[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014215518A - Performance-variable diffraction grating - Google Patents

Performance-variable diffraction grating Download PDF

Info

Publication number
JP2014215518A
JP2014215518A JP2013094064A JP2013094064A JP2014215518A JP 2014215518 A JP2014215518 A JP 2014215518A JP 2013094064 A JP2013094064 A JP 2013094064A JP 2013094064 A JP2013094064 A JP 2013094064A JP 2014215518 A JP2014215518 A JP 2014215518A
Authority
JP
Japan
Prior art keywords
diffraction grating
liquid
refractive index
shows
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013094064A
Other languages
Japanese (ja)
Other versions
JP6047061B2 (en
Inventor
曲 克明
Katsuaki Magari
克明 曲
阿部 淳
Atsushi Abe
淳 阿部
弘和 竹ノ内
Hirokazu Takenouchi
弘和 竹ノ内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013094064A priority Critical patent/JP6047061B2/en
Publication of JP2014215518A publication Critical patent/JP2014215518A/en
Application granted granted Critical
Publication of JP6047061B2 publication Critical patent/JP6047061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind

Landscapes

  • Physics & Mathematics (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a performance-variable diffraction grating capable of varying a reflectance and a reflection wavelength band.SOLUTION: A performance-variable diffraction grating is formed on a deposit smoothly deposited on a substrate, and refraction liquid-charging grooves 12 and 13 having a width X, a length L and a depth d are formed in a part of the grating-formed substrate and a terrace part 11 having a width W is left therebetween. The refraction liquid-charging groove 13 having a periodic sawteeth shape enters parts of the terrace part 11. The refraction liquid charging grooves 12 and 13 can be charged with a liquid having an optional refractive index, and a reflectance and a reflection wavelength band being fundamental characteristics of the diffraction grating can be optionally varied by varying the refractive index of the liquid to be charged.

Description

本発明は、性能可変回折格子に関し、より詳細には狭帯域な波長特性を有する性能可変回折格子に関する。   The present invention relates to a performance variable diffraction grating, and more particularly to a performance variable diffraction grating having a narrow band wavelength characteristic.

従来、波長フィルタの1つとして、光ファイバ中に回折格子が描き込まれたファイバグレーティング(以下、FBGと略記)が用いられてきた。図15に、従来のFBGの構成を示す。FBGは光ファイバと同材料であることから光ファイバとの整合性が良く、狭帯域な波長特性を得る波長フィルタとして用いられる。例えばファイバアンプの励起用光源として使われる0.98μm帯の半導体レーザ(以下、LD)の波長を約1nmの波長範囲内に安定するためFBGが広く使用されている。FBGの作製は、紫外線の干渉縞を光ファイバに照射し紫外線誘起屈折率変化により周期的な屈折率変化を光ファイバ中に形成することで行なっている。   Conventionally, a fiber grating (hereinafter abbreviated as FBG) in which a diffraction grating is drawn in an optical fiber has been used as one of wavelength filters. FIG. 15 shows the configuration of a conventional FBG. Since the FBG is made of the same material as the optical fiber, it has good matching with the optical fiber and is used as a wavelength filter that obtains a narrow band wavelength characteristic. For example, FBG is widely used in order to stabilize the wavelength of a 0.98 μm band semiconductor laser (hereinafter referred to as LD) used as a fiber amplifier excitation light source within a wavelength range of about 1 nm. Fabrication of the FBG is performed by irradiating an optical fiber with ultraviolet interference fringes and forming a periodic refractive index change in the optical fiber by an ultraviolet-induced refractive index change.

一方で最近ではバイオ分野等で利用される蛍光顕微鏡において波長変換光が利用されている。波長変換光では蛍光タンパク質の励起用として従来のLDでは発生できないような波長発生が可能となる。特に分布帰還型(以下、DFB)構造の実現が難しい波長ではLDの発振帯域をFBGを用いて狭帯域化が行われている。   On the other hand, recently, wavelength-converted light is used in fluorescent microscopes used in the bio field and the like. The wavelength-converted light can generate a wavelength that cannot be generated by a conventional LD for exciting fluorescent proteins. In particular, at wavelengths where it is difficult to realize a distributed feedback type (hereinafter referred to as DFB) structure, the LD oscillation band is narrowed using FBG.

また、可視光を得るために用いる波長変換素子の位相整合帯域幅は狭いため、実用上、波長安定化は必須の要件である。図16に、波長0.559μmの黄緑色光を和周波発生によって得るための位相整合条件の一例を示す。グラフはニオブ酸リチウム(以下、LN)の温度をスキャンした時の特性を示し、最大出力となる波長をゼロとして離長により表してある。半値幅は約0.8℃となっており、0.98μm半導体レーザの発振波長をスキャンした場合の換算係数0.1nm/℃を用いると、半値全幅として約80pmと非常に狭くなっている。このためFBGを使って0.98μm半導体レーザの発振スペクトルを狭帯域に抑え込む必要があることがわかる。   Moreover, since the phase matching bandwidth of the wavelength conversion element used for obtaining visible light is narrow, wavelength stabilization is an essential requirement for practical use. FIG. 16 shows an example of a phase matching condition for obtaining yellow-green light having a wavelength of 0.559 μm by sum frequency generation. The graph shows the characteristics when the temperature of lithium niobate (hereinafter, LN) is scanned, and is represented by the separation length with the wavelength that becomes the maximum output being zero. The full width at half maximum is about 0.8 ° C. When the conversion factor of 0.1 nm / ° C. when the oscillation wavelength of the 0.98 μm semiconductor laser is scanned is used, the full width at half maximum is about 80 pm, which is very narrow. For this reason, it is understood that it is necessary to suppress the oscillation spectrum of the 0.98 μm semiconductor laser to a narrow band using FBG.

波長変換光に要望される仕様はそのまま励起LDにおける仕様に還元されるため、コストを含めたLDとFBGの最適設計を行う必要がある。   Since specifications required for wavelength-converted light are directly reduced to specifications for the pumping LD, it is necessary to optimally design the LD and FBG including the cost.

FBGを用いた波長変換光発生用の励起LDでは、電流−光出力特性において表れるキンクと呼ばれる不連続点の発生や、発振スペクトル幅の狭帯域化、疑似モードシングル発振によるノイズ特性の劣化といった問題がある。蛍光顕微鏡の仕様においても、連続波(以下、CW)光として使用、変調機能を搭載する、低ノイズが必要など様々な要求があり、それに加えて高額でも高機能な性能を必要とする利用法やとにかくローコストでの利用といった様々なニーズがあり、それぞれに対応したLDとFBGの組み合わせが必要となる。   In the pump LD for wavelength-converted light generation using FBG, problems such as generation of discontinuities called kinks appearing in the current-light output characteristics, narrowing of the oscillation spectrum width, and deterioration of noise characteristics due to pseudo-mode single oscillation There is. There are various demands in the specifications of fluorescent microscopes, such as use as continuous wave (hereinafter referred to as CW) light, mounting modulation function, low noise is required, and in addition, high-performance performance that requires high performance. Anyway, there are various needs such as low-cost use, and a combination of LD and FBG corresponding to each need is required.

LDとしては波長帯が合ったものを市場で入手することが可能であるが、材料系の違いや性能がメーカーによって異なるため、最終的にはFBGによって個別な仕様に対応するように最適化検討を行う必要がある。FBGの主な性能は(A)反射率、(B)反射波長帯域、(C)中心波長によって決められる。   Although it is possible to obtain a suitable wavelength band for the LD in the market, differences in material systems and performance differ from manufacturer to manufacturer. Ultimately, FBG will be optimized to meet individual specifications. Need to do. The main performance of FBG is determined by (A) reflectivity, (B) reflection wavelength band, and (C) center wavelength.

特許第4843506号公報Japanese Patent No. 4843506

しかしながら、実際のFBGは位相マスク法か二光束干渉法のような方法を用いて1つの固定した特性を持つものとして作製されるため、1つのFBGで(A)〜(C)、特に(A)と(B)を可変にすることはできないという課題があった。そのため最適なFBGを決めるには複数のFBGを用意する必要があり、またFBGをそのたびに接続する作業もあるため、開発に大きなコストと時間がかかっていた。   However, since an actual FBG is manufactured as one having a fixed characteristic by using a method such as a phase mask method or a two-beam interference method, (A) to (C), particularly (A ) And (B) cannot be made variable. Therefore, in order to determine the optimum FBG, it is necessary to prepare a plurality of FBGs, and there is an operation for connecting the FBGs each time, so that development takes a large cost and time.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、反射率と反射波長帯域を変化させることが可能な性能可変回折格子を提供することにある。   The present invention has been made in view of such problems, and an object thereof is to provide a variable performance diffraction grating capable of changing the reflectance and the reflection wavelength band.

上記の課題を解決するために、請求項1に記載の発明は、性能可変回折格子であり、基板上に平坦に堆積された堆積物上に形成されたテラス部に周期的な溝を有する鋸歯状型溝が形成され、前記鋸歯状型溝が任意の屈折率を持つ液体を充填可能な液溜であることを特徴とする。   In order to solve the above problems, the invention according to claim 1 is a variable performance diffraction grating, and a sawtooth having periodic grooves in a terrace portion formed on a deposit deposited flat on a substrate. The saw-tooth shaped groove is a liquid reservoir that can be filled with a liquid having an arbitrary refractive index.

請求項2に記載の発明は、請求項1に記載の性能可変回折格子において、前記テラス部に前記鋸歯状型溝が複数形成されていることを特徴とする。   According to a second aspect of the present invention, in the variable performance diffraction grating according to the first aspect, a plurality of the sawtooth-shaped grooves are formed in the terrace portion.

請求項3に記載の発明は、請求項1又は2に記載の性能可変回折格子において、前記テラス部の両端にスポットサイズ変換構造が形成されていることを特徴とする。   The invention according to claim 3 is the variable performance diffraction grating according to claim 1 or 2, wherein spot size conversion structures are formed at both ends of the terrace portion.

請求項4に記載の発明は、請求項1乃至3のいずれかに記載の性能可変回折格子において、前記スポットサイズ変換構造は、前記回折格子に接続された光ファイバからの伝搬光をコリメート光にすることを特徴とする。   According to a fourth aspect of the present invention, in the variable performance diffraction grating according to any one of the first to third aspects, the spot size conversion structure converts the propagation light from the optical fiber connected to the diffraction grating into collimated light. It is characterized by doing.

請求項5に記載の発明は、請求項1乃至4のいずれかに記載の性能可変回折格子において、前記スポットサイズ変換構造は、リッジ構造のテーパー形状であることを特徴とする。   According to a fifth aspect of the present invention, in the variable performance diffraction grating according to any one of the first to fourth aspects, the spot size conversion structure has a tapered shape of a ridge structure.

本発明による回折格子を用いることで、1つの回折格子を取り外しすることなく反射率と反射波長帯域を変化させることが可能となる。これにより例えば、この回折格子によって決定した性能を持つFBGを使用することで仕様に適した半導体レーザを歩留まりよく作製することができ、バイオ分野等で測定ツールとして用いられている蛍光顕微鏡の仕様変化にスピーディに対応ができ、医療分野の発展に大きく寄与することができる。   By using the diffraction grating according to the present invention, it is possible to change the reflectance and the reflection wavelength band without removing one diffraction grating. As a result, for example, by using an FBG having the performance determined by the diffraction grating, a semiconductor laser suitable for the specification can be manufactured with a high yield, and the specification change of the fluorescence microscope used as a measurement tool in the bio field etc. And can make a significant contribution to the development of the medical field.

本発明の実施形態1に係る回折格子を示す図である。It is a figure which shows the diffraction grating which concerns on Embodiment 1 of this invention. 本発明の実施例1の回折格子を用いてLDに接続した場合の回折格子の透過特性を示す図である(CASE−I)。It is a figure which shows the transmission characteristic of a diffraction grating at the time of connecting to LD using the diffraction grating of Example 1 of this invention (CASE-I). 本発明の実施例1の回折格子を用いてLDに接続した場合の特性を示す図であり(CASE−I)、(a)は電流に対する光出力特性、(b)は電流に対する発振ピーク波長特性、(c)は電流に対するLD発振スペクトル特性を示す図である。It is a figure which shows the characteristic at the time of connecting to LD using the diffraction grating of Example 1 of this invention (CASE-I), (a) is the optical output characteristic with respect to an electric current, (b) is the oscillation peak wavelength characteristic with respect to an electric current. (C) is a figure which shows the LD oscillation spectrum characteristic with respect to an electric current. 本発明の実施例1の回折格子を用いてLDに接続した場合の回折格子の透過特性を示す図である(CASE−II)。It is a figure which shows the transmission characteristic of a diffraction grating at the time of connecting to LD using the diffraction grating of Example 1 of this invention (CASE-II). 本発明の実施例1の回折格子を用いてLDに接続した場合の特性を示す図であり(CASE−II)、(a)は電流に対する光出力特性、(b)は電流に対する発振ピーク波長特性、(c)は電流に対するLD発振スペクトル特性を示す図である。It is a figure which shows the characteristic at the time of connecting to LD using the diffraction grating of Example 1 of this invention (CASE-II), (a) is the optical output characteristic with respect to an electric current, (b) is the oscillation peak wavelength characteristic with respect to an electric current. (C) is a figure which shows the LD oscillation spectrum characteristic with respect to an electric current. 本発明の実施例1の回折格子を用いてLDに接続した場合の回折格子の透過特性を示す図である(CASE−III)。It is a figure which shows the transmission characteristic of a diffraction grating at the time of connecting to LD using the diffraction grating of Example 1 of this invention (CASE-III). 本発明の実施例1の回折格子を用いてLDに接続した場合の特性を示す図であり(CASE−III)、(a)は電流に対する光出力特性、(b)は電流に対する発振ピーク波長特性、(c)は電流に対するLD発振スペクトル特性を示す図である。It is a figure which shows the characteristic at the time of connecting to LD using the diffraction grating of Example 1 of this invention (CASE-III), (a) is the optical output characteristic with respect to an electric current, (b) is the oscillation peak wavelength characteristic with respect to an electric current. (C) is a figure which shows the LD oscillation spectrum characteristic with respect to an electric current. 本発明の実施形態2に係る回折格子を示す図である。It is a figure which shows the diffraction grating which concerns on Embodiment 2 of this invention. 本発明の実施例2の回折格子を用いてLDに接続した場合の回折格子の透過特性を示す図である(CASE−IV)。It is a figure which shows the transmission characteristic of a diffraction grating at the time of connecting to LD using the diffraction grating of Example 2 of this invention (CASE-IV). 本発明の実施例2の回折格子を用いてLDに接続した場合の回折格子の透過特性を示す図である(CASE−V)。It is a figure which shows the transmission characteristic of a diffraction grating at the time of connecting to LD using the diffraction grating of Example 2 of this invention (CASE-V). 本発明の実施例2の回折格子を用いてLDに接続した場合の回折格子の透過特性を示す図である(CASE−VI)。It is a figure which shows the transmission characteristic of a diffraction grating at the time of connecting to LD using the diffraction grating of Example 2 of this invention (CASE-VI). 本発明の実施形態3に係る回折格子を示す図である。It is a figure which shows the diffraction grating which concerns on Embodiment 3 of this invention. 本発明の回折格子中を伝搬する光のモードサイズを示す図である。It is a figure which shows the mode size of the light which propagates in the diffraction grating of this invention. 本発明の実施形態4に係る回折格子を示す図である。It is a figure which shows the diffraction grating which concerns on Embodiment 4 of this invention. 従来の回折格子であるFBGを示す図である。It is a figure which shows FBG which is the conventional diffraction grating. 波長0.559μmの黄緑色光を第二高調波発生によって得るためのLNの位相整合曲線を示す図である。It is a figure which shows the phase matching curve of LN for obtaining the yellow-green light of wavelength 0.559micrometer by a 2nd harmonic generation.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1を例として、本発明に係る性能可変回折格子を説明する。この性能可変回折格子は、シリコン基板上に平坦に堆積された石英系化合物SiO上に形成されており、形成された基板の一部に、幅X、長さL、深さdの屈折液充填用溝12、13が掘られており、その間に幅Wのテラス部11が残された形状となっている。屈折液充填用溝13は周期的な鋸歯状型になっており、テラス部11の一部に入り込んでいる。ここではX=50μm、L=20mm、W=5μm、d=1μmとした場合について説明する。またここで述べる回折格子は波長0.98μm用に対するもので、本来は1次の回折格子となる溝0.34μmを用いるべきであるが、作製の容易さを優先して2次の周期間隔を0.68μmで作製した。 The variable performance diffraction grating according to the present invention will be described with reference to FIG. This performance variable diffraction grating is formed on a quartz-based compound SiO 2 that is flatly deposited on a silicon substrate. A refractive liquid having a width X, a length L, and a depth d is formed on a part of the formed substrate. The filling grooves 12 and 13 are dug, and the terrace portion 11 having a width W is left between them. The refractive liquid filling groove 13 has a periodic saw-tooth shape and enters a part of the terrace portion 11. Here, a case where X = 50 μm, L = 20 mm, W = 5 μm, and d = 1 μm will be described. In addition, the diffraction grating described here is for a wavelength of 0.98 μm, and a groove of 0.34 μm, which is a primary diffraction grating, should be used originally. It was produced at 0.68 μm.

(実施形態1)
図1に、本発明の実施形態1に係る回折格子を示す。図1(b)は、図1(a)のPQにおける断面図である。CASE−Iとして溝部13に屈折率1.454の屈折液Aを垂らすことにより、伝搬光に対して溝部12、13でリッジ部の屈折率1.45より約1.3×10−5だけ高い屈折率となる条件を実現した。これにより図2のような透過率55%(反射率45%)で半値幅18pmのグレーティング特性が得られた。尚、図中の点線は半値幅を読み取るための補助線である。この回折格子の両端に光ファイバをコリメート光にして接続し、一方の光ファイバの1m離れた先に0.98μm帯LDを、他端の光ファイバの先にコネクタを接続してLD評価を行ったところ、基本特性として図3(a)〜(c)のような特性が得られた。図3(a)は電流に対する光出力特性、図3(b)は電流に対する発振ピーク波長特性、図3(c)は電流に対するLD発振スペクトル特性である。
(Embodiment 1)
FIG. 1 shows a diffraction grating according to Embodiment 1 of the present invention. FIG.1 (b) is sectional drawing in PQ of Fig.1 (a). By suspending the refractive liquid A having a refractive index of 1.454 in the groove portion 13 as CASE-I, the refractive index 1.45 of the ridge portion is higher by about 1.3 × 10 −5 at the groove portions 12 and 13 with respect to the propagating light. The condition for refractive index was realized. As a result, a grating characteristic with a transmittance of 55% (reflectance of 45%) and a half width of 18 pm as shown in FIG. 2 was obtained. The dotted line in the figure is an auxiliary line for reading the half width. An optical fiber is connected to both ends of this diffraction grating as collimated light, and a 0.98 μm band LD is connected to the tip of one optical fiber at a distance of 1 m, and a connector is connected to the tip of the other optical fiber to perform LD evaluation. As a result, the basic characteristics shown in FIGS. 3A to 3C were obtained. 3A shows the optical output characteristics with respect to the current, FIG. 3B shows the oscillation peak wavelength characteristics with respect to the current, and FIG. 3C shows the LD oscillation spectrum characteristics with respect to the current.

次にCASE−IIとして屈折液Aを洗浄剤の使用により溝部から除去後、屈折率1.452の屈折液Bを溝部に充填し、伝搬光に対して溝部12、13でリッジ部の屈折率1.45より約1.0×10−5だけ高い屈折率となる条件を実現した。これにより図4のような透過率67%(反射率33%)で半値幅18pmのグレーティング特性が得られた。尚、図中の点線は半値幅を読み取るための補助線である。このときのLDの基本特性として図5(a)〜(c)のような特性が得られた。図5(a)は電流に対する光出力特性、図5(b)は電流に対する発振ピーク波長特性、図5(c)は電流に対するLD発振スペクトル特性である。 Next, as CASE-II, the refractive liquid A is removed from the groove portion by using a cleaning agent, and then the refractive liquid B having a refractive index of 1.452 is filled in the groove portion, and the refractive index of the ridge portion at the groove portions 12 and 13 with respect to the propagating light. The condition that the refractive index is higher by 1.0 × 10 −5 than 1.45 is realized. As a result, a grating characteristic with a transmittance of 67% (reflectance of 33%) and a half width of 18 pm as shown in FIG. 4 was obtained. The dotted line in the figure is an auxiliary line for reading the half width. As basic characteristics of the LD at this time, the characteristics as shown in FIGS. 5A to 5C were obtained. 5A shows the optical output characteristics with respect to the current, FIG. 5B shows the oscillation peak wavelength characteristics with respect to the current, and FIG. 5C shows the LD oscillation spectrum characteristics with respect to the current.

また同様にCASE−IIIとして屈折率1.451の屈折液Cを溝部に充填し、伝搬光に対して溝部12、13でリッジ部の屈折率1.45より約7.5×10−6だけ高い屈折率となる条件を実現した。これにより図6のような透過率95%(反射率5%)で半値幅18pmのグレーティング特性が得られた。尚、図6中の点線は半値幅を読み取るための補助線である。このときのLDの基本特性として図7(a)〜(c)のような特性が得られた。図7(a)は電流に対する光出力特性、図7(b)は電流に対する発振ピーク波長特性、図7(c)は電流に対するLD発振スペクトル特性である。電流とともにスペクトル幅が広がっていく様子がよくわかる。 Similarly, the groove portion is filled with the refraction liquid C having a refractive index of 1.451 as CASE-III, and only about 7.5 × 10 −6 from the refractive index 1.45 of the ridge portion in the groove portions 12 and 13 with respect to propagating light. Realized the condition that high refractive index. As a result, a grating characteristic with a transmittance of 95% (reflectance of 5%) and a half width of 18 pm as shown in FIG. 6 was obtained. The dotted line in FIG. 6 is an auxiliary line for reading the half width. Characteristics as shown in FIGS. 7A to 7C were obtained as basic characteristics of the LD at this time. FIG. 7A shows the optical output characteristics with respect to the current, FIG. 7B shows the oscillation peak wavelength characteristics with respect to the current, and FIG. 7C shows the LD oscillation spectrum characteristics with respect to the current. You can see how the spectrum width increases with current.

この中からキンクがあまり大きくなく、電流により波長変化が小さくなっておりかつスペクトル幅の広がりも小さい電流に対する発振ピーク波長特性から屈折液Bの特性が最も必要とする仕様に近く、この構成と同等のFBGを採用することにした。このように市販の屈折液を複数種用意しておき、充填する屈折液の変更のみにより1本のFBGで反射率を任意に変更できるため、研究開発段階の回折格子仕様を容易に決めることが可能である。   Of these, the kink is not so large, the change in wavelength due to the current is small, and the spectral peak wavelength characteristics with respect to the current with a small spectrum width are close to the specifications that the characteristics of the refractive liquid B are most necessary, and are equivalent to this configuration. Decided to adopt FBG. In this way, multiple types of commercially available refracting liquids are prepared, and the reflectance can be arbitrarily changed with one FBG only by changing the refracting liquid to be filled. Therefore, the diffraction grating specifications at the research and development stage can be easily determined. Is possible.

この場合、溝部12に屈折液Aは垂らしても垂らさなくてもよいし、図13に示すように伝搬光が溝12の影響がないように設定すれば溝部12をあえて作らなくてもよい。   In this case, the refracting liquid A may or may not hang down in the groove portion 12, or the groove portion 12 does not have to be made if the propagation light is set so as not to be affected by the groove 12 as shown in FIG. 13.

(実施形態2)
図8(a)、(b)に、本発明の実施形態2に係る回折格子を示す。図8(b)は、図8(a)のPQにおける断面図である。実施形態2の実施形態1との違いは、溝部12が溝部12A、溝部12B、溝部12Cと分かれており、溝部13が溝部13A、溝部13B、溝部13Cと分かれている点である。尚、溝部13A、溝部12B、溝部13Cの周期的な溝は同一の光路上に形成されている。
(Embodiment 2)
8A and 8B show a diffraction grating according to Embodiment 2 of the present invention. FIG. 8B is a cross-sectional view taken along the PQ in FIG. The difference between the second embodiment and the first embodiment is that the groove 12 is divided into a groove 12A, a groove 12B, and a groove 12C, and the groove 13 is divided into a groove 13A, a groove 13B, and a groove 13C. The periodic grooves of the groove portion 13A, the groove portion 12B, and the groove portion 13C are formed on the same optical path.

各溝の長さL、L、Lはそれぞれ6.7mm、6.7mm、6.6mmであり、L=20mmは実施形態1と同じである。回折格子の両端に光ファイバをコリメート光にして接続し、一方の光ファイバの1m離れた先に0.98μm帯LDを、他端の光ファイバの先にコネクタを接続してLD評価を行うことは、実施形態1と変わらない。但し、実施形態2では実施形態1の評価に用いたLDとは別のLDを用いた。 The length L A of each groove, L B, L C, respectively 6.7 mm, 6.7 mm, is 6.6 mm, L = 20 mm is the same as Embodiment 1. An optical fiber is connected to both ends of the diffraction grating as collimated light, a 0.98 μm band LD is connected 1 m away from one optical fiber, and a connector is connected to the tip of the other optical fiber to perform LD evaluation. Is the same as in the first embodiment. However, in the second embodiment, an LD different from the LD used in the evaluation of the first embodiment is used.

このような条件下でCASE−IVとして溝部13A、12B、13Cに屈折率1.451の屈折液Cを充填することで、CASE−IIIとほぼ変わらない反射率5%で半値幅約10pmのグレーティング特性(図9)が得られた。尚、図9中の点線は半値幅を読み取るための補助線である。   Under these conditions, CASE-IV is filled with the refractive liquid C having a refractive index of 1.451 in the grooves 13A, 12B, and 13C, so that the grating has a reflectivity of 5% that is almost the same as CASE-III and a half width of about 10 pm. Characteristics (FIG. 9) were obtained. In addition, the dotted line in FIG. 9 is an auxiliary line for reading a half value width.

次にCASE−Vとして洗浄剤の使用により全ての溝部から屈折液Bを除去後、屈折率1.451の屈折液Cを溝部13Aと12Bに充填し、溝部13Cに屈折率1.45の屈折液Xを充填(比屈折率として〜0.0%)した。この場合、屈折液充填用溝13Cのかかった部分は溝の有無で屈折率差をもたないことからテラス部11自体の特性を有することになる。すなわち回折格子長として30mmでなく、L+Lの20mmとして動作する。これにより、反射率5%であるが半値幅約20pmのグレーティング特性(図10)が得られた。図中の点線は半値幅を読み取るための補助線である。尚、屈折液Cを溝部12Aと13Bに充填し、溝部12Cに屈折液Xを充填してもよい。 Next, after removing the refracting liquid B from all the grooves by using a cleaning agent as CASE-V, the refracting liquid C having a refractive index of 1.451 is filled in the grooves 13A and 12B, and the refraction having a refractive index of 1.45 is filled in the groove 13C. Liquid X was filled (as a relative refractive index, ˜0.0%). In this case, the portion covered with the refractive liquid filling groove 13C does not have a difference in refractive index depending on the presence or absence of the groove, and therefore has the characteristics of the terrace portion 11 itself. In other words, the diffraction grating length is not 30 mm, but L A + L B is 20 mm. As a result, a grating characteristic (FIG. 10) having a reflectance of 5% but a half width of about 20 pm was obtained. The dotted line in the figure is an auxiliary line for reading the half width. The refractive liquid C may be filled into the groove portions 12A and 13B, and the refractive liquid X may be filled into the groove portion 12C.

CASE−VIとして同様に洗浄剤の使用により全ての溝部から屈折液Bを除去後、屈折率1.451の屈折液Cを溝部13Aのみに充填し、溝部12Bと13Cに屈折率1.45の屈折液Xを充填(比屈折率として〜0.0%)した。この場合、屈折液充填用溝12B、13Cのかかった部分は溝の有無で屈折率差をもたないことからテラス部11自体の特性を有することになる。すなわち回折格子長として30mmでなく、Lのみの10mmとして動作する。これにより、反射率5%であるが半値幅48pmのグレーティング特性(図11)が得られた。尚、図中の点線は半値幅を読み取るための補助線である。 Similarly to CASE-VI, the refractive liquid B is removed from all the grooves by using a cleaning agent, and then the refractive liquid C having a refractive index of 1.451 is filled only into the groove 13A, and the grooves 12B and 13C have a refractive index of 1.45. Refractive liquid X was filled (as a relative refractive index, -0.0%). In this case, the portions where the refractive liquid filling grooves 12B and 13C are applied have the characteristic of the terrace portion 11 itself because there is no difference in refractive index depending on the presence or absence of the grooves. That not 30mm as a diffraction grating length, operates as 10mm for L A only. As a result, a grating characteristic (FIG. 11) having a reflectance of 5% but a half width of 48 pm was obtained. The dotted line in the figure is an auxiliary line for reading the half width.

このように市販の屈折液を複数種用意しておき、回折格子を構成する材料の回折格子と同一の屈折液を併用することにより、回折格子の半値幅を変化させることができる。回析格子部は長いほど狭帯域な反射特性が得られるが、均一性の観点からも作製バラツキが生じやすい。従って出来るだけ必要以上に長くしたくないため、回折格子の最適長を見つけるのにも有効である。   Thus, by preparing a plurality of commercially available refractive liquids and using the same refractive liquid as the diffraction grating of the material constituting the diffraction grating, the half width of the diffraction grating can be changed. The longer the diffraction grating portion, the narrower the reflection characteristics can be obtained, but the manufacturing variation tends to occur from the viewpoint of uniformity. Therefore, it is effective to find the optimum length of the diffraction grating because it is not desired to make it longer than necessary.

充填する屈折液の変更のみにより1本のFBGで半値幅を任意に変更できるため、研究開発段階の回折格子仕様を容易に決めることが可能である。尚、ここでは溝部が3つに分かれていたが、2つ以上に分かれていれば同様の効果がある。また、実施形態2では、屈折液の変更のし易さを考え、A、B、Cにおけるテラス部11への溝の切り込み口を交互に変化させているが、どちら側に切り込みが入っても効果は同じである。   Since the full width at half maximum can be arbitrarily changed with one FBG only by changing the refractive liquid to be filled, it is possible to easily determine the diffraction grating specifications at the research and development stage. In addition, although the groove part was divided into three here, if it is divided into two or more, the same effect is obtained. Further, in the second embodiment, considering the ease of changing the refractive liquid, the groove notches into the terraces 11 in A, B, and C are alternately changed. The effect is the same.

(実施形態3)
図12に、本発明の実施形態3に係る回折格子を示す。実施形態3は、実施形態1、2の回折格子に対して両端に光ファイバ15、17を実装した構成となっている。本発明の回折格子の効果を有効に作用させるには、回折格子を伝搬する光が効果的に溝部12、13の間を透過する必要があるため、伝搬光はコリメートされていることが望ましい。そのため、実施形態3では、光ファイバ15、17と回折格子の間にレンズ14、16を用いて伝搬光をコリメートする構成を取っている。
(Embodiment 3)
FIG. 12 shows a diffraction grating according to Embodiment 3 of the present invention. In the third embodiment, optical fibers 15 and 17 are mounted on both ends of the diffraction gratings of the first and second embodiments. In order for the effect of the diffraction grating of the present invention to work effectively, the light propagating through the diffraction grating needs to be effectively transmitted between the groove portions 12 and 13, so that the propagating light is desirably collimated. Therefore, in the third embodiment, a configuration is adopted in which the propagation light is collimated using the lenses 14 and 16 between the optical fibers 15 and 17 and the diffraction grating.

図13は図1(a)、図8(a)と同じく回折格子の断面を示すものであるが、伝搬光の透過領域20は回折格子の効果が効率的に発揮できるようにテラス部11の周期的な溝が形成されている領域に位置調整する。尚、この位置調整によって光が感じる回折格子の結合効率を変えることで、反射率や半値幅の調整を行うこともできる。   FIG. 13 shows the cross section of the diffraction grating as in FIGS. 1 (a) and 8 (a), but the transmission region 20 of the propagating light has the terrace portion 11 so that the effect of the diffraction grating can be efficiently exhibited. The position is adjusted in a region where a periodic groove is formed. It should be noted that the reflectance and the half-value width can be adjusted by changing the coupling efficiency of the diffraction grating that the light feels by adjusting the position.

また、図12に示す構成では、レンズの枚数としては片側1枚としているが、複数の構成を用いても構わない。   In the configuration shown in FIG. 12, the number of lenses is one on one side, but a plurality of configurations may be used.

(実施形態4)
図14に、本発明の実施形態4に係る回折格子を示す。回折格子が形成された基板上の回折格子部分の両側にリッジ構造のテーパー形状をしたスポットサイズ変更構造18、19を設けることで、実施形態3と同様に、伝搬中の光線のスポットサイズを変換して光線20をテラス部11の周期的な溝が形成されている領域に位置調整し、かつ、レンズを用いることなく回折格子中の伝搬光をコリメート光にすることができる。
(Embodiment 4)
FIG. 14 shows a diffraction grating according to Embodiment 4 of the present invention. By providing spot size changing structures 18 and 19 having tapered ridge structures on both sides of the diffraction grating portion on the substrate on which the diffraction grating is formed, the spot size of the light beam being propagated is converted as in the third embodiment. Thus, the position of the light beam 20 can be adjusted in the region where the periodic grooves of the terrace portion 11 are formed, and the propagation light in the diffraction grating can be made collimated light without using a lens.

尚、実施形態1〜4では、回折格子の反射率のみを変化させる方法と、半値幅のみを変化させる方法について記述したが、両者を組み合わせて反射率と半値幅を同時に最適化することもできる。   In the first to fourth embodiments, the method of changing only the reflectance of the diffraction grating and the method of changing only the half width are described. However, the reflectance and the half width can be optimized simultaneously by combining the two. .

また、本願明細書における評価では回折格子用の周期として便宜上2次となる値を用いているが、加工精度の必要な1次の値を用いて作製を行なっても、同様の結果が得られる。   Further, in the evaluation in the present specification, a secondary value is used as a period for the diffraction grating for the sake of convenience, but the same result can be obtained even if fabrication is performed using a primary value that requires processing accuracy. .

また、本発明が波長に関しては任意に使用可能であり、光学部品の接続がレンズ等を介して空間的に行なわれている場合も同様である。   Further, the present invention can be arbitrarily used with respect to the wavelength, and the same applies to the case where the optical components are spatially connected via a lens or the like.

また、本願明細書では石英系を基本とした光部品に関して述べているが、LNや半導体を用いた導波路にテラス部11、屈折液充填用溝12、13を形成しても同様の効果を奏する。   In the present specification, the optical component based on quartz is described, but the same effect can be obtained by forming the terrace portion 11 and the grooves 12 and 13 for refraction liquid filling in a waveguide using LN or a semiconductor. Play.

さらに、屈折液を硬化することで固体として安定した屈折率材料として用いることにより、FBGの代わりの回折格子としてそのまま用いること、また屈折液を硬化する、又は漏れ出ないように密封することでFBGの代わりの汎用部品として用いることも可能である。   Furthermore, by using the refractive liquid as a solid refractive index material by curing the refractive liquid, it can be used as it is as a diffraction grating instead of FBG, and the refractive liquid can be cured or sealed so as not to leak out. It can also be used as a general-purpose component instead of.

尚、中心波長に関しては、回折格子自体を温度制御することでサブnm〜数nm程度可変できる。   The center wavelength can be varied by about sub-nm to several nm by controlling the temperature of the diffraction grating itself.

さらに、図14ではスポットサイズ変換構造としてテーパー導波路構造を示したが、スポットサイズを変換して光線20をテラス部11の溝の切り込みが形成されている領域に位置調整し、かつ、レンズを用いることなく回折格子中の伝搬光をコリメート光に設定すれば構造は任意である。   Further, in FIG. 14, a tapered waveguide structure is shown as the spot size conversion structure. However, the spot size is converted to adjust the position of the light beam 20 in the region where the groove notches of the terrace portion 11 are formed, and the lens is mounted. If the propagating light in the diffraction grating is set to collimated light without using it, the structure is arbitrary.

以上説明したように本発明によれば、回折格子の基本特性である反射率と反射波長帯域を任意に変化させることができるという従来では実現しえなかった特徴を有している。FBG自体はかなり低コスト化が進んでいるが、最適化を行うためのテスト用として反射率と反射波長帯域を取り揃えることは開発コストから考えて難しい。このような回折格子を用いて例えばLDとの組み合わせを最適化するという方法は、波長によって得られるLD特性はマチマチであり、その都度数種類のFBGを用意するのは難しいので、開発コストや開発スピードの加速化に大きな効果がある。   As described above, according to the present invention, the reflectance and the reflection wavelength band, which are basic characteristics of the diffraction grating, can be arbitrarily changed. Although the cost of the FBG itself has been considerably reduced, it is difficult to prepare a reflectance and a reflection wavelength band for a test for optimization in view of development costs. The method of optimizing the combination with, for example, an LD using such a diffraction grating, the LD characteristic obtained by the wavelength is gusseted, and it is difficult to prepare several types of FBGs each time. There is a big effect on the acceleration of.

11 テラス部
12、13 屈折液充填用溝
14、16 レンズ
15、17 光ファイバ
18、19 スポットサイズ変更構造
20 伝搬光の透過領域
DESCRIPTION OF SYMBOLS 11 Terrace part 12, 13 Refractive liquid filling groove | channel 14, 16 Lens 15, 17 Optical fiber 18, 19 Spot size change structure 20 Transmission area of propagation light

Claims (5)

基板上に平坦に堆積された堆積物上に形成されたテラス部に周期的な溝を有する鋸歯状型溝が形成され、前記鋸歯状型溝が任意の屈折率を持つ液体を充填可能な液溜であることを特徴とする性能可変回折格子。   A liquid in which a sawtooth-shaped groove having periodic grooves is formed in a terrace portion formed on a deposit deposited flat on a substrate, and the sawtooth-shaped groove can be filled with a liquid having an arbitrary refractive index. A variable performance diffraction grating characterized by being a reservoir. 前記テラス部に前記鋸歯状型溝が複数形成されていることを特徴とする請求項1に記載の性能可変回折格子。   The variable performance diffraction grating according to claim 1, wherein a plurality of the serrated grooves are formed in the terrace portion. 前記テラス部の両端にスポットサイズ変換構造が形成されていることを特徴とする請求項1又は2に記載の性能可変回折格子。   The variable performance diffraction grating according to claim 1, wherein spot size conversion structures are formed at both ends of the terrace portion. 前記スポットサイズ変換構造は、前記回折格子に接続された光ファイバからの伝搬光をコリメート光にすることを特徴とする請求項1乃至3のいずれかに記載の性能可変回折格子。   4. The variable performance diffraction grating according to claim 1, wherein the spot size conversion structure uses collimated light as propagation light from an optical fiber connected to the diffraction grating. 前記スポットサイズ変換構造は、リッジ構造のテーパー形状であることを特徴とする請求項1乃至4のいずれかに記載の性能可変回折格子。   5. The variable performance diffraction grating according to claim 1, wherein the spot size conversion structure has a tapered shape of a ridge structure.
JP2013094064A 2013-04-26 2013-04-26 Variable performance diffraction grating Expired - Fee Related JP6047061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013094064A JP6047061B2 (en) 2013-04-26 2013-04-26 Variable performance diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013094064A JP6047061B2 (en) 2013-04-26 2013-04-26 Variable performance diffraction grating

Publications (2)

Publication Number Publication Date
JP2014215518A true JP2014215518A (en) 2014-11-17
JP6047061B2 JP6047061B2 (en) 2016-12-21

Family

ID=51941303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094064A Expired - Fee Related JP6047061B2 (en) 2013-04-26 2013-04-26 Variable performance diffraction grating

Country Status (1)

Country Link
JP (1) JP6047061B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230186A1 (en) 2017-06-15 2018-12-20 株式会社ニコン Imaging element, imaging device and imaging method
CN114047569A (en) * 2021-11-17 2022-02-15 佛山市睿琪全钰科技有限公司 Grating diffraction element and method for realizing gradient period of one-word line light spot

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235925A (en) * 1986-04-07 1987-10-16 Canon Inc Optical modulation element
JPS63235904A (en) * 1987-03-24 1988-09-30 Seiko Epson Corp Waveguide type grating element
JPH05264809A (en) * 1991-03-14 1993-10-15 Hikari Keisoku Gijutsu Kaihatsu Kk Diffraction grating and its production
JPH09218317A (en) * 1996-02-09 1997-08-19 Hoya Corp Tapered waveguide and optical waveguide element using the same
US5937115A (en) * 1997-02-12 1999-08-10 Foster-Miller, Inc. Switchable optical components/structures and methods for the fabrication thereof
JP2000187108A (en) * 1998-12-22 2000-07-04 Toshiba Corp Small-sized laser
US6215928B1 (en) * 1996-05-09 2001-04-10 Yeda Research And Development Co. Ltd. Active wavelength selection with resonant devices
JP2002014307A (en) * 2000-05-17 2002-01-18 Agere Systems Optoelectronics Guardian Corp Tunable etching diffraction grating for wdm optical communication system
JP2002258170A (en) * 2001-03-06 2002-09-11 Kazuhiro Hane Wavelength variable optical fiber filter
JP2002258168A (en) * 2001-03-06 2002-09-11 Kazuhiro Hane Wavelength variable optical fiber filter
JP2003066232A (en) * 2001-08-24 2003-03-05 Asahi Glass Co Ltd Multilayer diffraction polarizer and composite liquid crystal element
JP2004012658A (en) * 2002-06-05 2004-01-15 Toppan Printing Co Ltd Wavelength filter and light transmission system using same
JP2004126172A (en) * 2002-10-02 2004-04-22 Nippon Telegr & Teleph Corp <Ntt> Grating element, mach zehnder interferometer, and optical cross-connection system
JP2004133074A (en) * 2002-10-09 2004-04-30 Ricoh Co Ltd Diffraction grating and optical pickup
JP2006309197A (en) * 2005-03-30 2006-11-09 Nec Corp Optical waveguide coupler, sub-assembled optical unit, optical module and optically coupling method
JP2007072133A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Waveguide type band rejection filter
JP2008298821A (en) * 2007-05-29 2008-12-11 Sony Corp Variable diffraction grating, diffraction angle variable element, image pickup apparatus and display apparatus
JP2009015302A (en) * 2007-06-07 2009-01-22 Seiko Epson Corp Optical element, liquid crystal device, electronic equipment, method for manufacturing the optical element, and method for manufacturing the liquid crystal device
JP2009054249A (en) * 2007-08-28 2009-03-12 Sony Corp Efficiency variable diffraction element, optical pickup and optical disk drive
WO2009107798A1 (en) * 2008-02-29 2009-09-03 株式会社フジクラ Optical waveguide element, wavelength dispersion compensation element, method for designing the same, optical filter, method for designing the same, optical resonator and method for designing the same
JP2010091863A (en) * 2008-10-09 2010-04-22 Oki Electric Ind Co Ltd Transmission and reception module
JP2011107384A (en) * 2009-11-17 2011-06-02 Nec Corp Method for manufacturing optical coupling device
JP2012159802A (en) * 2011-02-02 2012-08-23 Ricoh Co Ltd Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235925A (en) * 1986-04-07 1987-10-16 Canon Inc Optical modulation element
JPS63235904A (en) * 1987-03-24 1988-09-30 Seiko Epson Corp Waveguide type grating element
JPH05264809A (en) * 1991-03-14 1993-10-15 Hikari Keisoku Gijutsu Kaihatsu Kk Diffraction grating and its production
JPH09218317A (en) * 1996-02-09 1997-08-19 Hoya Corp Tapered waveguide and optical waveguide element using the same
US6215928B1 (en) * 1996-05-09 2001-04-10 Yeda Research And Development Co. Ltd. Active wavelength selection with resonant devices
US5937115A (en) * 1997-02-12 1999-08-10 Foster-Miller, Inc. Switchable optical components/structures and methods for the fabrication thereof
JP2000187108A (en) * 1998-12-22 2000-07-04 Toshiba Corp Small-sized laser
JP2002014307A (en) * 2000-05-17 2002-01-18 Agere Systems Optoelectronics Guardian Corp Tunable etching diffraction grating for wdm optical communication system
JP2002258170A (en) * 2001-03-06 2002-09-11 Kazuhiro Hane Wavelength variable optical fiber filter
JP2002258168A (en) * 2001-03-06 2002-09-11 Kazuhiro Hane Wavelength variable optical fiber filter
JP2003066232A (en) * 2001-08-24 2003-03-05 Asahi Glass Co Ltd Multilayer diffraction polarizer and composite liquid crystal element
JP2004012658A (en) * 2002-06-05 2004-01-15 Toppan Printing Co Ltd Wavelength filter and light transmission system using same
JP2004126172A (en) * 2002-10-02 2004-04-22 Nippon Telegr & Teleph Corp <Ntt> Grating element, mach zehnder interferometer, and optical cross-connection system
JP2004133074A (en) * 2002-10-09 2004-04-30 Ricoh Co Ltd Diffraction grating and optical pickup
JP2006309197A (en) * 2005-03-30 2006-11-09 Nec Corp Optical waveguide coupler, sub-assembled optical unit, optical module and optically coupling method
JP2007072133A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Waveguide type band rejection filter
JP2008298821A (en) * 2007-05-29 2008-12-11 Sony Corp Variable diffraction grating, diffraction angle variable element, image pickup apparatus and display apparatus
JP2009015302A (en) * 2007-06-07 2009-01-22 Seiko Epson Corp Optical element, liquid crystal device, electronic equipment, method for manufacturing the optical element, and method for manufacturing the liquid crystal device
JP2009054249A (en) * 2007-08-28 2009-03-12 Sony Corp Efficiency variable diffraction element, optical pickup and optical disk drive
WO2009107798A1 (en) * 2008-02-29 2009-09-03 株式会社フジクラ Optical waveguide element, wavelength dispersion compensation element, method for designing the same, optical filter, method for designing the same, optical resonator and method for designing the same
JP2010091863A (en) * 2008-10-09 2010-04-22 Oki Electric Ind Co Ltd Transmission and reception module
JP2011107384A (en) * 2009-11-17 2011-06-02 Nec Corp Method for manufacturing optical coupling device
JP2012159802A (en) * 2011-02-02 2012-08-23 Ricoh Co Ltd Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230186A1 (en) 2017-06-15 2018-12-20 株式会社ニコン Imaging element, imaging device and imaging method
CN114047569A (en) * 2021-11-17 2022-02-15 佛山市睿琪全钰科技有限公司 Grating diffraction element and method for realizing gradient period of one-word line light spot

Also Published As

Publication number Publication date
JP6047061B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP5772989B2 (en) Laser element
JP4448199B2 (en) Substrate-type optical waveguide device, chromatic dispersion compensation device, optical filter and optical resonator, and design methods thereof
JP4500886B2 (en) Optical waveguide device, chromatic dispersion compensation device and design method thereof, optical filter and design method thereof, and optical resonator and design method thereof
JP4603090B2 (en) Substrate-type optical waveguide device, chromatic dispersion compensation device and design method thereof, optical filter and design method thereof, and optical resonator and design method thereof
JP4942429B2 (en) Semiconductor tunable laser
JP5458194B2 (en) Semiconductor tunable laser
JP4514832B2 (en) Substrate type optical waveguide device, chromatic dispersion compensation device, optical filter, optical resonator, and design method thereof
JP2009244868A (en) Diffraction grating device, semiconductor laser, and wavelength tunable filter
JP6003069B2 (en) Grating element and optical element
JP6047061B2 (en) Variable performance diffraction grating
JP2011142191A (en) Semiconductor wavelength tunable laser
JP2012256667A (en) Semiconductor laser light source
JP6319883B2 (en) Wavelength filter and laser
CN103493315A (en) Laser device and adjustment method
JP2009088015A (en) Diffraction grating device, semiconductor laser, and variable wavelength filter
WO2009104469A1 (en) Wavelength-variable light source
JP5880087B2 (en) Grating element and optical element
JP5681383B2 (en) Method and apparatus for evaluating optical properties of optical components
JP2009070979A (en) Semiconductor laser module, and laser light source
JP4526489B2 (en) Wavelength conversion module, wavelength conversion light source, and wavelength conversion device
JP7385158B2 (en) Tunable laser diode
JP5910794B2 (en) Wavelength conversion element and light source device
WO2016093187A1 (en) External resonator type light-emitting device
JPWO2020162451A1 (en) Optical functional elements and laser elements
JP2023043949A (en) Optical filter and wavelength-variable laser element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161118

R150 Certificate of patent or registration of utility model

Ref document number: 6047061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees