JP2014202429A - Device and method for monitoring dried state of material to be dried that is adapted for frozen drying machine - Google Patents
Device and method for monitoring dried state of material to be dried that is adapted for frozen drying machine Download PDFInfo
- Publication number
- JP2014202429A JP2014202429A JP2013079624A JP2013079624A JP2014202429A JP 2014202429 A JP2014202429 A JP 2014202429A JP 2013079624 A JP2013079624 A JP 2013079624A JP 2013079624 A JP2013079624 A JP 2013079624A JP 2014202429 A JP2014202429 A JP 2014202429A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- degree
- dried
- drying chamber
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001035 drying Methods 0.000 title claims abstract description 245
- 239000000463 material Substances 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000012544 monitoring process Methods 0.000 title claims abstract description 28
- 238000007791 dehumidification Methods 0.000 claims description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 68
- 230000014509 gene expression Effects 0.000 claims description 42
- 238000005259 measurement Methods 0.000 claims description 21
- 238000012806 monitoring device Methods 0.000 claims description 6
- 239000002274 desiccant Substances 0.000 claims 2
- 238000004364 calculation method Methods 0.000 description 41
- 238000004108 freeze drying Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 238000000859 sublimation Methods 0.000 description 11
- 230000008022 sublimation Effects 0.000 description 11
- 238000012546 transfer Methods 0.000 description 11
- 230000002528 anti-freeze Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 101100028920 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cfp gene Proteins 0.000 description 3
- 238000009795 derivation Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 101100273797 Caenorhabditis elegans pct-1 gene Proteins 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Drying Of Solid Materials (AREA)
- Freezing, Cooling And Drying Of Foods (AREA)
Abstract
Description
本発明は、食品や医薬品等の原材料液を凍結乾燥により所定の含水率まで乾燥させて製品とする凍結乾燥機に適用され、被乾燥材料の凍結乾燥状態を監視する乾燥状態監視装置及び乾燥状態監視方法に関する。 The present invention is applied to a freeze dryer that is a product obtained by drying raw material liquids such as foods and pharmaceuticals to a predetermined moisture content by freeze drying, and a dry state monitoring device for monitoring a freeze dried state of a material to be dried and a dry state It relates to the monitoring method.
医薬品等の凍結乾燥は、制御盤により自動制御される凍結乾燥機の乾燥庫内に被乾燥材料を充填した多数のトレイやバイアル等の容器を装入し、各容器内の被乾燥材料を所定の含水率になるまで乾燥させることにより行われる。この種の凍結乾燥機を用いた被乾燥材料の凍結乾燥工程は、一般に、被乾燥材料が乾燥固体になるまで氷状の被乾燥材料中に含まれる水分を除去する一次乾燥工程と、一次乾燥工程を経て乾燥固体となった被乾燥材料中に含まれる微量の不凍水を除去して、被乾燥材料を所定の含水率になるまで乾燥する二次乾燥工程とからなる。 For freeze-drying of pharmaceuticals, etc., containers such as trays and vials filled with materials to be dried are loaded into the drying chamber of a freeze dryer automatically controlled by a control panel, and the materials to be dried in each container are predetermined. It is performed by drying until the water content becomes. The freeze-drying process of the material to be dried using this type of freeze-dryer generally includes a primary drying process for removing moisture contained in the ice-like material to be dried until the material to be dried becomes a dry solid, and a primary drying process. It comprises a secondary drying step of removing a trace amount of antifreeze water contained in the material to be dried that has become a dry solid through the process, and drying the material to be dried until a predetermined moisture content is obtained.
本願の出願人は先に、温度センサを用いて直接被乾燥材料の昇華面温度を測定するのではなく、他のパラメータの測定値から被乾燥材料の昇華面温度を計算により求め、これに基づいて、一次乾燥工程中における被乾燥材料の乾燥状態を監視する装置及び方法を提案した(例えば、特許文献1参照。)。この特許文献1に記載の技術によれば、温度センサを被乾燥材料内に挿入しないので、温度センサを用いることによって発生する不都合、例えば、(1)乾燥庫内に装入される全ての被乾燥材料についての昇華面温度を求めることができない、(2)菌が被乾燥材料に混入しやすいので無菌製剤に適用できない、(3)被乾燥材料を自動的に乾燥庫内に装入する自動ローディング装置を備えた凍結乾燥機に適用することができない、等を解消することができる。また、本願の出願人が先に提案した装置及び方法は、被乾燥材料の一次乾燥工程において、真空度調節手段を駆動して乾燥庫内の真空度を一時的に高める方向に変化させ、少なくとも当該変化の前後における乾燥庫内の真空度及びコールドトラップ内の真空度を含む測定データから、一次乾燥期における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出する。これにより、測定データの収集時に乾燥庫内の真空度が真空制御値よりも高くなる方向に遷移し、昇華面温度が下がるため、従来のMTM(Manometric Temperature Measurement)法とは異なり、被乾燥材料がコラプスする危険性を完全に排除することができる。 The applicant of the present application does not directly measure the sublimation surface temperature of the material to be dried using a temperature sensor, but calculates the sublimation surface temperature of the material to be dried from the measured values of other parameters. Thus, an apparatus and a method for monitoring the dry state of the material to be dried during the primary drying process have been proposed (for example, see Patent Document 1). According to the technique described in Patent Document 1, since the temperature sensor is not inserted into the material to be dried, there are inconveniences caused by using the temperature sensor, for example, (1) all the objects to be charged in the drying chamber. Cannot determine the sublimation surface temperature for dry materials, (2) Cannot be applied to aseptic preparations because bacteria are likely to be mixed into the dry materials, (3) Automatic to automatically load dry materials into the drying cabinet It is possible to eliminate problems such as being unable to be applied to a freeze dryer equipped with a loading device. Further, the apparatus and method previously proposed by the applicant of the present application, in the primary drying step of the material to be dried, drives the vacuum degree adjusting means to change the direction of temporarily increasing the degree of vacuum in the drying cabinet, and at least From the measurement data including the degree of vacuum in the drying chamber and the degree of vacuum in the cold trap before and after the change, the average sublimation surface temperature, average bottom part temperature, and sublimation rate of the material to be dried in the primary drying period are calculated. As a result, when measuring data is collected, the degree of vacuum in the drying chamber changes in a direction higher than the vacuum control value, and the sublimation surface temperature is lowered. Therefore, unlike the conventional MTM (Manometric Temperature Measurement) method, the material to be dried The risk of collapsing can be completely eliminated.
しかしながら、特許文献1に記載の発明は、一次乾燥工程中における被乾燥材料の乾燥状態を監視可能な装置及び方法に係るものであり、二次乾燥工程については考慮されていない。上述したように、被乾燥材料の凍結乾燥工程は、一次乾燥工程と二次乾燥工程とからなるので、被乾燥材料の乾燥状態をより的確に監視するため、二次乾燥工程中における被乾燥材料の乾燥状態を監視することができる装置及び方法の開発が嘱望されている。勿論、この装置及び方法には、温度センサを用いないこと、及び、被乾燥材料がコラプスする危険性を完全に排除できることが求められる。 However, the invention described in Patent Document 1 relates to an apparatus and method that can monitor the drying state of the material to be dried during the primary drying process, and does not consider the secondary drying process. As described above, since the freeze-drying process of the material to be dried includes the primary drying process and the secondary drying process, the material to be dried in the secondary drying process is more accurately monitored in order to more accurately monitor the drying state of the material to be dried. Development of an apparatus and a method capable of monitoring the dry state of the food is desired. Of course, this apparatus and method are required not to use a temperature sensor and to completely eliminate the risk of the material to be dried collapsing.
本発明は、このような要請に応えるためになされたものであり、その目的は、温度センサを用いることなく二次乾燥工程中における被乾燥材料の乾燥状態を監視でき、かつ被乾燥材料がコラプスする危険性を完全に排除可能な凍結乾燥機用の乾燥状態監視装置及び乾燥状態監視方法を提供することにある。 The present invention has been made in order to meet such a demand. The object of the present invention is to monitor the drying state of the material to be dried during the secondary drying process without using a temperature sensor, and the material to be dried is collapsed. It is an object of the present invention to provide a dry state monitoring device and a dry state monitoring method for a freeze dryer that can completely eliminate the risk of occurrence.
本発明は、前記課題を解決するため、乾燥状態監視方法に関しては、被乾燥材料を装入する乾燥庫(DC)と、該乾燥庫(DC)内に装入された被乾燥材料から発生する水蒸気を凝結捕集するコールドトラップ(CT)と、前記乾燥庫(DC)と前記コールドトラップ(CT)とを連通する主管(a)と、該主管(a)を開閉する主弁(MV)と、前記乾燥庫(DC)内の真空度を調節する真空度調節手段と、前記乾燥庫(DC)内の絶対圧力及び前記コールドトラップ(CT)内の絶対圧力を検出する真空検出手段と、前記乾燥庫(DC)内に設置された棚板の温度(Th)を検出する棚温検出手段と、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の稼働を自動的に制御する制御手段(PLC)を備えた凍結乾燥機に適用される乾燥状態監視方法において、前記制御手段(PLC)は、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の制御プログラムと、所要の計算プログラムと、所要の関係式を記憶しており、前記被乾燥材料が二次乾燥期に入ったとき、前記乾燥庫(DC)内の真空度(Pdc)を成り行きにまかせて変化させ、当該変化の前後における前記乾燥庫(DC)内の真空度(Pdc)、前記コールドトラップ(CT)内の真空度(Pct)、前記棚温検出手段により検出された前記棚板の温度(Th)を含む測定データ及び前記関係式から、前記二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出し、算出された被乾燥材料の平均品温及び平均脱湿速度を記録手段(e)に記録することを特徴とする。 In order to solve the above-mentioned problems, the present invention relates to a dry state monitoring method, which is generated from a drying cabinet (DC) in which a material to be dried is charged and a material to be dried charged in the drying chamber (DC). A cold trap (CT) for condensing and collecting water vapor, a main pipe (a) communicating the drying chamber (DC) and the cold trap (CT), and a main valve (MV) for opening and closing the main pipe (a) A vacuum degree adjusting means for adjusting a vacuum degree in the drying cabinet (DC), a vacuum detecting means for detecting an absolute pressure in the drying cabinet (DC) and an absolute pressure in the cold trap (CT), and Automatic operation of the shelf temperature detecting means for detecting the temperature (Th) of the shelf installed in the drying cabinet (DC), the drying cabinet (DC), the cold trap (CT), and the vacuum degree adjusting means. Freezing with control means (PLC) to control In the dry condition monitoring method applied to the dryer, the control means (PLC) includes a control program for the drying chamber (DC), the cold trap (CT) and the vacuum degree adjusting means, a required calculation program, The required relational expression is stored, and when the material to be dried enters the secondary drying period, the degree of vacuum (Pdc) in the drying cabinet (DC) is changed according to the course, and before and after the change Measurement data including the degree of vacuum (Pdc) in the drying cabinet (DC), the degree of vacuum (Pct) in the cold trap (CT), the temperature (Th) of the shelf detected by the shelf temperature detecting means, and From the relational expression, the average product temperature and average dehumidification rate of the material to be dried in the secondary drying period are calculated, and the calculated average product temperature and average dehumidification rate of the material to be dried are recorded in the recording means (e). To do The features.
また本発明は、前記構成の乾燥状態監視方法において、前記真空度調節手段として開度調節器(C)を前記主管(a)内に備えると共に、前記制御手段(PLC)には、前記関係式として、前記主弁(MV)を全開した状態における水負荷による脱湿速度(Qm)と前記開度調節器(C)の開度角度(θ)と主管抵抗R(θ)との関係式を記憶し、前記乾燥庫(DC)内に装入された被乾燥材料が二次乾燥期に入り、前記開度調節器(C)が全開方向への回動を開始した後、前記制御手段(PLC)は、所定時間間隔毎に、前記開度調節器(C)の開度角度(θ)と、乾燥庫(DC)内の真空度(Pdc)と、前記コールドトラップ(CT)内の真空度(Pct)と、前記棚板の温度(Th)の測定データから、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出することを特徴とする。 Further, in the dry state monitoring method having the above-described configuration, the opening degree adjuster (C) is provided in the main pipe (a) as the vacuum degree adjusting means, and the relational expression is provided in the control means (PLC). The relationship between the dehumidification rate (Qm) due to water load in the state where the main valve (MV) is fully opened, the opening angle (θ) of the opening controller (C), and the main pipe resistance R (θ) is as follows: The material to be dried stored in the drying cabinet (DC) enters the secondary drying period, and the opening degree adjuster (C) starts to rotate in the fully open direction. The PLC) includes an opening angle (θ) of the opening controller (C), a degree of vacuum (Pdc) in the drying cabinet (DC), and a vacuum in the cold trap (CT) at predetermined time intervals. Material to be dried in the secondary drying period from the measurement data of the degree (Pct) and the temperature (Th) of the shelf board And calculates an average product temperature and average dehumidification rate.
また本発明は、前記構成の乾燥状態監視方法において、前記真空度調節手段としてリーク制御弁(LV)付きの真空制御回路(f)を、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記主管(a)を含む真空系統のいずれかに備えると共に、前記制御手段(PLC)には、前記関係式として、前記主弁(MV)を全開した状態における水負荷による脱湿速度(Qm)と前記主管(a)の水蒸気流動抵抗係数(Cr)との関係式を記憶し、前記乾燥庫(DC)内に装入された被乾燥材料が二次乾燥期に入った後、前記制御手段(PLC)は、前記リーク制御弁(LV)を駆動して前記乾燥庫(DC)内の真空度(Pdc)を設定値に制御するか、前記リーク制御弁(LV)を閉じ、しかる後、所定の時間間隔毎に、前記乾燥庫(DC)内の真空度(Pdc)と、前記コールドトラップ(CT)内の真空度(Pct)と、前記棚温(Th)の測定データから、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出することを特徴とする。 In the dry state monitoring method having the above-described configuration, the vacuum control circuit (f) with a leak control valve (LV) is used as the vacuum degree adjusting means, the drying chamber (DC), the cold trap (CT), and Provided in any of the vacuum systems including the main pipe (a), and the control means (PLC) has a dehumidification rate (Qm) due to water load in the state where the main valve (MV) is fully opened as the relational expression. And the steam flow resistance coefficient (Cr) of the main pipe (a) are stored, and after the material to be dried placed in the drying chamber (DC) enters the secondary drying period, the control means (PLC) drives the leak control valve (LV) to control the degree of vacuum (Pdc) in the drying cabinet (DC) to a set value, or closes the leak control valve (LV), and then At a predetermined time interval, the drying cabinet (D ), The degree of vacuum (Pct) in the cold trap (CT), and the measured data of the shelf temperature (Th), the average product temperature and average of the material to be dried in the secondary drying period The dehumidifying rate is calculated.
一方、乾燥状態監視装置に関しては、被乾燥材料を装入する乾燥庫(DC)と、該乾燥庫(DC)内に装入された被乾燥材料から発生する水蒸気を凝結捕集するコールドトラップ(CT)と、前記乾燥庫(DC)と前記コールドトラップ(CT)とを連通する主管(a)と、該主管(a)を開閉する主弁(MV)と、前記乾燥庫(DC)内の真空度を調節する真空度調節手段と、前記乾燥庫(DC)内の絶対圧力及び前記コールドトラップ(CT)内の絶対圧力を検出する真空検出手段と、前記乾燥庫(DC)内に設置された棚板の温度(Th)を検出する棚温検出手段と、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の稼働を自動的に制御する制御手段(PLC)を備え、前記制御手段(PLC)は、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の制御プログラムと、所要の計算プログラムと、所要の関係式を記憶しており、前記被乾燥材料が二次乾燥期に入ったとき、前記乾燥庫(DC)内の真空度(Pdc)を成り行きにまかせて変化させ、当該変化の前後における前記乾燥庫(DC)内の真空度(Pdc)、前記コールドトラップ(CT)内の真空度(Pct)、前記棚温検出手段により検出された前記棚板の温度(Th)を含む測定データ及び前記関係式から、前記二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出し、算出された被乾燥材料の平均品温及び平均脱湿速度を記録手段(e)に記録することを特徴とする。 On the other hand, with respect to the dry state monitoring device, a drying chamber (DC) in which the material to be dried is charged, and a cold trap that condenses and collects water vapor generated from the material to be dried charged in the drying chamber (DC) ( CT), a main pipe (a) communicating with the drying cabinet (DC) and the cold trap (CT), a main valve (MV) for opening and closing the main pipe (a), and the inside of the drying cabinet (DC) The vacuum degree adjusting means for adjusting the degree of vacuum, the vacuum detecting means for detecting the absolute pressure in the drying chamber (DC) and the absolute pressure in the cold trap (CT), and the drying chamber (DC). A shelf temperature detecting means for detecting the temperature (Th) of the shelf board, and a control means (PLC) for automatically controlling the operation of the drying chamber (DC), the cold trap (CT) and the vacuum degree adjusting means. Comprising the control means (PLC) It stores a control program for the drying cabinet (DC), the cold trap (CT) and the vacuum degree adjusting means, a required calculation program, and a required relational expression, and the material to be dried enters the secondary drying period. The degree of vacuum (Pdc) in the drying chamber (DC) is changed according to circumstances, the degree of vacuum (Pdc) in the drying chamber (DC) before and after the change, and in the cold trap (CT) From the measurement data including the degree of vacuum (Pct), the shelf temperature detected by the shelf temperature detecting means (Th), and the relational expression, the average product temperature and the average desorption of the material to be dried in the secondary drying period are obtained. The humidity rate is calculated, and the calculated average product temperature and average dehumidification rate of the material to be dried are recorded in the recording means (e).
また本発明は、前記構成の乾燥状態監視装置において、前記真空度調節手段として開度調節器(C)を前記主管(a)内に備えると共に、前記制御手段(PLC)には、前記関係式として、前記主弁(MV)を全開した状態における水負荷による脱湿速度(Qm)と前記開度調節器(C)の開度角度(θ)と主管抵抗R(θ)との関係式を記憶し、前記乾燥庫(DC)内に装入された被乾燥材料が二次乾燥期に入り、前記開度調節器(C)が全開方向への回動を開始した後、前記制御手段(PLC)は、所定時間間隔毎に、前記開度調節器(C)の開度角度(θ)と、乾燥庫(DC)内の真空度(Pdc)と、前記コールドトラップ(CT)内の真空度(Pct)と、前記棚板の温度(Th)の測定データから、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出することを特徴とする。 In the dry condition monitoring apparatus having the above-described configuration, the opening degree adjuster (C) is provided in the main pipe (a) as the vacuum degree adjusting means, and the control means (PLC) includes the relational expression. The relationship between the dehumidification rate (Qm) due to water load in the state where the main valve (MV) is fully opened, the opening angle (θ) of the opening controller (C), and the main pipe resistance R (θ) is as follows: The material to be dried stored in the drying cabinet (DC) enters the secondary drying period, and the opening degree adjuster (C) starts to rotate in the fully open direction. The PLC) includes an opening angle (θ) of the opening controller (C), a degree of vacuum (Pdc) in the drying cabinet (DC), and a vacuum in the cold trap (CT) at predetermined time intervals. Material to be dried in the secondary drying period from the measurement data of the degree (Pct) and the temperature (Th) of the shelf board And calculates an average product temperature and average dehumidification rate.
また本発明は、前記構成の乾燥状態監視装置において、前記真空度調節手段としてリーク制御弁(LV)付きの真空制御回路(f)を、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記主管(a)を含む真空系統のいずれかに備えると共に、前記制御手段(PLC)には、前記関係式として、前記主弁(MV)を全開した状態における水負荷による脱湿速度(Qm)と前記主管(a)の水蒸気流動抵抗係数(Cr)との関係式を記憶し、前記乾燥庫(DC)内に装入された被乾燥材料が二次乾燥期に入った後、前記リーク制御弁(LV)を閉じ、しかる後、所定時間間隔毎に、前記乾燥庫(DC)内の真空度(Pdc)と、前記コールドトラップ(CT)内の真空度(Pct)と、前記棚温(Th)の測定データから、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出することを特徴とする。 Further, in the dry state monitoring apparatus having the above-described configuration, the vacuum control circuit (f) with a leak control valve (LV) is used as the vacuum degree adjusting unit, the drying cabinet (DC), the cold trap (CT), and Provided in any of the vacuum systems including the main pipe (a), and the control means (PLC) has a dehumidification rate (Qm) due to water load in the state where the main valve (MV) is fully opened as the relational expression. And the steam flow resistance coefficient (Cr) of the main pipe (a) are stored, and after the material to be dried placed in the drying chamber (DC) enters the secondary drying period, the leak control is performed. The valve (LV) is closed, and then at a predetermined time interval, the degree of vacuum (Pdc) in the drying chamber (DC), the degree of vacuum (Pct) in the cold trap (CT), and the shelf temperature ( From the measured data of Th), secondary drying And calculates an average product temperature and average dehumidification rate of the dried material in.
本発明によると、乾燥庫内に装入された全ての被乾燥材料についての二次乾燥期における平均品温Tm及び平均脱湿速度Qmを計算により求めることができるので、一次乾燥期における平均品温Tm及び平均昇華速度Qmの算出と組み合わせることにより、凍結乾燥工程の開始から終了に至るまでの被乾燥材料の凍結乾燥状態を一貫して監視できる。よって、被乾燥品のコラプスを回避することができ、凍結乾燥製品の生産性を高めることができる。 According to the present invention, since the average product temperature Tm and the average dehumidification rate Qm in the secondary drying period for all the materials to be dried charged in the drying cabinet can be obtained by calculation, the average product in the primary drying period By combining with the calculation of the temperature Tm and the average sublimation rate Qm, the freeze-dried state of the material to be dried from the start to the end of the freeze-drying process can be consistently monitored. Therefore, the collapse of the product to be dried can be avoided, and the productivity of the freeze-dried product can be increased.
以下、本発明に係る乾燥状態監視装置及び乾燥状態監視方法を、実施形態毎に図を用いて説明する。 Hereinafter, a dry state monitoring apparatus and a dry state monitoring method according to the present invention will be described for each embodiment with reference to the drawings.
[第1実施形態]
第1実施形態に係る乾燥状態監視装置及び乾燥状態監視方法は、図1及び図2に示すように、乾燥庫とコールドトラップとをつなぐ主管内に、乾燥庫内の真空度を調節するための開度調節器(ダンパ)を備えた流路開度真空制御方式の凍結乾燥機に適用されるものである。
[First Embodiment]
The dry state monitoring apparatus and the dry state monitoring method according to the first embodiment are for adjusting the degree of vacuum in the drying chamber in the main pipe connecting the drying chamber and the cold trap, as shown in FIGS. 1 and 2. The present invention is applied to a freeze-dryer of a flow path opening vacuum control system provided with an opening controller (damper).
〈凍結乾燥機の構成〉
即ち、第1実施形態に係る凍結乾燥機W1は、図1に示すように、被乾燥材料を装入する乾燥庫DCと、乾燥庫DC内に装入された被乾燥材料から発生する水蒸気をトラップコイルctにて凝結捕集するコールドトラップCTと、乾燥庫DCとコールドトラップCTを連通する主管aと、主管aを開閉する主弁MVと、主管a内に備えられたダンパ方式の開度調節器Cと、コールドトラップCTに付設された引口弁Vと、引口弁Vに接続された真空ポンプPと、乾燥庫DC内の絶対圧力及びコールドトラップCT内の絶対圧力を検出する真空計(真空検出手段)bと、乾燥庫(DC)内に設置された被乾燥材料載置用の棚板Bの温度(棚温)を検出する温度センサ(棚温検出手段)Sと、上述した装置各部の稼働を自動制御する制御盤CRとから主に構成されている。本例においては、制御盤CRにシーケンサPLCと記録計(記録手段)eが組み込まれており、シーケンサPLCには、主弁MVを全開した状態における水負荷による脱湿速度Qmと開度調節器Cの開度角度θと主管抵抗R(θ)との関係式と、所要の計算プログラムとが予め記憶されている。なお、制御盤CRを用いる構成に代えて、上述の関係式及び計算プログラムが記録されたパーソナルコンピュータを用いることもできる。また、乾燥庫DCとコールドトラップCTのそれぞれに絶対圧力を検出する真空計bを備える構成に代えて、乾燥庫DC内の絶対圧力とコールドトラップCT内の絶対圧力の差圧を検出する差圧真空計を備えることもできる。開度角度θとは、全開状態(0°)からの開度調節器Cの回転角度をいう。
<Configuration of freeze dryer>
That is, as shown in FIG. 1, the freeze dryer W1 according to the first embodiment generates a drying chamber DC in which a material to be dried is charged and water vapor generated from the material to be dried charged in the drying chamber DC. Cold trap CT that condenses and collects in the trap coil ct, main pipe a that communicates the drying chamber DC with the cold trap CT, a main valve MV that opens and closes the main pipe a, and a damper-type opening provided in the main pipe a The regulator C, the inlet valve V attached to the cold trap CT, the vacuum pump P connected to the inlet valve V, and the vacuum for detecting the absolute pressure in the drying chamber DC and the absolute pressure in the cold trap CT A meter (vacuum detection means) b, a temperature sensor (shelf temperature detection means) S for detecting the temperature (shelf temperature) of the shelf board B for placing the material to be dried installed in the drying cabinet (DC), and the above-mentioned A control panel CR that automatically controls the operation of each unit It is configured in La main. In this example, a sequencer PLC and a recorder (recording means) e are incorporated in the control panel CR, and the sequencer PLC has a dehumidifying speed Qm and an opening degree controller due to water load when the main valve MV is fully opened. A relational expression between the opening angle θ of C and the main pipe resistance R (θ) and a required calculation program are stored in advance. Instead of the configuration using the control panel CR, a personal computer in which the above relational expressions and calculation programs are recorded can be used. Further, instead of the configuration in which the vacuum gauge b for detecting the absolute pressure is provided in each of the drying cabinet DC and the cold trap CT, a differential pressure for detecting the differential pressure between the absolute pressure in the drying cabinet DC and the absolute pressure in the cold trap CT. A vacuum gauge can also be provided. The opening angle θ refers to the rotation angle of the opening adjuster C from the fully open state (0 °).
シーケンサPLCは、被乾燥材料の乾燥状態が二次乾燥期に入った場合、乾燥庫DC内の真空度Pdcを成り行きにまかせて変化させ、当該変化の前後における乾燥庫DC内の真空度Pdc、コールドトラップCT内の真空度Pct、温度センサSにより検出された棚温Thを含む測定データ、及び前記関係式から、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出し、算出された被乾燥材料の平均品温及び平均脱湿速度を記録計eに記録する。作業者は、記録計eに記録された被乾燥材料の平均品温及び平均脱湿速度を確認することにより、被乾燥材料の凍結乾燥状態を監視することができる。以下、流路開度真空制御方式における平均品温Tm及び脱湿速度Qmの算出方法について説明する。 When the drying state of the material to be dried enters the secondary drying period, the sequencer PLC changes the degree of vacuum Pdc in the drying chamber DC according to the actual condition, and the degree of vacuum Pdc in the drying chamber DC before and after the change, From the measurement data including the degree of vacuum Pct in the cold trap CT, the shelf temperature Th detected by the temperature sensor S, and the relational expression, the average product temperature and average dehumidification rate of the material to be dried in the secondary drying period are calculated. Then, the calculated average product temperature and average dehumidification rate of the material to be dried are recorded on the recorder e. The operator can monitor the freeze-dried state of the material to be dried by checking the average product temperature and the average dehumidification rate of the material to be dried recorded in the recorder e. Hereinafter, a method for calculating the average product temperature Tm and the dehumidification rate Qm in the flow path opening vacuum control method will be described.
〈流路開度真空制御方式による平均品温Tm及び脱湿速度Qmの算出方法〉
脱湿速度Qmは、凍結乾燥機W1の乾燥庫DCとコールドトラップCTにそれぞれ付設した真空計bで測定した乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctとから算出する。この方法によると、真空計e以外の高価な計測器を装備する必要がないので、脱湿速度Qmの算出を容易かつ低コストに行うことができる。
<Calculation method of average product temperature Tm and dehumidification rate Qm by channel opening vacuum control method>
The dehumidification rate Qm is calculated from the degree of vacuum Pdc in the drying chamber DC and the degree of vacuum Pct in the cold trap CT measured by the vacuum gauges b attached to the drying chamber DC and the cold trap CT of the freeze dryer W1, respectively. According to this method, since it is not necessary to provide an expensive measuring instrument other than the vacuum gauge e, the dehumidification rate Qm can be calculated easily and at low cost.
被乾燥材料から脱湿した水蒸気は、乾燥庫DCから主管aを通してコールドトラップCT内に流れ、トラップコイルCtにて凝結捕集される。流路開度真空制御方式の場合、二次乾燥工程に入った段階で、開度調節器Cが全開方向へ回動する。開度調節器Cが全開方向へ回動しても、Pct/Pdc<0.53の期間中は主管a内における水蒸気の流れが噴流状態となるので、被乾燥材料からの脱湿速度Qmは、主管抵抗をRとしたとき、次の式で計算できる。 The water vapor dehumidified from the material to be dried flows from the drying chamber DC through the main pipe a into the cold trap CT and is condensed and collected by the trap coil Ct. In the case of the channel opening degree vacuum control method, the opening degree adjuster C rotates in the fully open direction when the secondary drying process is started. Even if the opening controller C rotates in the fully open direction, the flow of water vapor in the main pipe a is in a jet state during the period of Pct / Pdc <0.53, so the dehumidification rate Qm from the material to be dried is When the main pipe resistance is R, it can be calculated by the following equation.
Qm=3.6×Pdc/R
開度調節器Cが更に全開方向へ回動し、Pct/Pdc>0.53になると、主管a内における水蒸気の流れが粘性流状態となる。この場合、被乾燥材料からの脱湿速度Qmは、主管抵抗をRとしたとき、次の式で計算できる。
Qm = 3.6 × Pdc / R
When the opening degree adjuster C further rotates in the fully open direction and Pct / Pdc> 0.53, the flow of water vapor in the main pipe a becomes a viscous flow state. In this case, the dehumidifying rate Qm from the material to be dried can be calculated by the following equation, where R is the main pipe resistance.
Qm=3.6×(Pdc−Pct)/R
主管抵抗Rは、水負荷を掛けたときの被乾燥材料からの昇華量を測定するか、算出することにより求められる。そして、主管抵抗Rが求まれば、上述したように、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctの測定データから脱湿速度Qmを求めることができる。
Qm = 3.6 × (Pdc−Pct) / R
The main pipe resistance R is obtained by measuring or calculating the amount of sublimation from the material to be dried when a water load is applied. If the main pipe resistance R is obtained, the dehumidifying rate Qm can be obtained from the measurement data of the degree of vacuum Pdc in the drying cabinet DC and the degree of vacuum Pct in the cold trap CT as described above.
具体的には、乾燥庫DC内に被乾燥材料を装入した状態で、図2に示す凍結乾燥機W1を作動させ、棚温をThに設定し、かつ乾燥庫DC内の真空度Pdcを開度調節器Cにて制御値に設定して被乾燥材料の凍結乾燥を開始する。凍結乾燥開始後、まず一次乾燥工程に入り、液状の被乾燥材料が乾燥固体になるまで、氷状の被乾燥材料中に含まれる水分が除去される。一次乾燥工程の終了後は、二次乾燥工程に入り、一次乾燥工程を経て乾燥固体となった被乾燥材料中に含まれる微量の不凍水が除去されて、被乾燥材料が所定の含水率になるまで乾燥される。 Specifically, with the material to be dried placed in the drying cabinet DC, the freeze dryer W1 shown in FIG. 2 is operated, the shelf temperature is set to Th, and the degree of vacuum Pdc in the drying cabinet DC is set. Freeze drying of the material to be dried is started by setting the control value with the opening controller C. After the start of freeze-drying, first, a primary drying process is entered, and moisture contained in the ice-like material to be dried is removed until the liquid material to be dried becomes a dry solid. After the completion of the primary drying process, a small amount of antifreeze water contained in the material to be dried that has entered the secondary drying process and became a dry solid through the primary drying process is removed, and the material to be dried has a predetermined moisture content. Dried until.
二次乾燥工程に入ると、被乾燥材料から脱湿される水蒸気がほとんどなくなるので、開度調節器Cが急激に全開方向へ回動する。このとき、シーケンサPLCは、一定の時間間隔(例えば、1〜5min間隔)で、開度調節器Cの開度角度θ、乾燥庫DC内の真空度Pdc、コールドトラップCT内の真空度Pct及び棚温Thを取り込み、記録計eに記録する。また、シーケンサPLCは、シーケンサPLCに記憶された計算プログラムに従い、以下の手順で二次乾燥における被乾燥材料の全体の平均品温Tm及び平均脱湿速度Qmを計算する。 When entering the secondary drying step, almost no water vapor is dehumidified from the material to be dried, so that the opening degree adjuster C suddenly rotates in the fully open direction. At this time, the sequencer PLC performs the opening angle θ of the opening controller C, the degree of vacuum Pdc in the drying chamber DC, the degree of vacuum Pct in the cold trap CT at a constant time interval (for example, every 1 to 5 minutes). The shelf temperature Th is taken in and recorded on the recorder e. The sequencer PLC calculates the average product temperature Tm and the average dehumidification rate Qm of the entire material to be dried in the secondary drying according to the following procedure in accordance with the calculation program stored in the sequencer PLC.
(1)水負荷で測定した主管抵抗R(θ)と開度調節器Cの開度角度θとの関係式から、主管抵抗Rを計算する。 (1) The main pipe resistance R is calculated from the relational expression between the main pipe resistance R (θ) measured by the water load and the opening angle θ of the opening adjuster C.
(2)主管a内の水蒸気流動が噴流状態となるPct/Pdc<0.53の状態では、
Qm=3.6×Pdc/Rの計算式で平均脱湿速度を計算する。
(2) In the state of Pct / Pdc <0.53 in which the water vapor flow in the main pipe a becomes a jet state,
The average dehumidification rate is calculated using the formula Qm = 3.6 × Pdc / R.
また、主管a内の水蒸気流動が粘性流状態となるPct/Pdc>0.53の状態では、Qm=3.6×(Pdc−Pct)/Rの計算式で平均脱湿速度を計算する。 In the state of Pct / Pdc> 0.53 in which the water vapor flow in the main pipe a is in a viscous flow state, the average dehumidification rate is calculated by the calculation formula of Qm = 3.6 × (Pdc−Pct) / R.
(3)水負荷で測定した主管抵抗R(θ)と開度調節器Cの開度角度θとの関係式から、底部品温Tmを計算する。 (3) The bottom part temperature Tm is calculated from the relational expression between the main pipe resistance R (θ) measured by the water load and the opening angle θ of the opening controller C.
流路開度真空制御方式の凍結乾燥機W1では、乾燥庫DCとコールドトラップCTを連通する主管aと開度調節器Cとを通して流れる水蒸気の主管抵抗R(θ)が、R(θ)=(Pdc−Pct)/Qmで表され、Pct/Pdc<0.53では水蒸気の流れが噴流となる。よって、水蒸気の主管抵抗R(θ)は、R(θ)=Pdc/Qmで計算できる。以下にその計算方法を示す。 In the freeze-dryer W1 of the flow path opening vacuum control system, the main pipe resistance R (θ) of water vapor flowing through the main pipe a and the opening degree controller C communicating with the drying chamber DC and the cold trap CT is R (θ) = It is expressed by (Pdc−Pct) / Qm, and when Pct / Pdc <0.53, the flow of water vapor becomes a jet. Therefore, the main pipe resistance R (θ) of water vapor can be calculated by R (θ) = Pdc / Qm. The calculation method is shown below.
(1)主管aの入口、主弁MV及び主管a内の抵抗R1(θ)は、圧力降下の粘性流計算式Pdc−P1=Cr×ρ×u2/2から、Pdc−P1=R1(θ)×Qm、R1(θ)=Cr×R×T/(2×Pdc×M×A02)×Qmで計算できる。 (1) the inlet of the main pipe a, the resistance of the main valve MV and main a R1 (theta) from the viscous flow equations Pdc-P1 = Cr × ρ × u 2/2 of the pressure drop, Pdc-P1 = R1 ( θ) × Qm, R1 (θ) = Cr × R × T / (2 × Pdc × M × A0 2 ) × Qm.
(2)開度調節器Cの抵抗R2(θ)は、開度調節器Cの前後の圧力の比Pct/Plが0.53以下となったときに噴流となり、噴流の計算式は、
Qm=ρ×A´×u´で表される。
(2) The resistance R2 (θ) of the opening controller C becomes a jet when the pressure ratio Pct / Pl before and after the opening controller C becomes 0.53 or less, and the calculation formula of the jet is
Qm = ρ × A ′ × u ′.
但し、u´は局所音速であり、u´=(K×R×T/M)1/2である。 However, u ′ is the local sound velocity, and u ′ = (K × R × T / M) 1/2 .
また、A´は収縮面積であり、A´=0.6〜0.7×Aである。 A ′ is a contraction area, and A ′ = 0.6 to 0.7 × A.
従って、噴流の計算式は、R2(θ)=(R×T/(K×M))1/2/A´と置いたとき、
Qm=P1×A´×〔K×M/(R×T)〕1/2=P1/R2(θ)
と書き換えられる。
Therefore, when the calculation formula of the jet is set as R2 (θ) = (R × T / (K × M)) 1/2 / A ′,
Qm = P1 × A ′ × [K × M / (R × T)] 1/2 = P1 / R2 (θ)
It can be rewritten as
(3)一方、主管抵抗R(θ)は、
R(θ)=R1(θ)+R2(θ)
=[〔C0+(R2(θ)/2)2]1/2+R2(θ)/2
で表される。
(3) On the other hand, the main pipe resistance R (θ) is
R (θ) = R1 (θ) + R2 (θ)
= [[C0 + (R2 (θ) / 2) 2 ] 1/2 + R2 (θ) / 2
It is represented by
但し、C0=Cr×R×T/(2×Pdc×M×A02)=3408.65、
R2(θ)=2223.7/Aであり、
開度調節器Cの断面積A(cm2)は、Dを主管aの内径、d1を開度調節器Cの直径、tを開度調節器Cの厚みとしたとき、
A=0.01×(π×D2/4−d1×t×cosθ−π×d12/4×sinθ)
で計算される。
However, C0 = Cr × R × T / (2 × Pdc × M × A0 2) = 3408.65,
R2 (θ) = 2223.7 / A,
The sectional area A (cm 2 ) of the opening controller C is as follows: D is the inner diameter of the main pipe a, d1 is the diameter of the opening controller C, and t is the thickness of the opening controller C.
A = 0.01 × (π × D 2/4-d1 × t × cosθ-π × d1 2/4 × sinθ)
Calculated by
計算結果の一例を下記の表1に示す。
〈開度調節器Cの開度角度θと主管抵抗R(θ)との関係式の導出〉
二次乾燥における被乾燥材料の平均品温Tm及び平均脱湿速度Qmの算出に際しては、事前に、水負荷で乾燥負荷Qm(Kg/hr)と乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctを測定し、開度調節器Cの開度角度θと主管抵抗R(θ)との関係式を求める。その方法は、トレイ底部に品温センサを取り付け、トレイに水を入れ、−40℃まで凍結し、一次乾燥時に棚温を設定して、乾燥庫内の真空度を26.7Paから6.7Paまで順次に制御し、棚温Thと底部品温Tbを測定し、庫内圧力PdcとCT圧力Pctを絶対圧真空計bにて計測する。各真空制御値における開度調節器Cの開度角度θも計測する。
<Derivation of relational expression between opening angle θ of opening controller C and main pipe resistance R (θ)>
In calculating the average product temperature Tm and the average dehumidification rate Qm of the material to be dried in the secondary drying, the dry load Qm (Kg / hr), the degree of vacuum Pdc in the drying cabinet DC, and the cold trap CT are calculated beforehand with water The degree of vacuum Pct is measured, and a relational expression between the opening angle θ of the opening controller C and the main pipe resistance R (θ) is obtained. In that method, a product temperature sensor is attached to the bottom of the tray, water is added to the tray, frozen to −40 ° C., shelf temperature is set during primary drying, and the degree of vacuum in the drying chamber is changed from 26.7 Pa to 6.7 Pa. Until the shelf temperature Th and the bottom part temperature Tb are measured, and the internal pressure Pdc and the CT pressure Pct are measured by the absolute pressure vacuum gauge b. The opening angle θ of the opening controller C at each vacuum control value is also measured.
乾燥負荷Qm(Kg/hr)の確定は、乾燥前後の被乾燥材料の重量差から乾燥量を求める方法と、入熱量計算から解析する方法の二つの方法がある。入熱量計算からの解析による場合には、乾燥庫DC内の真空度Pdcにて棚からトレイ底部への熱伝達係数αを計算し、次にQ=A1×α×(Th−Tb)の計算式でトレイ底部への熱流量を計算し、乾燥負荷Qmが氷の昇華潜熱2850KJ/Kgより計算式Qm=Q/2850で求められる。それにより開度調節器Cの開度角度θと主管抵抗R(θ)との関係式が得られる。 There are two methods for determining the drying load Qm (Kg / hr): a method of obtaining a drying amount from a difference in weight of materials to be dried before and after drying, and a method of analyzing from a heat input calculation. In the case of analysis from the heat input calculation, the heat transfer coefficient α from the shelf to the bottom of the tray is calculated at the degree of vacuum Pdc in the drying cabinet DC, and then Q = A1 × α × (Th−Tb) The heat flow to the bottom of the tray is calculated by the equation, and the drying load Qm is obtained from the ice sublimation latent heat of 2850 KJ / Kg by the calculation equation Qm = Q / 2850. Thereby, the relational expression between the opening angle θ of the opening controller C and the main pipe resistance R (θ) is obtained.
次いで、凍結乾燥プログラムにしたがって被乾燥材料の凍結乾燥を行うときに、開度調節器Cの開度角度θ、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pct及び棚温Thを計測して記録すれば、上述した水負荷の測定で得られた開度調節器Cの開度角度θと水蒸気抵抗R(θ)との関係式から、個別容器の品温を測定することなく、二次乾燥期における全体の平均品温Tm及び平均脱湿速度Qmを監視することができる。 Next, when freeze-drying the material to be dried according to the freeze-drying program, the opening angle θ of the opening controller C, the degree of vacuum Pdc in the drying cabinet DC, the degree of vacuum Pct in the cold trap CT, and the shelf temperature Th Is measured and recorded, the product temperature of the individual container is measured from the relational expression between the opening angle θ of the opening controller C and the water vapor resistance R (θ) obtained by the water load measurement described above. In addition, the overall average product temperature Tm and average dehumidification rate Qm in the secondary drying period can be monitored.
以下に、開度調節器Cの開度角度θと主管抵抗R(θ)との関係式を導出する際の具体的な実施例を示す。 Hereinafter, a specific embodiment for deriving a relational expression between the opening angle θ of the opening controller C and the main pipe resistance R (θ) will be described.
先ず、水負荷の試験で、開度調節器Cの開度角度θと主管抵抗R(θ)との関係式を求める。水負荷の試験は、乾燥庫DC内に水を充填したトレイを装入し、通常の被乾燥材料の凍結乾燥と同一の手順で凍結乾燥機W1を制御することにより行う。一例として、トレイ内の水を−45℃まで凍結し、一次乾燥時に棚温Thを−20℃に設定し、乾燥庫DC内の真空度Pdcを4Pa、6.7Pa、10Pa、13.3Pa、20Pa、30Pa、40Pa、60Paに制御して、それぞれ3時間保持し、合計8例の水負荷試験を実施した。そのときの開度調節器Cの開度角度θ、棚温Th、トレイ底部の氷温度Tb、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctをそれぞれ測定して、記録計eに記録した。 First, in the water load test, a relational expression between the opening angle θ of the opening controller C and the main pipe resistance R (θ) is obtained. The water load test is performed by inserting a tray filled with water into the drying chamber DC and controlling the freeze dryer W1 in the same procedure as that for lyophilization of a normal material to be dried. As an example, the water in the tray is frozen to −45 ° C., the shelf temperature Th is set to −20 ° C. during primary drying, and the degree of vacuum Pdc in the drying cabinet DC is 4 Pa, 6.7 Pa, 10 Pa, 13.3 Pa, Control was performed at 20 Pa, 30 Pa, 40 Pa, and 60 Pa, and each was held for 3 hours, and a total of 8 water load tests were performed. At that time, the opening angle θ of the opening controller C, the shelf temperature Th, the ice temperature Tb at the bottom of the tray, the degree of vacuum Pdc in the drying cabinet DC, and the degree of vacuum Pct in the cold trap CT are measured respectively. recorded in e.
氷の乾燥負荷Qm(Kg/h)を乾燥量の測定や入熱量による計算で決定し、開度調節器Cの開度角度θと主管抵抗R(θ)との関係式を求めた。表2に、開度調節器Cの開度角度θと計算により求められた主管抵抗R(θ)との関係、及び、開度調節器Cの開度角度θと測定により求められた主管抵抗R(θ)との関係を示す。
次いで、表2のデータから、以下に示す主管抵抗R(θ)の計算式、及び開度調節器Cの断面積A(cm2)の計算式を求めた。 Next, from the data in Table 2, a calculation formula for the main pipe resistance R (θ) and a calculation formula for the cross-sectional area A (cm 2 ) of the opening controller C were obtained as follows.
R(θ)=〔3408.65+(2223.7/A)2〕1/2+2223.7/A、
A=0.01×(π×D2/4−d1×t×cosθ−π×d12/4×sinθ)
但し、Dは主管aの内径、d1は開度調節器Cの直径、tは開度調節器Cの厚みである。
R (θ) = [3408.65+ (2223.7 / A) 2 ] 1/2 + 2223.7 / A,
A = 0.01 × (π × D 2/4-d1 × t × cosθ-π × d1 2/4 × sinθ)
Where D is the inner diameter of the main pipe a, d1 is the diameter of the opening controller C, and t is the thickness of the opening controller C.
以上の手順で水負荷テストで開度調節器Cの開度角度θと主管抵抗R(θ)と乾燥負荷Qmとの関係式が得られる。 With the above procedure, a relational expression among the opening angle θ of the opening controller C, the main pipe resistance R (θ), and the drying load Qm is obtained in the water load test.
[第2実施形態]
第2実施形態に係る乾燥状態監視装置及び乾燥状態監視方法は、図3及び図4に示すように、乾燥庫内の真空度を調節するためのリーク弁を乾燥庫に備えたリーク式真空制御方式の凍結乾燥機に適用されるものである。
[Second Embodiment]
As shown in FIGS. 3 and 4, the dry state monitoring device and the dry state monitoring method according to the second embodiment include a leak type vacuum control in which the dry chamber has a leak valve for adjusting the degree of vacuum in the dry chamber. This is applied to the freeze dryer of the type.
〈凍結乾燥機の構成〉
第2実施形態に係る凍結乾燥機W2は、図3に示すように、被乾燥材料を装入する乾燥庫DCと、乾燥庫DC内に装入された被乾燥材料から発生する水蒸気をトラップコイルctにて凝結捕集するコールドトラップCTと、乾燥庫DCとコールドトラップCTを連通する主管aと、主管aを開閉する主弁MVと、乾燥庫DCに接続されたリーク制御弁LV付きの真空制御回路fと、コールドトラップCTに付設された引口弁Vと、引口弁Vに接続された真空ポンプPと、乾燥庫DC内の絶対圧力及びコールドトラップCT内の絶対圧力を検出する真空計(真空検出手段)bと、乾燥庫(DC)内に設置された被乾燥材料載置用の棚板Bの温度(棚温)を検出する温度センサ(棚温検出手段)Sと、上述した装置各部の稼働を自動制御する制御盤CRとから主に構成されている。本例においては、制御盤CRにシーケンサPLC及び記録計(記録手段)eが組み込まれており、シーケンサPLCには、主弁MVを全開とした状態において求めた水負荷による脱湿速度Qmと主管a内の水蒸気流動抵抗係数Crとの関係式と、所要の計算プログラムとが予め記憶されている。その他については、第1実施形態に係る凍結乾燥機W1と同じであるので、対応する部分に同一の符号を付して説明を省略する。
<Configuration of freeze dryer>
As shown in FIG. 3, the freeze dryer W2 according to the second embodiment traps the steam generated from the drying chamber DC charged with the material to be dried and the material to be dried loaded into the drying chamber DC. A cold trap CT that condenses and collects at ct, a main pipe a that communicates the dryer DC with the cold trap CT, a main valve MV that opens and closes the main pipe a, and a vacuum with a leak control valve LV connected to the dryer DC The control circuit f, the inlet valve V attached to the cold trap CT, the vacuum pump P connected to the inlet valve V, and the vacuum for detecting the absolute pressure in the dryer DC and the absolute pressure in the cold trap CT A meter (vacuum detection means) b, a temperature sensor (shelf temperature detection means) S for detecting the temperature (shelf temperature) of the shelf board B for placing the material to be dried installed in the drying cabinet (DC), and the above-mentioned That automatically controls the operation of each part of the machine It is mainly composed of a CR. In this example, a sequencer PLC and a recorder (recording means) e are incorporated in the control panel CR, and the sequencer PLC has a dehumidification rate Qm and a main pipe due to a water load obtained when the main valve MV is fully opened. A relational expression with the steam flow resistance coefficient Cr in a and a required calculation program are stored in advance. Since others are the same as those of the freeze dryer W1 according to the first embodiment, the corresponding portions are denoted by the same reference numerals and description thereof is omitted.
シーケンサPLCは、被乾燥材料の乾燥状態が二次乾燥期に入った場合、リーク制御弁LVを開閉して乾燥庫DC内の真空度Pdcを制御値に制御するか、リーク制御弁LVを閉じて乾燥庫DC内の真空度Pdcを成り行きにまかせて変化させる。そして、当該変化の前後における乾燥庫DC内の真空度Pdc、コールドトラップCT内の真空度Pct、温度センサSにより検出された棚温Thを含む測定データ、及び前記関係式から、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出し、算出された被乾燥材料の平均品温及び平均脱湿速度を記録計eに記録する。作業者は、記録計eに記録された被乾燥材料の平均品温及び平均脱湿速度を確認することにより、被乾燥材料の凍結乾燥状態を監視することができる。以下、リーク真空制御方式における平均品温Tm及び脱湿速度Qmの算出方法について説明する。 The sequencer PLC opens or closes the leak control valve LV to control the degree of vacuum Pdc in the drying cabinet DC to a control value or closes the leak control valve LV when the drying state of the material to be dried enters the secondary drying period. Then, the degree of vacuum Pdc in the drying cabinet DC is changed depending on the course. Then, from the measurement data including the degree of vacuum Pdc in the drying cabinet DC before and after the change, the degree of vacuum Pct in the cold trap CT, the shelf temperature Th detected by the temperature sensor S, and the relational expression, the secondary drying period The average product temperature and the average dehumidification rate of the material to be dried are calculated, and the calculated average product temperature and the average dehumidification rate of the material to be dried are recorded on the recorder e. The operator can monitor the freeze-dried state of the material to be dried by checking the average product temperature and the average dehumidification rate of the material to be dried recorded in the recorder e. Hereinafter, a method for calculating the average product temperature Tm and the dehumidification rate Qm in the leak vacuum control method will be described.
〈リーク真空制御方式による平均品温Tm及び平均脱湿速度Qmの算出方法〉
上述したように、二次乾燥期に被乾燥材料から脱湿した水蒸気は、乾燥庫DCから主管aを通してコールドトラップCT内に流れ、トラップコイルCtにて凝結捕集される。リーク真空制御方式による場合、主管a内における水蒸気の流れは粘性流となるので、被乾燥材料からの脱湿速度Qmは、次の式で計算できる。
<Calculation method of average product temperature Tm and average dehumidification rate Qm by leak vacuum control method>
As described above, the water vapor dehumidified from the material to be dried in the secondary drying period flows from the drying chamber DC into the cold trap CT through the main pipe a, and is condensed and collected by the trap coil Ct. In the case of the leak vacuum control method, the flow of water vapor in the main pipe a is a viscous flow, and therefore the dehumidification rate Qm from the material to be dried can be calculated by the following equation.
Qm=3・6×(Pdc−Pct)/R=3・6×ΔP/R
上式において、Pdcは乾燥庫DC内の真空度(乾燥庫真空度)
PctはコールドトラップCT内の真空度(コールドトラップ真空度)
ΔPは乾燥庫真空度Pdcとコールドトラップ真空度Pctとの差圧
Rは主管抵抗である。
Qm = 3.6 × (Pdc−Pct) /R=3.6×ΔP/R
In the above equation, Pdc is the degree of vacuum in the drying cabinet DC (drying chamber vacuum level)
Pct is the degree of vacuum in the cold trap CT (cold trap vacuum degree)
ΔP is the pressure difference between the drying chamber vacuum Pdc and the cold trap vacuum Pct R is the main pipe resistance.
差圧ΔPは、粘性流の管路圧力降下の計算式から、以下のように表される。 The differential pressure ΔP is expressed as follows from the calculation formula of the pipe pressure drop of the viscous flow.
ΔP=Cr/2×ρ×u2=Cr/2×ρ×〔Qm/(3600×A×ρ)〕2
但し、Crは主管流路の水蒸気流動抵抗係数
ρは理想気体の状態方程式ρ=P×M/(R×T)で表される値(Pは気体の圧力、Mは気体の分子量、Rは気体定数、Tは気体の温度)
Aは主管aの流路面積である。
ΔP = Cr / 2 × ρ × u 2 = Cr / 2 × ρ × [Qm / (3600 × A × ρ)] 2
However, Cr is the water vapor flow resistance coefficient of the main pipe flow path ρ is a value represented by the equation of state of ideal gas ρ = P × M / (R × T) (P is the pressure of the gas, M is the molecular weight of the gas, and R is Gas constant, T is gas temperature)
A is the flow passage area of the main pipe a.
上記ΔPの式に、理想気体状態方程式ρ=P×M/(R×T)、分子量M=18、気体定数R=8314、気体温度T=288、ΔP=Pdc−Pctを代入し、脱湿速度Qmの式に変換すると、
Qm=A×〔(Pdc2−Pct2)/(8314×288/(18×36002)×Cr)〕1/2 となる。
Substituting the ideal gas equation of state ρ = P × M / (R × T), molecular weight M = 18, gas constant R = 8314, gas temperature T = 288, ΔP = Pdc−Pct into the above ΔP equation, and dehumidifying When converted to the equation of speed Qm,
Qm = A × [(Pdc 2 −Pct 2 ) / (8314 × 288 / (18 × 36002) × Cr)] 1/2 .
二次乾燥工程に入った後は、リーク制御弁LVを開閉して乾燥庫DC内の真空度Pdcを制御値に制御するか、リーク制御弁LVを閉じて乾燥庫DC内の真空度Pdcを成り行きにまかせて変化させる。この変化の前後における乾燥庫DC内の真空度Pdcの測定値をPdc1、とコールドトラップCT内の真空度Pctの測定値をPct1とすると、被乾燥材料の脱湿速度Qmは下式で表わせる。 After entering the secondary drying process, the leak control valve LV is opened and closed to control the degree of vacuum Pdc in the drying cabinet DC to a control value, or the leak control valve LV is closed to set the degree of vacuum Pdc in the drying cabinet DC. Change it depending on the outcome. When the measured value of the degree of vacuum Pdc in the drying chamber DC before and after this change is Pdc1, and the measured value of the degree of vacuum Pct in the cold trap CT is Pct1, the dehumidification rate Qm of the material to be dried can be expressed by the following equation. .
Qm=A×〔(Pdc12−Pct12)/(0.0103×Cr)〕1/2
〈脱湿速度Qmと主管流路の水蒸気流動抵抗係数Crとの関係式の導出〉
主管流路の水蒸気流動抵抗係数Crは、水負荷で実際の乾燥量を測定する方法と計算による方法の二つ方法で求めることができる。
Qm = A × [(Pdc1 2 −Pct1 2 ) / (0.0103 × Cr)] 1/2
<Derivation of Relation between Dehumidification Rate Qm and Steam Flow Resistance Coefficient Cr of Main Pipe Channel>
The steam flow resistance coefficient Cr of the main pipe flow path can be obtained by two methods, that is, a method of measuring an actual dry amount with a water load and a method of calculation.
計算により求める場合には、主管aの流路面積Aは既知であるので、上述した
Qm=A×〔(Pdc2−Pct2)/(8314×288/(18×36002)×Cr)〕1/2
の式より、主管流路の水蒸気流動抵抗係数Crが求めれば、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctを測定することによって、脱湿速度Qmを算出できる。なお、乾燥庫DC内の真空度Pdcの測定及びコールドトラップCT内の真空度Pctの測定には、高精度の真空計bを設置することが要求される。
In the case of obtaining by calculation, since the flow path area A of the main pipe a is known, the above-mentioned Qm = A × [(Pdc 2 −Pct 2 ) / (8314 × 288 / (18 × 36002) × Cr)] 1 / 2
If the water vapor flow resistance coefficient Cr of the main pipe flow path is obtained from the above equation, the dehumidification rate Qm can be calculated by measuring the degree of vacuum Pdc in the drying chamber DC and the degree of vacuum Pct in the cold trap CT. Note that a high-precision vacuum gauge b is required to measure the degree of vacuum Pdc in the drying cabinet DC and the degree of vacuum Pct in the cold trap CT.
具体的には、乾燥庫DC内に被乾燥材料を装入し、棚温をThに設定して図4に示す凍結乾燥機W2を稼動させ、被乾燥材料の乾燥状態が二次乾燥期に入ったとき、乾燥庫DC内の真空度Pdcをリーク制御弁LVの開閉にて制御値に設定するか、或いは、リーク制御弁LVを閉じて成り行きで乾燥庫DC内の真空度Pdcを変化させる。この状態において、一定時間間隔(例えば、1〜5min間隔)で乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctと棚温Thを記録計eにて記録する。そして、それらの測定データをシーケンサPLCに取り込み、該シーケンサPLCに記憶された計算プログラムに従って、以下の手順で二次乾燥における被乾燥材料の全体の平均品温Tm及び脱湿速度Qmを計算する。 Specifically, the material to be dried is charged into the drying cabinet DC, the shelf temperature is set to Th, and the freeze dryer W2 shown in FIG. 4 is operated, and the drying state of the material to be dried is in the secondary drying period. When entering, the degree of vacuum Pdc in the drying cabinet DC is set to a control value by opening and closing the leak control valve LV, or the leakage control valve LV is closed and the degree of vacuum Pdc in the drying cabinet DC is changed. . In this state, the degree of vacuum Pdc in the drying cabinet DC, the degree of vacuum Pct in the cold trap CT, and the shelf temperature Th are recorded by the recorder e at regular time intervals (for example, at intervals of 1 to 5 minutes). Then, the measurement data is taken into the sequencer PLC, and the overall average product temperature Tm and dehumidification rate Qm of the material to be dried in the secondary drying are calculated according to the following procedure according to the calculation program stored in the sequencer PLC.
(1)水負荷で測定した主管aの水蒸気流動抵抗係数Crと脱湿速度Qmとの関係式から、計測時の水蒸気流動抵抗係数Cr値と主管流路の断面積Aをシーケンサ(PLC)に取り込む。 (1) From the relational expression between the steam flow resistance coefficient Cr of the main pipe a measured at the water load and the dehumidification rate Qm, the water vapor flow resistance coefficient Cr value at the time of measurement and the cross-sectional area A of the main pipe flow path are converted into a sequencer (PLC). take in.
(2)粘性流の管路圧力降下の計算式
ΔP=Cr/2×ρ×u2=Cr/2×ρ×〔Qm/(3600×A×ρ)〕2
から、二次乾燥時の脱湿速度Qmを、下式により算出する。
(2) Formula for calculating pipe pressure drop of viscous flow ΔP = Cr / 2 × ρ × u 2 = Cr / 2 × ρ × [Qm / (3600 × A × ρ)] 2
From this, the dehumidification rate Qm at the time of secondary drying is calculated by the following equation.
Qm=A×〔(Pdc12−Pct12)/(0.0103×Cr)〕1/2
(3)平均品温Tmを計算する。
Qm = A × [(Pdc1 2 −Pct1 2 ) / (0.0103 × Cr)] 1/2
(3) The average product temperature Tm is calculated.
次いで、乾燥庫DCとコールドトラップCTを連通する主管aを通して流れる水蒸気の流動抵抗係数Crを求める。水蒸気の流動抵抗係数Crは、主管aの入口から出口までに至る各区間の水蒸気流動抵抗係数の総和であり、本試験例では、主管aを、主管入口、主管出口、エルボ箇所、主弁MVの設置箇所、及び主管aの入口区間(水蒸気の流れの助走区間)を除く流れが十分に発達した区間の5区間に分け、主管入口の流動抵抗係数Cr1=0.5、主管出口の流動抵抗係数Cr2=0.5、エルボ箇所の流動抵抗係数Cr3=1.2、主弁MVの設置箇所の流動抵抗係数Cr4=1.7とした。 Next, a flow resistance coefficient Cr of water vapor flowing through the main pipe a communicating with the drying cabinet DC and the cold trap CT is obtained. The steam flow resistance coefficient Cr is the sum of the steam flow resistance coefficients of the respective sections from the inlet to the outlet of the main pipe a. In this test example, the main pipe a is defined as the main pipe inlet, the main pipe outlet, the elbow portion, and the main valve MV. Is divided into five sections where the flow is sufficiently developed, excluding the inlet section of the main pipe a and the inlet section of the main pipe a (the run-up section of the steam flow), the flow resistance coefficient Cr1 = 0.5 at the main pipe inlet, and the flow resistance at the main pipe outlet The coefficient Cr2 = 0.5, the flow resistance coefficient Cr3 = 1.2 at the elbow location, and the flow resistance coefficient Cr4 = 1.7 at the location where the main valve MV is installed.
なお、エルボ箇所の流動抵抗係数Cr3は、1.13×n(90°×n箇所)で求められる。本試験例においては、乾燥庫DCとコールドトラップCTとをつなぐ主管a内に開度調節器Cを備える(図1参照)と共に、乾燥庫DCに乾燥庫DC内の真空度を調節するためのリーク弁LVを備えた(図3参照)凍結乾燥機を用いたので、これをエルボに相当する流動抵抗として、Cr3=1.2とした。 It should be noted that the flow resistance coefficient Cr3 at the elbow location is determined by 1.13 × n (90 ° × n location). In this test example, the opening degree controller C is provided in the main pipe a connecting the drying chamber DC and the cold trap CT (see FIG. 1), and the drying chamber DC is used for adjusting the degree of vacuum in the drying chamber DC. Since a freeze dryer equipped with a leak valve LV (see FIG. 3) was used, Cr3 = 1.2 as a flow resistance corresponding to an elbow.
主管aの入口区間(水蒸気の流れの助走区間)を除く流れが十分発達する区間の流動抵抗係数Cr5は、Cr5=λ×L/D+ξ(但し、ξ=2.7、Lは主管の長さ、Dは主管内径、λは摩擦係数)で求められ、摩擦係数λは、λ=64/Re(但し、Reはレイノルズ数)で求められ、レイノルズ数Reは、Re=u×D/ν≒40×Qm/D(但し、Qmは昇華速度、Dは主管aの内径)で求められる。 The flow resistance coefficient Cr5 of the section where the flow is sufficiently developed excluding the inlet section of the main pipe a (water vapor flow running section) is Cr5 = λ × L / D + ξ (where ξ = 2.7, L is the length of the main pipe) , D is the main pipe inner diameter, λ is the friction coefficient), the friction coefficient λ is obtained by λ = 64 / Re (where Re is the Reynolds number), and the Reynolds number Re is Re = u × D / ν≈ 40 × Qm / D (where Qm is the sublimation speed and D is the inner diameter of the main pipe a).
本例の試験機では、L=0.7mで、Qm=0.05Kg/hrのとき、Cr=6.6+1.6×0.7/0.05=29となった。 In the testing machine of this example, when L = 0.7 m and Qm = 0.05 Kg / hr, Cr = 6.6 + 1.6 × 0.7 / 0.05 = 29.
一方、測定により主管流路の水蒸気流動抵抗係数Crと脱湿速度Qmの関係式を求める場合には、トレイ底部に品温センサを取り付け、トレイに水を入れ、−40℃まで凍結し、一次乾燥期に棚温を設定して、乾燥庫内の真空度を26.7Paから6.7Paまで順次に制御し、棚温Thと底部品温Tbを測定し、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pctとを絶対圧真空計にて記録する。 On the other hand, when the relational expression of the steam flow resistance coefficient Cr and the dehumidification rate Qm of the main pipe flow path is obtained by measurement, a product temperature sensor is attached to the bottom of the tray, water is put into the tray, frozen to −40 ° C., and the primary The shelf temperature is set during the drying period, the degree of vacuum in the drying cabinet is sequentially controlled from 26.7 Pa to 6.7 Pa, the shelf temperature Th and the bottom component temperature Tb are measured, and the degree of vacuum Pdc in the drying cabinet DC And the degree of vacuum Pct in the cold trap CT is recorded with an absolute pressure gauge.
脱湿速度Qm(Kg/hr)の確定は、乾燥前後の被乾燥材料の重量差から乾燥量を求める方法と、入熱量計算から解析する方法の二つの方法がある。解析による場合には、乾燥庫DC内の真空度Pdcにて棚からトレイ底部への熱伝達係数αを計算し、次にQ=A1×α×(Th−Tb)の計算式でトレイ底部への熱流量を計算し、脱湿速度Qmが氷の昇華潜熱2850KJ/Kgより計算式Qm=Q/2850で求められる。それにより主管流路の水蒸気流動抵抗係数Crと脱湿速度Qmとの関係式が得られる。 The dehumidification rate Qm (Kg / hr) can be determined by two methods: a method for obtaining a dry amount from a weight difference between materials to be dried before and after drying, and a method for analyzing from a heat input calculation. In the case of analysis, the heat transfer coefficient α from the shelf to the bottom of the tray is calculated at the degree of vacuum Pdc in the drying cabinet DC, and then to the bottom of the tray by the calculation formula of Q = A1 × α × (Th−Tb). The dehumidification rate Qm is obtained from the ice sublimation latent heat 2850 KJ / Kg by the calculation formula Qm = Q / 2850. As a result, a relational expression between the steam flow resistance coefficient Cr of the main channel and the dehumidification rate Qm is obtained.
リーク式真空制御方式においては、実際に凍結乾燥プログラムを設定して被乾燥材料の凍結乾燥を行うとき、乾燥庫内の真空度PdcとCT内の真空度Pctを計測して記録すれば、水負荷の測定で得られた主管流路の水蒸気抵抗係数Crと脱湿速度Qmとの関係式を利用して、二次乾燥時に脱湿した水蒸気流量が求められ、脱湿速度も算出できる。 In the leak type vacuum control system, when actually setting a freeze-drying program and freeze-drying the material to be dried, if the vacuum degree Pdc in the drying chamber and the vacuum degree Pct in the CT are measured and recorded, Using the relational expression between the water vapor resistance coefficient Cr of the main pipe channel obtained by the load measurement and the dehumidification rate Qm, the water vapor flow rate dehumidified during the secondary drying is obtained, and the dehumidification rate can also be calculated.
以下に、リーク式真空制御方式の凍結乾燥機W2に適用される二次乾燥期における被乾燥材料の平均品温Tm及び平均脱湿速度Qmの算出方法及び算出装置のより具体的な実施例を示す。 Hereinafter, more specific examples of the calculation method and the calculation apparatus of the average product temperature Tm and the average dehumidification rate Qm of the material to be dried in the secondary drying period applied to the freeze-type dryer W2 of the leak type vacuum control system will be described. Show.
〈水蒸気流動抵抗係数Crと脱湿速度Qmとの関係式の導出〉
先ず、水負荷の試験で、主管流路の水蒸気流動抵抗係数Crと脱湿速度Qmとの関係式を求める。水負荷の試験は、乾燥庫DC内に水を充填したトレイを装入した状態で、制御盤CRにより凍結乾燥機W2の稼動を制御し、所定の乾燥工程を実行することにより行われる。本例においては、トレイ内の水を−45℃まで凍結した後の一次乾燥時に、棚温Thを−20℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Paに設定して3時間保持した。また、棚温Thを−10℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Pa、13.3Pa、20Paに制御してそれぞれ3時間保持した。また、棚温Thを5℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Pa、13.3Paに制御して、3時間保持した。また、棚温Thを20℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Pa、13.3Paに制御して、それぞれ3時間保持した。上記9条件の水負荷試験を実施しながら、棚温Th、トレイ底部品温Tb、乾燥庫DC内の真空度Pdc及びコールドトラップCT内の真空度Pctを測定して記録した。更に、これらの測定結果から、脱湿速度Qm(Kg/h)と主管流路の水蒸気流動抵抗係数Crを求めた。表3に、水負荷の試験で求められた棚温Th、乾燥庫DC内の真空度Pdc、コールドトラップCT内の真空度Pct、脱湿速度Qm及び主管流路の水蒸気流動抵抗係数Crを示す。
First, in a water load test, a relational expression between the steam flow resistance coefficient Cr of the main pipe channel and the dehumidification rate Qm is obtained. The water load test is performed by controlling the operation of the freeze dryer W2 by the control panel CR and executing a predetermined drying process in a state where a tray filled with water is loaded in the drying cabinet DC. In this example, at the time of primary drying after freezing the water in the tray to −45 ° C., the shelf temperature Th is set to −20 ° C. and the degree of vacuum Pdc in the drying cabinet DC is set to 6.7 Pa. Held for hours. Further, the shelf temperature Th was set to −10 ° C., and the degree of vacuum Pdc in the drying cabinet DC was controlled to 6.7 Pa, 13.3 Pa, and 20 Pa, and held for 3 hours, respectively. Further, the shelf temperature Th was set to 5 ° C., and the degree of vacuum Pdc in the drying cabinet DC was controlled to 6.7 Pa and 13.3 Pa, and held for 3 hours. Further, the shelf temperature Th was set to 20 ° C., and the degree of vacuum Pdc in the drying cabinet DC was controlled to 6.7 Pa and 13.3 Pa, and held for 3 hours, respectively. While carrying out the water load test of the above nine conditions, the shelf temperature Th, the tray bottom component temperature Tb, the degree of vacuum Pdc in the drying cabinet DC, and the degree of vacuum Pct in the cold trap CT were measured and recorded. Furthermore, from these measurement results, the dehumidification rate Qm (Kg / h) and the steam flow resistance coefficient Cr of the main pipe channel were obtained. Table 3 shows the shelf temperature Th obtained in the water load test, the degree of vacuum Pdc in the drying cabinet DC, the degree of vacuum Pct in the cold trap CT, the dehumidification rate Qm, and the steam flow resistance coefficient Cr of the main pipe channel. .
表3のデータに基づいて作成した主管流路の水蒸気流動抵抗係数Crと脱湿速度Qmとの関係を表すグラフを示す。このグラフから、
Cr=5.4+0.85/Qm1.25
の関係式が得られた。
The graph showing the relationship between the steam flow resistance coefficient Cr of the main pipe flow path created based on the data of Table 3, and the dehumidification rate Qm is shown. From this graph,
Cr = 5.4 + 0.85 / Qm 1.25
The following relational expression was obtained.
本実施例では、主管aの長さが比較的短いために、主管a全体が入口区間(助走区間)となっており、水蒸気の流れが十分に発達した区間での計算式Cr=6.6+1.6×L/Qmと比べると、水蒸気流動抵抗係数Crが乾燥速度Qm1.25に反比例している。 In this embodiment, since the length of the main pipe a is relatively short, the entire main pipe a is an entrance section (running section), and the calculation formula Cr = 6.6 + 1 in a section where the flow of water vapor is sufficiently developed. Compared to .6 × L / Qm, the steam flow resistance coefficient Cr is inversely proportional to the drying speed Qm 1.25 .
〈平均品温Tmの算出方法〉
二次乾燥期における被乾燥材料の全体の平均品温Tmは、次式から算出できる。
<Calculation method of average product temperature Tm>
The average product temperature Tm of the entire material to be dried in the secondary drying period can be calculated from the following equation.
まず、乾燥品の伝熱方程式は、次の式で表される。 First, the heat transfer equation of the dried product is expressed by the following equation.
C×dTm/dt=Qh+Qr−Qm×ΔHs
但し、この式において、Cは被乾燥材料の熱容量、Tmは平均品温、Qhは気体伝導による棚段から容器底部への入熱量、Qrは乾燥庫壁から全容器への幅射入熱量、Qmは脱湿速度、ΔHsは蒸発潜熱である。
C × dTm / dt = Qh + Qr−Qm × ΔHs
However, in this formula, C is the heat capacity of the material to be dried, Tm is the average product temperature, Qh is the amount of heat input from the shelf through the gas conduction to the bottom of the container, Qr is the amount of heat input from the drying chamber wall to the entire container, Qm is the dehumidification rate and ΔHs is the latent heat of evaporation.
まず、気体伝導による棚段から容器底部への入熱量Qhは、次の式で計算される。 First, the amount of heat input Qh from the shelf due to gas conduction to the bottom of the container is calculated by the following equation.
Qh=Ae×K×(Th−Tm)
但し、Aeは有効伝熱面積(m2)、Kは気体伝導による棚段から容器底部への熱伝達係数、Thは棚温(℃)、Tbは底部品温(℃)である。
Qh = Ae × K × (Th−Tm)
However, Ae is an effective heat transfer area (m 2 ), K is a heat transfer coefficient from the shelf stage to the container bottom by gas conduction, Th is the shelf temperature (° C.), and Tb is the bottom part temperature (° C.).
有効伝熱面積Aeは、Ae=2/(1/Av+1/At)で算出でき、
気体伝導による棚段から容器底部への熱伝達係数K(W/m2℃)は、
K=16.86/(δ+2.12×29×0.133/Pdc)である。
The effective heat transfer area Ae can be calculated by Ae = 2 / (1 / Av + 1 / At),
The heat transfer coefficient K (W / m 2 ° C) from the shelf to the bottom of the container by gas conduction is
K = 16.86 / (δ + 2.12 × 29 × 0.133 / Pdc).
有効伝熱面積Aeの計算式において、Avは容器底部面積(m2)であり、Atはトレイ枠面積(m2)である。 In the calculation formula of the effective heat transfer area Ae, Av is the container bottom area (m 2 ), and At is the tray frame area (m 2 ).
容器底部面積Avは、Av=π/4×n1×d2(但し、n1はバイアル本数、dはバイアル直径)で算出でき、トレイ枠面積Atは、At=n2×W×L(但し、n2は枠枚数;Wは枠の幅寸法、Lは枠の長さ寸法)で算出できる。 The container bottom area Av can be calculated by Av = π / 4 × n1 × d 2 (where n1 is the number of vials and d is the vial diameter), and the tray frame area At is At = n2 × W × L (where n2 Is the number of frames; W is the width of the frame, and L is the length of the frame).
また、気体伝導による棚段から容器底部への熱伝達係数Kの計算式において、δは容器底部の隙間であり、単位はmmである。 Moreover, in the calculation formula of the heat transfer coefficient K from the shelf to the container bottom by gas conduction, δ is the gap at the container bottom and the unit is mm.
一方、乾燥庫壁から全容器への幅射入熱量Qrは、次式から求められる。 On the other hand, the width incident heat quantity Qr from the drying cabinet wall to all containers is obtained from the following equation.
Qr=5.67×ε×Ae×〔(Tw/100)4−(Tm/100)4〕
但し、式中のεは輻射係数、Twは乾燥庫壁温度、Tmは平均品温である。
Qr = 5.67 × ε × Ae × [(Tw / 100) 4 − (Tm / 100) 4 ]
However, in the equation, ε is a radiation coefficient, Tw is a drying cabinet wall temperature, and Tm is an average product temperature.
また、この乾燥庫壁から全容器への幅射入熱量Qrは、次式で近似的に計算できる。 Further, the width incident heat quantity Qr from the drying chamber wall to all containers can be approximately calculated by the following equation.
Qr=Ae×Kr×(Tw−Tm)
但し、Krは輻射入熱による相当熱伝達係数であり、試験機でKr=0.7W/m2℃、生産機でKr=0.2W/m2℃と近似できる。
Qr = Ae × Kr × (Tw−Tm)
However, Kr are equivalent heat transfer coefficient due to radiation heat input, Kr = 0.7W / m 2 ℃ in tester can be approximated as Kr = 0.2W / m 2 ℃ production machine.
入熱量の計算式を伝熱方程式に入れると、下式が成り立つ。 When the formula for calculating the heat input is included in the heat transfer equation, the following formula is established.
C×dTm/dt
=Ae×K×(Th−Tm)+Ae×Kr×(Tw−Tm)−Qm×ΔHs
但し、ΔHsは蒸発潜熱であり、ΔHs=2850KJ/Kgである。
C x dTm / dt
= Ae * K * (Th-Tm) + Ae * Kr * (Tw-Tm) -Qm * [Delta] Hs
However, ΔHs is latent heat of vaporization, and ΔHs = 2850 KJ / Kg.
二次乾燥期に被乾燥材料の平均品温は以下の式で計算できる。 The average product temperature of the material to be dried during the secondary drying period can be calculated by the following formula.
C×(Tm−Tm0)/Δt
=Ae×K×(Th−Tm)+Ae×Kr×(Tw−Tm)−Qm×ΔHs
Tm=(Tm0+a1×Th+a2×Tw−a3)/(1+a1+a2)
a1=K×Ae×Δt/C、
a2=Kr×Ar×Δt/C、
a3=Qm×ΔHs×Δt/C
但し、Cは被乾燥材料の熱容量である。
C × (Tm−Tm0) / Δt
= Ae * K * (Th-Tm) + Ae * Kr * (Tw-Tm) -Qm * [Delta] Hs
Tm = (Tm0 + a1 × Th + a2 × Tw−a3) / (1 + a1 + a2)
a1 = K × Ae × Δt / C,
a2 = Kr × Ar × Δt / C,
a3 = Qm × ΔHs × Δt / C
Where C is the heat capacity of the material to be dried.
したがって、以上の計算式から、二次乾燥期に脱湿速度Qmを測定すれば、被乾燥材料の全体の平均品温Tmを算出することができる。 Therefore, if the dehumidification rate Qm is measured in the secondary drying period, the average product temperature Tm of the entire material to be dried can be calculated from the above formula.
〈被乾燥材料の熱容量Cの算出方法〉
二次乾燥工程に入ると、棚温を二次乾燥の設定温度まで昇温する。これにより、被乾燥材料中の不凍水が脱湿し、品温も上昇する。なお、被乾燥材料の熱容量Cには、トレイの熱容量Ct、バイアルとゴム栓の熱容量Cv、薬分の熱容量Cs及び不凍水の熱容量Cwを含める。
<Calculation method of heat capacity C of material to be dried>
When entering the secondary drying step, the shelf temperature is raised to the set temperature for secondary drying. Thereby, the antifreeze water in the material to be dried is dehumidified, and the product temperature is also increased. The heat capacity C of the material to be dried includes the heat capacity Ct of the tray, the heat capacity Cv of the vial and the rubber stopper, the heat capacity Cs of the medicine, and the heat capacity Cw of the antifreeze water.
(1)トレイの熱容量Ctは、Ct=csus×Wtで計算される。csusはステンレスの比熱である。Wtはトレイ重量であり、引き抜きトレイと底付きトレイの合計値となる。 (1) The heat capacity Ct of the tray is calculated by Ct = csus × Wt. csus is the specific heat of stainless steel. Wt is the tray weight, and is the total value of the extraction tray and the bottomed tray.
(2)バイアルとゴム栓の熱容量Cvは、Cv=cv×Wv+cc×Wcで計算される。cvはバイアルの比熱、Wvはバイアル重量、ccはゴム栓の比熱、Wvはゴム栓の重量である。 (2) The heat capacity Cv of the vial and the rubber stopper is calculated by Cv = cv × Wv + cc × Wc. cv is the specific heat of the vial, Wv is the weight of the vial, cc is the specific heat of the rubber stopper, and Wv is the weight of the rubber stopper.
(3)薬分の熱容量Csは、Cs=cs×Wsで計算される。csは薬分の比熱、Wsは薬分重量である。 (3) The heat capacity Cs of the medicinal component is calculated by Cs = cs × Ws. cs is the specific heat of the chemical, and Ws is the chemical weight.
(4)不凍水の熱容量Cwは、Cw=cw×Wwで計算される。cwは不凍水の比熱、Wwは不凍水の重量である。 (4) The heat capacity Cw of the antifreeze water is calculated by Cw = cw × Ww. cw is the specific heat of the antifreeze water, and Ww is the weight of the antifreeze water.
(5)したがって、被乾燥材料の熱容量Cは、C=Ct+Cv+Cs+Cwとなる。 (5) Therefore, the heat capacity C of the material to be dried is C = Ct + Cv + Cs + Cw.
〈平均品温Tm及び脱湿速度Qmの算出結果〉
以下に、流路開度真空制御方式の凍結乾燥機W1を用いた場合、及び、リーク真空制御方式の凍結乾燥機W2を用いた場合のそれぞれについて、実負荷を用いた凍結乾燥テストを行うことにより求められた、二次乾燥期における被乾燥材料の全体の平均品温Tm及び脱湿速度Qmの計算結果を示す。
<Calculation results of average product temperature Tm and dehumidification rate Qm>
In the following, a freeze-drying test using an actual load is performed for each of the cases where the freeze-dryer W1 of the flow path opening vacuum control system and the freeze-dryer W2 of the leak vacuum control system are used. The calculation result of the average product temperature Tm of the whole to-be-dried material in the secondary drying period calculated | required by (2), and the dehumidification rate Qm is shown.
〈流路開度真空制御方式の凍結乾燥機W1を用いた場合〉
凍結乾燥機W1は、乾燥庫DC内に被乾燥材料であるスクロース(Sucrose、分子式:C12H22O11)の10%水溶液を分注したバイアル660本が装入され、制御盤CRにより制御されて、所定の乾燥工程を開始している。なお、本発明に係る算出方法及び算出装置の適切性を検証するために、棚中央部に装入された3本のバイアルには品温センサを挿入して、バイアル内に分注された被乾燥材料スクロースの品温(品温1、品温2、品温3)を測定した。溶液を−45℃で3時間凍結させ、一次乾燥時に棚温Thを−20℃に設定すると共に、開度調節器Cの開度角度θを調整して乾燥庫DC内の真空度Pdcを10.0Paに制御し、被乾燥材料を凍結乾燥した。二次乾燥では、棚温を1時間で−20℃から30℃まで昇温し、真空度調節手段を駆動して乾燥庫DC内の真空度Pdcを成り行きに変化させ、開度調節器Cを全開方向へ回動させた。二次乾燥期に1分間の間隔で開度調節器Cの開度角度θ、乾燥庫DC内の真空度PdcとコールドトラップCT内の真空度Pct及び棚温Thをそれぞれ測定して記録し、シーケンサPLCに記憶された計算ソフトを用いて、被乾燥材料の平均品温Tmと平均脱湿速度Qmを算出した。図5に、その算出結果を示す。
<When using freeze-dryer W1 with flow path opening vacuum control>
The freeze dryer W1 is loaded with 660 vials in which a 10% aqueous solution of sucrose (molecular formula: C 12 H 22 O 11 ), which is a material to be dried, is dispensed in a drying cabinet DC, and is controlled by a control panel CR. Then, a predetermined drying process is started. In order to verify the suitability of the calculation method and the calculation apparatus according to the present invention, a product temperature sensor is inserted into the three vials inserted in the center of the shelf, and the dispensed material is dispensed into the vials. The product temperature (product temperature 1, product temperature 2, product temperature 3) of the dried material sucrose was measured. The solution is frozen at −45 ° C. for 3 hours, the shelf temperature Th is set to −20 ° C. at the time of primary drying, and the degree of vacuum Pdc in the drying chamber DC is adjusted to 10 by adjusting the opening angle θ of the opening controller C. The material to be dried was lyophilized by controlling to 0.0 Pa. In secondary drying, the shelf temperature is raised from −20 ° C. to 30 ° C. in one hour, the vacuum degree adjusting means is driven to change the degree of vacuum Pdc in the drying cabinet DC, and the opening degree controller C is It was rotated in the fully open direction. During the secondary drying period, the opening angle θ of the opening controller C, the degree of vacuum Pdc in the drying cabinet DC, the degree of vacuum Pct in the cold trap CT, and the shelf temperature Th are measured and recorded, respectively. The average product temperature Tm and average dehumidification rate Qm of the material to be dried were calculated using calculation software stored in the sequencer PLC. FIG. 5 shows the calculation result.
図5は、上述の条件で算出した流路開度真空制御方式による二次乾燥期における被乾燥材料の平均品温Tm及び脱湿速度Qmのグラフである。この図から明らかなように、算出された被乾燥材料の平均品温Tmは、品温センサにより検出された被乾燥材料の品温(品温1、品温2、品温3)とよく一致している。これにより、本発明に係る算出方法及び算出装置の適切性を検証することができた。図5に示すデータは、制御盤CRに備えられた記録計eに記録される。凍結乾燥機W1のオペレータは、記録計eに記録された平均品温Tmのデータ及び脱湿速度Qmのデータを監視することにより、被乾燥材料の二次乾燥状態を知ることができる。 FIG. 5 is a graph of the average product temperature Tm and the dehumidification rate Qm of the material to be dried in the secondary drying period according to the channel opening degree vacuum control method calculated under the above conditions. As is clear from this figure, the calculated average product temperature Tm of the material to be dried is well equal to the product temperature of the material to be dried (product temperature 1, product temperature 2, product temperature 3) detected by the product temperature sensor. I'm doing it. Thereby, it was possible to verify the appropriateness of the calculation method and the calculation apparatus according to the present invention. The data shown in FIG. 5 is recorded on a recorder e provided in the control panel CR. The operator of the freeze dryer W1 can know the secondary drying state of the material to be dried by monitoring the data of the average product temperature Tm and the data of the dehumidification rate Qm recorded in the recorder e.
〈リーク真空制御方式の凍結乾燥機W2を用いた場合〉
凍結乾燥機W2は、乾燥庫DC内に被乾燥材料であるマンニトール(Mannitol、分子式:C6H14O6)の10%水溶液を分注したバイアル660本が装入され、制御盤CRにより制御されて、所定の乾燥工程を開始している。なお、本発明に係る算出方法及び算出装置の適切性を検証するために、棚中央部に装入された3本のバイアルには品温センサを挿入して、バイアル内に分注された被乾燥材料マンニトールの品温(品温1、品温2、品温3)を測定した。溶液を−45℃で3時間凍結させ、一次乾燥時に棚温Thを0℃に設定すると共に、真空制御回路fに備えられた可変リーク弁及びリーク制御弁LVを経由して外部空気を凍結乾燥機W2内に導入することにより、乾燥庫DC内の真空度Pdcを10Paに制御し、被乾燥材料を凍結乾燥した。二次乾燥では、棚温を1時間で0℃から20℃まで昇温し、乾燥庫DC内の真空度Pdcを1時間で10Paから1Paに制御し、その後に真空を成り行きにした。二次乾燥期に1分間隔で乾燥庫DCの真空度PdcとコールドトラップCTの真空度Pct及び棚温Thをそれぞれ測定して記録し、シーケンサPLCに記憶された計算ソフトを用いて、被乾燥材料の平均品温Tmと脱湿速度Qmを算出した。表4及び図6に、その算出結果を示す。
The freeze dryer W2 is loaded with 660 vials into which a 10% aqueous solution of mannitol (Mannitol, molecular formula: C 6 H 14 O 6 ), which is a material to be dried, is dispensed, and is controlled by the control panel CR. Then, a predetermined drying process is started. In order to verify the suitability of the calculation method and the calculation apparatus according to the present invention, a product temperature sensor is inserted into the three vials inserted in the center of the shelf, and the dispensed material is dispensed into the vials. The product temperature (product temperature 1, product temperature 2, product temperature 3) of the dried material mannitol was measured. The solution is frozen at −45 ° C. for 3 hours, the shelf temperature Th is set to 0 ° C. during the primary drying, and external air is freeze-dried via the variable leak valve and the leak control valve LV provided in the vacuum control circuit f. By introducing into the machine W2, the degree of vacuum Pdc in the drying cabinet DC was controlled to 10 Pa, and the material to be dried was freeze-dried. In the secondary drying, the shelf temperature was raised from 0 ° C. to 20 ° C. in 1 hour, the degree of vacuum Pdc in the drying cabinet DC was controlled from 10 Pa to 1 Pa in 1 hour, and then the vacuum was achieved. During the secondary drying period, the degree of vacuum Pdc of the drying cabinet DC, the degree of vacuum Pct of the cold trap CT, and the shelf temperature Th are measured and recorded, respectively, and calculated using the calculation software stored in the sequencer PLC. The average product temperature Tm and the dehumidification rate Qm of the material were calculated. Table 4 and FIG. 6 show the calculation results.
図6は、上述の条件で算出したリーク式真空制御方式による二次乾燥期における被乾燥材料の平均品温Tm及び脱湿速度Qmのグラフである。この図から明らかなように、算出された被乾燥材料の平均品温Tmは、品温センサにより検出された被乾燥材料の品温(品温1、品温2、品温3)とよく一致している。これにより、本発明に係る算出方法及び算出装置の適切性を検証することができた。図6に示すデータは、制御盤CRに備えられた記録計eに記録される。凍結乾燥機W2のオペレータは、記録計eに記録された平均品温Tmのデータ及び脱湿速度Qmのデータを監視することにより、被乾燥材料の二次乾燥状態を知ることができる。 FIG. 6 is a graph of the average product temperature Tm and dehumidification rate Qm of the material to be dried in the secondary drying period by the leak-type vacuum control method calculated under the above conditions. As is clear from this figure, the calculated average product temperature Tm of the material to be dried is well equal to the product temperature of the material to be dried (product temperature 1, product temperature 2, product temperature 3) detected by the product temperature sensor. I'm doing it. Thereby, it was possible to verify the appropriateness of the calculation method and the calculation apparatus according to the present invention. The data shown in FIG. 6 is recorded on a recorder e provided in the control panel CR. The operator of the freeze dryer W2 can know the secondary drying state of the material to be dried by monitoring the data of the average product temperature Tm and the data of the dehumidification rate Qm recorded in the recorder e.
本発明は、食品や薬品等の凍結乾燥に用いられる凍結乾燥機に利用できる。 The present invention can be used for a freeze dryer used for freeze drying of foods, medicines and the like.
C 開度調節器
CT コールドトラップ
CR 制御盤
DC 乾燥庫
MV 主弁
P 真空ポンプ
PLC シーケンサ
V 引口弁
W 凍結乾燥機
a 主管
b 真空計
ct トラップコイル(プレート)
e 記録計
f 真空制御回路
C Opening controller CT Cold trap CR Control panel DC Dryer MV Main valve P Vacuum pump PLC Sequencer V Inlet valve W Freeze dryer a Main pipe b Vacuum gauge ct Trap coil (plate)
e Recorder f Vacuum control circuit
Claims (6)
前記制御手段(PLC)は、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の制御プログラムと、所要の計算プログラムと、所要の関係式を記憶しており、前記被乾燥材料が二次乾燥期に入ったとき、前記乾燥庫(DC)内の真空度(Pdc)を成り行きにまかせて変化させ、当該変化の前後における前記乾燥庫(DC)内の真空度(Pdc)、前記コールドトラップ(CT)内の真空度(Pct)、前記棚温検出手段により検出された前記棚板の温度(Th)を含む測定データ及び前記関係式から、前記二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出し、算出された被乾燥材料の平均品温及び平均脱湿速度を記録手段(e)に記録することを特徴とする凍結乾燥機に適用される乾燥状態監視方法。 A drying chamber (DC) for charging the material to be dried, a cold trap (CT) for condensing and collecting water vapor generated from the material to be dried charged in the drying chamber (DC), and the drying chamber (DC) ) And the cold trap (CT), a main pipe (a), a main valve (MV) for opening and closing the main pipe (a), and a vacuum degree adjusting means for adjusting the degree of vacuum in the drying chamber (DC) And a vacuum detecting means for detecting an absolute pressure in the drying cabinet (DC) and an absolute pressure in the cold trap (CT), and a temperature (Th) of a shelf board installed in the drying cabinet (DC). It is applied to a freeze dryer having a shelf temperature detecting means for detecting, and a control means (PLC) for automatically controlling the operation of the drying chamber (DC), the cold trap (CT) and the vacuum degree adjusting means. In the dry condition monitoring method,
The control means (PLC) stores a control program for the drying chamber (DC), the cold trap (CT) and the vacuum degree adjusting means, a required calculation program, and a required relational expression. When the desiccant material enters the secondary drying period, the degree of vacuum (Pdc) in the drying chamber (DC) is changed as desired, and the degree of vacuum (Pdc) in the drying chamber (DC) before and after the change. ), Measurement data including the degree of vacuum (Pct) in the cold trap (CT), the temperature (Th) of the shelf board detected by the shelf temperature detecting means, and the relational expression, The average product temperature and average dehumidification rate of the dried material are calculated, and the calculated average product temperature and average dehumidification rate of the material to be dried are recorded in the recording means (e). Dry state Method.
前記乾燥庫(DC)内に装入された被乾燥材料が二次乾燥期に入り、前記開度調節器(C)が全開方向への回動を開始した後、前記制御手段(PLC)は、所定時間間隔毎に、前記開度調節器(C)の開度角度(θ)と、乾燥庫(DC)内の真空度(Pdc)と、前記コールドトラップ(CT)内の真空度(Pct)と、前記棚板の温度(Th)の測定データから、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出することを特徴とする請求項1に記載の凍結乾燥機に適用される乾燥状態監視方法。 The opening degree adjuster (C) is provided in the main pipe (a) as the vacuum degree adjusting means, and the control means (PLC) includes water in a state where the main valve (MV) is fully opened as the relational expression. Storing a relational expression between a dehumidifying speed (Qm) by a load, an opening angle (θ) of the opening controller (C), and a main pipe resistance R (θ);
After the material to be dried charged in the drying chamber (DC) enters the secondary drying period, and the opening controller (C) starts to rotate in the fully open direction, the control means (PLC) , The opening angle (θ) of the opening controller (C), the degree of vacuum (Pdc) in the drying cabinet (DC), and the degree of vacuum (Pct) in the cold trap (CT) at predetermined time intervals. ) And the measurement data of the temperature (Th) of the shelf board, the average product temperature and average dehumidification rate of the material to be dried in the secondary drying period are calculated. The dry condition monitoring method applied to.
前記乾燥庫(DC)内に装入された被乾燥材料が二次乾燥期に入った後、前記制御手段(PLC)は、前記リーク制御弁(LV)を駆動して前記乾燥庫(DC)内の真空度(Pdc)を設定値に制御するか、前記リーク制御弁(LV)を閉じ、しかる後、所定の時間間隔毎に、前記乾燥庫(DC)内の真空度(Pdc)と、前記コールドトラップ(CT)内の真空度(Pct)と、前記棚温(Th)の測定データから、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出することを特徴とする請求項1に記載の凍結乾燥機に適用される乾燥状態監視方法。 A vacuum control circuit (f) with a leak control valve (LV) is provided as any one of the vacuum systems including the drying chamber (DC), the cold trap (CT), and the main pipe (a) as the vacuum degree adjusting means. In addition, the control means (PLC) includes, as the relational expression, a dehumidification rate (Qm) due to a water load in a state where the main valve (MV) is fully opened, and a steam flow resistance coefficient (Cr) of the main pipe (a). Remember the relational expression with
After the material to be dried placed in the drying chamber (DC) enters the secondary drying period, the control means (PLC) drives the leak control valve (LV) to drive the drying chamber (DC). The degree of vacuum (Pdc) in the inside is controlled to a set value or the leak control valve (LV) is closed, and thereafter, the degree of vacuum (Pdc) in the drying chamber (DC) at predetermined time intervals, The average product temperature and average dehumidification rate of the material to be dried in the secondary drying period are calculated from the measurement data of the degree of vacuum (Pct) in the cold trap (CT) and the shelf temperature (Th). A dry state monitoring method applied to the freeze dryer according to claim 1.
前記制御手段(PLC)は、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の制御プログラムと、所要の計算プログラムと、所要の関係式を記憶しており、前記被乾燥材料が二次乾燥期に入ったとき、前記乾燥庫(DC)内の真空度(Pdc)を成り行きにまかせて変化させ、当該変化の前後における前記乾燥庫(DC)内の真空度(Pdc)、前記コールドトラップ(CT)内の真空度(Pct)、前記棚温検出手段により検出された前記棚板の温度(Th)を含む測定データ及び前記関係式から、前記二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出し、算出された被乾燥材料の平均品温及び平均脱湿速度を記録手段(e)に記録することを特徴とする凍結乾燥機に適用される乾燥状態監視装置。 A drying chamber (DC) for charging the material to be dried, a cold trap (CT) for condensing and collecting water vapor generated from the material to be dried charged in the drying chamber (DC), and the drying chamber (DC) ) And the cold trap (CT), a main pipe (a), a main valve (MV) for opening and closing the main pipe (a), and a vacuum degree adjusting means for adjusting the degree of vacuum in the drying chamber (DC) And a vacuum detecting means for detecting an absolute pressure in the drying cabinet (DC) and an absolute pressure in the cold trap (CT), and a temperature (Th) of a shelf board installed in the drying cabinet (DC). A shelf temperature detecting means for detecting, and a control means (PLC) for automatically controlling the operation of the drying chamber (DC), the cold trap (CT) and the vacuum degree adjusting means,
The control means (PLC) stores a control program for the drying chamber (DC), the cold trap (CT) and the vacuum degree adjusting means, a required calculation program, and a required relational expression. When the desiccant material enters the secondary drying period, the degree of vacuum (Pdc) in the drying chamber (DC) is changed as desired, and the degree of vacuum (Pdc) in the drying chamber (DC) before and after the change. ), Measurement data including the degree of vacuum (Pct) in the cold trap (CT), the temperature (Th) of the shelf board detected by the shelf temperature detecting means, and the relational expression, The average product temperature and average dehumidification rate of the dried material are calculated, and the calculated average product temperature and average dehumidification rate of the material to be dried are recorded in the recording means (e). Dry state Apparatus.
前記乾燥庫(DC)内に装入された被乾燥材料が二次乾燥期に入り、前記開度調節器(C)が全開方向への回動を開始した後、前記制御手段(PLC)は、所定時間間隔毎に、前記開度調節器(C)の開度角度(θ)と、乾燥庫(DC)内の真空度(Pdc)と、前記コールドトラップ(CT)内の真空度(Pct)と、前記棚板の温度(Th)の測定データから、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出することを特徴とする請求項4に記載の凍結乾燥機に適用される乾燥状態監視装置。 The opening degree adjuster (C) is provided in the main pipe (a) as the vacuum degree adjusting means, and the control means (PLC) includes water in a state where the main valve (MV) is fully opened as the relational expression. Storing a relational expression between a dehumidifying speed (Qm) by a load, an opening angle (θ) of the opening controller (C), and a main pipe resistance R (θ);
After the material to be dried charged in the drying chamber (DC) enters the secondary drying period, and the opening controller (C) starts to rotate in the fully open direction, the control means (PLC) , The opening angle (θ) of the opening controller (C), the degree of vacuum (Pdc) in the drying cabinet (DC), and the degree of vacuum (Pct) in the cold trap (CT) at predetermined time intervals. And an average product temperature and an average dehumidification rate of the material to be dried in the secondary drying period are calculated from the measurement data of the temperature (Th) of the shelf board. Dry condition monitoring device applied to.
前記乾燥庫(DC)内に装入された被乾燥材料が二次乾燥期に入った後、前記制御手段(PLC)は、前記リーク制御弁(LV)を駆動して前記乾燥庫(DC)内の真空度(Pdc)を設定値に制御するか、前記リーク制御弁(LV)を閉じ、しかる後、所定の時間間隔毎に、前記乾燥庫(DC)内の真空度(Pdc)と、前記コールドトラップ(CT)内の真空度(Pct)と、前記棚温(Th)の測定データから、二次乾燥期における被乾燥材料の平均品温及び平均脱湿速度を算出することを特徴とする請求項4に記載の凍結乾燥機に適用される乾燥状態監視装置。 A vacuum control circuit (f) with a leak control valve (LV) is provided as any one of the vacuum systems including the drying chamber (DC), the cold trap (CT), and the main pipe (a) as the vacuum degree adjusting means. In addition, the control means (PLC) includes, as the relational expression, a dehumidification rate (Qm) due to a water load in a state where the main valve (MV) is fully opened, and a steam flow resistance coefficient (Cr) of the main pipe (a). Remember the relational expression with
After the material to be dried placed in the drying chamber (DC) enters the secondary drying period, the control means (PLC) drives the leak control valve (LV) to drive the drying chamber (DC). The degree of vacuum (Pdc) in the inside is controlled to a set value or the leak control valve (LV) is closed, and thereafter, the degree of vacuum (Pdc) in the drying chamber (DC) at predetermined time intervals, The average product temperature and average dehumidification rate of the material to be dried in the secondary drying period are calculated from the measurement data of the degree of vacuum (Pct) in the cold trap (CT) and the shelf temperature (Th). The dry condition monitoring apparatus applied to the freeze dryer according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013079624A JP6099463B2 (en) | 2013-04-05 | 2013-04-05 | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013079624A JP6099463B2 (en) | 2013-04-05 | 2013-04-05 | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014202429A true JP2014202429A (en) | 2014-10-27 |
JP6099463B2 JP6099463B2 (en) | 2017-03-22 |
Family
ID=52353026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013079624A Active JP6099463B2 (en) | 2013-04-05 | 2013-04-05 | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6099463B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015031486A (en) * | 2013-08-06 | 2015-02-16 | 共和真空技術株式会社 | Freeze-dried state monitoring method for material to be dried applied to freeze dryer, and freeze-dried state monitoring device by the same |
CN105222532A (en) * | 2015-10-08 | 2016-01-06 | 巴斯特医药科技(常州)有限公司 | Light power freeze drying plant and method of operating thereof |
JP2016125682A (en) * | 2014-12-26 | 2016-07-11 | 共和真空技術株式会社 | Dried state monitoring device for dried material applied to freezer dryer and dried state monitoring method |
WO2017193489A1 (en) * | 2016-05-09 | 2017-11-16 | 顺德职业技术学院 | Energy-saving control method for vacuum freezing and drying combined device for cascaded heat pump |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05272867A (en) * | 1992-03-26 | 1993-10-22 | Okawara Mfg Co Ltd | Method and mechanism of detecting state of drying in vacuum drier |
US6971187B1 (en) * | 2002-07-18 | 2005-12-06 | University Of Connecticut | Automated process control using manometric temperature measurement |
WO2008034855A2 (en) * | 2006-09-19 | 2008-03-27 | Telstar Technologies, S.L. | Method and system for controlling a freeze drying process |
JP2011252654A (en) * | 2010-06-02 | 2011-12-15 | Kyowa Shinku Gijutsu Kk | Measuring method and device of sublimation surface temperature of material to be dried, and water vapor moving resistance in dried layer in freeze-drying apparatus |
WO2012108470A1 (en) * | 2011-02-08 | 2012-08-16 | 共和真空技術株式会社 | Calculation method and calculation device for sublimation interface temperature, bottom part temperature, and sublimation rate of material to be dried in freeze-drying device |
-
2013
- 2013-04-05 JP JP2013079624A patent/JP6099463B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05272867A (en) * | 1992-03-26 | 1993-10-22 | Okawara Mfg Co Ltd | Method and mechanism of detecting state of drying in vacuum drier |
US6971187B1 (en) * | 2002-07-18 | 2005-12-06 | University Of Connecticut | Automated process control using manometric temperature measurement |
WO2008034855A2 (en) * | 2006-09-19 | 2008-03-27 | Telstar Technologies, S.L. | Method and system for controlling a freeze drying process |
JP2011252654A (en) * | 2010-06-02 | 2011-12-15 | Kyowa Shinku Gijutsu Kk | Measuring method and device of sublimation surface temperature of material to be dried, and water vapor moving resistance in dried layer in freeze-drying apparatus |
WO2012108470A1 (en) * | 2011-02-08 | 2012-08-16 | 共和真空技術株式会社 | Calculation method and calculation device for sublimation interface temperature, bottom part temperature, and sublimation rate of material to be dried in freeze-drying device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015031486A (en) * | 2013-08-06 | 2015-02-16 | 共和真空技術株式会社 | Freeze-dried state monitoring method for material to be dried applied to freeze dryer, and freeze-dried state monitoring device by the same |
JP2016125682A (en) * | 2014-12-26 | 2016-07-11 | 共和真空技術株式会社 | Dried state monitoring device for dried material applied to freezer dryer and dried state monitoring method |
CN105222532A (en) * | 2015-10-08 | 2016-01-06 | 巴斯特医药科技(常州)有限公司 | Light power freeze drying plant and method of operating thereof |
WO2017193489A1 (en) * | 2016-05-09 | 2017-11-16 | 顺德职业技术学院 | Energy-saving control method for vacuum freezing and drying combined device for cascaded heat pump |
Also Published As
Publication number | Publication date |
---|---|
JP6099463B2 (en) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5876424B2 (en) | Method and apparatus for calculating sublimation surface temperature, bottom part temperature and sublimation speed of material to be dried applied to freeze-drying apparatus | |
JP5859495B2 (en) | Method for monitoring freeze-dried state of material to be dried applied to freeze dryer and freeze-dried state monitoring device thereof | |
Barresi et al. | Monitoring of the primary drying of a lyophilization process in vials | |
Fissore et al. | Process analytical technology for monitoring pharmaceuticals freeze-drying–A comprehensive review | |
JP6099463B2 (en) | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer | |
Patel et al. | Choked flow and importance of Mach I in freeze-drying process design | |
Fissore et al. | On the methods based on the Pressure Rise Test for monitoring a freeze-drying process | |
US9170049B2 (en) | Method for monitoring primary drying of a freeze-drying process | |
CN104007776B (en) | A kind of grain heap condensation early warning, controlling system based on the coupling of temperature humidity field and method | |
Schneid et al. | Non-invasive product temperature determination during primary drying using tunable diode laser absorption spectroscopy | |
US9879909B2 (en) | Method for monitoring the secondary drying in a freeze-drying process | |
JP5093786B2 (en) | Method and apparatus for measuring sublimation surface temperature and dry layer water vapor transfer resistance of material to be dried in freeze drying apparatus | |
US3687612A (en) | Method of controlling relative humidity in gaseous sterilizers | |
US11243029B2 (en) | Process monitoring and control for lyophilization using a wireless sensor network | |
Pisano | Automatic control of a freeze-drying process: Detection of the end point of primary drying | |
Pisano et al. | A new method based on the regression of step response data for monitoring a freeze-drying cycle | |
JP6099622B2 (en) | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer | |
Galan | Monitoring and control of industrial freeze-drying operations: The challenge of implementing Quality-by-Design (QbD) | |
Bosca et al. | On the robustness of the soft sensors used to monitor a vial freeze-drying process | |
Fissore | On the design of a fuzzy logic–based control system for freeze-drying processes | |
JP2015102317A (en) | Dry state monitoring device of dried material applied to freeze dryer, and dry state monitoring method | |
FI3891485T3 (en) | Gas network and method for the simultaneous detection of leaks and obstructions in a gas network under pressure or vacuum | |
Rasetto et al. | Model-based monitoring of a non-uniform batch in a freeze-drying process | |
JP2008128585A (en) | Drying completion judging method and judging device for drying object | |
Chen et al. | Comparative rates of freeze-drying for lactose and sucrose solutions as measured by photographic recording, product temperature, and heat flux transducer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6099463 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |