JP6099622B2 - Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer - Google Patents
Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer Download PDFInfo
- Publication number
- JP6099622B2 JP6099622B2 JP2014264638A JP2014264638A JP6099622B2 JP 6099622 B2 JP6099622 B2 JP 6099622B2 JP 2014264638 A JP2014264638 A JP 2014264638A JP 2014264638 A JP2014264638 A JP 2014264638A JP 6099622 B2 JP6099622 B2 JP 6099622B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- dried
- drying
- temperature
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001035 drying Methods 0.000 title claims description 415
- 239000000463 material Substances 0.000 title claims description 201
- 238000000034 method Methods 0.000 title claims description 114
- 238000012544 monitoring process Methods 0.000 title claims description 29
- 238000012806 monitoring device Methods 0.000 title claims description 7
- 238000000859 sublimation Methods 0.000 claims description 154
- 230000008022 sublimation Effects 0.000 claims description 154
- 238000004364 calculation method Methods 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- 238000001514 detection method Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 16
- 238000007791 dehumidification Methods 0.000 claims description 12
- 238000004108 freeze drying Methods 0.000 claims description 11
- 238000012546 transfer Methods 0.000 description 30
- 230000008014 freezing Effects 0.000 description 20
- 238000007710 freezing Methods 0.000 description 20
- 239000003814 drug Substances 0.000 description 14
- 229940079593 drug Drugs 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 238000007796 conventional method Methods 0.000 description 10
- 101100028920 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cfp gene Proteins 0.000 description 9
- 101100273797 Caenorhabditis elegans pct-1 gene Proteins 0.000 description 8
- 230000005855 radiation Effects 0.000 description 7
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000008101 lactose Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000011049 filling Methods 0.000 description 3
- 238000009795 derivation Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Drying Of Solid Materials (AREA)
Description
本発明は、食品や医薬品等の原材料液である被乾燥材料を凍結乾燥により所定の含水率になるまで乾燥させて製品とする凍結乾燥機に適用される、被乾燥材料の乾燥状態監視装置及び乾燥状態監視方法に関する。 The present invention relates to an apparatus for monitoring a dry state of a material to be dried, which is applied to a freeze dryer that is a product obtained by drying a material to be dried, which is a raw material solution for foods and pharmaceuticals, to a predetermined moisture content by lyophilization. The present invention relates to a dry state monitoring method.
医薬品等の凍結乾燥は、制御盤により自動制御される凍結乾燥機の乾燥庫内に被乾燥材料を充填した多数のトレイやバイアル等の容器を装入し、各容器内の被乾燥材料を所定の含水率になるまで乾燥させることにより行われる。この種の凍結乾燥機を用いた被乾燥材料の凍結乾燥工程は、一般に、液状の被乾燥材料を凍結する予備凍結工程と、予備凍結により氷状になった被乾燥材料から水分を除去して乾燥固体とする一次乾燥工程と、一次乾燥工程を経て乾燥固体となった被乾燥材料中に含まれる微量の不凍水を除去して、被乾燥材料を所定の含水率になるまで乾燥する二次乾燥工程とからなる。 For freeze-drying of pharmaceuticals, etc., containers such as trays and vials filled with materials to be dried are loaded into the drying chamber of a freeze dryer automatically controlled by a control panel, and the materials to be dried in each container are predetermined. It is performed by drying until the water content becomes. In general, the freeze-drying process of a material to be dried using this type of freeze-dryer is a pre-freezing process in which the liquid material to be dried is frozen, and water is removed from the material to be dried that has become icy due to the pre-freezing. A primary drying step to make a dry solid, and a small amount of antifreeze water contained in the material to be dried that has become a dry solid after the primary drying step is removed, and the material to be dried is dried to a predetermined moisture content. It consists of a next drying step.
本願の出願人は先に、温度センサを用いて直接被乾燥材料の昇華面温度を測定するのではなく、他のパラメータの測定値から複数の容器に充填された複数の被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を計算により求め、これに基づいて、一次乾燥工程中における被乾燥材料の乾燥状態を監視する装置及び方法を提案した(例えば、特許文献1参照。)。この特許文献1に記載の技術によれば、温度センサを被乾燥材料内に挿入しないので、温度センサを用いることによって発生する種々の不都合、例えば、(1)乾燥庫内に装入される全ての被乾燥材料についての平均昇華面温度を求めることができない、(2)菌が被乾燥材料に混入しやすいので無菌製剤に適用できない、(3)被乾燥材料を自動的に乾燥庫内に装入する自動ローディング装置を備えた凍結乾燥機に適用することができない、等を解消することができる。また、本願の出願人が先に提案した装置及び方法は、被乾燥材料の一次乾燥工程において、真空度調節手段を駆動して乾燥庫内の真空度を一時的に高める方向に変化させ、少なくとも当該変化の前後における乾燥庫内の真空度及びコールドトラップ内の真空度を含む測定データから、一次乾燥工程における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度を算出する。これにより、測定データの収集時に乾燥庫内の真空度が真空制御値よりも高くなる方向に遷移し、昇華面温度が下がるため、従来のMTM(Manometric Temperature Measurement)法による場合とは異なり、被乾燥材料が凍結乾燥中にコラプスする危険性を完全に排除することができる。 The applicant of the present application does not directly measure the sublimation surface temperature of the material to be dried by using a temperature sensor, but instead subtracts the average sublimation of a plurality of materials to be dried filled in a plurality of containers from the measured values of other parameters. A surface temperature, an average bottom part temperature, and a sublimation rate were obtained by calculation, and based on this, an apparatus and a method for monitoring the dry state of the material to be dried during the primary drying process were proposed (for example, see Patent Document 1). According to the technique described in Patent Document 1, since the temperature sensor is not inserted into the material to be dried, various inconveniences caused by the use of the temperature sensor, for example, (1) all of the charging in the drying chamber The average sublimation surface temperature of the material to be dried cannot be determined. (2) Since bacteria are likely to be mixed into the material to be dried, it cannot be applied to sterile preparations. (3) The material to be dried is automatically installed in the drying cabinet. It is possible to solve the problem that it cannot be applied to a freeze dryer equipped with an automatic loading device. Further, the apparatus and method previously proposed by the applicant of the present application, in the primary drying step of the material to be dried, drives the vacuum degree adjusting means to change the direction of temporarily increasing the degree of vacuum in the drying cabinet, and at least From the measurement data including the degree of vacuum in the drying chamber and the degree of vacuum in the cold trap before and after the change, the average sublimation surface temperature, average bottom part temperature, and sublimation rate of the material to be dried in the primary drying step are calculated. As a result, when the measurement data is collected, the degree of vacuum in the drying chamber is shifted to a direction higher than the vacuum control value, and the sublimation surface temperature is lowered. Thus, unlike the conventional MTM (Manometric Temperature Measurement) method, The risk of the dried material collapsing during lyophilization can be completely eliminated.
しかしながら、特許文献1に記載の発明は、一次乾燥工程における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度の算出に際し、乾燥庫内の真空度を一時的に高める方向に変化させるという操作が必要であるので、1回の平均昇華面温度、平均底部品温及び昇華速度の算出に長時間を要し、被乾燥材料の乾燥状態をきめ細かく監視することができないという問題がある。 However, the invention described in Patent Document 1 changes the degree of vacuum in the drying chamber temporarily in calculating the average sublimation surface temperature, average bottom part temperature, and sublimation speed of the material to be dried in the primary drying step. Therefore, there is a problem that it takes a long time to calculate the average sublimation surface temperature, the average bottom part temperature and the sublimation speed once, and the dry state of the material to be dried cannot be closely monitored.
また、特許文献1に記載の発明は、一次乾燥工程における被乾燥材料の乾燥状態を監視可能な装置及び方法に係るものであり、二次乾燥工程については考慮されていない。上述したように、被乾燥材料の凍結乾燥工程は、一次乾燥工程と二次乾燥工程とからなるので、被乾燥材料の乾燥状態をより的確に監視するためには、一次乾燥工程及び二次乾燥工程における被乾燥材料の乾燥状態を連続的に監視できることが望まれる。勿論、この場合にも、温度センサを用いないこと、及び、被乾燥材料がコラプスする危険性を完全に排除できることが求められる。 The invention described in Patent Document 1 relates to an apparatus and method that can monitor the drying state of the material to be dried in the primary drying process, and does not consider the secondary drying process. As described above, since the freeze-drying process of the material to be dried includes a primary drying process and a secondary drying process, in order to more accurately monitor the drying state of the material to be dried, the primary drying process and the secondary drying process are performed. It is desired that the drying state of the material to be dried in the process can be continuously monitored. Of course, also in this case, it is required not to use a temperature sensor and to completely eliminate the danger of the material to be dried collapsing.
さらに、特許文献1に記載の発明は、一次乾燥工程における平均底部品温の算出に当たり、容器を含む被乾燥材料への入熱量を全て被乾燥材料の昇華潜熱として平均底部品温の算出を行っている。しかしながら、図19に示すように、一次乾燥工程の初期に行われる棚温の昇温期間中においては、容器を含む被乾燥材料の品温が上昇・下降するので、被乾燥材料の昇華潜熱のみを考慮し、容器を含む被乾燥材料の顕熱を考慮しないと、一次乾燥工程における平均底部品温の算出を正確に行うことができない。同様に、二次乾燥工程の初期においても棚温の昇温が行われるので、容器を含む被乾燥材料の顕熱を考慮しないで平均底部品温の算出を行うと、二次乾燥工程における平均底部品温の算出を正確に行うことができない。よって、一次乾燥工程及び二次乾燥工程の双方において、容器を含む被乾燥材料の顕熱を考慮した平均底部品温の算出を行うことが求められる。 Furthermore, in the invention described in Patent Document 1, in calculating the average bottom part temperature in the primary drying step, the average bottom part temperature is calculated by using all the heat input to the material to be dried including the container as the sublimation latent heat of the material to be dried. ing. However, as shown in FIG. 19, during the shelf temperature raising period performed at the beginning of the primary drying process, the product temperature of the material to be dried including the container rises and falls, so that only the sublimation latent heat of the material to be dried is obtained. If the sensible heat of the material to be dried including the container is not taken into consideration, the average bottom part temperature in the primary drying process cannot be accurately calculated. Similarly, since the shelf temperature is raised even in the initial stage of the secondary drying process, if the average bottom part temperature is calculated without considering the sensible heat of the material to be dried including the container, the average in the secondary drying process is calculated. The bottom part temperature cannot be calculated accurately. Therefore, it is required to calculate the average bottom part temperature in consideration of the sensible heat of the material to be dried including the container in both the primary drying process and the secondary drying process.
本発明は、このような要請に応えるためになされたものであり、その目的は、被乾燥材料のコラプスを完全に防止でき、かつ一次及び二次の乾燥工程における被乾燥材料の平均昇華面温度、平均底部品温及び昇華速度(脱湿速度)の算出を短いスパンで正確に実行できる凍結乾燥機用の乾燥状態監視装置及び乾燥状態監視方法を提供することにある。 The present invention has been made in order to meet such a demand, and its purpose is to completely prevent the collapse of the material to be dried, and the average sublimation surface temperature of the material to be dried in the primary and secondary drying steps. Another object of the present invention is to provide a dry state monitoring apparatus and dry state monitoring method for a freeze dryer that can accurately calculate the average bottom part temperature and the sublimation rate (dehumidification rate) in a short span.
本発明は、このような課題を解決するため、凍結乾燥機に適用される被乾燥材料の乾燥状態監視装置に関しては、被乾燥材料を装入する乾燥庫(DC)と、該乾燥庫(DC)内に装入された被乾燥材料から発生する水蒸気を凝結捕集するコールドトラップ(CT)と、前記乾燥庫(DC)と前記コールドトラップ(CT)とを連通する主管(a)と、該主管(a)を開閉する主弁(MV)と、前記乾燥庫(DC)内の真空度を調節する真空度調節手段と、前記乾燥庫(DC)内の絶対圧力及び前記コールドトラップ(CT)内の絶対圧力を検出する真空検出手段と、前記乾燥庫(DC)内に設置され、前記被乾燥材料を分注した容器を載置する棚板(B)の温度を検出する棚温検出手段と、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の稼働を自動制御する制御装置(PLC)を備えた凍結乾燥機を用い、前記制御装置(PLC)には、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の駆動を制御して、前記被乾燥材料の一次乾燥工程及び二次乾燥工程を実行する制御プログラムと、所要の計算プログラム及び計算式と、前記計算プログラムを実行する時間間隔と、前記容器を含む前記被乾燥材料の熱容量に関するデータ並びに一次乾燥工程における前記乾燥庫(DC)の壁温度及び二次乾燥工程における前記乾燥庫(DC)の壁温度を含む定数データを記憶しておき、前記一次乾燥工程では、前記乾燥庫(DC)内の真空度(Pdc)を、前記真空度調節手段を操作することなく成り行きに任せて変化させ、前記制御装置(PLC)に記憶された前記時間間隔ごとに、前記真空検出手段及び前記棚温検出手段の測定データ並びに前記一次乾燥工程における乾燥庫(DC)の壁温度を含む前記制御装置(PLC)の定数データと前記制御装置(PLC)に記憶された前記計算式とから、前記被乾燥材料の昇華速度(Qm)と前記被乾燥材料の昇華潜熱及び前記容器を含む前記被乾燥材料の顕熱を考慮した平均底部品温(Tb)と平均昇華面温度(Ts)をこの順に求めて、これらの各計算データを記録手段(e)に記録し、前記二次乾燥工程では、前記乾燥庫(DC)内の真空度(Pdc)を、前記真空度調節手段を操作することなく成り行きに任せて変化させ、前記制御装置(PLC)に記憶された前記時間間隔ごとに、前記真空検出手段及び前記棚温検出手段の測定データ並びに前記二次乾燥工程における乾燥庫(DC)の壁温度を含む前記制御装置(PLC)の定数データと前記制御装置(PLC)に記憶された前記計算式とから、前記被乾燥材料の脱湿速度(Qm´)と前記被乾燥材料の昇華潜熱及び前記容器を含む前記被乾燥材料の顕熱を考慮した平均底部品温(Tb)と平均品温(Tm)をこの順に求めて、これらの各計算データを記録手段(e)に記録することを特徴とする。 In order to solve such a problem, the present invention relates to a drying state monitoring device for a material to be dried applied to a freeze dryer, a drying cabinet (DC) for charging the material to be dried, and the drying cabinet (DC). ) A cold trap (CT) for condensing and collecting water vapor generated from the material to be dried charged in the inside, a main pipe (a) communicating the drying chamber (DC) and the cold trap (CT), A main valve (MV) for opening and closing the main pipe (a), a vacuum degree adjusting means for adjusting a vacuum degree in the drying chamber (DC), an absolute pressure in the drying chamber (DC), and the cold trap (CT) Vacuum detecting means for detecting the absolute pressure in the inside, and shelf temperature detecting means for detecting the temperature of the shelf (B) on which the container into which the material to be dried is dispensed is placed, which is installed in the drying cabinet (DC) And the drying chamber (DC), the cold trap (CT And a freeze dryer equipped with a control device (PLC) for automatically controlling the operation of the vacuum degree adjusting means, the control device (PLC) includes the dryer (DC), the cold trap (CT), and the A control program for controlling the drive of the vacuum degree adjusting means to execute the primary drying step and the secondary drying step of the material to be dried, a required calculation program and a formula, and a time interval for executing the calculation program; Data on the heat capacity of the material to be dried including the container and constant data including the wall temperature of the drying cabinet (DC) in the primary drying step and the wall temperature of the drying cabinet (DC) in the secondary drying step are stored. In the primary drying step, the degree of vacuum (Pdc) in the drying cabinet (DC) is changed without any operation of the vacuum degree adjusting means, and the control is performed. For each time interval stored in the apparatus (PLC), the control apparatus (PLC) includes the measurement data of the vacuum detection means and the shelf temperature detection means, and the wall temperature of the drying cabinet (DC) in the primary drying step. From the constant data and the calculation formula stored in the controller (PLC), the sublimation speed (Qm) of the material to be dried, the sublimation latent heat of the material to be dried and the sensible heat of the material to be dried including the container are calculated. The average bottom part temperature (Tb) and the average sublimation surface temperature (Ts) taken into consideration are obtained in this order, and each calculation data is recorded in the recording means (e). In the secondary drying step, the drying cabinet (DC The degree of vacuum (Pdc) in () is changed without any manipulation of the vacuum degree adjusting means, and the vacuum detecting means and the shelf are changed at each time interval stored in the control device (PLC). Temperature detection From the measurement data of the means and the constant data of the controller (PLC) including the wall temperature of the drying cabinet (DC) in the secondary drying step and the calculation formula stored in the controller (PLC) An average bottom part temperature (Tb) and an average product temperature (Tm) in consideration of the material dehumidification rate (Qm ′), the sublimation latent heat of the material to be dried and the sensible heat of the material to be dried including the container are obtained in this order. These calculation data are recorded in the recording means (e).
また本発明は、前記構成の乾燥状態監視方法において、前記真空度調節手段としてダンパ方式の開度調節器(C)を前記主管(a)内に備えた凍結乾燥機を用い、前記一次乾燥工程及び前記二次乾燥工程において、前記制御装置(PLC)は、前記開度調節器(C)の開度調節を行い、前記開度調節器(C)の開度角度を、前記乾燥庫(DC)内の真空度(Pdc)の変化に追従して変化させることを特徴とする。 In the dry state monitoring method of the above configuration, the primary drying step may be performed by using a freeze dryer having a damper type opening degree controller (C) in the main pipe (a) as the vacuum degree adjusting means. In the secondary drying step, the controller (PLC) adjusts the opening of the opening controller (C), and sets the opening angle of the opening controller (C) to the drying chamber (DC). ) To change following the change in the degree of vacuum (Pdc).
また本発明は、前記構成の乾燥状態監視方法において、前記真空度調節手段としてリーク制御弁(LV)付きの真空制御回路(f)を前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記主管(a)を含む真空系統のいずれかに備えた凍結乾燥機を用い、前記一次乾燥工程及び前記二次乾燥工程において、前記制御手段(PLC)は、前記リーク制御弁(LV)を駆動して前記乾燥庫(DC)内の真空度(Pdc)を設定値に制御するか、前記リーク制御弁(LV)を閉じ、それ以降、前記乾燥庫(DC)内の真空度(Pdc)を成り行きに任せることを特徴とする。 Further, in the dry state monitoring method having the above-described configuration, the vacuum control circuit (f) with a leak control valve (LV) is used as the vacuum degree adjusting means in the drying cabinet (DC), the cold trap (CT), and the vacuum control circuit (f). In the primary drying step and the secondary drying step, the control means (PLC) drives the leak control valve (LV) using a freeze dryer provided in any of the vacuum systems including the main pipe (a). The degree of vacuum (Pdc) in the drying cabinet (DC) is controlled to a set value or the leak control valve (LV) is closed, and thereafter the degree of vacuum (Pdc) in the drying cabinet (DC) is increased. It is characterized by leaving it to.
一方、乾燥状態監視装置に関しては、被乾燥材料を装入する乾燥庫(DC)と、該乾燥庫(DC)内に装入された被乾燥材料から発生する水蒸気を凝結捕集するコールドトラップ(CT)と、前記乾燥庫(DC)と前記コールドトラップ(CT)とを連通する主管(a)と、該主管(a)を開閉する主弁(MV)と、前記乾燥庫(DC)内の真空度を調節する真空度調節手段と、前記乾燥庫(DC)内の絶対圧力及び前記コールドトラップ(CT)内の絶対圧力を検出する真空検出手段と、前記乾燥庫(DC)内に設置され、前記被乾燥材料を分注した容器を載置する棚板(B)の温度を検出する棚温検出手段と、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の稼働を自動制御する制御装置(PLC)を備え、前記制御装置(PLC)には、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の駆動を制御して、前記被乾燥材料の一次乾燥工程及び二次乾燥工程を実行する制御プログラムと、所要の計算プログラム及び計算式と、前記計算プログラムを実行する時間間隔と、前記容器を含む前記被乾燥材料の熱容量に関するデータ並びに一次乾燥工程における前記乾燥庫(DC)の壁温度及び二次乾燥工程における前記乾燥庫(DC)の壁温度を含む定数データを記憶しておき、前記一次乾燥工程では、前記乾燥庫(DC)内の真空度(Pdc)を、前記真空度調節手段を操作することなく成り行きに任せて変化させ、前記制御装置(PLC)に記憶された前記時間間隔ごとに、前記真空検出手段及び前記棚温検出手段の測定データ並びに前記一次乾燥工程における乾燥庫(DC)の壁温度を含む前記制御装置(PLC)の定数データと前記制御装置(PLC)に記憶された前記計算式とから、前記被乾燥材料の昇華速度(Qm)と前記被乾燥材料の昇華潜熱及び前記容器を含む前記被乾燥材料の顕熱を考慮した平均底部品温(Tb)と平均昇華面温度(Ts)をこの順に求めて、これらの各計算データを記録手段(e)に記録し、前記二次乾燥工程では、前記乾燥庫(DC)内の真空度(Pdc)を、前記真空度調節手段を操作することなく成り行きに任せて変化させ、前記制御装置(PLC)に記憶された前記時間間隔ごとに、前記真空検出手段及び前記棚温検出手段の測定データ並びに前記二次乾燥工程における乾燥庫(DC)の壁温度を含む前記制御装置(PLC)の定数データと前記制御装置(PLC)に記憶された前記計算式とから、前記被乾燥材料の脱湿速度(Qm´)と前記被乾燥材料の昇華潜熱及び前記容器を含む前記被乾燥材料の顕熱を考慮した平均底部品温(Tb)と平均品温(Tm)をこの順に求めて、これらの各計算データを記録手段(e)に記録することを特徴とする。 On the other hand, with respect to the dry state monitoring device, a drying chamber (DC) in which the material to be dried is charged, and a cold trap that condenses and collects water vapor generated from the material to be dried charged in the drying chamber (DC) ( CT), a main pipe (a) communicating with the drying cabinet (DC) and the cold trap (CT), a main valve (MV) for opening and closing the main pipe (a), and the inside of the drying cabinet (DC) The vacuum degree adjusting means for adjusting the degree of vacuum, the vacuum detecting means for detecting the absolute pressure in the drying chamber (DC) and the absolute pressure in the cold trap (CT), and the drying chamber (DC). The shelf temperature detecting means for detecting the temperature of the shelf (B) on which the container into which the material to be dried is placed is placed, the drying chamber (DC), the cold trap (CT), and the vacuum degree adjusting means. Equipped with a control device (PLC) that automatically controls operation The controller (PLC) controls the driving of the drying cabinet (DC), the cold trap (CT), and the vacuum degree adjusting means, and executes the primary drying process and the secondary drying process of the material to be dried. Control program, required calculation program and formula, time interval for executing the calculation program, data on heat capacity of the material to be dried including the container, and wall temperature of the drying chamber (DC) in the primary drying step And constant data including the wall temperature of the drying cabinet (DC) in the secondary drying step is stored, and in the primary drying step, the degree of vacuum (Pdc) in the drying cabinet (DC) is adjusted to the degree of vacuum. The operation is performed without changing the means, and at each time interval stored in the control device (PLC), the vacuum detection means and the shelf temperature detection means Sublimation of the material to be dried from constant data and constant data of the controller (PLC) including the wall temperature of the drying cabinet (DC) in the primary drying step and the calculation formula stored in the controller (PLC) The average bottom part temperature (Tb) and the average sublimation surface temperature (Ts) in consideration of the speed (Qm), the sublimation latent heat of the material to be dried and the sensible heat of the material to be dried including the container are obtained in this order, Each calculation data is recorded in the recording means (e), and in the secondary drying step, the degree of vacuum (Pdc) in the drying cabinet (DC) is changed depending on the course without operating the degree of vacuum adjusting means. The control including the measurement data of the vacuum detection means and the shelf temperature detection means and the wall temperature of the drying cabinet (DC) in the secondary drying step for each time interval stored in the control device (PLC) apparatus From the constant data of (PLC) and the calculation formula stored in the controller (PLC), the dehumidification rate (Qm ′) of the material to be dried, the sublimation latent heat of the material to be dried, and the object to be dried including the container An average bottom part temperature (Tb) and an average part temperature (Tm) in consideration of the sensible heat of the dry material are obtained in this order, and each calculation data is recorded in the recording means (e).
また本発明は、前記構成の乾燥状態監視装置において、前記真空度調節手段としてダンパ方式の開度調節器(C)を前記主管(a)内に備え、前記一次乾燥工程及び前記二次乾燥工程において、前記制御装置(PLC)は、前記開度調節器(C)の開度調節を行い、前記開度調節器(C)の開度角度を、前記乾燥庫(DC)内の真空度(Pdc)の変化に追従して変化させることを特徴とする。 Further, the present invention provides the dry state monitoring device having the above-mentioned configuration, wherein the main opening (C) includes a damper type opening degree controller (C) as the vacuum degree adjusting means, and the primary drying step and the secondary drying step. The controller (PLC) adjusts the opening of the opening controller (C), and determines the opening angle of the opening controller (C) according to the degree of vacuum in the dryer (DC) ( Pdc) is changed in accordance with the change of Pdc).
また本発明は、前記構成の乾燥状態監視装置において、前記真空度調節手段として、リーク制御弁(LV)付きの真空制御回路(f)を、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記主管(a)を含む真空系統のいずれかに備え、前記一次乾燥工程及び前記二次乾燥工程において、前記制御手段(PLC)は、前記リーク制御弁(LV)を駆動して前記乾燥庫(DC)内の真空度(Pdc)を設定値に制御するか、前記リーク制御弁(LV)を閉じ、それ以降、前記乾燥庫(DC)内の真空度(Pdc)を成り行きに任せることを特徴とする。 In the dry state monitoring apparatus having the above-described configuration, the vacuum control circuit (f) with a leak control valve (LV) is used as the vacuum degree adjusting means, the drying chamber (DC), the cold trap (CT). And in any of the vacuum systems including the main pipe (a), in the primary drying step and the secondary drying step, the control means (PLC) drives the leak control valve (LV) to drive the drying cabinet. The degree of vacuum (Pdc) in (DC) is controlled to a set value, or the leak control valve (LV) is closed , and thereafter, the degree of vacuum (Pdc) in the drying chamber (DC) is left to the future. Features.
本発明によると、一次乾燥工程及び二次乾燥工程において、乾燥庫内の真空度を成り行きに任せて変化させた状態で、被乾燥材料の昇華速度(二次乾燥工程においては、脱湿速度)と平均底部品温と平均昇華面温度とをこの順に求めるので、乾燥庫内の真空度を強制的に変化させ、その変化の前後におけるパラメータの変化から各算出値を得る場合のように、強制的に変化させた乾燥庫内の真空度が落ち着くまで次回の算出を待つ必要がなく、演算装置に設定された任意の時間間隔で必要な算出値を得ることができる。また、制御装置(PLC)に容器を含む被乾燥材料の熱容量に関するデータを記憶し、一次乾燥工程及び二次乾燥工程における平均底部品温の算出に際しては、被乾燥材料の昇華潜熱及び容器を含む被乾燥材料の顕熱を考慮するので、潜熱のみを考慮した演算を行う場合に比べて正確な平均底部品温を算出できる。さらに、制御装置(PLC)に一次乾燥工程における乾燥庫(DC)の壁温度及び二次乾燥工程における乾燥庫(DC)の壁温度を記憶したので、一次乾燥工程及び二次乾燥工程における平均底部品温の算出に際して、適切な乾燥庫(DC)の壁温度を適用することが可能となり、この点からも正確な平均底部品温を算出できる。したがって、被乾燥材料の乾燥状態をきめ細かくかつ正確に監視できると共に、被乾燥材料のコラプスを完全に防止することができる。 According to the present invention, in the primary drying process and the secondary drying process, the sublimation speed of the material to be dried (dehumidification speed in the secondary drying process) is changed in a state where the degree of vacuum in the drying chamber is changed. The average bottom part temperature and the average sublimation surface temperature are calculated in this order, so that the degree of vacuum in the drying chamber is forcibly changed, and each calculated value is obtained from the change in parameters before and after the change. Therefore, it is not necessary to wait for the next calculation until the degree of vacuum in the drying chamber which has been changed is settled, and a necessary calculated value can be obtained at an arbitrary time interval set in the arithmetic unit. In addition, data related to the heat capacity of the material to be dried including the container is stored in the control device (PLC), and the sublimation latent heat of the material to be dried and the container are included when calculating the average bottom part temperature in the primary drying process and the secondary drying process. Since the sensible heat of the material to be dried is taken into account, an accurate average bottom part temperature can be calculated as compared with the case where the calculation considering only the latent heat is performed. Furthermore, since the wall temperature of the drying cabinet (DC) in the primary drying step and the wall temperature of the drying cabinet (DC) in the secondary drying step are stored in the control device (PLC), the average bottom in the primary drying step and the secondary drying step In calculating the product temperature, it becomes possible to apply an appropriate wall temperature of the drying cabinet (DC), and from this point, an accurate average bottom part temperature can be calculated. Therefore, the dry state of the material to be dried can be monitored finely and accurately, and the collapse of the material to be dried can be completely prevented.
以下、本発明に係る乾燥状態監視方法及び乾燥状態監視装置を、実施形態毎に図を用いて説明する。 Hereinafter, a dry state monitoring method and a dry state monitoring apparatus according to the present invention will be described with reference to the drawings for each embodiment.
[第1実施形態]
第1実施形態に係る乾燥状態監視方法及び乾燥状態監視装置は、乾燥庫とコールドトラップとをつなぐ主管内に、乾燥庫内の真空度を調節するための真空度調節手段として、ダンパ方式の開度調節器を備えた流路開度真空制御方式の凍結乾燥機に適用されるものである。
[First Embodiment]
The dry state monitoring method and the dry state monitoring device according to the first embodiment are provided with a damper type opening as a vacuum degree adjusting means for adjusting the degree of vacuum in the dry compartment in the main pipe connecting the dry compartment and the cold trap. The present invention is applied to a freeze-dryer of a flow path opening vacuum control system provided with a degree adjuster.
〈凍結乾燥機の構成〉
即ち、第1実施形態に係る凍結乾燥機M1は、図1及び図2に示すように、被乾燥材料を装入する乾燥庫DCと、乾燥庫DC内に装入された被乾燥材料から発生する水蒸気をトラップコイルctにて凝結捕集するコールドトラップCTと、乾燥庫DCとコールドトラップCTを連通する主管aと、コールドトラップCTに付設された引口弁Vと、引口弁Vに接続された真空ポンプPを有している。乾燥庫DC内には、1枚乃至複数枚の棚板Bが設置されており、当該棚板B上には被乾燥材料が分注された複数の容器Eが載置される。容器Eとしては、バイタルやトレイ等が被乾燥材料の種類に応じて用いられる。棚板Bには、棚板Bの温度(棚温)を検出する温度センサ(棚温検出手段)Sが備えられる。また、乾燥庫DC及びコールドトラップCTには、乾燥庫DC内の絶対圧力及びコールドトラップCT内の絶対圧力を検出する真空計(真空検出手段)bが備えられる。なお、乾燥庫DC及びコールドトラップCTのそれぞれに真空計bを個別に備える構成に代えて、乾燥庫DC内の絶対圧力とコールドトラップCT内の絶対圧力の差圧を検出する差圧真空計を備える構成とすることもできる。主管aには、これを全開状態又は全閉状態に切り替える主弁MVと、主管aの開度を調整するダンパ方式の開度調節器Cが備えられる。開度調節器Cには、その開度角度θを検出するためのロータリエンコーダ等の角度センサgが備えられる。なお、開度調節器Cの開度角度θとは、全開状態(0°)からの開度調節器Cの回転角度をいう。
<Configuration of freeze dryer>
That is, as shown in FIGS. 1 and 2, the freeze dryer M1 according to the first embodiment is generated from the drying chamber DC in which the material to be dried is charged and the material to be dried charged in the drying chamber DC. Connected to the cold trap CT for condensing and collecting the water vapor to be trapped by the trap coil ct, the main pipe a communicating with the drying chamber DC and the cold trap CT, the inlet valve V attached to the cold trap CT, and the inlet valve V The vacuum pump P is provided. One to a plurality of shelf boards B are installed in the drying cabinet DC, and a plurality of containers E into which materials to be dried are dispensed are placed on the shelf boards B. As the container E, a vital, a tray, etc. are used according to the kind of material to be dried. The shelf board B is provided with a temperature sensor (shelf temperature detection means) S for detecting the temperature (shelf temperature) of the shelf board B. Further, the drying cabinet DC and the cold trap CT are provided with a vacuum gauge (vacuum detection means) b for detecting the absolute pressure in the drying cabinet DC and the absolute pressure in the cold trap CT. Instead of the configuration in which the vacuum gauge b is individually provided in each of the drying cabinet DC and the cold trap CT, a differential pressure vacuum gauge that detects the differential pressure between the absolute pressure in the drying cabinet DC and the absolute pressure in the cold trap CT is provided. It can also be set as the structure provided. The main pipe a is provided with a main valve MV that switches it to a fully open state or a fully closed state, and a damper-type opening degree adjuster C that adjusts the opening degree of the main pipe a. The opening adjuster C is provided with an angle sensor g such as a rotary encoder for detecting the opening angle θ. Note that the opening angle θ of the opening controller C refers to the rotation angle of the opening controller C from the fully open state (0 °).
図1において、符号CRは凍結乾燥機M1に備えられた制御盤を示している。凍結乾燥機M1は、この制御盤CRによって自動制御され、被乾燥材料の凍結乾燥を実行する。図1に示すように、制御盤CRはシーケンサPLCと記録計(記録手段)eとから構成されており、シーケンサPLCには、乾燥庫DC、コールドトラップCT及び開度調節器Cの駆動を制御して、被乾燥材料の予備乾燥工程、一次乾燥工程及び二次乾燥工程を実行する制御プログラムと、所要の計算プログラム、関係式及び定数データと、計算プログラムを繰り返し実行する際の時間間隔が予め記憶される。なお、凍結乾燥機M1に制御盤CRを備える構成に代えて、所要の制御プログラム、計算プログラム、関係式、定数データ及び時間間隔が記憶されたパーソナルコンピュータを凍結乾燥機M1に接続する構成とすることもできる。 In FIG. 1, the symbol CR indicates a control panel provided in the freeze dryer M1. The freeze dryer M1 is automatically controlled by the control panel CR, and freeze-drys the material to be dried. As shown in FIG. 1, the control panel CR is composed of a sequencer PLC and a recorder (recording means) e. The sequencer PLC controls the driving of the drying cabinet DC, the cold trap CT, and the opening degree adjuster C. The control program for performing the preliminary drying process, the primary drying process and the secondary drying process of the material to be dried, the necessary calculation program, the relational expression and the constant data, and the time interval when the calculation program is repeatedly executed are preset. Remembered. Instead of the configuration in which the freeze dryer M1 includes the control panel CR, a configuration is adopted in which a personal computer storing a required control program, calculation program, relational expression, constant data, and time interval is connected to the freeze dryer M1. You can also.
図3及び図4に、シーケンサPLCに記憶される計算プログラムの一例を示す。乾燥庫DC内に装入された被乾燥材料の凍結乾燥は、予備凍結、一次乾燥及び二次乾燥の各工程を経て行われ、一次乾燥工程における被乾燥材料の昇華速度Qm、平均底部品温Tb及び平均昇華面温度Tsの算出と、二次乾燥工程における被乾燥材料の脱湿速度Qm´、平均底部品温Tb及び平均品温Ts´の算出は、図3及び図4に記載の手順で行われる。算出された各計算データは、記録計eに順次記録される。凍結乾燥機のオペレータは、記録計eの記録データを確認することにより、被乾燥材料の乾燥状態を監視できる。 3 and 4 show an example of a calculation program stored in the sequencer PLC. Freeze drying of the material to be dried charged in the drying cabinet DC is performed through the steps of preliminary freezing, primary drying and secondary drying. The sublimation speed Qm of the material to be dried in the primary drying step, the average bottom part temperature Calculation of Tb and average sublimation surface temperature Ts, and calculation of dehumidification rate Qm ′, average bottom part temperature Tb, and average product temperature Ts ′ of the material to be dried in the secondary drying step are the procedures described in FIGS. Done in Each calculated data is sequentially recorded in the recorder e. The operator of the freeze dryer can monitor the dry state of the material to be dried by checking the record data of the recorder e.
被乾燥材料の凍結乾燥に際しては、制御プログラムの起動に先立ち、手順S1に示す定数データを、シーケンサPLCに入力する。定数データとしては、主管aの内径D(mm)、開度調節器Cの外径d(mm)、開度調節器Cの厚みt(mm)、被乾燥材料が分注されたバイアルの外径d1(mm)、バイアルの肉厚t1(mm)、乾燥庫DC内に装入するバイアルの本数N1、バイアルへの薬剤の分注量V1(mL/1本)、バイアルに分注される薬剤の固形分s(%)、バイアルに分注される薬剤の比重e(Kg/L)、バイアルの重量Wv(g)、バイアルの開口部を封止するゴム栓の重量Wc(g)、乾燥庫DC内に設置された棚板Bの上に載置されたトレイ枠Tの幅寸法W(mm)、トレイ枠Tの長さ寸法L(mm)、トレイ枠Tの枚数N2、バイアルの底面とこれを載置する棚板Bの上面との間に存在する隙間δを入力する。これらについては、凍結乾燥機の仕様書及び作業計画書等から求めることができる。 When the material to be dried is freeze-dried, constant data shown in step S1 is input to the sequencer PLC before starting the control program. As constant data, the inner diameter D (mm) of the main pipe a, the outer diameter d (mm) of the opening controller C, the thickness t (mm) of the opening controller C, the outside of the vial into which the material to be dried is dispensed. Diameter d1 (mm), vial thickness t1 (mm), number of vials N1 charged in the drying chamber DC, amount of drug dispensed into vials V1 (mL / 1), dispensed into vials The solid content s (%) of the drug, the specific gravity e (Kg / L) of the drug dispensed in the vial, the weight Wv (g) of the vial, the weight Wc (g) of the rubber stopper that seals the opening of the vial, The width W (mm) of the tray frame T placed on the shelf B installed in the drying cabinet DC, the length L (mm) of the tray frame T, the number N2 of the tray frames T, A gap δ that exists between the bottom surface and the top surface of the shelf B on which this is placed is input. These can be obtained from the specifications of the freeze dryer and the work plan.
また、定数データとしては、予備凍結によりバイアル内の被乾燥材料に形成される凍結層の熱伝導率λ、乾燥庫DCの壁面からバイアルに輻射される熱の輻射伝熱係数Kr、一次乾燥時の乾燥庫DCの壁温度Tw1、二次乾燥時の乾燥庫DCの壁温度Tw2、一次乾燥開始時の初期凍結温度Tbi、主弁MVを全開にして水負荷で取得した開度調節器Cの開度角度θと主管抵抗(主管a内を流れる水蒸気に作用する抵抗)R(θ)の関係式の定数値a、b、主弁MVを全開にして水負荷で取得した水蒸気流動抵抗から昇華速度Qmの算出式の定数値j、kもシーケンサPLCに入力する。これらについては、事前の実験で求める。定数値a、bの求め方及び定数値j、kの求め方については、後に説明する。 The constant data includes the thermal conductivity λ of the frozen layer formed on the material to be dried in the vial by preliminary freezing, the radiation heat transfer coefficient Kr of the heat radiated from the wall surface of the drying cabinet DC to the vial, and at the time of primary drying Of the opening degree controller C obtained by the water load with the main valve MV fully opened, the wall temperature Tw1 of the drying cabinet DC, the wall temperature Tw2 of the drying cabinet DC at the time of secondary drying, the initial freezing temperature Tbi at the start of primary drying, Sublimation from the steam flow resistance obtained with a water load with the opening angle θ and the main pipe resistance (resistance acting on water vapor flowing through the main pipe a) R (θ) constant values a and b and the main valve MV fully opened. Constant values j and k of the formula for calculating the speed Qm are also input to the sequencer PLC. These are obtained by prior experiments. How to obtain the constant values a and b and how to obtain the constant values j and k will be described later.
次に、手順S2で、計算プログラムを実行する時間間隔N(min)を、シーケンサPLCに入力する。特許文献1に記載の発明のように、乾燥庫DC内の真空度を一時的に高める方向に変化させ、当該変化の前後における乾燥庫DC内の真空度(乾燥庫真空度)Pdc及びコールドトラップCT内の真空度(コールドトラップ真空度)Pctを含む測定データから、一次乾燥期における被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出すると、乾燥庫DC内の状態が落ち着くまでは、次回の乾燥庫真空度Pdc及びコールドトラップ真空度Pctの測定が行えないので、平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmの算出をせいぜい30分間隔程度にしか行い得ない。これに対して、本発明は、乾燥庫DC内の真空度を一時的に高める方向に変化させることなく、被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出するので、1回の算出に要する時間を超える時間間隔であれば、任意の時間間隔Nを設定できる。このため、本発明によれば、数分間隔、例えば1分間隔で被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出することが可能になり、特許文献1に記載の発明による場合よりも、被乾燥材料の乾燥状態をきめ細かく監視することが可能になる。 Next, in step S2, a time interval N (min) for executing the calculation program is input to the sequencer PLC. As in the invention described in Patent Document 1, the degree of vacuum in the drying cabinet DC is changed in a direction to temporarily increase, and the degree of vacuum (drying chamber vacuum degree) Pdc and cold trap in the drying cabinet DC before and after the change. When the average sublimation surface temperature Ts, average bottom part temperature Tb and sublimation rate Qm of the material to be dried in the primary drying period are calculated from the measurement data including the degree of vacuum (cold trap vacuum) Pct in the CT, Until the condition is settled, the next drying chamber vacuum degree Pdc and cold trap vacuum degree Pct cannot be measured, so the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm are calculated at intervals of about 30 minutes at most. It can only be done. On the other hand, the present invention calculates the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm of the material to be dried without changing the degree of vacuum in the drying chamber DC temporarily. Therefore, any time interval N can be set as long as the time interval exceeds the time required for one calculation. For this reason, according to the present invention, it becomes possible to calculate the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm of the material to be dried at intervals of several minutes, for example, at intervals of 1 minute. Compared to the case of the described invention, the dry state of the material to be dried can be monitored more closely.
次に、手順S3に移行し、手順S1でシーケンサPLCに入力された定数データから、バイアルの底部面積Avと、トレイ枠Tの表面積Atと、トレイ枠Bからバイアルへの有効伝熱面積Aeと、被乾燥材料の昇華面積Asとを計算により求める。
バイアルの底部面積Avは、下記の式(1)で求められる。
Av=0.000001×π/4×d12×N1 …(1)
トレイ枠Bの表面積Atは、下記の式(2)で求められる。
At=0.000001×W×L×N2 …(2)
有効伝熱面積Aeは、下記の式(3)で求められる。
Ae=2/〔(1/Av)+(1/At)〕 …(3)
昇華面積Asは、下記の式(4)で求められる。
As=0.000001×π/4×(d1−2×t1)2×N1 …(4)
Next, the process proceeds to step S3. From the constant data input to the sequencer PLC in step S1, the bottom area Av of the vial, the surface area At of the tray frame T, the effective heat transfer area Ae from the tray frame B to the vial, and The sublimation area As of the material to be dried is obtained by calculation.
The bottom area Av of the vial is obtained by the following formula (1).
Av = 0.000001 × π / 4 × d1 2 × N1 (1)
The surface area At of the tray frame B is obtained by the following formula (2).
At = 0.000001 × W × L × N2 (2)
The effective heat transfer area Ae is obtained by the following equation (3).
Ae = 2 / [(1 / Av) + (1 / At)] (3)
The sublimation area As is obtained by the following formula (4).
As = 0.000001 × π / 4 × (d1-2 × t1) 2 × N1 (4)
次に、手順S4に移行し、手順S1でシーケンサPLCに入力された定数データから、バイアルからの脱水量Wと被乾燥材料の初期凍結層厚L0を計算により求める。
脱水量Wは、下記の式(5)で求められる。
W=0.001×N1×V1×e×0.01×(100−s) …(5)
初期凍結層厚L0は、下記の式(6)で求められる。
L0=0.001×N1×V1/(0.917×As) …(6)
なお、初期の平均底部品温Tb0は、下記の式(7)に示すように、一次乾燥開始時の初期凍結温度Tbiとする。
Tb0=Tbi …(7)
また、一次乾燥開始時の昇華量M0は0とする(M0=0)。
Next, the process proceeds to step S4, and the dehydration amount W from the vial and the initial frozen layer thickness L0 of the material to be dried are obtained by calculation from the constant data input to the sequencer PLC in step S1.
The dewatering amount W is obtained by the following equation (5).
W = 0.001 × N1 × V1 × e × 0.01 × (100−s) (5)
The initial frozen layer thickness L0 is obtained by the following equation (6).
L0 = 0.001 × N1 × V1 / (0.917 × As) (6)
The initial average bottom part temperature Tb0 is the initial freezing temperature Tbi at the start of primary drying, as shown in the following equation (7).
Tb0 = Tbi (7)
The sublimation amount M0 at the start of primary drying is set to 0 (M0 = 0).
定数データの入力が完了した後は、制御プログラムを起動して、予備凍結、一次乾燥及び二次乾燥の各工程をこの順に実行する。まず、予備凍結工程が終了して一次乾燥工程が開始された直後の数分間、即ち、乾燥庫DC内の棚板Bに付いた霜の昇華が終わり、乾燥庫真空度Pdcが真空制御値に制御されて安定するまでの時間については、手順S5に示すように、手順S6以降の算出処理を行わずに待機する。これにより、以下に記載する平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmの正確な算出が可能になる。 After the input of the constant data is completed, the control program is started and the preliminary freezing, primary drying and secondary drying steps are executed in this order. First, for a few minutes immediately after the preliminary freezing process is completed and the primary drying process is started, that is, the sublimation of frost on the shelf B in the drying cabinet DC is finished, and the drying cabinet vacuum degree Pdc becomes the vacuum control value. As shown in step S5, the process waits without performing the calculation process from step S6 onward until it is controlled and stabilized. This makes it possible to accurately calculate the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm described below.
待機時間の経過後は、手順S6に示すように、シーケンサPLCに設定された時間間隔Nが経過するごとに、その初期の数秒間において、真空計bからの複数回(本実施形態においては、5回)にわたる乾燥庫真空度Pdc1〜Pdc5及びコールドトラップ真空度Pct1〜Pct5の取り込みと、角度センサgからの開度角度θの取り込みと、温度センサSからの棚温Thの取り込みを行う。 After the elapse of the standby time, as shown in step S6, every time the time interval N set in the sequencer PLC elapses, in the initial several seconds, the vacuum gauge b is turned multiple times (in this embodiment, The drying chamber vacuum degrees Pdc1 to Pdc5 and the cold trap vacuum degrees Pct1 to Pct5 are fetched five times, the opening angle θ is fetched from the angle sensor g, and the shelf temperature Th is fetched from the temperature sensor S.
次に、手順S7に移行し、手順S1でシーケンサPLCに入力された定数データD、d、tと、手順S5で角度センサgから取り込まれた開度角度θとから、下記の式(7)によって主管aの流路断面積A(cm2)を算出する。
A=0.01×(π/4×D2−d×t×cosθ−π/4×d2×sinθ)〕 …(8)
Next, the process proceeds to step S7. From the constant data D, d, t input to the sequencer PLC in step S1 and the opening angle θ taken from the angle sensor g in step S5, the following equation (7) To calculate the channel cross-sectional area A (cm 2 ) of the main pipe a.
A = 0.01 × (π / 4 × D 2 −d × t × cos θ−π / 4 × d 2 × sin θ)] (8)
次に、手順S8に移行し、手順S1でシーケンサPLCに入力された定数データa、bと、手順S7で得られた流路断面積Aとから、下記の式(9)によって主管抵抗R(θ)を算出する。
R(θ)=[a+(b/A)2]0.5+b/A …(9)
Next, the process proceeds to step S8. From the constant data a and b input to the sequencer PLC in step S1 and the flow path cross-sectional area A obtained in step S7, the main pipe resistance R ( θ) is calculated.
R (θ) = [a + (b / A) 2 ] 0.5 + b / A (9)
式(9)の導出及び定数a、bの決定は、水負荷試験により行われる。以下に、式(9)の導出方法と、その定数値a、bの求め方について説明する。 The derivation of equation (9) and the determination of the constants a and b are performed by a water load test. Below, the derivation | leading-out method of Formula (9) and the calculation method of the constant values a and b are demonstrated.
水負荷の試験は、乾燥庫DC内に水を充填したトレイを装入して凍結乾燥機M1を起動し、シーケンサPLCからの制御信号にしたがって、所定の凍結乾燥工程を順次実行することにより行う。本例においては、トレイ内の水を−45℃まで予備凍結した後の一次乾燥工程で、棚温Thを−20℃に設定して、乾燥庫真空度Pdcを4Pa、6.7Pa、10Pa、13.3Pa、20Pa、30Pa、40Pa、60Paに変更しつつ、それぞれ3時間保持して、合計8例の水負荷試験を実施した。各水負荷試験では、開度調節器Cの開度角度θ、棚温Th、トレイ底部の氷温度Tb、乾燥庫真空度Pdc及びコールドトラップ真空度Pctを測定して記録する。 The water load test is performed by inserting a tray filled with water into the drying chamber DC, starting the freeze dryer M1, and sequentially executing a predetermined freeze drying process according to a control signal from the sequencer PLC. . In this example, in the primary drying step after pre-freezing the water in the tray to −45 ° C., the shelf temperature Th is set to −20 ° C., and the drying cabinet vacuum degree Pdc is 4 Pa, 6.7 Pa, 10 Pa, While changing to 13.3 Pa, 20 Pa, 30 Pa, 40 Pa, and 60 Pa, each was held for 3 hours, and a total of 8 water load tests were performed. In each water load test, the opening angle θ of the opening controller C, the shelf temperature Th, the ice temperature Tb at the bottom of the tray, the drying cabinet vacuum Pdc, and the cold trap vacuum Pct are measured and recorded.
次に、氷の昇華速度Qm(Kg/h)を昇華量の測定や入熱量による計算で決定し、開度調節器Cの開度角度θと主管抵抗R(θ)との関係を求める。表1に、開度調節器Cの開度角度θと計算により求められた主管抵抗R(θ)との関係、及び開度調節器Cの開度θと測定により求められた主管抵抗R(θ)との関係を示す。また、図5に、表1のデータに基づいて作成した開度調節器Cの開度角度θと主管抵抗R(θ)との関係を表すグラフを示す。表1及び図5から明らかなように、計算により求められた主管抵抗R(θ)と測定により求められた主管抵抗R(θ)とはよく一致している。 Next, the ice sublimation speed Qm (Kg / h) is determined by measuring the sublimation amount or calculating the heat input, and the relationship between the opening angle θ of the opening controller C and the main pipe resistance R (θ) is obtained. Table 1 shows the relationship between the opening angle θ of the opening controller C and the main pipe resistance R (θ) obtained by calculation, and the main pipe resistance R ( θ). FIG. 5 is a graph showing the relationship between the opening angle θ of the opening controller C created based on the data in Table 1 and the main pipe resistance R (θ). As is apparent from Table 1 and FIG. 5, the main pipe resistance R (θ) obtained by calculation and the main pipe resistance R (θ) obtained by measurement are in good agreement.
表1(図5)のデータから、開度調節器Cの開度角度θと主管抵抗R(θ)との関係式を導出できる。また、開度調節器Cの開度角度θが求まれば、式(8)から主管aの流路断面積Aを算出できるので、開度調節器Cの開度角度θと主管抵抗R(θ)との関係式は、式(9)に示す主管aの流路断面積Aと主管抵抗R(θ)との関係式に変換できる。また、表1(図5)のデータから、式(9)の定数a、bについても決定できる。上述した水負荷の試験例により、下記の式(10)が導出された。
R(θ)=[3408.65+(2223.7/A)2]0.5+2223.7/A …(10)
この式(10)から、a=3408.65、b=2223.7が求められる。
このように、事前の水負荷試験で得られた定数a、bをシーケンサPLCに記憶しておくことにより、手順S8で主管抵抗R(θ)を算出することができる。
From the data in Table 1 (FIG. 5), a relational expression between the opening angle θ of the opening controller C and the main pipe resistance R (θ) can be derived. Further, if the opening angle θ of the opening adjuster C is obtained, the flow passage cross-sectional area A of the main pipe a can be calculated from the equation (8), so the opening angle θ of the opening adjuster C and the main pipe resistance R ( The relational expression with θ) can be converted into a relational expression between the flow passage cross sectional area A of the main pipe a and the main pipe resistance R (θ) shown in Expression (9). Further, the constants a and b in the equation (9) can be determined from the data in Table 1 (FIG. 5). The following formula (10) was derived from the water load test example described above.
R (θ) = [3408.65+ (2223.7 / A) 2 ] 0.5 + 2223.7 / A (10)
From this equation (10), a = 3408.65 and b = 2223.7 are obtained.
Thus, by storing the constants a and b obtained in the prior water load test in the sequencer PLC, the main pipe resistance R (θ) can be calculated in step S8.
次に、手順S9に移行し、平均乾燥庫真空度Pdcと被乾燥材料の昇華速度Qm(Kg/hr)と昇華量Mとを算出する。
平均乾燥庫真空度Pdcは、下記の式(11)で求められる。
Pdc=(Pdc1+Pdc2+Pdc3+Pdc4+Pdc5)/5 …(11)
被乾燥材料の昇華速度Qmは、下記の式(12)で求められる。
Qm=3.6×Pdc/R …(12)
また、被乾燥材料の昇華量Mは、下記の式(13)で求められる。
M=M0+Qm×N/60 …(13)
但し、M0は、乾燥開始からN分前までの昇華量である。
このように、式(11)で求められる平均乾燥庫真空度Pdcを用いて被乾燥材料の昇華速度Qmを算出すると、真空計bから取り込まれる乾燥庫真空度に揺らぎが生じている場合にも、その影響を緩和できるので、真空計bから取り込まれる瞬間的な乾燥庫真空度を用いる場合に比べて、被乾燥材料の昇華速度Qmをより正確に算出できる。
Next, the process proceeds to step S9, and the average drying chamber vacuum degree Pdc, the sublimation speed Qm (Kg / hr) of the material to be dried, and the sublimation amount M are calculated.
The average drying chamber vacuum degree Pdc is obtained by the following equation (11).
Pdc = (Pdc1 + Pdc2 + Pdc3 + Pdc4 + Pdc5) / 5 (11)
The sublimation speed Qm of the material to be dried is obtained by the following formula (12).
Qm = 3.6 × Pdc / R (12)
Further, the sublimation amount M of the material to be dried is obtained by the following formula (13).
M = M0 + Qm × N / 60 (13)
However, M0 is the amount of sublimation from the start of drying to N minutes ago.
Thus, when the sublimation speed Qm of the material to be dried is calculated using the average drying chamber vacuum degree Pdc obtained by the equation (11), even when the drying chamber vacuum degree taken in from the vacuum gauge b fluctuates. Since the influence can be mitigated, the sublimation speed Qm of the material to be dried can be calculated more accurately than in the case of using the instantaneous drying chamber vacuum taken from the vacuum gauge b.
次に、手順S10に移行し、気体伝導による棚板BからバイアルEの底部への熱伝達係数Kと、バイアル、ゴム栓、氷及び充填物を含む被乾燥材料全体の熱容量Cと、被乾燥材料の平均底部品温Tbと、平均昇華面温度Tsを算出する。
熱伝達係数K(Kcal/hm2℃)は、次の式(14)で計算される。
K=14.5/(δ+2.12×29×0.13332/Pdc) …(14)
但し、δは、容器底部の隙間で単位はmmであり、手順S1で定数データとしてシーケンサPLCに入力される。また、Pdcは、乾燥庫DC内の圧力であり、真空計bにて実測する。
Next, the process proceeds to step S10, the heat transfer coefficient K from the shelf B to the bottom of the vial E by gas conduction, the heat capacity C of the entire material to be dried including the vial, rubber stopper, ice and filling, and the material to be dried An average bottom part temperature Tb and an average sublimation surface temperature Ts of the material are calculated.
The heat transfer coefficient K (Kcal / hm 2 ° C) is calculated by the following formula (14).
K = 14.5 / (δ + 2.12 × 29 × 0.13332 / Pdc) (14)
However, δ is a gap at the bottom of the container, the unit is mm, and is input to the sequencer PLC as constant data in step S1. Pdc is the pressure in the drying cabinet DC, and is measured with the vacuum gauge b.
熱容量Cは、手順S1でシーケンサPLCに入力されたバイアル本数N1、バイアル重量Wv、ゴム栓重量Wc、薬剤の分注量V1、薬剤の固形分s、薬剤の比重e、式(5)にて算出された脱水量W、及び、式(13)にて算出された昇華量Mとから、次の式(15)で求められる。
C=0.001×N1×(0.22×Wv+0.33×Wc+0.33×V1×0.01×s×e)+0.5×(W-M)
…(15)
The heat capacity C is the number of vials N1, the vial weight Wv, the rubber stopper weight Wc, the drug dispensing amount V1, the drug solid content s, the drug specific gravity e, and the formula (5) input to the sequencer PLC in step S1. From the calculated dehydration amount W and the sublimation amount M calculated by the equation (13), it is obtained by the following equation (15).
C = 0.001 × N1 × (0.22 × Wv + 0.33 × Wc + 0.33 × V1 × 0.01 × s × e) + 0.5 × (WM)
... (15)
平均底部品温Tbは、被乾燥材料の昇華潜熱及び容器Eを含む被乾燥材料の顕熱を考慮して算出する。このため、本発明においては、平均底部品温Tbの算出に際し、まず下記の式(16)に示す伝熱方程式を用いて、一次乾燥工程における被乾燥材料の平均品温Tmを求める。
C×dTm/dt=Qh+Qr−Qm×ΔHs …(16)
但し、式(16)において、Cは容器を含む被乾燥材料の熱容量、Tmは被乾燥材料の底部から昇華面までの平均品温、Qhは気体伝達による棚板Bから容器Eの底部への入熱量、Qrは乾燥庫DCの庫壁から全容器への輻射入熱量、Qmは昇華速度、ΔHsは昇華潜熱である。
The average bottom part temperature Tb is calculated in consideration of the sublimation latent heat of the material to be dried and the sensible heat of the material to be dried including the container E. For this reason, in the present invention, when calculating the average bottom part temperature Tb, first, the average product temperature Tm of the material to be dried in the primary drying step is obtained using the heat transfer equation shown in the following equation (16).
C × dTm / dt = Qh + Qr−Qm × ΔHs (16)
However, in Formula (16), C is the heat capacity of the material to be dried including the container, Tm is the average product temperature from the bottom of the material to be dried to the sublimation surface, and Qh is from the shelf B by gas transmission to the bottom of the container E. The amount of heat input, Qr is the amount of radiant heat input from the wall of the drying cabinet DC to all containers, Qm is the sublimation speed, and ΔHs is the sublimation latent heat.
気体伝導による棚板Bから容器Eの底部への入熱量Qhは、次の式(17)で計算される。
Qh=Ae×K×(Th−Tm) …(17)
但し、Aeは有効伝熱面積(m2)、Kは気体伝導による棚板Bから容器Eの底部への熱伝達係数、Thは棚温(℃)、Tmは平均品温(℃)である。
The amount of heat input Qh from the shelf B due to gas conduction to the bottom of the container E is calculated by the following equation (17).
Qh = Ae × K × (Th−Tm) (17)
However, Ae is an effective heat transfer area (m 2 ), K is a heat transfer coefficient from the shelf B by gas conduction to the bottom of the container E, Th is a shelf temperature (° C.), and Tm is an average product temperature (° C.). .
また、乾燥庫壁から容器Eへの幅射入熱量Qrは、下記の式(18)から求められる。
Qr=5.67×ε×Ar×[(Tw1/100)4−(Tm/100)4〕 …(18)
但し、式中のεは輻射係数、Arは輻射熱を受ける面積(m 2 )、Tw1は一次乾燥時の乾燥庫壁温度、Tmは平均品温である。輻射熱を受ける面積Arは有効伝熱面積Aeで近似できる。
Further, the width incident heat quantity Qr from the drying cabinet wall to the container E is obtained from the following equation (18).
Qr = 5.67 × ε × Ar × [(Tw1 / 100) 4 − (Tm / 100) 4 ] (18)
In the equation, ε is a radiation coefficient, Ar is an area (m 2 ) that receives radiant heat , Tw1 is a drying cabinet wall temperature during primary drying, and Tm is an average product temperature. The area Ar that receives radiant heat can be approximated by an effective heat transfer area Ae.
そして、この乾燥庫壁から全容器への幅射入熱量Qrは、下記の式(19)で近似的に計算できる。
Qr=Ar×Kr×(Tw1−Tm) …(19)
但し、Krは輻射入熱による相当熱伝達係数であり、試験機でKr=0.7W/m2℃、生産機でKr=0.2W/m2℃と近似できる。
Then, the width incident heat quantity Qr from the drying chamber wall to all containers can be approximately calculated by the following equation (19).
Qr = Ar * Kr * (Tw1-Tm) (19)
However, Kr are equivalent heat transfer coefficient due to radiation heat input, Kr = 0.7W / m 2 ℃ in tester can be approximated as Kr = 0.2W / m 2 ℃ production machine.
したがって、式(17)及び式(19)を式(16)の伝熱方程式に代入すると、下記の式(20)が成り立つ。
C×dTm/dt=Ae×K×(Th-Tm)+Ar×Kr×(Tw1-Tm)-Qm×ΔHs …(20)
但し、昇華潜熱ΔHs=680kcal/Kg=2850KJ/Kgである。
Therefore, when Expression (17) and Expression (19) are substituted into the heat transfer equation of Expression (16), the following Expression (20) is established.
C × dTm / dt = Ae × K × (Th−Tm) + Ar × Kr × (Tw1-Tm) −Qm × ΔHs (20)
However, sublimation latent heat ΔHs = 680 kcal / Kg = 2850 KJ / Kg.
平均底部品温Tbは、式(14)にて算出された熱伝達係数Kと、式(12)にて算出された被乾燥材料の昇華速度Qmと、温度センサSで実測される棚温Thと、手順S1でシーケンサPLCに入力された輻射伝熱係数Kr、一次乾燥時の乾燥庫壁温度Tw1及び有効伝熱面積Aeとから、下記の式(21)により算出できる。
Tb=K×Ae×Th+Kr×Ar×Tw1+C×60×Tb0/N-Qm×680/(K×Ae+Kr×Ar+C×60/N)
…(21)
The average bottom part temperature Tb is the heat transfer coefficient K calculated by the equation (14), the sublimation speed Qm of the material to be dried calculated by the equation (12), and the shelf temperature Th measured by the temperature sensor S. From the radiation heat transfer coefficient Kr input to the sequencer PLC in step S1, the drying warehouse wall temperature Tw1 during primary drying, and the effective heat transfer area Ae, the following equation (21) can be used.
Tb = K × Ae × Th + Kr × Ar × Tw1 + C × 60 × Tb0 / N-Qm × 680 / (K × Ae + Kr × Ar + C × 60 / N)
... (21)
したがって、被乾燥材料の平均昇華面温度Tsは、式(21)にて算出された平均底部品温Tbと、式(12)にて算出された被乾燥材料の昇華速度Qmと、式(4)にて算出された昇華面積Asと、式(5)にて算出された脱水量Wと、式(6)にて算出された初期凍結層厚L0と、式(13)にて算出された昇華量Mとから、下記の式(22)により算出できる。
Ts=Tb-Qm×680/(As×λ)×0.001×L0×(1-M/W) …(22)
Therefore, the average sublimation surface temperature Ts of the material to be dried is the average bottom part temperature Tb calculated by the equation (21), the sublimation speed Qm of the material to be dried calculated by the equation (12), and the equation (4). ), The sublimation area As calculated in Formula (5), the dehydration amount W calculated in Formula (5), the initial frozen layer thickness L0 calculated in Formula (6), and the formula (13). From the sublimation amount M, it can be calculated by the following equation (22).
Ts = Tb-Qm × 680 / (As × λ) × 0.001 × L0 × (1-M / W) (22)
しかる後に、手順S11に移行し、算出された平均昇華面温度Ts(℃)、昇華速度Qm(Kg/hr)及び平均底部品温Tb(℃)を、記録計eに記録する。以上説明した手順S6から手順S11までの手順を、手順S2で設定された時間間隔Nごとに、一次乾燥工程が終了するまで繰り返す。凍結乾燥機のオペレータは、記録計eへの記録データを監視することにより、一次乾燥工程における被乾燥材料の乾燥状態を時系列的に把握することができる。 Thereafter, the process proceeds to step S11, and the calculated average sublimation surface temperature Ts (° C.), sublimation speed Qm (Kg / hr) and average bottom part temperature Tb (° C.) are recorded in the recorder e. The procedure from the procedure S6 to the procedure S11 described above is repeated for every time interval N set in the procedure S2 until the primary drying process is completed. The operator of the freeze dryer can grasp the drying state of the material to be dried in the primary drying process in time series by monitoring the data recorded in the recorder e.
一次乾燥工程の終了後は、二次乾燥工程に移行する。二次乾燥工程への移行後も、手順S12に示すように、手順S2でシーケンサPLCに設定された時間間隔Nごとに、真空計bからの複数回(本実施形態においては、5回)にわたる乾燥庫真空度Pdc1〜Pdc5及びコールドトラップ真空度Pct1〜Pct5の取り込みと、角度センサgからの開度角度θの取り込みと、温度センサSからの棚温Thの取り込みを行う。 After the completion of the primary drying process, the process proceeds to the secondary drying process. Even after the transition to the secondary drying step, as shown in the step S12, for a time interval N set in the sequencer PLC in the step S2, a plurality of times (in this embodiment, five times) from the vacuum gauge b. The drying chamber vacuum degrees Pdc1 to Pdc5 and the cold trap vacuum degrees Pct1 to Pct5 are taken in, the opening angle θ is taken in from the angle sensor g, and the shelf temperature Th is taken in from the temperature sensor S.
次に、手順S13に移行し、手順S1でシーケンサPLCに入力された定数データD、d、tと、手順S12で角度センサgから取り込まれた開度角度θとから、下記の式(23)により、主管aの流路断面積A(m2)を算出する。
A=0.000001×[π/4×D2-d×t×cosθ-π/4×d2×sinθ] …(23)
Next, the process proceeds to step S13, and from the constant data D, d, t input to the sequencer PLC in step S1 and the opening angle θ taken from the angle sensor g in step S12, the following equation (23) Thus, the channel cross-sectional area A (m 2 ) of the main pipe a is calculated.
A = 0.000001 × [π / 4 × D 2 -d × t × cos θ-π / 4 × d 2 × sin θ] (23)
次に、手順S14に移行し、手順S12で真空計bから取り込まれた乾燥庫真空度Pdc1〜Pdc5及びコールドトラップ真空度Pct1〜Pct5から、下記の式(24)、(25)により、乾燥庫真空度の平均値Pdcとコールドトラップ真空度の平均値Pctを算出する。
Pdc=(Pdc1+Pdc2+Pdc3+Pdc4+Pdc5)/5 …(24)
Pct=(Pct1+Pct2+Pct3+Pct4+Pct5)/5 …(25)
Next, the procedure proceeds to step S14, and the drying chamber is obtained from the drying chamber vacuum degrees Pdc1 to Pdc5 and the cold trap vacuum degrees Pct1 to Pct5 taken from the vacuum gauge b in step S12 by the following formulas (24) and (25). An average value Pdc of the vacuum degree and an average value Pct of the cold trap vacuum degree are calculated.
Pdc = (Pdc1 + Pdc2 + Pdc3 + Pdc4 + Pdc5) / 5 (24)
Pct = (Pct1 + Pct2 + Pct3 + Pct4 + Pct5) / 5 (25)
また、手順S14では、手順S1でシーケンサPLCに入力された定数データj、kと、式(24)、(25)で求められた乾燥庫真空度の平均値Pdc及びコールドトラップ真空度の平均値Pctと、手順S13で算出された流路断面積Aとから、下記の式(26)により、被乾燥材料の脱湿速度Qm´(Kg/hr)を算出する。
Qm´=j×A×(Pdc2−Pct2)k …(26)
定数データj、kは、主管流路の水蒸気流動抵抗係数から昇華速度への算出式の定数値であり、水負荷の実験で実際の乾燥量を測定することにより求める。
また、式(26)で、Pdc<Pctの場合には、Qm´=0とする。
In step S14, the constant data j and k input to the sequencer PLC in step S1, the average value Pdc of the drying chamber vacuum degree and the average value of the cold trap vacuum degree obtained by the equations (24) and (25). A dehumidifying rate Qm ′ (Kg / hr) of the material to be dried is calculated from Pct and the flow path cross-sectional area A calculated in step S13 by the following equation (26).
Qm ′ = j × A × (Pdc 2 −Pct 2 ) k (26)
The constant data j and k are constant values of a calculation formula from the steam flow resistance coefficient of the main channel to the sublimation speed, and are obtained by measuring the actual dry amount in a water load experiment.
Further, in the expression (26), when Pdc <Pct, Qm ′ = 0 is set.
次に、手順S15に移行し、気体伝導による棚板BからバイアルEの底部への熱伝達係数Kと、バイアル、ゴム栓及び充填物を含む被乾燥材料全体の熱容量Cと、被乾燥材料の平均品温を求める式の定数値a1、a2、a3と、被乾燥材料の平均底部品温Tbと、平均昇華面温度Tsをこの順に算出する。 Next, the process proceeds to step S15, the heat transfer coefficient K from the shelf board B to the bottom of the vial E by gas conduction, the heat capacity C of the entire material to be dried including the vial, the rubber stopper and the filling, and the material to be dried Constant values a1, a2, and a3 of the formula for obtaining the average product temperature, the average bottom part temperature Tb of the material to be dried, and the average sublimation surface temperature Ts are calculated in this order.
二次乾燥期における熱伝達係数K(W/m2℃)は、次の式(27)で計算できる。
K=14.5/(δ+2.12×29×0.13332/Pdc)+1.1 …(27)
但し、δは容器底部の隙間(mm)であり、手順S1で定数データとしてシーケンサPLCに入力される。また、Pdcは式(24)を用いて算出された乾燥庫真空度の平均値である。
The heat transfer coefficient K (W / m 2 ° C) in the secondary drying period can be calculated by the following equation (27).
K = 14.5 / (δ + 2.12 × 29 × 0.13332 / Pdc) +1.1 (27)
However, (delta) is the clearance (mm) of a container bottom part, and is input into sequencer PLC as constant data by procedure S1. Pdc is the average value of the degree of vacuum in the drying cabinet calculated using the equation (24).
熱容量Cは、手順S1でシーケンサPLCに入力されたバイアル本数N1、バイアル重量Wv、ゴム栓重量Wc、薬剤の分注量V1、薬剤の固形分s、薬剤の比重eから次の式(28)で計算される。
C=0.001×N1×(0.22×Wv+0.33×Wc+0.33×V1×0.01×s×e) …(28)
The heat capacity C is calculated by the following formula (28) from the number of vials N1, the vial weight Wv, the rubber stopper weight Wc, the drug dispensing amount V1, the drug solid content s, and the drug specific gravity e input to the sequencer PLC in step S1. Calculated by
C = 0.001 x N1 x (0.22 x Wv + 0.33 x Wc + 0.33 x V1 x 0.01 x s x e) (28)
また、二次乾燥工程における被乾燥材料の平均品温Tmは、次の式(29)に示す伝熱方程式から求めることができる。
C×dTm/dt=Qh+Qr−Qm´×ΔHs´ …(29)
但し、式(29)において、Cは被乾燥材料の熱容量、Tmは被乾燥材料の底部から昇華面までの平均品温、Qhは気体伝導による棚板Bから容器Eの底部への入熱量、Qrは乾燥庫壁から全容器への幅射入熱量、Qm´は脱湿速度、ΔHs´は蒸発潜熱である。
Moreover, the average product temperature Tm of the material to be dried in the secondary drying step can be obtained from the heat transfer equation shown in the following equation (29).
C × dTm / dt = Qh + Qr−Qm ′ × ΔHs ′ (29)
However, in Formula (29), C is the heat capacity of the material to be dried, Tm is the average product temperature from the bottom of the material to be dried to the sublimation surface, Qh is the amount of heat input from the shelf B to the bottom of the container E by gas conduction, Qr is the width incident heat quantity from the drying cabinet wall to all containers, Qm ′ is the dehumidification rate, and ΔHs ′ is the latent heat of evaporation.
一次乾燥工程の欄においても説明したように、気体伝導による棚板Bから容器Eの底部への入熱量Qhは、次の式(30)で計算される。
Qh=Ae×K×(Th−Tm) …(30)
但し、Aeは有効伝熱面積(m2)、Kは気体伝導による棚板Bから容器Eの底部への熱伝達係数、Thは棚温(℃)、Tmは平均品温(℃)である。
As described in the column of the primary drying step, the amount of heat input Qh from the shelf B to the bottom of the container E by gas conduction is calculated by the following equation (30).
Qh = Ae × K × (Th−Tm) (30)
However, Ae is an effective heat transfer area (m 2 ), K is a heat transfer coefficient from the shelf B by gas conduction to the bottom of the container E, Th is a shelf temperature (° C.), and Tm is an average product temperature (° C.). .
また、乾燥庫壁から容器Eへの幅射入熱量Qrは、下記の式(31)から求められる。
Qr=5.67×ε×Ar×[(Tw2/100)4−(Tm/100)4〕 …(31)
但し、式中のεは輻射係数、Arは輻射熱を受ける面積(m 2 )、Tw2は二次乾燥時の乾燥庫壁温度、Tmは平均品温である。輻射熱を受ける面積Arは有効伝熱面積Aeで近似できる。
Further, the width incident heat quantity Qr from the drying chamber wall to the container E is obtained from the following equation (31).
Qr = 5.67 × ε × Ar × [(Tw2 / 100) 4 − (Tm / 100) 4 ] (31)
In the equation, ε is a radiation coefficient, Ar is an area (m 2 ) that receives radiant heat , Tw2 is a drying cabinet wall temperature during secondary drying, and Tm is an average product temperature. The area Ar that receives radiant heat can be approximated by an effective heat transfer area Ae.
そして、この乾燥庫壁から全容器への幅射入熱量Qrは、下記の式(32)で近似的に計算できる。
Qr=Ar×Kr×(Tw2−Tm) …(32)
但し、Krは輻射入熱による相当熱伝達係数であり、試験機でKr=0.7W/m2℃、生産機でKr=0.2W/m2℃と近似できる。
Then, the width incident heat quantity Qr from the drying chamber wall to all containers can be approximately calculated by the following equation (32).
Qr = Ar * Kr * (Tw2-Tm) (32)
However, Kr are equivalent heat transfer coefficient due to radiation heat input, Kr = 0.7W / m 2 ℃ in tester can be approximated as Kr = 0.2W / m 2 ℃ production machine.
したがって、式(30)及び式(32)を式(29)の伝熱方程式に代入すると、下記の式(33)が成り立つ。
C×dTm/dt=Ae×K×(Th-Tm)+Ar×Kr×(Tw2-Tm)−Qm´×ΔHs´
…(33)
但し、ΔHsは蒸発潜熱であり、ΔHs=2850KJ/Kgである。
Therefore, when Expression (30) and Expression (32) are substituted into the heat transfer equation of Expression (29), the following Expression (33) is established.
C × dTm / dt = Ae × K × (Th-Tm) + Ar × Kr × (Tw2-Tm) −Qm´ × ΔHs´
... (33)
However, ΔHs is latent heat of vaporization, and ΔHs = 2850 KJ / Kg.
従って、二次乾燥工程における被乾燥材料の平均品温Tmは、下記の式(34)で計算できる。
C×(Tm-Tm0)/Δt=Ae×K×(Th-Tm)+Ar×Kr×(Tw2-Tm)-Qm´×ΔHs´
Tm=(Tm0+a1×Th+a2×Tw2−a3)/(1+a1+a2)
但し、a1=K×Ae×N/(60×C)、
a2=Kr×Ae×N/(60×C)、
a3=Qm´×680×N/(60×C) …(34)
したがって、式(26)で求めた被乾燥材料の脱湿速度Qm´と、式(34)で求めたa1、a2、a3とから、二次乾燥工程における被乾燥材料の平均品温Tmを算出することができる。
Therefore, the average product temperature Tm of the material to be dried in the secondary drying step can be calculated by the following equation (34).
C × (Tm-Tm0) / Δt = Ae × K × (Th-Tm) + Ar × Kr × (Tw2-Tm) -Qm´ × ΔHs ′
Tm = (Tm0 + a1 × Th + a2 × Tw2-a3) / (1 + a1 + a2)
However, a1 = K × Ae × N / (60 × C),
a2 = Kr × Ae × N / (60 × C),
a3 = Qm ′ × 680 × N / (60 × C) (34)
Therefore, the average product temperature Tm of the material to be dried in the secondary drying step is calculated from the dehumidification rate Qm ′ of the material to be dried obtained by the equation (26) and a1, a2, and a3 obtained by the equation (34). can do.
二次乾燥工程の終了時においては、Tm=Tbとなるので、式(34)から被乾燥材料の平均底部品温Tbが求められる。 Since Tm = Tb at the end of the secondary drying step, the average bottom part temperature Tb of the material to be dried is obtained from the equation (34).
しかる後に、手順S16に移行し、算出された平均昇華面温度Ts(℃)、脱湿速度Qm´(Kg/hr)及び平均底部品温Tb(℃)を、記録計eに記録する。以上説明した手順S12から手順S16までの手順を、手順S2で設定された時間間隔Nごとに、二次乾燥工程が終了するまで繰り返す。凍結乾燥機のオペレータは、記録計eへの記録データを監視することにより、二次乾燥工程における被乾燥材料の乾燥状態を時系列的に把握することができる。 Thereafter, the process proceeds to step S16, and the calculated average sublimation surface temperature Ts (° C.), dehumidification rate Qm ′ (Kg / hr), and average bottom part temperature Tb (° C.) are recorded on the recorder e. The procedure from the procedure S12 to the procedure S16 described above is repeated at every time interval N set in the procedure S2 until the secondary drying process is completed. The operator of the freeze dryer can grasp the drying state of the material to be dried in the secondary drying step in time series by monitoring the recorded data in the recorder e.
図6及び図7に、流路開度真空制御方式の凍結乾燥機M1を用いて、上述した本発明の方法、即ち、一次乾燥工程及び二次乾燥工程における平均底部品温Tbの算出に際して、容器Eを含む被乾燥材料の顕熱及び潜熱を考慮すると共に、各工程に特有の乾燥庫壁温度を適用し、また、昇華速度Qmの算出に際しては乾燥庫真空度の平均値Pdcを求める方法(この方法を本明細書書では、「本発明法」という。)で、ラクトース(Lactose、分子式:C12H22O11)の10%水溶液を凍結乾燥した場合における品温の実測値と計算値とを比較して示す。図6は予備凍結工程から一次乾燥工程を経て二次乾燥工程の初期段階に至るまでの品温の実測値と計算値の変化を示す図であり、図7は一次乾燥工程の初期段階を拡大して示す図である。 6 and 7, using the freeze-dryer M1 of the channel opening vacuum control method, when calculating the average bottom part temperature Tb in the above-described method of the present invention, that is, the primary drying step and the secondary drying step, A method of considering the sensible heat and latent heat of the material to be dried including the container E, applying a drying chamber wall temperature peculiar to each process, and obtaining an average value Pdc of the drying chamber vacuum degree when calculating the sublimation speed Qm. (This method is referred to as “the method of the present invention” in this specification) and the measured value and calculation of the product temperature when a 10% aqueous solution of lactose (Lactose, molecular formula: C 12 H 22 O 11 ) is lyophilized. Shown in comparison with values. FIG. 6 is a diagram showing changes in the measured and calculated values of the product temperature from the preliminary freezing process through the primary drying process to the initial stage of the secondary drying process, and FIG. 7 is an enlarged view of the initial stage of the primary drying process. It is a figure shown.
また、図8及び図9に、流路開度真空制御方式の凍結乾燥機M1を用いて、上述した本発明の方法とは異なり、一次乾燥工程及び二次乾燥工程における平均底部品温Tsの算出に際して、容器Eを含む被乾燥材料の顕熱を考慮せずに潜熱のみを考慮すると共に、各工程に特有の乾燥庫壁温度を適用せずに一定の乾燥庫壁温度を適用し、また、昇華速度Qmの算出に際しては乾燥庫真空度の平均値Pdcを求めず、所定のタイミングで真空検出手段から瞬間的に取り込まれる乾燥庫真空度を用いる方法(この方法を本明細書書では、「従来法」という。)で、ラクトース(Lactose、分子式:C12H22O11)の10%水溶液を凍結乾燥した場合における品温の実測値と計算値とを比較して示す。図8は予備凍結工程から一次乾燥工程を経て二次乾燥工程の初期段階に至るまでの品温の実測値と計算値の変化を示す図であり、図9は一次乾燥工程の初期段階を拡大して示す図である。 8 and 9, the average bottom part temperature Ts in the primary drying step and the secondary drying step is different from the method of the present invention described above by using the freeze-dryer M1 of the flow path opening vacuum control system. In the calculation, only the latent heat is considered without considering the sensible heat of the material to be dried including the container E, the constant drying cabinet wall temperature is applied without applying the drying cabinet wall temperature specific to each process, and In calculating the sublimation speed Qm, the average value Pdc of the drying chamber vacuum is not calculated, but a method of using the drying chamber vacuum that is instantaneously taken in from the vacuum detection means at a predetermined timing (this method is referred to in this specification as in) as "conventional method", lactose (lactose, molecular formula:. shown by comparing the measured value of the material temperature in the case of a 10% aqueous solution of lyophilized C 12 H 22 O 11) and the calculated values. FIG. 8 is a diagram showing changes in the measured and calculated values of the product temperature from the preliminary freezing process through the primary drying process to the initial stage of the secondary drying process, and FIG. 9 expands the initial stage of the primary drying process. It is a figure shown.
いずれの実験例においても、被乾燥材料を分注した660本のバイアルを乾燥庫DC内に装入し、シーケンサPLCに記憶された手順にしたがって被乾燥材料を凍結乾燥することにより行った。また、乾燥庫DC内に装入された660本のバイアルのうち、棚板Bの中央部に装入された1本のバイアルと、乾燥庫DCの壁際に装入された他の1本のバイアルと、それらの中間位置に装入されたさらに他の1本のバイアルについては、温度センサを挿入して、バイアル内に分注された被乾燥材料の品温(品温1、品温2、品温3)を測定した。被乾燥材料の一次乾燥は、溶液を−45℃で2時間予備凍結した後、棚温Thを−20℃に設定すると共に、開度調節器Cの開度角度θを調整して乾燥庫DC内の真空度Pdcを6.7Paに制御することにより行った。二次乾燥では、棚温を1時間で−20℃から30℃まで昇温し、乾燥庫DC内の真空度Pdcを成り行きで変化させて、開度調節器Cを全開方向へ回動させた。図6及び図7の実験例では1分間隔で、図8及び図9の実験例では5分間隔で、乾燥庫DC内の真空度Pdc、コールドトラップCT内の真空度Pct、開度角度θ及び棚温Thを検出し、昇華速度Qm(脱湿速度Qm´)、平均底部品温Tb及び平均昇華面温度Tsを算出した。そして、各検出値及び各算出値を記録計eに記録し、図6〜図9に示すグラフを得た。 In any of the experimental examples, 660 vials into which the material to be dried was dispensed were loaded into the drying cabinet DC, and the material to be dried was freeze-dried according to the procedure stored in the sequencer PLC. Of the 660 vials loaded in the drying cabinet DC, one vial loaded in the center of the shelf B and one other vial loaded near the wall of the drying cabinet DC. For the vial and another one of the vials inserted between them, the temperature sensor is inserted, and the product temperature of the material to be dried dispensed in the vial (product temperature 1, product temperature 2). The product temperature 3) was measured. In the primary drying of the material to be dried, the solution is pre-frozen at −45 ° C. for 2 hours, and then the shelf temperature Th is set to −20 ° C. and the opening angle θ of the opening controller C is adjusted to adjust the drying chamber DC. The vacuum degree Pdc inside was controlled by controlling to 6.7 Pa. In secondary drying, the shelf temperature was raised from −20 ° C. to 30 ° C. in one hour, and the degree of vacuum Pdc in the drying cabinet DC was changed accordingly, and the opening degree controller C was rotated in the fully open direction. . 6 and FIG. 7 at an interval of 1 minute, and in the experiment examples of FIG. 8 and FIG. 9 at an interval of 5 minutes, the degree of vacuum Pdc in the dryer DC, the degree of vacuum Pct in the cold trap CT, and the opening angle θ The shelf temperature Th was detected, and the sublimation speed Qm (dehumidification speed Qm ′), the average bottom part temperature Tb, and the average sublimation surface temperature Ts were calculated. And each detected value and each calculated value were recorded on the recorder e, and the graph shown in FIGS. 6-9 was obtained.
図8及び図9に示すように、従来法により算出された被乾燥材料の平均昇華面温度Tsは、温度センサにより検出された品温1、品温2、品温3と近似している。しかしながら、従来法では、容器Eを含む被乾燥材料の顕熱を考慮していないため、図9により詳細に示されているように、一次乾燥工程の初期に行われる棚温の昇温期間中に算出される平均底部品温が実測品温よりも高くなる傾向となる。このため、図8に示すように、一次乾燥工程において算出される平均底部品温が実測品温よりも早く棚温に達するので、被乾燥材料の温度変化に平均底部品温を追従させることが難しくなり、一次乾燥工程の後期においては、算出される平均底部品温が実測品温から乖離しやすくなる。また、従来法では、被乾燥材料の顕熱を考慮していないため、乾燥庫DC内の真空度Pdc、開度調節器Cの開度角度θ及び棚温Thの検出時に計測値のぶれが少しでも生じると、算出した昇華速度Qmにぶれが生じる。このため、図8に示すように、算出した昇華面温度Tsが不自然に変動する。なお、二次乾燥工程においてもこれと同様の傾向となる。 As shown in FIGS. 8 and 9, the average sublimation surface temperature Ts of the material to be dried calculated by the conventional method approximates the product temperature 1, the product temperature 2, and the product temperature 3 detected by the temperature sensor. However, in the conventional method, since the sensible heat of the material to be dried including the container E is not taken into consideration, as shown in more detail in FIG. 9, during the shelf temperature raising period performed in the initial stage of the primary drying process. The average bottom part temperature calculated in the above tends to be higher than the actually measured part temperature. For this reason, as shown in FIG. 8, since the average bottom part temperature calculated in the primary drying step reaches the shelf temperature earlier than the actually measured part temperature, the average bottom part temperature can follow the temperature change of the material to be dried. In the latter stage of the primary drying process, the calculated average bottom part temperature tends to deviate from the actually measured part temperature. In the conventional method, since the sensible heat of the material to be dried is not taken into consideration, the measurement value fluctuates when detecting the degree of vacuum Pdc in the drying cabinet DC, the opening angle θ of the opening controller C, and the shelf temperature Th. If even a little occurs, the calculated sublimation speed Qm is blurred. For this reason, as shown in FIG. 8, the calculated sublimation surface temperature Ts fluctuates unnaturally. Note that the same tendency is observed in the secondary drying step.
これに対して、本発明法では、一次乾燥工程及び二次乾燥工程における平均底部品温Tbの算出に際して、容器Eを含む被乾燥材料の顕熱及び潜熱を考慮するので、図7から明らかなように、一次乾燥工程の初期において算出される平均底部品温が実測品温よりも高くなる傾向がなくなる。また、一次乾燥工程において算出される平均底部品温が実測品温よりも早く棚温に達しないので、図6と図8との対比から明らかなように、一次乾燥工程の後期においても、算出品温と実測品温との差が小さくなっている。本発明法は、被乾燥材料の顕熱を考慮しているため、図6に示すように、算出した昇華速度Qmにぶれが生じても、算出した昇華面温度Tsが滑らかに変化している。また、本発明法では、昇華速度Qmの算出に際して、数秒間にわたって検出された複数の乾燥庫真空度の平均値Pdcを適用するので、算出した昇華速度Qmのぶれが小さくなっている。さらに、一次乾燥工程における平均底部品温Tbの算出には一次乾燥時の乾燥庫壁温度Tw1を適用するので、この点からも算出品温と実測品温との差が小さくできる。加えて、本発明法は、1分間隔で一次乾燥工程における被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出するので、実測品温に対する算出品温の追従性を高めることができる。なお、二次乾燥工程においてもこれと同様の傾向となる。 On the other hand, in the method of the present invention, when calculating the average bottom part temperature Tb in the primary drying step and the secondary drying step, the sensible heat and latent heat of the material to be dried including the container E are taken into account, which is apparent from FIG. Thus, the average bottom part temperature calculated in the initial stage of the primary drying process does not tend to be higher than the actually measured part temperature. In addition, since the average bottom part temperature calculated in the primary drying process does not reach the shelf temperature earlier than the actually measured product temperature, as is clear from the comparison between FIG. 6 and FIG. The difference between the exhibition temperature and the measured product temperature is small. Since the method of the present invention considers the sensible heat of the material to be dried, the calculated sublimation surface temperature Ts smoothly changes even if the calculated sublimation speed Qm fluctuates as shown in FIG. . Further, in the method of the present invention, when calculating the sublimation speed Qm, the average value Pdc of a plurality of drying chamber vacuum degrees detected over a few seconds is applied, and thus the fluctuation of the calculated sublimation speed Qm is small. Furthermore, since the drying warehouse wall temperature Tw1 at the time of primary drying is applied to the calculation of the average bottom part temperature Tb in the primary drying step, the difference between the calculated product temperature and the actually measured product temperature can be reduced. In addition, the method of the present invention calculates the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm of the material to be dried in the primary drying step at intervals of 1 minute. Can be increased. Note that the same tendency is observed in the secondary drying step.
このように、本発明法によると、算出された被乾燥材料の昇華面温度Tsを温度センサにより検出された品温1、品温2、品温3によく一致させることができるので、算出された昇華面温度Tsを監視することにより、凍結乾燥機M1の乾燥庫DC内に装入された全てのバイアルに分注された被乾燥材料につき、一次乾燥工程及び二次乾燥工程における昇華面温度を非接触で監視できる。また、一次乾燥工程及び二次乾燥工程における被乾燥材料のコラプスを完全に防止できる。 Thus, according to the method of the present invention, the calculated sublimation surface temperature Ts of the material to be dried can be made to coincide well with the product temperature 1, the product temperature 2, and the product temperature 3 detected by the temperature sensor. By monitoring the sublimation surface temperature Ts, the sublimation surface temperature in the primary drying step and the secondary drying step is applied to the material to be dried dispensed into all the vials charged in the drying chamber DC of the freeze dryer M1. Can be monitored without contact. Moreover, the collapse of the material to be dried in the primary drying step and the secondary drying step can be completely prevented.
[第2実施形態]
第2実施形態に係る算出方法及び算出装置は、乾燥庫内の真空度を調節するための真空度調節手段として、リーク弁を乾燥庫に備えたリーク式真空制御方式の凍結乾燥機に適用されるものである。
[Second Embodiment]
The calculation method and the calculation device according to the second embodiment are applied to a lyophilizer of a leak type vacuum control system provided with a leak valve as a vacuum degree adjusting means for adjusting the degree of vacuum in the drying box. Is.
〈凍結乾燥機の構成〉
即ち、第2実施形態に係る凍結乾燥機M2は、図10及び図11に示すように、被乾燥材料を装入する乾燥庫DCと、乾燥庫DC内に装入された被乾燥材料から発生する水蒸気をトラップコイルctにて凝結捕集するコールドトラップCTと、乾燥庫DCとコールドトラップCTを連通する主管aと、主管aを開閉する主弁MVと、乾燥庫DCに接続されたリーク制御弁LV付きの真空制御回路fと、コールドトラップCTに付設された引口弁Vと、引口弁Vに接続された真空ポンプPと、乾燥庫DC内の絶対圧力及びコールドトラップCT内の絶対圧力を検出する真空計bと、上述した装置各部の稼働を自動制御する制御装置CRとから主に構成されている。制御盤CRはシーケンサPLCと記録計(記録手段)eとから構成されており、シーケンサPLCには、乾燥庫DC、コールドトラップCT及び真空制御回路fの駆動を制御して、被乾燥材料の予備乾燥工程、一次乾燥工程及び二次乾燥工程を実行する制御プログラムが予め記憶されている。その他については、第1実施形態に係る凍結乾燥機M1と同じであるので、対応する部分に同一の符号を付して説明を省略する。
<Configuration of freeze dryer>
That is, as shown in FIGS. 10 and 11, the freeze dryer M2 according to the second embodiment is generated from the drying chamber DC in which the material to be dried is charged and the material to be dried charged in the drying chamber DC. A cold trap CT that condenses and collects steam to be trapped by a trap coil ct, a main pipe a that communicates the dryer DC with the cold trap CT, a main valve MV that opens and closes the main pipe a, and a leak control connected to the dryer DC Vacuum control circuit f with valve LV, inlet valve V attached to cold trap CT, vacuum pump P connected to inlet valve V, absolute pressure in dryer DC and absolute in cold trap CT It is mainly comprised from the vacuum gauge b which detects a pressure, and control apparatus CR which controls automatically operation | movement of each part of the apparatus mentioned above. The control panel CR is composed of a sequencer PLC and a recorder (recording means) e. The sequencer PLC controls the driving of the drying chamber DC, the cold trap CT and the vacuum control circuit f to reserve the material to be dried. A control program for executing the drying process, the primary drying process, and the secondary drying process is stored in advance. Since others are the same as those of the freeze dryer M1 according to the first embodiment, the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
図12及び図13に、シーケンサPLCに記憶される計算プログラムの一例を示す。乾燥庫DC内に装入された非乾燥材料の凍結乾燥は、予備凍結、一次乾燥及び二次乾燥の各工程を経て行われ、一次乾燥工程における被乾燥材料の昇華速度Qm、平均底部品温Tb及び平均昇華面温度Tsの算出と、二次乾燥工程における被乾燥材料の脱湿速度Qm´及び平均底部品温Tbの算出は、図12及び図13に記載の手順で行われる。算出された各計算データは、記録計eに順次記録される。凍結乾燥機のオペレータは、記録計eの記録データを確認することにより、被乾燥材料の乾燥状態を随時監視できる。 12 and 13 show an example of a calculation program stored in the sequencer PLC. The freeze-drying of the non-drying material charged in the drying cabinet DC is performed through the steps of preliminary freezing, primary drying and secondary drying. The sublimation speed Qm of the material to be dried in the primary drying process, the average bottom part temperature Calculation of Tb and average sublimation surface temperature Ts, and calculation of dehumidifying speed Qm ′ and average bottom part temperature Tb of the material to be dried in the secondary drying step are performed according to the procedures shown in FIGS. Each calculated data is sequentially recorded in the recorder e. The operator of the freeze dryer can monitor the drying state of the material to be dried at any time by checking the record data of the recorder e.
被乾燥材料の凍結乾燥に際しては、制御プログラムの起動に先立ち、手順S21で、シーケンサPLCへの定数データの入力を行う。定数データとしては、主管aの内径D(mm)、主管aの長さL1(mm)、被乾燥材料が分注されたバイアルの外径d1(mm)、バイアルの肉厚t1(mm)、乾燥庫DC内に装入するバイアルの本数N1、バイアルへの薬剤の分注量V1(mL/1本)、バイアルに分注される薬剤の固形分s(%)、バイアルに分注される被乾燥物の比重e(Kg/L)、バイアルの重量Wv(g)、バイアルの開口を封止するゴム栓の重量Wc(g)、バイアルを載置するトレイ枠Tの幅寸法W(mm)、トレイ枠Tの長さ寸法L(mm)、トレイ枠Tの枚数N2、バイアルの底面とこれを載置する棚板Bの上面との間に存在する隙間δを入力する。これらについては、凍結乾燥機の仕様書及び作業計画書等から求めることができる。 When the material to be dried is freeze-dried, constant data is input to the sequencer PLC in step S21 prior to starting the control program. As constant data, the inner diameter D (mm) of the main tube a, the length L1 (mm) of the main tube a, the outer diameter d1 (mm) of the vial into which the material to be dried is dispensed, the wall thickness t1 (mm) of the vial, Number of vials N1 charged in the drying chamber DC, amount of drug dispensed into vials V1 (mL / 1), solid content s (%) of drug dispensed into vials, dispensed into vials Specific gravity e (Kg / L) of the material to be dried, weight Wv (g) of the vial, weight Wc (g) of the rubber stopper that seals the opening of the vial, width dimension W (mm) of the tray frame T on which the vial is placed ), The length dimension L (mm) of the tray frame T, the number N2 of the tray frames T, and the gap δ existing between the bottom surface of the vial and the top surface of the shelf B on which the vial is placed. These can be obtained from the specifications of the freeze dryer and the work plan.
また、定数データとしては、予備凍結によりバイアル内の被乾燥材料に形成される凍結層の熱伝導率λ、乾燥庫DCの壁面からバイアルに輻射される熱の輻射伝熱係数Kr、一次乾燥時の乾燥庫DCの壁温度Tw1、二次乾燥時の乾燥庫DCの壁温度Tw2、一次乾燥開始時の初期凍結温度Tbi、主弁MVを全開にして水負荷で取得した主管流路の水蒸気流動抵抗係数Crから昇華速度Qmへの算出式の定数値j、kもシーケンサPLCに入力する。これらについては、事前の実験で求める。定数値j、kの求め方については、後に説明する。 The constant data includes the thermal conductivity λ of the frozen layer formed on the material to be dried in the vial by preliminary freezing, the radiation heat transfer coefficient Kr of the heat radiated from the wall surface of the drying cabinet DC to the vial, and at the time of primary drying The wall temperature Tw1 of the drying cabinet DC, the wall temperature Tw2 of the drying cabinet DC at the time of secondary drying, the initial freezing temperature Tbi at the start of primary drying, the steam flow in the main channel obtained by fully opening the main valve MV and water load Constant values j and k of the calculation formula from the resistance coefficient Cr to the sublimation speed Qm are also input to the sequencer PLC. These are obtained by prior experiments. How to obtain the constant values j and k will be described later.
次に、手順S22で、シーケンサPLCに計算プログラムを実行する時間間隔N(min)を入力する。第1実施形態においても説明した通り、特許文献1に記載の発明のように、乾燥庫DC内の真空度を一時的に高める方向に変化させ、当該変化の前後における乾燥庫DC内の真空度Pdc及びコールドトラップCT内の真空度Pctを含む測定データから、一次乾燥期における被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出すると、乾燥庫DC内の真空度が落ち着くまでは、次回の真空度Pdc、Pct等の測定を行えないので、平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmの算出をせいぜい30分間隔程度にしか行い得ない。これに対して、本発明は、乾燥庫DC内の真空度を一時的に高める方向に変化させることなく、被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出するので、1回の算出に要する時間を超える時間間隔であれば、任意の時間を計算時間間隔Nとして設定できる。このため、本発明によれば、数分間隔、例えば1分間隔で被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出することが可能になり、特許文献1に記載の発明による場合よりも被乾燥材料の乾燥状態のきめ細かい監視が可能になる。 Next, in step S22, a time interval N (min) for executing the calculation program is input to the sequencer PLC. As described in the first embodiment, as in the invention described in Patent Document 1, the degree of vacuum in the drying chamber DC before and after the change is changed by temporarily increasing the degree of vacuum in the drying chamber DC. When the average sublimation surface temperature Ts, average bottom part temperature Tb, and sublimation rate Qm of the material to be dried in the primary drying period are calculated from the measurement data including the vacuum degree Pct in the Pdc and the cold trap CT, the degree of vacuum in the drying chamber DC is calculated. Since the next measurement of the degree of vacuum Pdc, Pct or the like cannot be performed until the temperature settles, the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm can be calculated only at intervals of about 30 minutes. On the other hand, the present invention calculates the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm of the material to be dried without changing the degree of vacuum in the drying chamber DC temporarily. Therefore, an arbitrary time can be set as the calculation time interval N as long as the time interval exceeds the time required for one calculation. For this reason, according to the present invention, it becomes possible to calculate the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm of the material to be dried at intervals of several minutes, for example, at intervals of 1 minute. Finer monitoring of the drying state of the material to be dried is possible than in the case of the described invention.
次に、手順S23に移行し、手順S21でシーケンサPLCに入力された定数データD、d1、N1、W、N、N2、t1から、主管流路断面積Aと、バイアルの底部面積Avと、トレイ枠Tの総面積Atと、棚板Bからバイアルへの有効伝熱面積Aeと、被乾燥材料の昇華面積Asとを計算により求める。
主管流路断面積Aは、下記の式(35)で求められる。
A=π/4×(0.001×D)2 …(35)
バイアルの底部面積Av、トレイ枠Bの総面積At、有効伝熱面積Ae及び昇華面積Asについては、上記の式(1)〜(4)でそれぞれ求められる。
Next, the process proceeds to step S23, and from the constant data D, d1, N1, W, N, N2, t1 input to the sequencer PLC in step S21, the main pipe channel cross-sectional area A, the bottom area Av of the vial, The total area At of the tray frame T, the effective heat transfer area Ae from the shelf B to the vial, and the sublimation area As of the material to be dried are obtained by calculation.
The main pipe channel cross-sectional area A is obtained by the following equation (35).
A = π / 4 × (0.001 × D) 2 (35)
The bottom area Av of the vial, the total area At of the tray frame B, the effective heat transfer area Ae, and the sublimation area As are obtained by the above formulas (1) to (4), respectively.
次に、手順S24に移行し、手順S21でシーケンサPLCに入力された定数データN1、V1、e、sを用いて被乾燥材料の脱水量Wを計算すると共に、手順S21でシーケンサPLCに入力された定数データN1、V1と手順S23で求められた昇華面積Asとを用いて、被乾燥材料の初期凍結層厚L0を計算する。脱水量W及び初期凍結層厚L0は、上記の式(5)、(6)でそれぞれ求められる。初期の平均底部品温Tb0は一次乾燥開始時の初期凍結温度Tbiとし、一次乾燥開始時の昇華量M0は0とする。 Next, the process proceeds to step S24, and the dehydration amount W of the material to be dried is calculated using the constant data N1, V1, e, and s input to the sequencer PLC in step S21, and is input to the sequencer PLC in step S21. The initial frozen layer thickness L0 of the material to be dried is calculated using the constant data N1, V1 and the sublimation area As obtained in step S23. The dewatering amount W and the initial frozen layer thickness L0 are obtained by the above equations (5) and (6), respectively. The initial average bottom part temperature Tb0 is the initial freezing temperature Tbi at the start of primary drying, and the sublimation amount M0 at the start of primary drying is 0.
定数データの入力が完了した後は、制御プログラムを起動して、予備凍結、一次乾燥及び二次乾燥の各工程をこの順に実行する。まず、予備凍結工程が終了して一次乾燥工程が開始された直後の数分間、即ち、乾燥庫DC内の棚板Bに付いた霜の昇華が終わり、乾燥庫真空度Pdcが真空制御値に制御されて安定するまでの時間については、手順S25に示すように、手順S26以降の算出処理を行わずに待機する。これにより、以下に記載する平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmの正確な算出が可能になる。 After the input of the constant data is completed, the control program is started and the preliminary freezing, primary drying and secondary drying steps are executed in this order. First, for a few minutes immediately after the preliminary freezing process is completed and the primary drying process is started, that is, the sublimation of frost on the shelf B in the drying cabinet DC is finished, and the drying cabinet vacuum degree Pdc becomes the vacuum control value. As shown in step S25, the process waits without performing the calculation process after step S26 for the time until it is controlled and stabilized. This makes it possible to accurately calculate the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm described below.
待機時間の経過後は、手順S6に示すように、シーケンサPLCに設定された時間間隔Nが経過するごとに、その初期の数秒間において、真空計bからの複数回(本実施形態においては、5回)にわたる乾燥庫真空度Pdc1〜Pdc5及びコールドトラップ真空度Pct1〜Pct5の取り込みと、温度センサSからの棚温Thの取り込みを行う。 After the elapse of the standby time, as shown in step S6, every time the time interval N set in the sequencer PLC elapses, in the initial several seconds, the vacuum gauge b is turned multiple times (in this embodiment, The drying chamber vacuum degrees Pdc1 to Pdc5 and the cold trap vacuum degrees Pct1 to Pct5 and the shelf temperature Th from the temperature sensor S are captured for five times.
次に、手順S27に移行し、手順S26で真空計bから取り込まれた乾燥庫真空度Pdc1〜Pdc5及びコールドトラップ真空度Pct1〜Pct5から、下記の式(36)、(37)により、乾燥庫真空度の平均値Pdcとコールドトラップ真空度の平均値Pctを算出する。
Pdc=(Pdc1+Pdc2+Pdc3+Pdc4+Pdc5)/5 …(36)
Pct=(Pct1+Pct2+Pct3+Pct4+Pct5)/5 …(37)
Next, the procedure proceeds to step S27, and the drying chamber is obtained from the drying chamber vacuum degrees Pdc1 to Pdc5 and the cold trap vacuum degrees Pct1 to Pct5 taken from the vacuum gauge b in the procedure S26 by the following equations (36) and (37). An average value Pdc of the vacuum degree and an average value Pct of the cold trap vacuum degree are calculated.
Pdc = (Pdc1 + Pdc2 + Pdc3 + Pdc4 + Pdc5) / 5 (36)
Pct = (Pct1 + Pct2 + Pct3 + Pct4 + Pct5) / 5 (37)
また、手順S27では、昇華速度Qmも算出する。昇華速度Qmは、乾燥庫真空度の平均値Pdcとコールドトラップ真空度の平均値Pctとから算出できる。即ち、被乾燥材料の昇華面から昇華した水蒸気は、乾燥庫DCから主管aを通してコールドトラップCT内に流れ、トラップコイルCtにて凝結捕集される。そして、リーク式真空制御の場合には、主管a内における水蒸気の流れが粘性流となるので、被乾燥材料からの昇華速度Qmは、次の式(38)で計算できる。
Qm=3・6×(Pdc−Pct)/R=3・6×ΔP/R …(38)
但し、式(38)において、ΔPは乾燥庫真空度Pdcとコールドトラップ真空度Pctとの差圧、Rは主管抵抗である。
In step S27, the sublimation speed Qm is also calculated. The sublimation speed Qm can be calculated from the average value Pdc of the drying chamber vacuum degree and the average value Pct of the cold trap vacuum degree. That is, the water vapor sublimated from the sublimation surface of the material to be dried flows from the drying chamber DC into the cold trap CT through the main pipe a, and is condensed and collected by the trap coil Ct. In the case of leak type vacuum control, the flow of water vapor in the main pipe a becomes a viscous flow, and therefore the sublimation speed Qm from the material to be dried can be calculated by the following equation (38).
Qm = 3.6 × (Pdc−Pct) /R=3.6×ΔP/R (38)
However, in Formula (38), (DELTA) P is a differential pressure | voltage between drying cabinet vacuum Pdc and cold trap vacuum Pct, and R is main pipe resistance.
差圧ΔPは、粘性流の管路圧力降下の計算式から、下記の式(39)で表される。
ΔP=Cr/2×ρ×u2=Cr/2×ρ×[Qm/(3600×A×ρ)]2 …(39)
但し、Crは主管流路の水蒸気流動抵抗係数、ρは理想気体の状態方程式ρ=P×M/(R×T)で表される値(Pは気体の圧力、Mは気体の分子量、Rは気体定数、Tは気体の温度)、Aは主管aの流路面積である。
The differential pressure ΔP is expressed by the following formula (39) from the calculation formula of the pipe pressure drop of the viscous flow.
ΔP = Cr / 2 × ρ × u 2 = Cr / 2 × ρ × [Qm / (3600 × A × ρ)] 2 (39)
Where Cr is the steam flow resistance coefficient of the main channel, ρ is the ideal gas equation of state ρ = P × M / (R × T) (P is the pressure of the gas, M is the molecular weight of the gas, R Is a gas constant, T is a gas temperature), and A is a channel area of the main pipe a.
式(39)に、理想気体の状態方程式ρ=P×M/(R×T)、分子量M=18、気体定数R=8314、気体温度T=288、ΔP=Pdc−Pctを代入し、昇華速度Qmの式に変換すると、以下の式(40)となる。
Qm=A×[(Pdc2−Pct2)/(8314×288/(18×36002)×Cr)]0.5
=A×[(Pdc2−Pct2)/(0.0103×Cr)]0.5 …(40)
この方法によると、真空計以外の高価な計測器機を装備する必要がないので、昇華速度Qmの算出を容易かつ低コストに行うことができる。
Substituting into equation (39) the ideal gas state equation ρ = P × M / (R × T), molecular weight M = 18, gas constant R = 8314, gas temperature T = 288, ΔP = Pdc−Pct, and sublimation When converted into the equation of velocity Qm, the following equation (40) is obtained.
Qm = A × [(Pdc 2 −Pct 2 ) / (8314 × 288 / (18 × 36002) × Cr)] 0.5
= A × [(Pdc 2 −Pct 2 ) / (0.0103 × Cr)] 0.5 (40)
According to this method, since it is not necessary to equip an expensive measuring instrument other than a vacuum gauge, the sublimation speed Qm can be calculated easily and at low cost.
式(39)の水蒸気流動抵抗係数Crは、水負荷の試験で求められる。水負荷の試験は、乾燥庫DC内に水を充填したトレイを装入した状態で、制御装置CRにより凍結乾燥機M2の稼動を制御し、所定の乾燥工程を実行することにより行う。本例においては、トレイ内の水を−45℃まで凍結した後の一次乾燥工程で、棚温Thを−20℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Paに設定して3時間保持した。また、棚温Thを−10℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Pa、13.3Pa、20Paに順次制御して、それぞれ3時間保持した。また、棚温Thを5℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Pa、13.3Paに制御して、3時間保持した。また、棚温Thを20℃に設定すると共に乾燥庫DC内の真空度Pdcを6.7Pa、13.3Paに制御して、それぞれ3時間保持した。上記9条件の水負荷試験を実施しながら、棚温Th、トレイ底部品温Tb、乾燥庫真空度Pdc及びコールドトラップ真空度Pctを測定して記録した。更に、これらの測定結果から、氷の昇華速度Qm(Kg/h)と主管流路の水蒸気流動抵抗係数Crを求めた。表4に、水負荷の試験で求められた棚温Th、乾燥庫DCの真空度Pdc、コールドトラップCTの真空度Pct、昇華速度Qm及び水蒸気流動抵抗係数Crを示す。 The water vapor flow resistance coefficient Cr of the equation (39) is obtained by a water load test. The water load test is performed by controlling the operation of the freeze dryer M2 by the control device CR and executing a predetermined drying process in a state where a tray filled with water is loaded in the drying cabinet DC. In this example, the shelf temperature Th is set to −20 ° C. and the degree of vacuum Pdc in the drying cabinet DC is set to 6.7 Pa in the primary drying step after the water in the tray is frozen to −45 ° C. Hold for 3 hours. Further, the shelf temperature Th was set to −10 ° C., and the degree of vacuum Pdc in the drying cabinet DC was sequentially controlled to 6.7 Pa, 13.3 Pa, and 20 Pa, and held for 3 hours, respectively. Further, the shelf temperature Th was set to 5 ° C., and the degree of vacuum Pdc in the drying cabinet DC was controlled to 6.7 Pa and 13.3 Pa, and held for 3 hours. Further, the shelf temperature Th was set to 20 ° C., and the degree of vacuum Pdc in the drying cabinet DC was controlled to 6.7 Pa and 13.3 Pa, and held for 3 hours, respectively. While carrying out the water load test under the above nine conditions, the shelf temperature Th, the tray bottom component temperature Tb, the drying cabinet vacuum Pdc, and the cold trap vacuum Pct were measured and recorded. Furthermore, from these measurement results, the ice sublimation rate Qm (Kg / h) and the steam flow resistance coefficient Cr of the main pipe flow path were determined. Table 4 shows the shelf temperature Th, the vacuum degree Pdc of the drying cabinet DC, the vacuum degree Pct of the cold trap CT, the sublimation speed Qm, and the water vapor flow resistance coefficient Cr obtained in the water load test.
図14に、表2のデータに基づいて作成した主管流路の水蒸気流動抵抗係数Crと昇華速度Qmとの関係を表すグラフを示す。表2(図14)のデータから、主管流路の水蒸気流動抵抗係数Crと昇華速度Qmとの関係式を導出できる。上述した水負荷の試験により、下記の式(41)が導出された。
Cr=4.065/Qm0.8 …(41)
この主管流路の水蒸気流動抵抗係数Crと昇華速度Qmの関係式(41)を上記の式(40)に代入すると、下記の昇華速度Qmの計算式(42)を導出される。
Qm=0.9×A×(Pdc2−Pct2)0.875 …(42)
この式(42)から、j=0、k=0.875が求められる。
このように、事前の水負荷試験で得られた定数j、kをシーケンサPLCに記憶しておくことにより、手順S23で算出した主管流路断面積Aと、手順S27で算出した乾燥庫真空度Pdcの平均値及びコールドトラップ真空度の平均値とから、昇華速度Qmを容易に算出できる。
FIG. 14 is a graph showing the relationship between the steam flow resistance coefficient Cr and the sublimation rate Qm of the main pipe flow path created based on the data in Table 2. From the data in Table 2 (FIG. 14), a relational expression between the steam flow resistance coefficient Cr of the main pipe channel and the sublimation speed Qm can be derived. The following equation (41) was derived from the water load test described above.
Cr = 4.065 / Qm 0.8 (41)
When the relational expression (41) between the steam flow resistance coefficient Cr and the sublimation speed Qm of the main pipe channel is substituted into the above expression (40), the following calculation expression (42) of the sublimation speed Qm is derived.
Qm = 0.9 × A × (Pdc 2 −Pct 2 ) 0.875 (42)
From this equation (42), j = 0 and k = 0.875 are obtained.
In this way, by storing the constants j and k obtained in the prior water load test in the sequencer PLC, the main channel cross-sectional area A calculated in step S23 and the drying chamber vacuum degree calculated in step S27. The sublimation rate Qm can be easily calculated from the average value of Pdc and the average value of the cold trap vacuum.
次に、手順S28に移行し、昇華量Mを算出する。被乾燥材料の昇華量Mは、上記の式(13)で求められる。 Next, the process proceeds to step S28, and the sublimation amount M is calculated. The sublimation amount M of the material to be dried is obtained by the above equation (13).
次に、手順S29に移行し、気体伝導による棚板BからバイアルEの底部への熱伝達係数Kと、バイアル、ゴム栓、氷及び充填物を含む被乾燥材料全体の熱容量Cと、被乾燥材料の平均底部品温Tb及び平均昇華面温度Tsを算出する。熱伝達係数Kは上記の式(14)で求められ、被乾燥材料全体の熱容量Cは上記の式(15)で求められる。平均底部品温Tb及び平均昇華面温度Tsの算出に際しては、第1実施形態と同様に、容器Eを含む被乾燥材料の顕熱を考慮し、一次乾燥工程における被乾燥材料の平均品温Tmを上記の式(16)に示す伝熱方程式から求める。従って、平均底部品温Tbは上記の式(21)で求められ、平均昇華面温度Tsは上記の式(22)で求められる。 Next, the process proceeds to step S29, the heat transfer coefficient K from the shelf B to the bottom of the vial E by gas conduction, the heat capacity C of the entire material to be dried including the vial, rubber stopper, ice and filling, and the material to be dried An average bottom part temperature Tb and an average sublimation surface temperature Ts of the material are calculated. The heat transfer coefficient K is obtained by the above equation (14), and the heat capacity C of the entire material to be dried is obtained by the above equation (15). When calculating the average bottom part temperature Tb and the average sublimation surface temperature Ts, as in the first embodiment, the sensible heat of the material to be dried including the container E is taken into consideration, and the average product temperature Tm of the material to be dried in the primary drying process. Is obtained from the heat transfer equation shown in the above equation (16). Therefore, the average bottom part temperature Tb is obtained by the above equation (21), and the average sublimation surface temperature Ts is obtained by the above equation (22).
しかる後に、手順S30に移行し、算出された平均昇華面温度Ts(℃)、昇華速度Qm(Kg/hr)及び平均底部品温Tb(℃)を、記録計eに記録する。以上説明した手順S26から手順S30までの手順を、手順S22で設定された時間間隔Nごとに、一次乾燥工程が終了するまで繰り返す。凍結乾燥機のオペレータは、記録計eへの記録データを監視することにより、一次乾燥工程における被乾燥材料の乾燥状態を時系列的に把握することができる。 Thereafter, the process proceeds to step S30, and the calculated average sublimation surface temperature Ts (° C.), sublimation speed Qm (Kg / hr), and average bottom part temperature Tb (° C.) are recorded on the recorder e. The procedure from the procedure S26 to the procedure S30 described above is repeated for every time interval N set in the procedure S22 until the primary drying process is completed. The operator of the freeze dryer can grasp the drying state of the material to be dried in the primary drying process in time series by monitoring the data recorded in the recorder e.
一次乾燥工程の終了後は、二次乾燥工程に移行する。二次乾燥工程への移行後も、手順S31に示すように、手順S22でシーケンサPLCに設定された時間間隔Nごとに、真空計bからの複数回(本実施形態においては、5回)にわたる乾燥庫真空度Pdc1〜Pdc5及びコールドトラップ真空度Pct1〜Pct5の取り込みと、温度センサSからの棚温Thの取り込みを行う。 After the completion of the primary drying process, the process proceeds to the secondary drying process. Even after the transition to the secondary drying step, as shown in the step S31, it takes a plurality of times (in this embodiment, five times) from the vacuum gauge b at every time interval N set in the sequencer PLC in step S22. The drying chamber vacuum degrees Pdc1 to Pdc5 and the cold trap vacuum degrees Pct1 to Pct5 are taken in, and the shelf temperature Th from the temperature sensor S is taken in.
次に、手順S32に移行し、手順S21でシーケンサPLCに入力された定数データj、kと、式(36)、(37)で求められた乾燥庫真空度の平均値Pdc及びコールドトラップ真空度の平均値Pctと、手順S23で算出された流路断面積Aとから、上記の式(26)により、被乾燥材料の脱湿速度Qm´(Kg/hr)を算出する。 Next, the process proceeds to step S32, the constant data j and k input to the sequencer PLC in step S21, the average value Pdc of the drying chamber vacuum degree and the cold trap vacuum degree obtained by the equations (36) and (37). The dehumidifying rate Qm ′ (Kg / hr) of the material to be dried is calculated by the above equation (26) from the average value Pct of the above and the flow path cross-sectional area A calculated in step S23.
次に、手順S33に移行し、熱伝達係数K、熱容量C、定数a1、a2、a3、及び平均底部品温Tb及び平均品温Tmを算出する。熱伝達係数Kは上記の式(27)で求められ、熱容量Cは上記の式(28)で求められ、定数a1、a2、a3は上記の式(34)で求められ、平均底部品温Tbは上記の式(34)で求められ、平均品温TmはTm=Tbで求められる。 Next, the process proceeds to step S33, and the heat transfer coefficient K, the heat capacity C, the constants a1, a2, and a3, the average bottom component temperature Tb, and the average product temperature Tm are calculated. The heat transfer coefficient K is obtained by the above equation (27), the heat capacity C is obtained by the above equation (28), the constants a1, a2, and a3 are obtained by the above equation (34), and the average bottom part temperature Tb Is obtained by the above equation (34), and the average product temperature Tm is obtained by Tm = Tb.
しかる後に、手順S34に移行し、算出された平均品温Tm(℃)、昇華速度Qm(Kg/hr)及び平均底部品温Tb(℃)を、記録計eに記録する。以上説明した手順S31から手順S34までの手順を、手順S22で設定された時間間隔Nごとに、二次乾燥工程が終了するまで繰り返す。凍結乾燥機のオペレータは、記録計eへの記録データを監視することにより、二次乾燥工程における被乾燥材料の乾燥状態を時系列的に把握することができる。 Thereafter, the process proceeds to step S34, and the calculated average product temperature Tm (° C.), sublimation rate Qm (Kg / hr), and average bottom part temperature Tb (° C.) are recorded in the recorder e. The procedure from step S31 to step S34 described above is repeated for every time interval N set in step S22 until the secondary drying step is completed. The operator of the freeze dryer can grasp the drying state of the material to be dried in the secondary drying step in time series by monitoring the recorded data in the recorder e.
図15及び図16に、リーク弁方式の凍結乾燥機M2を用いて、上述した本発明の方法、即ち、一次乾燥工程及び二次乾燥工程における平均底部品温Tbの算出に際して、容器Eを含む被乾燥材料の顕熱及び潜熱を考慮すると共に、各工程に特有の乾燥庫壁温度を適用し、また、昇華速度Qmの算出に際しては乾燥庫真空度の平均値Pdcを求める方法(この方法を本明細書書では、「本発明法」という。)で、スクロース(Sucrose、分子式:C12H22O11)の10%水溶液を凍結乾燥した場合における品温の実測値と計算値とを比較して示す。図15は予備凍結工程から一次乾燥工程を経て二次乾燥工程の初期段階に至るまでの品温の実測値と計算値の変化を示す図であり、図16は一次乾燥工程の初期段階を拡大して示す図である。 15 and 16, the container E is included in the calculation of the average bottom part temperature Tb in the above-described method of the present invention, that is, the primary drying step and the secondary drying step, using the leak valve type freeze dryer M2. Considering the sensible heat and latent heat of the material to be dried, applying the drying cabinet wall temperature specific to each process, and calculating the average value Pdc of the drying cabinet vacuum when calculating the sublimation speed Qm (this method In this specification, it is referred to as “the method of the present invention”), and the measured value and the calculated value of the sucrose (Sucrose, molecular formula: C 12 H 22 O 11 ) in the case of freeze-drying are compared Show. FIG. 15 is a diagram showing changes in measured values and calculated values of the product temperature from the pre-freezing step through the primary drying step to the initial stage of the secondary drying step, and FIG. 16 is an enlarged view of the initial stage of the primary drying step. It is a figure shown.
また、図17及び図18に、リーク弁方式の凍結乾燥機M1を用いて、上述した本発明の方法とは異なり、一次乾燥工程及び二次乾燥工程における平均底部品温Tbの算出に際して、容器Eを含む被乾燥材料の顕熱を考慮せずに潜熱のみを考慮すると共に、各工程に特有の乾燥庫壁温度を適用せずに一定の乾燥庫壁温度を適用し、また、昇華速度Qmの算出に際しては乾燥庫真空度の平均値Pdcを求めず、所定のタイミングで真空検出手段から瞬間的に取り込まれる乾燥庫真空度を用いる方法(この方法を本明細書書では、「従来法」という。)で、スクロース(Sucrose、分子式:C12H22O11)の10%水溶液を凍結乾燥した場合における品温の実測値と計算値とを比較して示す。図17は予備凍結工程から一次乾燥工程を経て二次乾燥工程の初期段階に至るまでの品温の実測値と計算値の変化を示す図であり、図18は一次乾燥工程の初期段階を拡大して示す図である。 17 and 18, when the average bottom part temperature Tb in the primary drying process and the secondary drying process is calculated using the leak valve type freeze dryer M1, unlike the method of the present invention described above, Considering only latent heat without considering sensible heat of the material to be dried including E, applying a constant drying chamber wall temperature without applying a drying chamber wall temperature specific to each process, and sublimation rate Qm When calculating the value, the average value Pdc of the drying chamber vacuum is not calculated, but a method using the drying chamber vacuum that is instantaneously taken in from the vacuum detection means at a predetermined timing (this method is referred to as “conventional method” in this specification). The measured value and the calculated value of the product temperature when a 10% aqueous solution of sucrose (Sucrose, molecular formula: C 12 H 22 O 11 ) is freeze-dried are compared and shown. FIG. 17 is a diagram showing changes in measured values and calculated values of the product temperature from the pre-freezing process through the primary drying process to the initial stage of the secondary drying process, and FIG. 18 is an enlarged view of the initial stage of the primary drying process. It is a figure shown.
いずれの実験例においても、被乾燥材料を分注した660本のバイアルを乾燥庫DC内に装入し、シーケンサPLCに記憶された手順にしたがって被乾燥材料を凍結乾燥することにより行った。また、乾燥庫DC内に装入された660本のバイアルのうち、棚板Bの中央部に装入された1本のバイアルと、乾燥庫DCの壁際に装入された他の1本のバイアルと、それらの中間位置に装入されたさらに他の1本のバイアルについては、温度センサを挿入して、バイアル内に分注された被乾燥材料の品温(品温1、品温2、品温3)を測定した。被乾燥材料の一次乾燥は、溶液を−45℃で2時間予備凍結した後、棚温Thを−20℃に設定すると共に、真空制御回路fに備えられた可変リーク弁及びリーク制御弁LVを経由して外部空気を凍結乾燥機M2内に導入することにより、乾燥庫DC内の真空度Pdcを6.7Paに制御することにより行った。二次乾燥では、棚温を1時間で−20℃から30℃まで昇温し、乾燥庫DC内の真空度Pdcを1時間で6.7Paから1Paに制御し、その後に真空を成り行きで変化させた。図15及び図16の実験例では1分間隔で、図17及び図18の実験例では5分間隔で、乾燥庫DC内の真空度Pdc、コールドトラップCT内の真空度Pct及び棚温Thを検出し、昇華速度Qm(脱湿速度Qm´)、平均底部品温Tb及び平均昇華面温度Tsを算出した。そして、各検出値及び各算出値を記録計eに記録し、図15〜図18に示すグラフを得た。 In any of the experimental examples, 660 vials into which the material to be dried was dispensed were loaded into the drying cabinet DC, and the material to be dried was freeze-dried according to the procedure stored in the sequencer PLC. Of the 660 vials loaded in the drying cabinet DC, one vial loaded in the center of the shelf B and one other vial loaded near the wall of the drying cabinet DC. For the vial and another one of the vials inserted between them, the temperature sensor is inserted, and the product temperature of the material to be dried dispensed in the vial (product temperature 1, product temperature 2). The product temperature 3) was measured. The primary drying of the material to be dried includes pre-freezing the solution at −45 ° C. for 2 hours, setting the shelf temperature Th to −20 ° C., and setting the variable leak valve and the leak control valve LV provided in the vacuum control circuit f. It was performed by controlling the degree of vacuum Pdc in the drying cabinet DC to 6.7 Pa by introducing external air into the freeze dryer M2 via the via. In secondary drying, the shelf temperature is raised from -20 ° C to 30 ° C in 1 hour, the degree of vacuum Pdc in the drying cabinet DC is controlled from 6.7 Pa to 1 Pa in 1 hour, and then the vacuum changes according to the course. I let you. 15 and FIG. 16, the degree of vacuum Pdc in the drying chamber DC, the degree of vacuum Pct in the cold trap CT, and the shelf temperature Th are set at intervals of 1 minute in the experimental example of FIGS. Then, the sublimation speed Qm (dehumidification speed Qm ′), the average bottom part temperature Tb, and the average sublimation surface temperature Ts were calculated. And each detected value and each calculated value were recorded on the recorder e, and the graph shown in FIGS. 15-18 was obtained.
図15と図17の対比及び図16と図18の対比から明らかなように、リーク弁方式の凍結乾燥機M2を用いた場合にも、流路開度真空制御方式の凍結乾燥機M1を用いた場合と同様の効果が認められる。 As is clear from the comparison between FIG. 15 and FIG. 17 and the comparison between FIG. 16 and FIG. 18, the freeze-dryer M1 of the channel opening vacuum control system is used even when the freeze-dryer M2 of the leak valve system is used. The same effect is observed as if
即ち、図17及び図18に示すように、従来法により算出された被乾燥材料の平均昇華面温度Tsは、温度センサにより検出された品温1、品温2、品温3と近似しているものの、従来法では、容器Eを含む被乾燥材料の顕熱を考慮していないため、図18から明らかなように、一次乾燥工程の初期に行われる棚温の昇温期間中に算出される平均底部品温が実測品温よりも高くなる傾向となる。このため、図17に示すように、一次乾燥工程において算出される平均底部品温が実測品温よりも早く棚温に達するので、被乾燥材料の温度変化に平均底部品温を追従させることが難しくなり、一次乾燥工程の後期においては、算出される平均底部品温が実測品温から乖離しやすくなる。また、従来法では、被乾燥材料の顕熱を考慮していないため、乾燥庫DC内の真空度Pdc、コールドトラップ真空度Pct及び棚温Thの検出時に計測値のぶれが少しでも生じると、算出した昇華速度Qmにぶれが生じる。このため、図17に示すように、算出した昇華面温度Tsが不自然に変動する。なお、二次乾燥工程においてもこれと同様の傾向となる。 That is, as shown in FIGS. 17 and 18, the average sublimation surface temperature Ts of the material to be dried calculated by the conventional method approximates the product temperature 1, the product temperature 2, and the product temperature 3 detected by the temperature sensor. However, in the conventional method, since the sensible heat of the material to be dried including the container E is not taken into consideration, as is apparent from FIG. 18, it is calculated during the shelf temperature raising period performed at the initial stage of the primary drying process. The average bottom part temperature tends to be higher than the actually measured part temperature. For this reason, as shown in FIG. 17, since the average bottom part temperature calculated in the primary drying step reaches the shelf temperature earlier than the actually measured part temperature, the average bottom part temperature can follow the temperature change of the material to be dried. In the latter stage of the primary drying process, the calculated average bottom part temperature tends to deviate from the actually measured part temperature. Further, in the conventional method, since the sensible heat of the material to be dried is not taken into consideration, if the measurement value fluctuates at the time of detecting the vacuum degree Pdc, the cold trap vacuum degree Pct and the shelf temperature Th in the drying chamber DC, The calculated sublimation speed Qm is blurred. For this reason, as shown in FIG. 17, the calculated sublimation surface temperature Ts fluctuates unnaturally. Note that the same tendency is observed in the secondary drying step.
これに対して、本発明法では、一次乾燥工程及び二次乾燥工程における平均底部品温Tbの算出に際して、容器Eを含む被乾燥材料の顕熱及び潜熱を考慮するので、図16から明らかなように、一次乾燥工程の初期において算出される平均底部品温が実測品温よりも高くなる傾向がなくなる。また、一次乾燥工程において算出される平均底部品温が実測品温よりも早く棚温に達しないので、図15と図17との対比から明らかなように、一次乾燥工程の後期においても、算出品温と実測品温との差が小さくなっている。本発明法は、被乾燥材料の顕熱を考慮しているため、図15に示すように、算出した昇華速度Qmにぶれが生じても、算出した昇華面温度Tsが滑らかに変化している。また、本発明法では、昇華速度Qmの算出に際して、数秒間にわたって検出された複数の乾燥庫真空度の平均値Pdcとコールドトラップ真空度の平均値Pctを適用するので、算出した昇華速度Qmのぶれが小さくなっている。さらに、一次乾燥工程における平均底部品温Tbの算出には一次乾燥時の乾燥庫壁温度Tw1を適用するので、この点からも算出品温と実測品温との差が小さくできる。加えて、本発明法は、1分間隔で一次乾燥工程における被乾燥材料の平均昇華面温度Ts、平均底部品温Tb及び昇華速度Qmを算出するので、実測品温に対する算出品温の追従性を高めることができる。なお、二次乾燥工程においてもこれと同様の傾向となる。 In contrast, in the method of the present invention, when calculating the average bottom part temperature Tb in the primary drying step and the secondary drying step, the sensible heat and latent heat of the material to be dried including the container E are taken into account. Thus, the average bottom part temperature calculated in the initial stage of the primary drying process does not tend to be higher than the actually measured part temperature. Further, since the average bottom part temperature calculated in the primary drying process does not reach the shelf temperature earlier than the actually measured product temperature, as is clear from the comparison between FIG. 15 and FIG. The difference between the exhibition temperature and the measured product temperature is small. Since the method of the present invention takes into consideration the sensible heat of the material to be dried, as shown in FIG. 15, the calculated sublimation surface temperature Ts smoothly changes even when the calculated sublimation speed Qm is fluctuated. . Further, in the method of the present invention, when calculating the sublimation speed Qm, the average value Pdc of a plurality of drying chamber vacuum degrees and the average value Pct of the cold trap vacuum degree detected over a few seconds are applied, so the calculated sublimation speed Qm The blur is getting smaller. Furthermore, since the drying warehouse wall temperature Tw1 at the time of primary drying is applied to the calculation of the average bottom part temperature Tb in the primary drying step, the difference between the calculated product temperature and the actually measured product temperature can be reduced. In addition, the method of the present invention calculates the average sublimation surface temperature Ts, the average bottom part temperature Tb, and the sublimation speed Qm of the material to be dried in the primary drying step at intervals of 1 minute. Can be increased. Note that the same tendency is observed in the secondary drying step.
このように、本発明法によると、算出された被乾燥材料の昇華面温度Tsを温度センサにより検出された品温1、品温2、品温3によく一致させることができるので、算出された昇華面温度Tsを監視することにより、凍結乾燥機M2の乾燥庫DC内に装入された全てのバイアルに分注された被乾燥材料につき、一次乾燥工程及び二次乾燥工程における昇華面温度を非接触で監視できる。また、一次乾燥工程及び二次乾燥工程における被乾燥材料のコラプスを完全に防止できる。 Thus, according to the method of the present invention, the calculated sublimation surface temperature Ts of the material to be dried can be made to coincide well with the product temperature 1, the product temperature 2, and the product temperature 3 detected by the temperature sensor. By monitoring the sublimation surface temperature Ts, the sublimation surface temperature in the primary drying process and the secondary drying process is applied to the material to be dried dispensed into all the vials charged in the drying chamber DC of the freeze dryer M2. Can be monitored without contact. Moreover, the collapse of the material to be dried in the primary drying step and the secondary drying step can be completely prevented.
本発明は、食品や薬品等の凍結乾燥に用いられる凍結乾燥機に利用できる。 The present invention can be used for a freeze dryer used for freeze drying of foods, medicines and the like.
B 棚板
T トレイ枠
C 開度調節器
CT コールドトラップ
CR 制御盤
DC 乾燥庫
E 容器
M1、M2 凍結乾燥機
MV 主弁
P 真空ポンプ
PLC シーケンサ
S 温度センサ
V 引口弁
a 主管
b 真空計
ct トラップコイル(プレート)
e 記録計
f 真空制御回路
g 角度センサ
B Shelf plate T Tray frame C Opening controller CT Cold trap CR Control panel DC Dryer E Container M1, M2 Freeze dryer MV Main valve P Vacuum pump PLC Sequencer S Temperature sensor V Inlet valve a Main pipe b Vacuum gauge ct Trap Coil (plate)
e Recorder f Vacuum control circuit g Angle sensor
Claims (6)
前記制御装置(PLC)には、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の駆動を制御して、前記被乾燥材料の一次乾燥工程及び二次乾燥工程を実行する制御プログラムと、所要の計算プログラム及び計算式と、前記計算プログラムを実行する時間間隔と、前記容器を含む前記被乾燥材料の熱容量に関するデータ並びに一次乾燥工程における前記乾燥庫(DC)の壁温度及び二次乾燥工程における前記乾燥庫(DC)の壁温度を含む定数データを記憶しておき、
前記一次乾燥工程では、前記乾燥庫(DC)内の真空度(Pdc)を、前記真空度調節手段を操作することなく成り行きに任せて変化させ、前記制御装置(PLC)に記憶された前記時間間隔ごとに、前記真空検出手段及び前記棚温検出手段の測定データ並びに前記一次乾燥工程における乾燥庫(DC)の壁温度を含む前記制御装置(PLC)の定数データと前記制御装置(PLC)に記憶された前記計算式とから、前記被乾燥材料の昇華速度(Qm)と前記被乾燥材料の昇華潜熱及び前記容器を含む前記被乾燥材料の顕熱を考慮した平均底部品温(Tb)と平均昇華面温度(Ts)をこの順に求めて、これらの各計算データを記録手段(e)に記録し、
前記二次乾燥工程では、前記乾燥庫(DC)内の真空度(Pdc)を、前記真空度調節手段を操作することなく成り行きに任せて変化させ、前記制御装置(PLC)に記憶された前記時間間隔ごとに、前記真空検出手段及び前記棚温検出手段の測定データ並びに前記二次乾燥工程における乾燥庫(DC)の壁温度を含む前記制御装置(PLC)の定数データと前記制御装置(PLC)に記憶された前記計算式とから、前記被乾燥材料の脱湿速度(Qm´)と前記被乾燥材料の昇華潜熱及び前記容器を含む前記被乾燥材料の顕熱を考慮した平均底部品温(Tb)と平均品温(Tm)をこの順に求めて、これらの各計算データを記録手段(e)に記録することを特徴とする、凍結乾燥機に適用される被乾燥材料の乾燥状態監視方法。 A drying chamber (DC) for charging the material to be dried, a cold trap (CT) for condensing and collecting water vapor generated from the material to be dried charged in the drying chamber (DC), and the drying chamber (DC) ) And the cold trap (CT), a main pipe (a), a main valve (MV) for opening and closing the main pipe (a), and a vacuum degree adjusting means for adjusting the degree of vacuum in the drying chamber (DC) And a vacuum detection means for detecting the absolute pressure in the drying cabinet (DC) and the absolute pressure in the cold trap (CT), and installed in the drying cabinet (DC) to dispense the material to be dried. A shelf temperature detecting means for detecting the temperature of the shelf (B) on which the container is placed, and a controller (PLC) for automatically controlling the operation of the drying chamber (DC), the cold trap (CT) and the vacuum degree adjusting means. )
The controller (PLC) controls the driving of the drying cabinet (DC), the cold trap (CT), and the vacuum degree adjusting means, and executes the primary drying process and the secondary drying process of the material to be dried. Control program, required calculation program and formula, time interval for executing the calculation program, data on heat capacity of the material to be dried including the container, and wall temperature of the drying chamber (DC) in the primary drying step And constant data including the wall temperature of the drying cabinet (DC) in the secondary drying step,
In the primary drying step, the degree of vacuum (Pdc) in the drying cabinet (DC) is changed without any operation of the vacuum degree adjusting means, and the time stored in the control device (PLC) is changed. For each interval, the measurement data of the vacuum detection means and the shelf temperature detection means and the constant data of the control device (PLC) including the wall temperature of the drying cabinet (DC) in the primary drying step and the control device (PLC) From the stored calculation formula, the sublimation rate (Qm) of the material to be dried, the sublimation latent heat of the material to be dried and the average bottom part temperature (Tb) considering the sensible heat of the material to be dried including the container, The average sublimation surface temperature (Ts) is obtained in this order, and each of these calculation data is recorded in the recording means (e),
In the secondary drying step, the degree of vacuum (Pdc) in the drying cabinet (DC) is changed without depending on the degree of vacuum adjusting means, and stored in the controller (PLC). Constant data of the controller (PLC) including the measurement data of the vacuum detecting means and the shelf temperature detecting means and the wall temperature of the drying cabinet (DC) in the secondary drying step and the control device (PLC) for each time interval The average bottom part temperature in consideration of the dehumidification rate (Qm ′) of the material to be dried, the sublimation latent heat of the material to be dried and the sensible heat of the material to be dried including the container (Tb) and average product temperature (Tm) are obtained in this order, and each calculation data is recorded in the recording means (e), and the drying state of the material to be dried applied to the freeze dryer is characterized. Method.
前記制御装置(PLC)には、前記乾燥庫(DC)、前記コールドトラップ(CT)及び前記真空度調節手段の駆動を制御して、前記被乾燥材料の一次乾燥工程及び二次乾燥工程を実行する制御プログラムと、所要の計算プログラム及び計算式と、前記計算プログラムを実行する時間間隔と、前記容器を含む前記被乾燥材料の熱容量に関するデータ並びに一次乾燥工程における前記乾燥庫(DC)の壁温度及び二次乾燥工程における前記乾燥庫(DC)の壁温度を含む定数データを記憶しておき、
前記一次乾燥工程では、前記乾燥庫(DC)内の真空度(Pdc)を、前記真空度調節手段を操作することなく成り行きに任せて変化させ、前記制御装置(PLC)に記憶された前記時間間隔ごとに、前記真空検出手段及び前記棚温検出手段の測定データ並びに前記一次乾燥工程における乾燥庫(DC)の壁温度を含む前記制御装置(PLC)の定数データと前記制御装置(PLC)に記憶された前記計算式とから、前記被乾燥材料の昇華速度(Qm)と前記被乾燥材料の昇華潜熱及び前記容器を含む前記被乾燥材料の顕熱を考慮した平均底部品温(Tb)と平均昇華面温度(Ts)をこの順に求めて、これらの各計算データを記録手段(e)に記録し、
前記二次乾燥工程では、前記乾燥庫(DC)内の真空度(Pdc)を、前記真空度調節手段を操作することなく成り行きに任せて変化させ、前記制御装置(PLC)に記憶された前記時間間隔ごとに、前記真空検出手段及び前記棚温検出手段の測定データ並びに前記二次乾燥工程における乾燥庫(DC)の壁温度を含む前記制御装置(PLC)の定数データと前記制御装置(PLC)に記憶された前記計算式とから、前記被乾燥材料の脱湿速度(Qm´)と前記被乾燥材料の昇華潜熱及び前記容器を含む前記被乾燥材料の顕熱を考慮した平均底部品温(Tb)と平均品温(Tm)をこの順に求めて、これらの各計算データを記録手段(e)に記録することを特徴とする、凍結乾燥機に適用される被乾燥材料の乾燥状態監視装置。 A drying chamber (DC) for charging the material to be dried, a cold trap (CT) for condensing and collecting water vapor generated from the material to be dried charged in the drying chamber (DC), and the drying chamber (DC) ) And the cold trap (CT), a main pipe (a), a main valve (MV) for opening and closing the main pipe (a), and a vacuum degree adjusting means for adjusting the degree of vacuum in the drying chamber (DC) And a vacuum detection means for detecting the absolute pressure in the drying cabinet (DC) and the absolute pressure in the cold trap (CT), and installed in the drying cabinet (DC) to dispense the material to be dried. A shelf temperature detecting means for detecting the temperature of the shelf (B) on which the container is placed, and a controller (PLC) for automatically controlling the operation of the drying chamber (DC), the cold trap (CT) and the vacuum degree adjusting means. )
The controller (PLC) controls the driving of the drying cabinet (DC), the cold trap (CT), and the vacuum degree adjusting means, and executes the primary drying process and the secondary drying process of the material to be dried. Control program, required calculation program and formula, time interval for executing the calculation program, data on heat capacity of the material to be dried including the container, and wall temperature of the drying chamber (DC) in the primary drying step And constant data including the wall temperature of the drying cabinet (DC) in the secondary drying step,
In the primary drying step, the degree of vacuum (Pdc) in the drying cabinet (DC) is changed without any operation of the vacuum degree adjusting means, and the time stored in the control device (PLC) is changed. For each interval, the measurement data of the vacuum detection means and the shelf temperature detection means and the constant data of the control device (PLC) including the wall temperature of the drying cabinet (DC) in the primary drying step and the control device (PLC) From the stored calculation formula, the sublimation rate (Qm) of the material to be dried, the sublimation latent heat of the material to be dried and the average bottom part temperature (Tb) considering the sensible heat of the material to be dried including the container, The average sublimation surface temperature (Ts) is obtained in this order, and each of these calculation data is recorded in the recording means (e),
In the secondary drying step, the degree of vacuum (Pdc) in the drying cabinet (DC) is changed without depending on the degree of vacuum adjusting means, and stored in the controller (PLC). Constant data of the controller (PLC) including the measurement data of the vacuum detecting means and the shelf temperature detecting means and the wall temperature of the drying cabinet (DC) in the secondary drying step and the control device (PLC) for each time interval The average bottom part temperature in consideration of the dehumidification rate (Qm ′) of the material to be dried, the sublimation latent heat of the material to be dried and the sensible heat of the material to be dried including the container (Tb) and average product temperature (Tm) are obtained in this order, and each calculation data is recorded in the recording means (e), and the drying state of the material to be dried applied to the freeze dryer is characterized. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014264638A JP6099622B2 (en) | 2014-12-26 | 2014-12-26 | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014264638A JP6099622B2 (en) | 2014-12-26 | 2014-12-26 | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016125682A JP2016125682A (en) | 2016-07-11 |
JP6099622B2 true JP6099622B2 (en) | 2017-03-22 |
Family
ID=56359213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014264638A Active JP6099622B2 (en) | 2014-12-26 | 2014-12-26 | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6099622B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7390176B2 (en) * | 2019-12-06 | 2023-12-01 | 株式会社アルバック | Vacuum drying equipment, how to adjust the temperature of shelves in vacuum drying equipment |
CN113331405A (en) * | 2021-05-31 | 2021-09-03 | 深圳杰瑞丝实业有限公司 | Convenient preparation process of freeze-dried nutritional and healthy cubilose |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05272867A (en) * | 1992-03-26 | 1993-10-22 | Okawara Mfg Co Ltd | Method and mechanism of detecting state of drying in vacuum drier |
US6971187B1 (en) * | 2002-07-18 | 2005-12-06 | University Of Connecticut | Automated process control using manometric temperature measurement |
EP1903291A1 (en) * | 2006-09-19 | 2008-03-26 | Ima-Telstar S.L. | Method and system for controlling a freeze drying process |
JP5093786B2 (en) * | 2010-06-02 | 2012-12-12 | 共和真空技術株式会社 | Method and apparatus for measuring sublimation surface temperature and dry layer water vapor transfer resistance of material to be dried in freeze drying apparatus |
EP2674712B1 (en) * | 2011-02-08 | 2020-08-19 | Kyowa Vacuum Engineering, Ltd. | Calculation method and calculation device for sublimation interface temperature, bottom part temperature, and sublimation rate of material to be dried in freeze-drying device |
JP6099463B2 (en) * | 2013-04-05 | 2017-03-22 | 共和真空技術株式会社 | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer |
-
2014
- 2014-12-26 JP JP2014264638A patent/JP6099622B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016125682A (en) | 2016-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5859495B2 (en) | Method for monitoring freeze-dried state of material to be dried applied to freeze dryer and freeze-dried state monitoring device thereof | |
JP5876424B2 (en) | Method and apparatus for calculating sublimation surface temperature, bottom part temperature and sublimation speed of material to be dried applied to freeze-drying apparatus | |
CN101529189B (en) | Method and system for controlling a freeze drying process | |
JP6153664B2 (en) | Using surface heat flux measurements to monitor and control freeze-drying processes | |
Bosca et al. | Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature | |
US9170049B2 (en) | Method for monitoring primary drying of a freeze-drying process | |
Fissore et al. | Applying quality-by-design to develop a coffee freeze-drying process | |
US9791174B2 (en) | Method for controlling an expansion device of a vapor compression system during start-up using rates of change of an evaporator inlet and outlet temperature | |
JP6099622B2 (en) | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer | |
Pisano | Automatic control of a freeze-drying process: Detection of the end point of primary drying | |
JP5093786B2 (en) | Method and apparatus for measuring sublimation surface temperature and dry layer water vapor transfer resistance of material to be dried in freeze drying apparatus | |
JP6099463B2 (en) | Drying state monitoring device and drying state monitoring method of material to be dried applied to freeze dryer | |
US4615178A (en) | Apparatus and method for controlling a vacuum cooler | |
JP5847919B1 (en) | Freeze-drying method for freeze-drying equipment | |
Pisano et al. | A new method based on the regression of step response data for monitoring a freeze-drying cycle | |
Vollrath et al. | Evaluation of heat flux measurement as a new process analytical technology monitoring tool in freeze drying | |
JP2015102317A (en) | Dry state monitoring device of dried material applied to freeze dryer, and dry state monitoring method | |
US8434240B2 (en) | Freeze drying method | |
Bosca et al. | Monitoring of a Pharmaceuticals Freeze‐Drying Process by Model‐Based Process Analytical Technology Tools | |
Pisano et al. | Freeze-drying monitoring via Pressure Rise Test: The role of the pressure sensor dynamics | |
EP4105585B1 (en) | Freeze-drying method and apparatus | |
Sane et al. | Considerations for successful lyophilization process scale-up, technology transfer, and routine production | |
JP7390176B2 (en) | Vacuum drying equipment, how to adjust the temperature of shelves in vacuum drying equipment | |
Fissore | Process analytical technology (PAT) in freeze drying | |
JP2021096030A (en) | Vacuum dryer, method of controlling temperature of shelf in vacuum dryer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6099622 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |