1又は2に記載の放射線発生ターゲット。
  4. 前記空隙が、前記電子線透過部材と前記基材の対向面に沿った方向において前記ターゲット材料の周囲の少なくとも一部に設けられていることを特徴とする請求項1乃至3のいずれか1項に記載の放射線発生ターゲット。
  5. 前記電子線透過部材が、電子線の照射領域において、中心から周辺に向かって厚さが漸増していることを特徴とする請求項1乃至4のいずれか1項に記載の放射線発生ターゲット。
  6. 前記電子線透過部材の、前記電子線の照射領域の中心が、前記電子線透過部材と前記基材の対向面に沿った方向における前記ターゲット材料の中心よりも外側に位置していることを特徴とする請求項5に記載の放射線発生ターゲット。
  7. 前記放射線透過部材及び前記基材の少なくとも一方が、溶融した前記ターゲット材料に対して濡れ性の低い材料からなり、前記電子線透過部材と前記基材の対向面に沿った方向において前記密閉空間の高さが中央部から周辺に向かって漸減していることを特徴とする請求項1乃至6のいずれか1項に記載の放射線発生ターゲット。
  8. 前記密閉空間が、ターゲット材料を配置した第1の空間と、前記第1の空間の外側に距離を置いて配置された第2の空間と、前記第1の空間と第2の空間とを連通する通路を有することを特徴とする請求項1乃至7のいずれか1項に記載の放射線発生ターゲット。
  9. 前記ターゲット材料が、亜鉛、銀、金、スズ、鉛、ビスマスのいずれかであることを特徴とする請求項1乃至8のいずれか1項に記載の放射線発生ターゲット。
  10. 前記基材が放射線透過部材であり、前記放射線発生ターゲットが透過型ターゲットであることを特徴とする請求項1乃至9のいずれか1項に記載の放射線発生ターゲット。
  11. 前記放射線透過部材及び電子線透過部材がホウ素をドープしたダイヤモンド基板であることを特徴とする請求項10に記載の放射線発生ターゲット。
  12. 前記基材が放射線反射部材であり、前記放射線発生ターゲットが反射型ターゲットであることを特徴とする請求項1乃至9のいずれか1項に記載の放射線発生ターゲット。
  13. 絶縁管と、前記絶縁管の一方の開口に接合された陰極と、前記絶縁管の他方の開口に接合された陽極と、前記陰極に接続された電子放出源と、前記陽極に接続されたターゲットとを有する放射線発生管において、前記ターゲットが、請求項1乃至11のいずれか1項に記載の放射線発生ターゲットであることを特徴とする放射線発生管。
  14. 請求項13に記載の放射線発生管と、前記放射線発生管と前記駆動回路とを収容した収納容器とを備え、前記収納容器は、前記放射線発生管から生じる放射線を取り出すための放出窓を有し、前記放射線発生管を収容した内部の余剰空間には絶縁性液体が満たされていることを特徴とする放射線発生装置。
  15. 前記絶縁性液体は、シリコーン油、トランス油及びフッ素系オイルのいずれかであることを特徴とする請求項14に記載の放射線発生装置。
  16. 請求項14又は15に記載の放射線発生装置と、
    前記放射線発生装置から放出され、被検体を透過した放射線を検出する放射線検出装置と、
    前記放射線発生装置と前記放射線検出装置とを連携制御する制御装置とを備えたことを特徴とする放射線撮影システム。
JP2013128091A 2013-06-19 2013-06-19 放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム Pending JP2015005337A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013128091A JP2015005337A (ja) 2013-06-19 2013-06-19 放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128091A JP2015005337A (ja) 2013-06-19 2013-06-19 放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム

Publications (1)

Publication Number Publication Date
JP2015005337A true JP2015005337A (ja) 2015-01-08

Family

ID=52301093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128091A Pending JP2015005337A (ja) 2013-06-19 2013-06-19 放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム

Country Status (1)

Country Link
JP (1) JP2015005337A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190526A (ja) * 2017-04-28 2018-11-29 浜松ホトニクス株式会社 X線管及びx線発生装置
WO2021240834A1 (ja) * 2020-05-27 2021-12-02 キヤノン電子管デバイス株式会社 固定陽極x線管

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190526A (ja) * 2017-04-28 2018-11-29 浜松ホトニクス株式会社 X線管及びx線発生装置
KR20200002784A (ko) * 2017-04-28 2020-01-08 하마마츠 포토닉스 가부시키가이샤 X선관 및 x선 발생 장치
EP3618093A4 (en) * 2017-04-28 2021-01-06 Hamamatsu Photonics K.K. X-RAY TUBE AND X-RAY GENERATION DEVICE
US11004646B2 (en) 2017-04-28 2021-05-11 Hamamatsu Photonics K.K. X-ray tube and X-ray generation device
KR102470380B1 (ko) * 2017-04-28 2022-11-24 하마마츠 포토닉스 가부시키가이샤 X선관 및 x선 발생 장치
WO2021240834A1 (ja) * 2020-05-27 2021-12-02 キヤノン電子管デバイス株式会社 固定陽極x線管
JP2021190217A (ja) * 2020-05-27 2021-12-13 キヤノン電子管デバイス株式会社 固定陽極x線管
JP7414640B2 (ja) 2020-05-27 2024-01-16 キヤノン電子管デバイス株式会社 固定陽極x線管

Similar Documents

Publication Publication Date Title
JP6039283B2 (ja) 放射線発生装置及び放射線撮影装置
JP6039282B2 (ja) 放射線発生装置及び放射線撮影装置
JP5984403B2 (ja) ターゲット構造体及びそれを備える放射線発生装置
US9373478B2 (en) Radiation generating apparatus and radiation imaging apparatus
JP5455880B2 (ja) 放射線発生管、放射線発生装置ならびに放射線撮影装置
JP2013239317A (ja) 放射線発生ターゲット、放射線発生装置および放射線撮影システム
JP5871528B2 (ja) 透過型x線発生装置及びそれを用いたx線撮影装置
JP6327802B2 (ja) 放射線発生管及びそれを用いた放射線発生装置と放射線撮影システム
US10032597B2 (en) X-ray generating tube, X-ray generating apparatus, X-ray imaging system, and anode used therefor
JP2013051153A (ja) 放射線発生装置及びそれを用いた放射線撮影装置
JP2014136083A (ja) 放射線発生管及び放射線発生装置及びそれらを用いた放射線撮影装置
KR101923837B1 (ko) 양극, 및 이를 이용한 x선 발생관, x선 발생 장치, 및 방사선촬영 시스템
JP6456172B2 (ja) 陽極及びこれを用いたx線発生管、x線発生装置、x線撮影システム
JP2014197534A (ja) X線発生管、該x線発生管を備えたx線発生装置及びx線撮影システム
JP6429602B2 (ja) 陽極及びこれを用いたx線発生管、x線発生装置、x線撮影システム
JP2015005337A (ja) 放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム
JP6659167B2 (ja) 電子銃を備えたx線発生管及びx線撮影装置
JP6153314B2 (ja) X線透過型ターゲット及びその製造方法
JP5725827B2 (ja) 放射線発生装置および放射線撮影システム
JP2015076213A (ja) 放射線管、放射線発生装置及び放射線撮影システム
JP2015060731A (ja) 放射線発生管及びこれを用いた放射線発生装置、放射線撮影システム
JP5449118B2 (ja) 透過型放射線管、放射線発生装置および放射線撮影装置
JP2015138593A (ja) 放射線管及び放射線発生装置
JP2014241188A (ja) 放射線発生管及びそれを用いた放射線発生装置と放射線撮影システム