[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014193959A - Plant fiber-containing resin composition and production method thereof - Google Patents

Plant fiber-containing resin composition and production method thereof Download PDF

Info

Publication number
JP2014193959A
JP2014193959A JP2013070448A JP2013070448A JP2014193959A JP 2014193959 A JP2014193959 A JP 2014193959A JP 2013070448 A JP2013070448 A JP 2013070448A JP 2013070448 A JP2013070448 A JP 2013070448A JP 2014193959 A JP2014193959 A JP 2014193959A
Authority
JP
Japan
Prior art keywords
plant fiber
fiber
resin composition
composition
containing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013070448A
Other languages
Japanese (ja)
Inventor
Yasutomo Noishiki
泰友 野一色
Yusuke Kohara
佑介 小原
Katsuto Suzuki
勝人 鈴木
Kazunari Abe
一成 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Japan Polyethylene Corp
Oji Holdings Corp
Original Assignee
Mitsubishi Chemical Corp
Japan Polyethylene Corp
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Japan Polyethylene Corp, Oji Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013070448A priority Critical patent/JP2014193959A/en
Publication of JP2014193959A publication Critical patent/JP2014193959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a plant fiber-containing resin composition which is simple and efficient and has reduced environmental load.SOLUTION: A method of producing a plant fiber-containing resin composition is characterized by melt-kneading A) a thermoplastic resin, B) a plant fiber composition and C) a plant fiber modifier to form a composite material. The plant fibers in B) the plant fiber composition meet the conditions: 1 the average fiber length being 0.1-0.7 mm and 2 the average fiber width being 2-15,000 nm.

Description

本発明は、セルロースナノファイバー(微細繊維状セルロース)と熱可塑性樹脂とを含有する樹脂組成物及びその樹脂組成物を製造する方法に関する。より詳しくは、セルロースナノファイバーを熱可塑性樹脂中に高度に分散させた樹脂組成物及びその製造方法に係わるものである。   The present invention relates to a resin composition containing cellulose nanofibers (fine fibrous cellulose) and a thermoplastic resin, and a method for producing the resin composition. More specifically, the present invention relates to a resin composition in which cellulose nanofibers are highly dispersed in a thermoplastic resin and a method for producing the same.

熱可塑性樹脂の使用用途拡大を目的として、各種繊維状の充填材を熱可塑性樹脂に複合化させる手法が広く行われている。その例として、熱可塑性樹脂にガラス繊維、炭素繊維を含有させた繊維含有樹脂組成物があり、各種繊維によって強化された、軽量かつ高い強度を持った熱可塑性樹脂は、自動車・住宅・家電部材など幅広い分野で使用されている。しかしながら、炭素繊維は燃え難く、またガラス繊維は不燃性の為、サーマルリサイクルに不向きであるという欠点を有していた。また炭素繊維は価格が高い為、汎用的な用途には適応しにくいという難点もあった。   For the purpose of expanding the use application of thermoplastic resins, a method of combining various fibrous fillers with thermoplastic resins is widely used. As an example, there is a fiber-containing resin composition in which glass fiber and carbon fiber are contained in a thermoplastic resin. A lightweight, high-strength thermoplastic resin reinforced by various fibers is used for automobiles, houses, and household appliances. It is used in a wide range of fields. However, carbon fibers are difficult to burn, and glass fibers are non-flammable and thus have the disadvantage of being unsuitable for thermal recycling. In addition, since carbon fiber is expensive, there is a problem that it is difficult to adapt to general-purpose use.

他の繊維状充填材として、ポリエステル繊維、ポリアミド繊維がある。これら繊維によって強化された熱可塑性樹脂組成物は軽量であり、サーマルリサイクル性にも優れるものの、機械的強度補強効果が十分でないという欠点がある。また、さらに別の繊維状充填物としてアラミド繊維があり、これによって強化された熱可塑性樹脂は、軽量かつ、機械的強度補強効果が高く、さらにサーマルリサイクルにも適しているが、加工時の流動性が低く、耐衝撃性等に欠点がある。   Other fibrous fillers include polyester fibers and polyamide fibers. The thermoplastic resin composition reinforced with these fibers is light in weight and excellent in thermal recyclability, but has a drawback that the mechanical strength reinforcing effect is not sufficient. Further, as another fibrous filler, there is an aramid fiber, and a thermoplastic resin reinforced by this is lightweight and has a high mechanical strength reinforcing effect and is also suitable for thermal recycling. It has low defects and has drawbacks such as impact resistance.

市場からは、高い機械的強度補強効果をもちつつ軽量であり、サーマルリサイクル性に優れ、さらには安価に製造可能な繊維状充填材が求められている。それら特徴を持ち合わせた繊維状充填材として、植物繊維から得られるセルロースファイバーが近年注目され、研究されている。セルロースファイバーの原料は植物の為、資源埋蔵量は膨大であり、その価格は比較的安価な上、サーマルリサイクルにも優れている。
さらに近年、物質をナノメートルサイズの大きさにすることによりバルクレベルとは異なる物性を得ることを目的としたナノテクノロジーが注目されており、セルロース繊維についても検討されている。例えば、紙に使用されるセルロース繊維の幅は10〜50μmのものがほとんどであるが、このセルロース繊維を1/100〜1/1000まで微細化(ミクロフィブリル化)したセルロースナノファイバーは、通常の紙に使用されているセルロースに比べ、同質量において繊維の本数が飛躍的に多くなるため、強度向上や寸法安定性が向上することが見出されている。これは、本来のセルロース繊維の持つ高弾性率、低熱膨張率の特徴が充分に発揮されたことによると考えられる。このように微細繊維状セルロースの特徴を活用した樹脂への利用が期待される。
しかしながら、セルロース繊維はその高い親水性が故に、熱可塑性樹脂、特に疎水性の高いオレフィン系樹脂への分散が難しい。また、ナノファイバー状に微細化されたセルロースを用いていたとしても、樹脂と混合する際にセルロース繊維同士が再凝集を起こし、粗大なセルロース凝集物が発生してしまう事が、機械物性の向上や熱膨張率の低下といったセルロース繊維を混合する事によって得られる優位な点の発現を抑えてしまうばかりか、耐衝撃性の低下や透明性の低下といった別の欠点までを付与してしまうという問題点がある。
これらセルロースナノファイバーの複合化による優位点の享受と、欠点の解消を目的として、さまざまな改良がなされてきた。
The market demands a fibrous filler that has a high mechanical strength reinforcing effect, is lightweight, has excellent thermal recyclability, and can be manufactured at low cost. In recent years, cellulose fibers obtained from plant fibers have attracted attention and have been studied as fibrous fillers having these characteristics. Since the raw material of cellulose fiber is a plant, its resource reserves are enormous, its price is relatively low, and it is excellent in thermal recycling.
Furthermore, in recent years, nanotechnology aimed at obtaining physical properties different from the bulk level by making the material a nanometer size has attracted attention, and cellulose fibers have also been studied. For example, the width of cellulose fibers used in paper is mostly 10 to 50 μm, but cellulose nanofibers obtained by refining cellulose fibers to 1/100 to 1/1000 (microfibrils) It has been found that strength and dimensional stability are improved because the number of fibers is dramatically increased at the same mass compared to cellulose used in paper. This is presumably because the characteristics of the high elastic modulus and low thermal expansion coefficient of the original cellulose fiber were sufficiently exhibited. Thus, utilization to the resin which utilized the characteristic of the fine fibrous cellulose is anticipated.
However, due to its high hydrophilicity, cellulose fibers are difficult to disperse in thermoplastic resins, particularly highly hydrophobic olefin resins. In addition, even if cellulose refined into nanofibers is used, cellulose fibers reaggregate when mixed with resin, and coarse cellulose aggregates are generated, which improves mechanical properties. In addition to suppressing the development of advantages obtained by mixing cellulose fibers such as lowering of the coefficient of thermal expansion and thermal expansion coefficient, it also gives other disadvantages such as reduced impact resistance and reduced transparency There is a point.
Various improvements have been made with the aim of enjoying the advantages of compounding these cellulose nanofibers and eliminating the drawbacks.

たとえば、特許文献1においては、セルロースナノファイバーを樹脂中に分散させる方法ではなく、微細セルロース繊維を不織布とし、これをエポキシ樹脂やポリカーネート樹脂に含浸後、乾燥させたり、脱泡後冷却したりすることにより、樹脂と複合化する方法が開示されている。しかしながら、この技術をオレフィン系樹脂等との複合化に応用しようと考えても、オレフィン系樹脂を溶媒に溶解したり、溶融体としてそれをセルロース不織布に含浸することは、多大な熱エネルギーを必要とするため工業的に困難である。また、高温に加熱して溶媒に溶解したり、溶融体にしたとしても通常これらは実質的にセルロース繊維には含浸しないという問題がある。
また、特許文献2〜4においては、セルロースを微細化後又は微細化前に、予め種々の繊維修飾剤によって表面改質を行ない、その後に熱可塑性樹脂と混合する方法が開示されているが、いずれの方法もセルロースの表面改質処理のための溶媒置換や、前処理といった特殊な工程を経る必要があり、工程が煩雑になり製造コストが増大するという問題がある。
For example, in Patent Document 1, it is not a method of dispersing cellulose nanofibers in a resin, but fine cellulose fibers are made into a nonwoven fabric, impregnated with epoxy resin or polycarbonate resin, and then dried or cooled after defoaming. Thus, a method of compounding with a resin is disclosed. However, even if we intend to apply this technology to compounding with olefinic resins, it takes a lot of heat energy to dissolve the olefinic resin in a solvent or impregnate it into a cellulose nonwoven fabric as a melt. Therefore, it is difficult industrially. Further, even when heated to a high temperature and dissolved in a solvent or melted, there is a problem that they are not substantially impregnated into cellulose fibers.
Further, in Patent Documents 2 to 4, a method of performing surface modification with various fiber modifiers in advance after the cellulose is refined or before being refined and then mixed with a thermoplastic resin is disclosed. Both methods require a special process such as solvent replacement for the surface modification treatment of cellulose and pretreatment, and there is a problem that the process becomes complicated and the production cost increases.

特許文献2では、セルロース繊維にアセチル基を導入するための、表面改質処理を予め行なうことで、酢酸セルロースとの複合フィルムの弾性率が向上することが開示されている。なお、特許文献2に開示されている酢酸セルロースはもともとセルロース繊維と親和性が高いものであり、この技術をセルロースとの親和性が低い樹脂に応用することは困難である   Patent Document 2 discloses that the elastic modulus of a composite film with cellulose acetate is improved by performing in advance a surface modification treatment for introducing an acetyl group into cellulose fibers. In addition, the cellulose acetate currently disclosed by patent document 2 is a thing with high affinity with a cellulose fiber from the first, and it is difficult to apply this technique to resin with low affinity with a cellulose.

特許文献3には、セルロースナノファイバーのヒドロキシル基に無水多塩基酸を反応させることによりセルロース分子中にカルボン酸を導入し、カルボン酸の導入されたセルロース繊維をさらに樹脂と混合する事によって製造された、植物繊維含有樹脂組成物が開示されている。特許文献3に開示された方法によると、カルボン酸をセルロースナノファイバーに導入する事により、カルボン酸と反応する事ができる官能基を持った樹脂(例えばエポキシ樹脂)と化学的な相互作用を持つことが可能となり、セルロースナノファイバーの樹脂中への分散性が高まる。
しかし、セルロースナノファイバーのヒドロキシル基に無水多塩基酸を反応させる工程において、セルロースナノファイバーを非プロトン性溶媒やケトン系溶媒等に分散させる必要があり、製造コストが高くなり、かつ、工程が煩雑になるばかりではなく、それら溶媒が環境中に排出されることによる環境負荷が問題となる。
In Patent Document 3, it is produced by introducing a carboxylic acid into a cellulose molecule by reacting a hydroxyl group of cellulose nanofiber with a polybasic anhydride, and further mixing the cellulose fiber into which the carboxylic acid is introduced with a resin. Further, a plant fiber-containing resin composition is disclosed. According to the method disclosed in Patent Document 3, by introducing carboxylic acid into cellulose nanofiber, it has a chemical interaction with a resin having a functional group capable of reacting with carboxylic acid (for example, epoxy resin). This makes it possible to increase the dispersibility of the cellulose nanofibers in the resin.
However, it is necessary to disperse cellulose nanofibers in an aprotic solvent or a ketone-based solvent in the step of reacting the hydroxyl group of cellulose nanofiber with an anhydrous polybasic acid, which increases the production cost and the process is complicated. In addition, the environmental load due to the discharge of these solvents into the environment becomes a problem.

特許文献4には、セルロースのヒドロキシル基に無水多塩基酸を反応させる等の方法によりセルロース分子中にカルボン酸を導入し、カルボン酸の導入されたセルロース繊維を微細繊維化した後に、さらに樹脂と混合する事を特徴とする植物繊維含有樹脂組成物の複合化方法が開示されている。しかし、特許文献4に開示された方法によって製造する事が可能な植物繊維含有樹脂組成物は、それに含有せしめるセルロースナノ繊維の原料に多塩基酸半エステル化セルロースを反応せしめる工程と、該多塩基酸半エステル化セルロースを微細繊維化する工程、微細化した多塩基酸半エステル化セルロースに膨潤剤を加えてセルローススラリーとする工程、および多塩基酸半エステル化セルロースを樹脂に混合せしめる工程とが必要となり、煩雑な工程にならざるをえず、それによる製造コスト増にも繋がる。
一方、古紙の粉砕物と樹脂原料を混合する紙含有樹脂組成物の製造方法として、特許文献5には、漂白クラフトパルプからなる古紙の粉砕物を無水マレイン酸でエステル化し、その後酸化マグネシウムでパルプの熱分解によって生じる有機酸を中和した後、ポリプロピレンと溶融混練することによって、ポリプロピレン中の紙の分散性を向上させ、樹脂組成物の流動性を高められる事が開示されている。
しかし特許文献5においては、原料として紙の粉砕物を用い、しかも紙の粉砕物の含有量が樹脂組成物全体の50質量%を超えるような高充填の場合が示されており、この場合、本発明のように、セルロース繊維をミクロフィブリル化する事によって得られる機械的強度補強効果は発現せず、効果の高い繊維状充填物として使用する事は困難である。また、特許文献5の主たる目的は、樹脂組成物中における紙の配合率が高い場合においても、高い流動性と成形性を備えた樹脂組成物を提供する事にあり、ミクロフィブリル化セルロースの様な効果の高い繊維状充填物として使用する場合については全く示唆も開示もされていない。
In Patent Document 4, a carboxylic acid is introduced into cellulose molecules by a method such as reacting a hydroxyl group of cellulose with a polybasic anhydride, and cellulose fibers into which the carboxylic acid has been introduced are made into fine fibers, and further resin and A method for compounding a plant fiber-containing resin composition characterized by mixing is disclosed. However, the plant fiber-containing resin composition that can be produced by the method disclosed in Patent Document 4 includes a step of reacting a polybasic acid half-esterified cellulose with a raw material of cellulose nanofibers contained therein, and the polybasic A step of microfibrating acid half-esterified cellulose, a step of adding a swelling agent to refined polybasic acid half-esterified cellulose to form a cellulose slurry, and a step of mixing polybasic acid half-esterified cellulose with resin This requires a complicated process, which leads to an increase in manufacturing costs.
On the other hand, as a method for producing a paper-containing resin composition in which a waste paper pulverized product and a resin raw material are mixed, Patent Document 5 discloses that a waste paper pulverized product made of bleached kraft pulp is esterified with maleic anhydride and then pulped with magnesium oxide. It is disclosed that, after neutralizing the organic acid generated by thermal decomposition of the resin, it is melt kneaded with polypropylene to improve the dispersibility of the paper in the polypropylene and improve the fluidity of the resin composition.
However, Patent Document 5 shows a case in which a pulverized material of paper is used as a raw material, and the content of the pulverized material of paper exceeds 50% by mass of the entire resin composition, and in this case, As in the present invention, the mechanical strength reinforcing effect obtained by microfibrillation of cellulose fibers does not appear, and it is difficult to use as a highly effective fibrous filler. The main purpose of Patent Document 5 is to provide a resin composition having high fluidity and moldability even when the blending ratio of paper in the resin composition is high. There is no suggestion or disclosure about the case of using as a highly effective fibrous filler.

特開2006−316253号公報JP 2006-316253 A 特表平11−513425号公報Japanese National Patent Publication No. 11-513425 特開2012−229350号公報JP 2012-229350 A 特開2009−293167号公報JP 2009-293167 A 特許第4994249号公報Japanese Patent No. 4994249

本発明は、背景技術として前述した従来の各問題点に鑑み、それぞれの問題点を内包する従来のいずれの方法にもよらない簡便かつ効率的、さらに環境に対する負荷が小さい方法で、植物繊維含有樹脂組成物の製造方法、および植物繊維の分散性が高く、かつ粗大な植物繊維凝集物を含まない植物繊維含有樹脂組成物の提供を目的とする。   In view of the conventional problems described above as the background art, the present invention is a simple and efficient method that does not depend on any conventional method including each problem, and has a low environmental load, and contains plant fibers. It is an object of the present invention to provide a method for producing a resin composition, and a plant fiber-containing resin composition having high plant fiber dispersibility and free of coarse plant fiber aggregates.

本発明者らは、上記課題を解決すべく広く種々の検討を実施した結果、意外にも、従来想定していなかった方法で、簡便かつ効率的、さらに環境に対する負荷が小さい方法で、植物繊維の繊維原料が十分に微細化された状態で樹脂組成物中に分散し、かつ粗大な植物繊維凝集物が存在しない植物繊維含有樹脂組成物の製造が可能であり、それら方法によって製造された植物繊維含有樹脂組成物が、植物繊維の凝集物が無く、かつ高い機械物性と耐衝撃性とを両立する事を見出し、本発明の創作に至った。
すなわち本発明は、予め植物繊維修飾剤で表面処理を行なったセルロースナノファイバーを用いなくても、熱可塑性樹脂と、セルロースナノファイバーを含む植物繊維組成物、および植物繊維修飾剤を溶融混練することにより、植物繊維組成物中の植物繊維を植物繊維修飾剤が化学修飾し繊維の分散性を高める工程と、修飾された植物繊維を熱可塑性樹脂中に分散せしめる工程とを同一の溶融混練工程内で実施する事を可能とし、これまでの技術と比較し簡便かつ環境負荷の小さい方法で、高い繊維分散性を持った植物繊維含有樹脂組成物を提供できる事を特徴としている。
As a result of conducting various studies to solve the above-mentioned problems, the present inventors have surprisingly found that plant fiber is a simple and efficient method that has not been envisaged in the past, and that has a low environmental impact. Plant fiber-containing resin composition that is dispersed in a resin composition in a sufficiently refined state and in which coarse plant fiber aggregates are not present is possible. It has been found that the fiber-containing resin composition is free of plant fiber aggregates and has both high mechanical properties and impact resistance, and has led to the creation of the present invention.
That is, the present invention melt-kneads a thermoplastic resin, a plant fiber composition containing cellulose nanofibers, and a plant fiber modifier without using cellulose nanofibers that have been surface-treated with a plant fiber modifier in advance. In the same melt-kneading process, the process of chemically modifying the plant fiber in the plant fiber composition by the plant fiber modifier to increase the dispersibility of the fiber and the process of dispersing the modified plant fiber in the thermoplastic resin The plant fiber-containing resin composition having high fiber dispersibility can be provided by a method that is simpler and less burdensome on the environment than conventional techniques.

本発明は、以下の態様を含む。
[1] A)熱可塑性樹脂と、B)植物繊維組成物と、C)植物繊維修飾剤とを、溶融混練しながら複合化する事を特徴とする樹脂組成物の製造方法であって、B)植物繊維組成物中の植物繊維が以下の条件を満たすことを特徴とする植物繊維含有樹脂組成物の製造方法。
1.平均繊維長が、0.1〜0.7mm
2.平均繊維幅が、2〜15000nm
[2] 溶融されたA)熱可塑性樹脂中でB)植物繊維組成物中の植物繊維とC)植物繊維修飾剤とを複合化させる工程と、B)植物繊維組成物中の植物繊維をA)熱可塑性樹脂中に分散させる工程、を少なくとも含むことを特徴とする、[1]に記載の植物繊維含有樹脂組成物の製造方法。
[3] C)植物繊維修飾剤が、酸、酸無水物、アルコール、ハロゲン化試薬、シラン化合物、イソシアネート基含有化合物、アミノ基含有化合物、環状アミド化合物、環状エステル化合物から選択される官能基を含んだ化合物であることを特徴とする、[1]または[2]に記載の植物繊維含有樹脂組成物の製造方法。
[4] C)植物繊維修飾剤が、カルボン酸または酸無水物を含んだ化合物であることを特徴とする、[1]〜[3]のいずれかに記載の植物繊維含有樹脂組成物の製造方法。
[5] A)熱可塑性樹脂が、オレフィン系樹脂であることを特徴とする、[1]〜[4]のいずれかに記載の植物繊維含有樹脂組成物の製造方法。
[6] A)熱可塑性樹脂100質量部に対し、B)植物繊維組成物中の植物繊維が0.1〜100質量部であることを特徴とする、[1]〜[5]のいずれかに記載の植物繊維含有樹脂組成物の製造方法。
[7] B)植物繊維組成物中の植物繊維100質量部に対し、C)植物繊維修飾剤が0.1〜100質量部であることを特徴とする、[1]〜[6]のいずれかに記載の植物繊維含有樹脂組成物の製造方法。
[8] B)植物繊維組成物中の植物繊維が解繊処理されていることを特徴とする、[1]〜[7]のいずれかに記載の植物繊維含有樹脂組成物の製造方法。
[9] A)熱可塑性樹脂が、エチレン単独重合体、エチレンとα‐オレフィンとの共重合体、エチレンとビニル基と極性基を有するモノマーとの共重合体、のいずれかであることを特徴とする、[1]〜[8]のいずれかに記載の植物繊維含有樹脂組成物の製造方法。
[10] B)植物繊維組成物がセルロースウェブ(セルロース/エマルジョンウェブ)であることを特徴とする、[1]〜[9]のいずれかに記載の植物繊維含有樹脂組成物の製造方法。
The present invention includes the following aspects.
[1] A method for producing a resin composition comprising combining A) a thermoplastic resin, B) a plant fiber composition, and C) a plant fiber modifier while melt-kneading, wherein B ) A method for producing a plant fiber-containing resin composition, wherein the plant fiber in the plant fiber composition satisfies the following conditions.
1. Average fiber length is 0.1-0.7mm
2. Average fiber width is 2 to 15000 nm
[2] A step of compounding B) a plant fiber in the plant fiber composition and C) a plant fiber modifier in the molten A) thermoplastic resin, and B) converting the plant fiber in the plant fiber composition into A ) The method for producing a vegetable fiber-containing resin composition according to [1], comprising at least a step of dispersing in a thermoplastic resin.
[3] C) A functional group selected from plant acid modifiers selected from acids, acid anhydrides, alcohols, halogenating reagents, silane compounds, isocyanate group-containing compounds, amino group-containing compounds, cyclic amide compounds, and cyclic ester compounds. The method for producing a plant fiber-containing resin composition according to [1] or [2], wherein the compound is a contained compound.
[4] Production of a plant fiber-containing resin composition according to any one of [1] to [3], wherein the plant fiber modifier is a compound containing a carboxylic acid or an acid anhydride. Method.
[5] The method for producing a plant fiber-containing resin composition according to any one of [1] to [4], wherein the A) thermoplastic resin is an olefin resin.
[6] Any one of [1] to [5], wherein the plant fiber in the plant fiber composition is 0.1 to 100 parts by mass with respect to 100 parts by mass of A) the thermoplastic resin. The manufacturing method of the vegetable fiber containing resin composition of description.
[7] Any of [1] to [6], wherein C) the plant fiber modifier is 0.1 to 100 parts by mass with respect to 100 parts by mass of B) plant fiber in the plant fiber composition. The manufacturing method of the vegetable fiber containing resin composition of crab.
[8] B) The method for producing a plant fiber-containing resin composition according to any one of [1] to [7], wherein the plant fiber in the plant fiber composition has been defibrated.
[9] A) The thermoplastic resin is any one of an ethylene homopolymer, a copolymer of ethylene and α-olefin, and a copolymer of ethylene, a vinyl group and a monomer having a polar group. The manufacturing method of the plant fiber containing resin composition in any one of [1]-[8].
[10] The method for producing a plant fiber-containing resin composition according to any one of [1] to [9], wherein the plant fiber composition is a cellulose web (cellulose / emulsion web).

[11] A)熱可塑性樹脂と、B)植物繊維組成物と、C)植物繊維修飾剤とを含む植物繊維含有樹脂組成物であって、B)植物繊維組成物の水酸基の一部または全部がC)植物繊維修飾剤によって化学修飾されており、さらにB)植物繊維組成物に含まれる植物繊維が以下の条件を満たすことを特徴とする植物繊維含有樹脂組成物であって、植物繊維含有樹脂組成物中にセルロースナノファイバーが分散されており、粗大凝集物が実質的に見つからない植物繊維含有樹脂組成物。
1.平均繊維長が、0.0001〜0.7mm
2.平均繊維幅が、2〜15000nm
[12] C)植物繊維修飾剤が、酸、酸無水物、アルコール、ハロゲン化試薬、シラン化合物、イソシアネート基含有化合物、アミノ基含有化合物、環状アミド化合物、環状エステル化合物から選択される官能基を含んだ化合物であることを特徴とする、[11]に記載の植物繊維含有樹脂組成物。
[13] A)熱可塑性樹脂が、オレフィン系樹脂であることを特徴とする、[11]または[12]に記載の植物繊維含有樹脂組成物。
[14] A)熱可塑性樹脂100質量部に対し、B)植物繊維組成物中の植物繊維が0.1〜100質量部であることを特徴とする、[11]〜[13]のいずれかに記載の植物繊維含有樹脂組成物。
[15] B)植物繊維組成物中の植物繊維100質量部に対し、C)植物繊維修飾剤が0.1〜100質量部であることを特徴とする、[11]〜[14]のいずれかに記載の植物繊維含有樹脂組成物。
[11] A plant fiber-containing resin composition comprising A) a thermoplastic resin, B) a plant fiber composition, and C) a plant fiber modifier, and B) a part or all of hydroxyl groups of the plant fiber composition Is a plant fiber-containing resin composition characterized in that C) is chemically modified by a plant fiber modifier, and B) the plant fiber contained in the plant fiber composition satisfies the following conditions: A vegetable fiber-containing resin composition in which cellulose nanofibers are dispersed in a resin composition, and coarse aggregates are substantially not found.
1. Average fiber length is 0.0001 to 0.7 mm
2. Average fiber width is 2 to 15000 nm
[12] C) A functional group selected from plant acid modifiers selected from acids, acid anhydrides, alcohols, halogenating reagents, silane compounds, isocyanate group-containing compounds, amino group-containing compounds, cyclic amide compounds, and cyclic ester compounds. The plant fiber-containing resin composition according to [11], which is a compound containing the plant fiber.
[13] The vegetable fiber-containing resin composition according to [11] or [12], wherein the A) thermoplastic resin is an olefin resin.
[14] Any one of [11] to [13], wherein B) the plant fiber in the plant fiber composition is 0.1 to 100 parts by mass with respect to 100 parts by mass of A) the thermoplastic resin. The plant fiber-containing resin composition described in 1.
[15] Any of [11] to [14], wherein C) the plant fiber modifier is 0.1 to 100 parts by mass with respect to 100 parts by mass of B) plant fiber in the plant fiber composition. A vegetable fiber-containing resin composition according to claim 1.

本発明の植物繊維含有樹脂組成物の製造方法は、簡便かつ効率的、さらに環境に対する負荷が小さい方法である。   The method for producing a plant fiber-containing resin composition of the present invention is a method that is simple and efficient and has a low environmental load.

実施例3の植物繊維含有樹脂組成物の電子顕微鏡写真である。3 is an electron micrograph of a plant fiber-containing resin composition of Example 3. 比較例1の植物繊維含有樹脂組成物の電子顕微鏡写真である。2 is an electron micrograph of a plant fiber-containing resin composition of Comparative Example 1.

「植物繊維含有樹脂組成物」
<熱可塑性樹脂>
熱可塑性樹脂としては特に限定されず、例えば、オレフィン系樹脂、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリ(メタ)アクリル酸アルキルエステル重合体、(メタ)アクリル酸アルキルエステル共重合体、スチレン−アクリロニトリル共重合体、スチレン−(メタ)アクリル酸アルキルエステル共重合体、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリブチレンサクシネート、不飽和ポリエステル、等)、ポリウレタン、天然ゴム、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリイソプレン、ポリクロロプレン、スチレン−ブタジエン−メチルメタクリレート共重合体、ポリビニルアルコール鹸化物、エチレン−酢酸ビニル共重合体鹸化物(EVOH)、ポリビニルアルコール、エチレン‐ビニルアルコール共重合体、ポリスチレン、スチレン−アクリル共重合体、アクリル樹脂、ABS樹脂、ポリヒドロキシブチレート、ポリエチレンアジペート、ポリカプロラクトン、ナイロン6、ナイロン66、ナイロン10、ナイロン11、ナイロン12、ナイロン610、ポリメタキシリレンアジパミドなどのポリアミド系樹脂、ポリカーボネート、ポリアセタール、ポリフェニレンオキシド、フッ素樹脂等が挙げられる。これら熱可塑性樹脂は1種単独でもよいし、2種併用でもよい。この中で、オレフィン樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート、ポリスチレン、ポリアセタール、が好ましく選択され、さらに好ましくはオレフィン系樹脂が好適に選択される。
"Plant fiber-containing resin composition"
<Thermoplastic resin>
The thermoplastic resin is not particularly limited. For example, olefin resin, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, poly (meth) acrylic acid alkyl ester polymer, (meth) acrylic acid alkyl ester copolymer Polymer, styrene-acrylonitrile copolymer, styrene- (meth) acrylic acid alkyl ester copolymer, polyester resin (for example, polyethylene terephthalate, polybutylene terephthalate, polylactic acid, polybutylene succinate, unsaturated polyester, etc.), Polyurethane, natural rubber, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, polyisoprene, polychloroprene, styrene-butadiene-methyl methacrylate copolymer, saponified polyvinyl alcohol, ethylene -Saponified product of vinyl acetate copolymer (EVOH), polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polystyrene, styrene-acrylic copolymer, acrylic resin, ABS resin, polyhydroxybutyrate, polyethylene adipate, polycaprolactone, nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, nylon 610, polyamide resins such as polymetaxylylene adipamide, polycarbonate, polyacetal, polyphenylene oxide, fluorine resin, and the like. These thermoplastic resins may be used alone or in combination of two. Among these, olefin resin, polyamide resin, polyester resin, polycarbonate, polystyrene, and polyacetal are preferably selected, and olefin resin is more preferably selected.

オレフィン系樹脂としては、高圧ラジカル重合法や、チーグラー系、フィリップス型又はシングルサイト触媒を用い高中低圧法及びその他の公知の方法により得られる、エチレン単独重合体、炭素数3〜20のα−オレフィンから選択されるモノマーを重合して得られるα−オレフィン単独重合体、エチレンと炭素数3〜20のα−オレフィンから選択される2種類以上のモノマーを共重合して得られる共重合体、エチレンと極性基を含有したビニルモノマーとの共重合体が挙げられる。その中でも、エチレン単独重合体、若しくはエチレンと炭素数3〜20のα−オレフィンの共重合体、エチレンと極性基を含有したビニルモノマーとの共重合体が好ましい。   As the olefin-based resin, an ethylene homopolymer, an α-olefin having 3 to 20 carbon atoms, obtained by a high-pressure radical polymerization method, a high-medium-low pressure method using a Ziegler-type, Phillips type or single-site catalyst, and other known methods. An α-olefin homopolymer obtained by polymerizing a monomer selected from ethylene, a copolymer obtained by copolymerizing two or more monomers selected from ethylene and an α-olefin having 3 to 20 carbon atoms, ethylene And a vinyl monomer containing a polar group. Among these, an ethylene homopolymer, a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, or a copolymer of ethylene and a vinyl monomer containing a polar group is preferable.

エチレン単独重合体はエチレンを単独で重合することで得られ、また、α−オレフィン単独重合体は炭素数3〜20のα−オレフィンから選択されるモノマーを単独で重合して得られる。炭素数3〜20のα−オレフィンとしては、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン、1−ドデセンなどを挙げることができる。好ましい単独重合体としては、エチレン単独重合体、プロピレン単独重合体、1−ブテン単独重合体、1−ヘキセン単独重合体、1−オクテン単独重合体、1−ドデセン単独重合体等を挙げる事ができ、より好ましいのはエチレン単独重合体、プロピレン単独重合体である。   An ethylene homopolymer is obtained by polymerizing ethylene alone, and an α-olefin homopolymer is obtained by polymerizing a monomer selected from α-olefins having 3 to 20 carbon atoms. Examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene and 1-dodecene. Preferred homopolymers include ethylene homopolymer, propylene homopolymer, 1-butene homopolymer, 1-hexene homopolymer, 1-octene homopolymer, 1-dodecene homopolymer and the like. More preferred are ethylene homopolymers and propylene homopolymers.

エチレンと炭素数3〜20のα−オレフィンから選択される2種類以上のモノマーを共重合して得られる共重合体は、エチレンと炭素数3〜20のα−オレフィンから選択される2種類以上のモノマーを重合することにより得られる共重合体であれば特に限定されない。重合に供されるモノマーは2種類であってもよいし、3種類以上であってもよい。エチレンと炭素数3〜20のα−オレフィンから選択される2種類以上のモノマーの共重合体として好ましいのは、エチレンを必須で含み、さらに炭素数3〜20のα−オレフィンを1種類以上含んだ共重合体である。更に好ましいのはエチレンを必須で含み、さらに炭素数3〜10のα−オレフィンを1種以上含んだ共重合体である。より好適に用いることができるのは、エチレンを必須で含み、プロピレン、1−ブテン、1−ヘキセン、1−オクテンから選択される1種以上のα−オレフィンを含んだ共重合体である。   The copolymer obtained by copolymerizing two or more types of monomers selected from ethylene and an α-olefin having 3 to 20 carbon atoms is two or more types selected from ethylene and an α-olefin having 3 to 20 carbon atoms. If it is a copolymer obtained by superposing | polymerizing the monomer of, it will not specifically limit. Two or more types of monomers may be used for the polymerization. A copolymer of two or more types of monomers selected from ethylene and an α-olefin having 3 to 20 carbon atoms preferably includes ethylene, and further includes one or more α-olefins having 3 to 20 carbon atoms. It is a copolymer. More preferred is a copolymer which contains ethylene essential and further contains at least one α-olefin having 3 to 10 carbon atoms. A copolymer that contains ethylene in an essential manner and contains one or more α-olefins selected from propylene, 1-butene, 1-hexene, and 1-octene can be more preferably used.

エチレンと炭素数3〜20のα−オレフィンから選択されるモノマーと、極性基を含有したビニルモノマーとの共重合体は、エチレンと炭素数3〜20のα−オレフィンから選択されるモノマーと、極性基を含有したビニルモノマーとを重合することにより得られる共重合体であれば特に限定されない。
エチレンと炭素数3〜20のα−オレフィンから選択されるモノマーは1種であっても2種以上でもよく、また、極性基を含有したビニルモノマーは1種であっても2種以上でもよい。さらに、エチレンと炭素数3〜20のα−オレフィンから選択されるモノマーと極性基を含有したビニルモノマーとの共重合体の重合に供せられるモノマーは2種であっても、3種以上であってもよい。エチレンと炭素数3〜20のα−オレフィンから選択されるモノマーと極性基を含有したビニルモノマーとの共重合体として好ましいのは、エチレンと極性基を含有したビニルモノマーとの共重合体である。
A copolymer of a monomer selected from ethylene and an α-olefin having 3 to 20 carbon atoms and a vinyl monomer containing a polar group includes a monomer selected from ethylene and an α-olefin having 3 to 20 carbon atoms, The copolymer is not particularly limited as long as it is a copolymer obtained by polymerizing a vinyl monomer containing a polar group.
The monomer selected from ethylene and an α-olefin having 3 to 20 carbon atoms may be one type or two or more types, and the vinyl monomer containing a polar group may be one type or two or more types. . Furthermore, even if two types of monomers are used for the polymerization of a copolymer of a monomer selected from ethylene and an α-olefin having 3 to 20 carbon atoms and a vinyl monomer containing a polar group, the number of the monomers is three or more. There may be. A copolymer of a monomer selected from ethylene and an α-olefin having 3 to 20 carbon atoms and a vinyl monomer containing a polar group is preferably a copolymer of ethylene and a vinyl monomer containing a polar group. .

エチレンと炭素数3〜20のα−オレフィンから選択されるモノマーと極性基を含有したビニルモノマーとの共重合に供される極性基を含有したビニルモノマーは、カルボン酸基又は酸無水基含有モノマー(a)、エステル基含有モノマー(b)、ヒドロキシル基含有モノマー(c)、アミノ基含有モノマー(d)、シラン基含有モノマー(e)、グリシジル基含有モノマー(f)から選択された少なくとも一種のモノマーである。   A vinyl monomer containing a polar group used for copolymerization of a monomer selected from ethylene and an α-olefin having 3 to 20 carbon atoms and a vinyl monomer containing a polar group is a monomer containing a carboxylic acid group or an acid anhydride group. At least one selected from (a), an ester group-containing monomer (b), a hydroxyl group-containing monomer (c), an amino group-containing monomer (d), a silane group-containing monomer (e), and a glycidyl group-containing monomer (f) Monomer.

カルボン酸基又は酸無水基含有モノマー(a)としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸などの不飽和カルボン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、5−ノルボルネン−2,3−ジカルボン酸無水物、3,6−エポキシ−1,2,3,6−テトラヒドロフタル酸無水物、テトラシクロ[ 6 .2 .1 .1 3 , 6 .0 2 , 7 ] ドデカ−9−エン−4 ,5−ジカルボン酸無水物、2,7−オクタジエン−1−イルコハク酸無水物などの不飽和カルボン酸無水物が挙げられる
エステル基含有モノマー(b)としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチルなどが挙げられるが、特に好ましいものとしてはアクリル酸メチルを挙げることができる。
ヒドロキシル基含有モノマー(c)としては、ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレートなどが挙げられる。
アミノ基含有モノマー(d)としては、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、シクロヘキシルアミノエチル(メタ)アクリレート、アリルアミンなどが挙げられる。
シラン基含有モノマー(e)としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセチルシラン、ビニルトリクロロシランなどの不飽和シラン化合物が挙げられる。
グリシジル基含有モノマー(f)としては、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、2−メチルアリルグリシジルエーテル、スチレン−p−グリシジルエーテル、1,2−エポキシ−9−デセン、4−ヒドロキシブチルアクリレートグリシジルエーテル、1,2−エポキシ−4−ビニルシクロヘキサン等が挙げられる。
Examples of the carboxylic acid group or acid anhydride group-containing monomer (a) include acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, and bicyclo [2 , 2,1] hept-2-ene-5,6-dicarboxylic acid and the like, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, 5-norbornene-2,3-dicarboxylic acid Acid anhydride, 3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride, tetracyclo [6. 2. 1. 1 3, 6 . 0 2, 7 ] Dodeca-9-ene-4,5-dicarboxylic acid anhydride, unsaturated carboxylic acid anhydrides such as 2,7-octadien-1-ylsuccinic acid anhydride, etc. Ester group-containing monomer (b) Examples thereof include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate and the like, and particularly preferred is methyl acrylate.
Examples of the hydroxyl group-containing monomer (c) include hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
Examples of the amino group-containing monomer (d) include aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, cyclohexylaminoethyl (meth) acrylate, and allylamine.
Examples of the silane group-containing monomer (e) include unsaturated silane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetylsilane, and vinyltrichlorosilane.
Examples of the glycidyl group-containing monomer (f) include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, 2-methylallyl glycidyl ether, styrene-p-glycidyl ether, 1,2-epoxy-9-decene, 4-hydroxybutyl acrylate glycidyl. Examples include ether and 1,2-epoxy-4-vinylcyclohexane.

オレフィン系樹脂の製造方法は特に限定されないが、例えば、チューブラー法やオートクレーブ法などの公知の高圧ラジカル重合法、チーグラー系、フィリップス型又はシングルサイト触媒を用いた高中低圧法及びその他の公知の方法によって製造することができる。   The production method of the olefin-based resin is not particularly limited. For example, a known high-pressure radical polymerization method such as a tubular method or an autoclave method, a high-medium-low pressure method using a Ziegler-type, Phillips type or single-site catalyst, and other known methods. Can be manufactured by.

エチレンと炭素数3〜20のα−オレフィンから選択されるモノマーと、極性基を含有したビニルモノマーとの共重合体の製造方法は特に限定されるものではなく、例えば、高圧ラジカル法重合プロセスによる重合(例えば、特許第2792982号公報、特開平3−229713号公報に記載の方法)、重合に際して極性基含有モノマーの極性基を有機アルミニウムなどでマスキングし共重合後にマスキングを外す方法(例えば、特許第4672214第号公報、特許第3603785第号公報に記載の方法)、二重結合を分子鎖に持つオレフィン共重合体の二重結合部分を変性する方法(例えば、特開2005−97587号公報、特開2005−97588号公報、特開2006−131707号公報、特開2009−155655号公報、特開2009−155656号公報に記載の方法)、特定のリガンドが遷移金属に配位した触媒の存在下で極性基含有オレフィン共重合体を重合する方法(例えば、特開2010−202647号公報、特開2010−150532号公報、特開2010−150246号公報、特開2010−260913号公報に記載の方法)などが挙げられる。   The method for producing a copolymer of a monomer selected from ethylene and an α-olefin having 3 to 20 carbon atoms and a vinyl monomer containing a polar group is not particularly limited. For example, it is based on a high-pressure radical polymerization process. Polymerization (for example, the method described in Japanese Patent No. 2792982 and JP-A-3-229713), a method in which the polar group of the polar group-containing monomer is masked with organoaluminum at the time of polymerization and the masking is removed after copolymerization (for example, patent No. 4672214 No., method described in Japanese Patent No. 3603785 No.), a method of modifying a double bond portion of an olefin copolymer having a double bond in a molecular chain (for example, JP 2005-97587 A, JP-A-2005-97588, JP-A-2006-131707, JP-A-2009-155655 A method described in JP 2009-155656 A), a method of polymerizing a polar group-containing olefin copolymer in the presence of a catalyst in which a specific ligand is coordinated to a transition metal (for example, JP 2010-202647 A). And the method described in JP 2010-150532 A, JP 2010-150246 A, and JP 2010-260913 A).

オレフィン系樹脂はグラフト変性によって極性基含有モノマーが付加されていてもよい。グラフト変性の方法としては、重合された樹脂成分に、ラジカル発生剤の存在下、グラフト変性用の極性基含有モノマーを押出機内または溶液中で反応させる方法が挙げられる。   The olefin resin may have a polar group-containing monomer added thereto by graft modification. Examples of the graft modification method include a method of reacting a polymer grouped resin component with a polar group-containing monomer for graft modification in an extruder or in a solution in the presence of a radical generator.

ラジカル発生剤としては、有機過酸化物、ジヒドロ芳香族化合物、ジクミル化合物等が挙げられる。有機過酸化物としては、例えば、ヒドロパーオキサイド、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、ジアルキル(アリル)パーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、ジプロピオニルパーオキサイド、ジオクタノイルパーオキサイド、ベンゾイルパーオキサイド、パーオキシ琥珀酸、パーオキシケタール、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルオキシアセテート、t−ブチルパーオキシイソブチレート等が挙げられる。ジヒドロ芳香族化合物としては、ジヒドロキノリンまたはその誘導体、ジヒドロフラン、1,2−ジヒドロベンゼン、1,2−ジヒドロナフタレン、9,10−10ジヒドロフェナントレン等が挙げられる。ジクミル化合物としては、2,3−ジメチル−2,3−ジフェニルブタン、2,3−ジエチル−2,3−ジフェニルブタン、2,3−ジエチル−2,3−ジ(p−メチルフェニル)ブタン、2,3−ジエチル−2,3−ジ(p−ブロモフェニル)ブタン等が挙げられる。   Examples of the radical generator include organic peroxides, dihydroaromatic compounds, dicumyl compounds and the like. Examples of the organic peroxide include hydroperoxide, dicumyl peroxide, t-butylcumyl peroxide, dialkyl (allyl) peroxide, diisopropylbenzene hydroperoxide, dipropionyl peroxide, dioctanoyl peroxide, and benzoyl. Peroxide, peroxysuccinic acid, peroxyketal, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane , T-butyloxyacetate, t-butylperoxyisobutyrate and the like. Examples of the dihydroaromatic compound include dihydroquinoline or a derivative thereof, dihydrofuran, 1,2-dihydrobenzene, 1,2-dihydronaphthalene, 9,10-10 dihydrophenanthrene, and the like. Examples of the dicumyl compound include 2,3-dimethyl-2,3-diphenylbutane, 2,3-diethyl-2,3-diphenylbutane, 2,3-diethyl-2,3-di (p-methylphenyl) butane, 2,3-diethyl-2,3-di (p-bromophenyl) butane and the like can be mentioned.

グラフト変性に供される極性基含有モノマーは、例えば、カルボン酸基または酸無水基含有モノマー(a)、エステル基含有モノマー(b)、ヒドロキシル基含有モノマー(c)、アミノ基含有モノマー(d)、シラン基含有モノマー(e)、グリシジル基含有モノマー(f)などが例示される。
前記カルボン酸基または酸無水基含有モノマー(a)としては、マレイン酸、フマル酸、シトラコン酸、イタコン酸等のα,β−不飽和ジカルボン酸またはこれらの無水物、アクリル酸、メタクリル酸、フラン酸、クロトン酸、酢酸ビニル、ペンテン酸等の不飽和モノカルボン酸等が挙げられる。
前記エステル基含有モノマー(b)としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチルなどが挙げられる。
前記ヒドロキシル基含有モノマー(c)としては、ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等が挙げられる。
前記アミノ基含有モノマー(d)としては、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、シクロヘキシルアミノエチル(メタ)アクリレート等が挙げられる。
前記シラン基含有モノマー(e)としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセチルシラン、ビニルトリクロロシラン等の不飽和シラン化合物が挙げられる。
前記グリシジル基含有モノマー(f)としては、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、2−メチルアリルグリシジルエーテル、スチレン−p−グリシジルエーテル等が挙げられる。
Examples of the polar group-containing monomer used for graft modification include a carboxylic acid group or acid anhydride group-containing monomer (a), an ester group-containing monomer (b), a hydroxyl group-containing monomer (c), and an amino group-containing monomer (d). And silane group-containing monomer (e), glycidyl group-containing monomer (f), and the like.
Examples of the carboxylic acid group- or acid anhydride group-containing monomer (a) include α, β-unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, and itaconic acid, or anhydrides thereof, acrylic acid, methacrylic acid, furan Examples thereof include unsaturated monocarboxylic acids such as acid, crotonic acid, vinyl acetate and pentenoic acid.
Examples of the ester group-containing monomer (b) include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, and butyl methacrylate.
Examples of the hydroxyl group-containing monomer (c) include hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
Examples of the amino group-containing monomer (d) include aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, cyclohexylaminoethyl (meth) acrylate, and the like.
Examples of the silane group-containing monomer (e) include unsaturated silane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetylsilane, and vinyltrichlorosilane.
Examples of the glycidyl group-containing monomer (f) include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, 2-methylallyl glycidyl ether, and styrene-p-glycidyl ether.

<植物繊維組成物>
本発明の植物繊維組成物は、植物繊維を主成分とするものであれば特に限定されず、例えば、パルプ、紙、植物繊維織布、植物繊維不織布、粉末状セルロースなどが挙げられる。また、植物繊維組成物中に植物繊維に加えて繊維分散用樹脂を含有していてもかまわない。
<Plant fiber composition>
The plant fiber composition of the present invention is not particularly limited as long as it contains vegetable fiber as a main component, and examples thereof include pulp, paper, vegetable fiber woven fabric, plant fiber nonwoven fabric, and powdered cellulose. The plant fiber composition may contain a fiber dispersion resin in addition to the plant fiber.

(植物繊維)
植物繊維の種類としては特に限定されず、木材から製造された木材繊維、草本類から製造された非木材繊維等が挙げられる。
木材繊維としては、針葉樹、広葉樹をクラフト法、サルファイト法、ソーダ法、ポリサルファイド法などで蒸解した化学パルプ繊維、レファイナー、グラインダーなどの機械力によってパルプ化した機械パルプ繊維、薬品による前処理の後、機械力によってパルプ化したセミケミカルパルプ繊維、或いは古紙パルプ繊維などが挙げられる。これらは、各々、未晒(漂白前)もしくは晒(漂白後)の状態で使用することができる。
非木材繊維としては、例えば、綿、マニラ麻、亜麻、藁、竹、バガス、ケナフなどを木材パルプと同様の方法でパルプ化した繊維が挙げられる。
(Plant fiber)
The type of plant fiber is not particularly limited, and examples thereof include wood fiber manufactured from wood, non-wood fiber manufactured from herbs, and the like.
Wood fibers include chemical pulp fibers obtained by digesting conifers and hardwoods using the craft method, sulfite method, soda method, polysulfide method, etc., mechanical pulp fibers that have been pulped by mechanical force such as refiners and grinders, and after pretreatment with chemicals. And semi-chemical pulp fibers pulped by mechanical force, or waste paper pulp fibers. These can be used in an unbleached (before bleaching) or bleached (after bleaching) state, respectively.
Examples of non-wood fibers include fibers obtained by pulping cotton, manila hemp, flax, straw, bamboo, bagasse, kenaf, and the like in the same manner as wood pulp.

植物繊維の中でも、後述の方法により測定された平均繊維幅が2〜15000nmで、I型(平行鎖)の結晶構造のセルロース分子の集合体である微細繊維が好ましい。平均繊維幅が2nm以上であれば、セルロース分子として水に溶解することを抑制できるため、微細繊維としての物性(強度や剛性、寸法安定性)を容易に発現できる。平均繊維幅が15000nm以下とすると、通常の製紙用のパルプに含まれる繊維の繊維幅よりも顕著に幅が狭くなり、通常の製紙用パルプとは異なる特性を発揮する。
また、微細繊維の平均繊維幅は2〜12000nmが好ましく、20〜12000nmがより好ましい。また、後述する混合分散液を抄紙する工程での濾水性などの操業性においては、微細繊維の平均繊維幅は200〜12000nmであることが好ましい。
微細繊維の平均繊維幅が上記範囲内にある場合、全ての微細繊維が上記繊維幅の範囲内である必要はなく、一部の微細繊維は繊維幅が上限を超えてもよいし、下限未満であってもよい。すなわち、太い繊維や細い繊維が混在してもよい。
Among the plant fibers, fine fibers that are aggregates of cellulose molecules having an average fiber width of 2 to 15000 nm measured by a method described later and having a crystal structure of type I (parallel chain) are preferable. If the average fiber width is 2 nm or more, it is possible to suppress dissolution as water as cellulose molecules in water, so that physical properties (strength, rigidity, dimensional stability) as fine fibers can be easily expressed. When the average fiber width is 15000 nm or less, the width is remarkably narrower than the fiber width of fibers contained in normal papermaking pulp, and the characteristics different from those of normal papermaking pulp are exhibited.
The average fiber width of the fine fibers is preferably 2 to 12000 nm, and more preferably 20 to 12000 nm. In addition, in terms of operability such as drainage in the step of papermaking the mixed dispersion described later, the average fiber width of the fine fibers is preferably 200 to 12000 nm.
When the average fiber width of the fine fibers is within the above range, it is not necessary that all the fine fibers are within the above fiber width range, and some of the fine fibers may have a fiber width that exceeds the upper limit or less than the lower limit. It may be. That is, thick fibers and thin fibers may be mixed.

平均繊維幅の測定は以下のようにして行う。濃度0.05〜0.1質量%の繊維の水系懸濁液を調製し、該懸濁液を適宜希釈してから親水化処理したカーボン膜被覆グリッド上にキャストして電子顕微鏡観察用試料とする。構成する繊維の幅に応じた倍率で電子顕微鏡画像による観察を行う。ただし、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交錯する繊維の幅を目視で読み取る。こうして少なくとも重なっていない表面部分の画像を3組以上観察し、各々の画像に対して、直線X、直線Yと交錯する繊維の幅を読み取る。このようにして少なくとも20本×2×3=120本の繊維幅を読み取る。本発明における繊維幅は、このように読み取った繊維幅の平均値である。
The average fiber width is measured as follows. An aqueous suspension of fibers having a concentration of 0.05 to 0.1% by mass is prepared, and the suspension is appropriately diluted and then cast on a carbon film-coated grid that has been subjected to a hydrophilic treatment. To do. Observation with an electron microscope image is performed at a magnification according to the width of the constituent fibers. However, the sample, observation conditions, and magnification are adjusted to satisfy the following conditions.
(1) One straight line X is drawn at an arbitrary location in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y perpendicular to the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
The width of the fiber that intersects with the straight line X and the straight line Y is visually read from the observation image that satisfies the above conditions. In this way, at least three sets of images of the surface portion that do not overlap each other are observed, and the width of the fiber intersecting with the straight line X and the straight line Y is read for each image. In this way, at least 20 × 2 × 3 = 120 fiber widths are read. The fiber width in the present invention is an average value of the fiber widths read in this way.

また、微細繊維は、後述の方法により測定される平均繊維長が0.01〜3.0mmであることが好ましく、0.05〜1.5mmであることがより好ましく、0.1〜0.7mmがさらに好ましい。微細繊維の平均繊維長が前記下限値以上であれば、繊維による補強効果により植物繊維含有樹脂組成物の強度をより向上させやすくなり、前記上限値以下であれば、植物繊維および繊維分散用樹脂を含有するコンポジットシートと熱可塑性樹脂とを混合し溶融混練する溶融混練工程において、微細繊維の分散性が良好となり、植物繊維含有樹脂組成物の強度をより向上させやすくなる。
平均繊維長は、カヤーニオートメーション社のカヤーニ繊維長測定器(FS−200形)を用い、長さ加重平均繊維長を測定することにより求めた。
また、微細化を進めていくと、幅が細く、長さが短い繊維は、カヤーニ繊維長測定器では測定できなくなる場合がある。そこで、繊維の長さに応じて光学顕微鏡、走査型顕微鏡(SEM)、透過電子顕微鏡(TEM)を適宜選択し、繊維長の観察・測定を行った。繊維長は、得られた写真から20本以上を選択し、測定した。
The fine fibers preferably have an average fiber length measured by the method described later of 0.01 to 3.0 mm, more preferably 0.05 to 1.5 mm, and 0.1 to 0. 7 mm is more preferable. If the average fiber length of the fine fibers is equal to or greater than the lower limit, the strength of the plant fiber-containing resin composition can be more easily improved due to the reinforcing effect of the fibers. In the melt-kneading step of mixing and kneading a composite sheet containing a thermoplastic resin and a thermoplastic resin, the dispersibility of the fine fibers is improved, and the strength of the plant fiber-containing resin composition is easily improved.
The average fiber length was determined by measuring the length weighted average fiber length using a Kajaani fiber length measuring instrument (FS-200 type) manufactured by Kajaani Automation.
In addition, as the miniaturization progresses, fibers having a narrow width and a short length may not be measured with a Kajaani fiber length measuring instrument. Therefore, an optical microscope, a scanning microscope (SEM), and a transmission electron microscope (TEM) were appropriately selected according to the length of the fiber, and the fiber length was observed and measured. The fiber length was measured by selecting 20 or more fibers from the obtained photograph.

本発明における微細繊維の軸比(長軸/短軸)は20〜10000の範囲であることが好ましい。軸比が20未満であると、コンポジットシートを形成しにくくなるおそれがあり、軸比が10000を超えると、繊維スラリーの粘度が高くなりすぎることがある。また、軸比が20〜1000の範囲であると、後述する混合分散液を抄紙する工程において、濾水性低下を抑制できる。本発明における軸比は、カヤーニオートメーション社のカヤーニ繊維長測定器(FS−200形)を用いて求めた平均繊維長測定値と電子顕微鏡観察により求めた平均繊維幅とにより求めた値である。   The axial ratio (major axis / minor axis) of the fine fibers in the present invention is preferably in the range of 20 to 10,000. If the axial ratio is less than 20, it may be difficult to form a composite sheet. If the axial ratio exceeds 10,000, the viscosity of the fiber slurry may be too high. Further, when the axial ratio is in the range of 20 to 1000, it is possible to suppress a decrease in drainage in the step of papermaking the mixed dispersion described later. The axial ratio in this invention is the value calculated | required with the average fiber width calculated | required by the average fiber length measured using the Kajaani fiber length measuring device (FS-200 type | mold) of Kajaani Automation, and electron microscope observation.

植物繊維含有樹脂組成物中に占める、B)植物繊維組成物中の植物繊維の割合は、A)熱可塑性樹脂100質量部に対し、0.1〜100質量部であることが好ましく、0.5〜80質量部であることがより好ましく、1〜50質量部であることがさらに好ましい。この範囲より低い場合、植物繊維による補強効果が十分ではなく、この範囲より高い場合は、植物繊維含有樹脂組成物の流動性が低下し、成型加工に難がある。   The proportion of B) plant fiber in the plant fiber-containing resin composition in the plant fiber-containing resin composition is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of A) thermoplastic resin. It is more preferably 5 to 80 parts by mass, and further preferably 1 to 50 parts by mass. If it is lower than this range, the reinforcing effect of the plant fiber is not sufficient, and if it is higher than this range, the fluidity of the plant fiber-containing resin composition is lowered, and molding processing is difficult.

(繊維分散用樹脂)
繊維分散用樹脂は、該植物繊維含有樹脂組成物を製造する際に、熱可塑性樹脂中の植物繊維の分散性を高める役割を果たすものである。
繊維分散用樹脂としては特に限定されず、例えば、オレフィン系樹脂、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリ(メタ)アクリル酸アルキルエステル重合体、(メタ)アクリル酸アルキルエステル共重合体、スチレン−アクリロニトリル共重合体、スチレン−(メタ)アクリル酸アルキルエステル共重合体、ポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリウレタン、天然ゴム、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリイソプレン、ポリクロロプレン、スチレン−ブタジエン−メチルメタクリレート共重合体、エチレン−酢酸ビニル共重合体けん化物等が挙げられる。これら繊維分散用樹脂は1種単独でもよいし、2種併用でもよい。
(Fiber dispersion resin)
The fiber-dispersing resin plays a role of enhancing the dispersibility of the plant fibers in the thermoplastic resin when the plant fiber-containing resin composition is produced.
The fiber dispersion resin is not particularly limited, and examples thereof include olefin resins, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, poly (meth) acrylic acid alkyl ester polymers, and (meth) acrylic acid alkyl ester copolymers. Polymer, styrene-acrylonitrile copolymer, styrene- (meth) acrylic acid alkyl ester copolymer, polyester (for example, polyethylene terephthalate, polybutylene terephthalate, etc.), polyurethane, natural rubber, styrene-butadiene copolymer, acrylonitrile- Examples thereof include butadiene copolymers, polyisoprene, polychloroprene, styrene-butadiene-methyl methacrylate copolymers, and saponified ethylene-vinyl acetate copolymers. These fiber dispersion resins may be used alone or in combination of two kinds.

また、繊維分散用樹脂は、A)熱可塑性樹脂との相溶性が高いもの、例えば、A)熱可塑性樹脂を構成するモノマー単位と同じモノマー単位を有する樹脂が好ましい。繊維分散用樹脂がA)熱可塑性樹脂との相溶性が高いものであれば、熱可塑性樹脂中への植物繊維の分散性をより向上させることができ、強度をより向上させることができる。   The resin for dispersing fibers is preferably A) a resin having high compatibility with the thermoplastic resin, for example, A) a resin having the same monomer unit as the monomer unit constituting the thermoplastic resin. If the resin for dispersing fibers is highly compatible with A) the thermoplastic resin, the dispersibility of the plant fibers in the thermoplastic resin can be further improved, and the strength can be further improved.

(含有割合)
植物繊維含有樹脂組成物における植物繊維の含有量は、熱可塑性樹脂100質量部に対して1〜100質量部であることが好ましく、5〜70質量部であることがより好ましく、10〜50質量部であることがさらに好ましい。植物繊維の含有量が前記下限値以上であれば、強度を充分に向上させることができ、前記上限値以下であれば、該植物含有樹脂組成物を容易に製造でき、また、靭性低下を抑制できる。
繊維分散用樹脂の含有量は植物繊維100質量部に対して1〜500質量部であることが好ましく、10〜100質量部であることがより好ましく、15〜70質量部であることがさらに好ましい。繊維分散用樹脂の含有量が前記下限値以上であれば、充分に高い強度を確保することができ、繊維分散用樹脂の含有量が前記上限値以下であれば、植物繊維含有樹脂組成物を容易に製造できる。
(Content ratio)
The plant fiber content in the plant fiber-containing resin composition is preferably 1 to 100 parts by mass, more preferably 5 to 70 parts by mass, and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the thermoplastic resin. More preferably, it is a part. If the content of the plant fiber is not less than the lower limit, the strength can be sufficiently improved, and if the content is not more than the upper limit, the plant-containing resin composition can be easily produced, and a decrease in toughness is suppressed. it can.
The content of the fiber dispersing resin is preferably 1 to 500 parts by mass, more preferably 10 to 100 parts by mass, and still more preferably 15 to 70 parts by mass with respect to 100 parts by mass of the plant fiber. . If the content of the fiber dispersion resin is equal to or higher than the lower limit value, a sufficiently high strength can be ensured. If the content of the fiber dispersion resin is equal to or lower than the upper limit value, the plant fiber-containing resin composition is obtained. Easy to manufacture.

(植物繊維組成物の製造方法)
次に、本発明の植物繊維組成物の製造方法の一実施形態について説明する。
本実施形態の植物繊維組成物の製造方法は、スラリー調製工程と、エマルション調製工程と、混合工程と、シート作製工程とを有して、植物繊維組成物を製造する方法である。
(Method for producing plant fiber composition)
Next, an embodiment of the method for producing the plant fiber composition of the present invention will be described.
The manufacturing method of the vegetable fiber composition of this embodiment is a method which has a slurry preparation process, an emulsion preparation process, a mixing process, and a sheet | seat preparation process, and manufactures a vegetable fiber composition.

[スラリー調製工程]
スラリー調製工程は、植物繊維を含有する繊維スラリーを調製する工程である。ここで、繊維スラリーとは、植物繊維が分散媒中に分散した液体である。分散媒としては、水や有機溶媒などを用いることができるが、水であることが好ましい。
繊維スラリーの固形分濃度は0.1〜10.0質量%であることが好ましく、0.5〜5.0質量%であることがより好ましい。繊維スラリーの固形分濃度が前記下限値以上であれば、後述するシート作製工程において植物繊維を充分に含むコンポジットシートを容易に製造でき、前記上限値以下であれば、繊維スラリーの懸濁安定性を確保できる。
繊維スラリーには、必要に応じて、サイズ剤や紙力増強剤などの公知の製紙用薬品が含まれてもよい。
[Slurry preparation process]
A slurry preparation process is a process of preparing the fiber slurry containing a vegetable fiber. Here, the fiber slurry is a liquid in which plant fibers are dispersed in a dispersion medium. As the dispersion medium, water, an organic solvent, or the like can be used, but water is preferable.
The solid content concentration of the fiber slurry is preferably 0.1 to 10.0% by mass, and more preferably 0.5 to 5.0% by mass. If the solid content concentration of the fiber slurry is equal to or higher than the lower limit value, a composite sheet that sufficiently contains plant fibers can be easily produced in the sheet preparation step described later. Can be secured.
The fiber slurry may contain known papermaking chemicals such as a sizing agent and a paper strength enhancer, if necessary.

具体的に、スラリー調製工程では、針葉樹、広葉樹または草類等の植物原料を処理して繊維化、すなわちパルプ化し、分散媒により希釈して、繊維スラリーを得る。植物繊維を微細繊維にする場合には、植物繊維を微細繊維化処理して繊維スラリーを得る。
微細繊維を得る場合には、植物原料として、針葉樹または広葉樹から得た木材系セルロース繊維を用いることが好ましい。木材系セルロース繊維は、直径が2〜4nmのシングルナノファイバーで構成されたミクロフィブリル繊維の集合体(直径数μm〜数十μm、繊維長0.1mm〜数mm)である。そのため、木材系セルロースから得られる微細繊維は化学処理や機械的処理の程度により繊維径や繊維長を制御しやすい。
木材系セルロース繊維を得る際には、通常の製紙用のパルプ製造用の針葉樹チップ、広葉樹チップ、またはこれらチップを粉砕した木粉を用いてパルプ化することができる。チップとしては、厚みが2mm〜8mmのものが好ましい。木粉は、チップの含水率が10質量%以下になるように天日干しあるいは強制的に乾燥機で乾燥させた後、粉砕することにより得られる。ここで、木粉の粒子径は0.1mm〜1mmが好ましい。
原料のセルロース系繊維としては、各種パルプが使用できる。パルプは、機械的方法で得られたパルプ(砕木パルプ、リファイナ・グランド・パルプ、サーモメカニカルパルプ、セミケミカルパルプ、ケミグランドパルプなど)、又は化学的方法で得られたパルプ(クラフトパルプ、亜硫酸パルプなど)などであってもよい。また、パルプは、1種を単独で又は二種以上組み合わせて使用してもよい。
Specifically, in the slurry preparation step, plant raw materials such as conifers, hardwoods, and grasses are processed into fibers, that is, pulped, and diluted with a dispersion medium to obtain a fiber slurry. When the plant fiber is made into a fine fiber, the fiber is processed into a fine fiber to obtain a fiber slurry.
When obtaining fine fibers, it is preferable to use wood-based cellulose fibers obtained from conifers or hardwoods as plant materials. Wood-based cellulose fibers are aggregates of microfibril fibers composed of single nanofibers having a diameter of 2 to 4 nm (diameters of several μm to several tens of μm, fiber lengths of 0.1 mm to several mm). Therefore, the fine fiber obtained from wood-based cellulose can easily control the fiber diameter and fiber length depending on the degree of chemical treatment and mechanical treatment.
When obtaining wood-based cellulose fibers, pulp can be pulped using softwood chips, hardwood chips, or wood powder obtained by pulverizing these chips. A chip having a thickness of 2 mm to 8 mm is preferable. Wood flour can be obtained by sun drying or forcibly drying with a drier so that the moisture content of the chips is 10% by mass or less, and then pulverizing. Here, the particle diameter of the wood powder is preferably 0.1 mm to 1 mm.
Various pulps can be used as the raw material cellulose fiber. Pulp is pulp obtained by mechanical methods (ground wood pulp, refiner ground pulp, thermomechanical pulp, semichemical pulp, chemiground pulp, etc.), or pulp obtained by chemical methods (craft pulp, sulfite pulp) Etc.). Moreover, you may use a pulp individually by 1 type or in combination of 2 or more types.

微細繊維を得る際の微細繊維化処理方法としては、公知の粉砕機や製紙用叩解機、例えば、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ディスク型リファイナー、コニカルリファイナー、超音波ホモジナイザー、ボールミル、ビーズミル、ロールミル、ジャットミル、ターボミル、アトマイザー、カッターミルなどの機械的作用を利用する湿式粉砕または乾式粉砕でセルロース系繊維を微細化する方法が挙げられる。   Fine fiber processing methods for obtaining fine fibers include known pulverizers and paper beating machines such as grinders (stone mill type pulverizers), high-pressure homogenizers, ultrahigh-pressure homogenizers, high-pressure collision type pulverizers, and disk type refiners. And a method of refining cellulosic fibers by wet pulverization or dry pulverization using a mechanical action such as a conical refiner, an ultrasonic homogenizer, a ball mill, a bead mill, a roll mill, a jut mill, a turbo mill, an atomizer, or a cutter mill.

微細繊維を得る場合には、微細化を容易にするために、上記微細繊維化処理の前に、化学修飾処理、脱脂処理、脱リグニン処理、脱ヘミセルロース処理等の前処理を施すことができる。   When obtaining fine fibers, a pretreatment such as a chemical modification treatment, a degreasing treatment, a delignification treatment, and a dehemicellulose treatment can be performed before the fine fiberization treatment in order to facilitate the fine formation.

また、微細繊維化処理の前には、上記前処理以外に、叩解処理、TEMPO(2,2,6,6−テトラメチルピペリジン−1−オキシルラジカル)酸化処理などの化学変性処理、オゾン処理、クラフト処理、スルファイト処理、漂白処理、酵素処理を施してもよい。 In addition to the above pretreatment, before the fine fiber treatment, beating treatment, chemical modification treatment such as TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidation treatment, ozone treatment, Kraft treatment, sulfite treatment, bleaching treatment, and enzyme treatment may be performed.

[エマルション調製工程]
エマルション調製工程は、繊維分散用樹脂を含有する樹脂エマルションを調製する工程である。ここで、樹脂エマルションとは、繊維分散用樹脂粒子が分散媒中に乳化分散した液体である。
繊維分散用樹脂粒子の平均粒子径が0.001〜100μmの範囲内にあることが好ましく、0.01〜1.0μmの範囲内にあることがより好ましい。繊維分散用樹脂粒子における平均粒子径は、レーザ回折式粒度分布測定装置、たとえば株式会社堀場製作所製LA920により測定することによって測定された値である。
樹脂エマルションの平均粒子径は、歩留りや脱水性を考慮すると、大きいことが好ましいが、大きすぎるとシートの均一性、光学物性が低下するおそれがある。
また、樹脂エマルションのイオン性は、混合分散液を抄紙する工程での操業性や植物繊維含有樹脂組成物の強度などの特性のために、カチオン性、アニオン性、およびノニオン性の中から適宜使用することができる。
[Emulsion preparation process]
The emulsion preparation step is a step of preparing a resin emulsion containing a fiber dispersion resin. Here, the resin emulsion is a liquid in which resin particles for fiber dispersion are emulsified and dispersed in a dispersion medium.
The average particle diameter of the resin particles for fiber dispersion is preferably in the range of 0.001 to 100 μm, and more preferably in the range of 0.01 to 1.0 μm. The average particle diameter in the fiber dispersion resin particles is a value measured by measuring with a laser diffraction particle size distribution measuring device, for example, LA920 manufactured by Horiba, Ltd.
The average particle size of the resin emulsion is preferably large in consideration of yield and dehydration properties, but if it is too large, the uniformity of the sheet and the optical properties may be lowered.
In addition, the ionicity of the resin emulsion is appropriately selected from cationic, anionic, and nonionic properties due to characteristics such as operability in the process of making the mixed dispersion and paper plant-containing resin composition. can do.

また、樹脂エマルションの固形分濃度は20〜60質量%であることが好ましく、30〜60質量%であることがより好ましい。樹脂エマルションの固形分濃度が前記下限値以上であれば、後述するシート作製工程において繊維分散用樹脂を充分に含むコンポジットシートを容易に製造でき、前記上限値以下であれば、樹脂エマルションの乳化安定性を確保できる。   Moreover, it is preferable that the solid content concentration of a resin emulsion is 20-60 mass%, and it is more preferable that it is 30-60 mass%. If the solid content concentration of the resin emulsion is equal to or higher than the lower limit value, it is possible to easily produce a composite sheet sufficiently containing a fiber dispersing resin in the sheet preparation step described later. Can be secured.

エマルションを調製する方法としては、界面活性剤存在下、繊維分散用樹脂を構成するモノマーを分散媒中で乳化重合する方法(重合法)、繊維分散用樹脂と界面活性剤を分散媒中に添加し、攪拌する方法(後乳化法)が挙げられる。   Emulsions can be prepared by emulsion polymerization of the monomer constituting the fiber dispersion resin in the presence of a surfactant in a dispersion medium (polymerization method), and the fiber dispersion resin and surfactant are added to the dispersion medium. And a method of stirring (post-emulsification method).

重合法は、具体的には、分散媒中で、重合開始剤と連鎖移動剤と界面活性剤の存在下で、繊維分散用樹脂を構成するモノマーをラジカル重合する方法である。
その際、界面活性剤の使用量は全モノマーに対して0.1〜6質量%の範囲であることが好ましい。界面活性剤の使用量が前記下限値以上であれば、充分な重合安定性を確保でき、反応中に凝集物が発生しにくく、前記上限値以下であれば、エマルションの粒子径が適度なものとなる。
Specifically, the polymerization method is a method in which a monomer constituting the fiber dispersion resin is radically polymerized in a dispersion medium in the presence of a polymerization initiator, a chain transfer agent, and a surfactant.
In that case, it is preferable that the usage-amount of surfactant is the range of 0.1-6 mass% with respect to all the monomers. If the amount of the surfactant used is equal to or greater than the lower limit, sufficient polymerization stability can be ensured, aggregates are not easily generated during the reaction, and if the amount is equal to or smaller than the upper limit, the emulsion has a moderate particle size. It becomes.

界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤のいずれも使用できる。これら界面活性剤は1種単独でもよいし、2種併用でもよい。
アニオン系界面活性剤の具体例としては、オレイン酸カリウム、ラウリル酸ナトリウム、トデシルベンゼンスルホン酸ナトリウム、アルキルナフタレンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルアリルエーテル硫酸ナトリウム、ポリオキシエチレンジアルキル硫酸ナトリウム、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンアルキルアリルエーテルリン酸エステル等が挙げられる。
カチオン系界面活性剤の具体例としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、アシルアミノエチルジエチルアンモニウム塩、アシルアミノエチルジエチルアミン塩、アルキルアミドプロピルジメチルベンジルアンモニウム塩、アルキルピリジニウム塩、アルキルピリジニウム硫酸塩、ステアラミドメチルピリジニウム塩、アルキルキノリニウム塩、アルキルイソキノリニウム塩、脂肪酸ポリエチレンポリアミド、アシルアミノエチルピリジニウム塩、アシルコラミノホルミルメチルピリジニウム塩などの第4級アンモニウム塩、ステアロオキシメチルピリジニウム塩、脂肪酸トリエタノールアミン、脂肪酸トリエタノールアミンギ酸塩、トリオキシエチレン脂肪酸トリエタノールアミン、セチルオキシメチルピリジニウム塩、p−イソオクチルフェノキシエトキシエチルジメチルベンジルアンモニウム塩などのエステル結合アミンやエーテル結合第4級アンモニウム塩、アルキルイミダゾリン、1−ヒドロキシエチル−2−アルキルイミダゾリン、1−アセチルアミノエチル−2−アルキルイミダゾリン、2−アルキル−4−メチル−4−ヒドロキシメチルオキサゾリンなどの複素還アミン、ポリオキシエチレンアルキルアミン、N−アルキルプロピレンジアミン、N−アルキルポリエチレンポリアミン、N−アルキルポリエチレンポリアミンジメチル硫酸塩、アルキルビグアニド、長鎖アミンオキシドなどのアミン誘導体等が挙げられる。
ノニオン系界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、オキシエチレン−オキシプロピレンブロックコポリマー、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等が挙げられる。
また、上記の乳化剤と併用して、乳化分散能力を有する比較的低分子量の高分子化合物、例えば、ポリビニルアルコール、およびその変性物、ポリアクリルアミド、ポリエチレングリコール誘導体、ポリカルボン酸共重合体の中和物、カゼイン等を添加してもよい。
As the surfactant, any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used. These surfactants may be used alone or in combination of two kinds.
Specific examples of anionic surfactants include potassium oleate, sodium laurate, sodium todecylbenzenesulfonate, sodium alkylnaphthalenesulfonate, sodium dialkylsulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, polyoxyethylene alkylallyl. Examples include sodium ether sulfate, sodium polyoxyethylene dialkyl sulfate, polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl allyl ether phosphate, and the like.
Specific examples of the cationic surfactant include alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkyldimethylbenzylammonium salt, acylaminoethyldiethylammonium salt, acylaminoethyldiethylamine salt, alkylamidopropyldimethylbenzylammonium salt, alkylpyridinium Quaternary ammonium salts such as salts, alkylpyridinium sulfates, stearamide methylpyridinium salts, alkylquinolinium salts, alkylisoquinolinium salts, fatty acid polyethylene polyamides, acylaminoethylpyridinium salts, acylcoraminoformylmethylpyridinium salts , Stearooxymethylpyridinium salt, fatty acid triethanolamine, fatty acid triethanolamine formate, trioxyethylene Ester-linked amines such as fatty acid triethanolamine, cetyloxymethylpyridinium salt, p-isooctylphenoxyethoxyethyldimethylbenzylammonium salt, ether-bonded quaternary ammonium salts, alkylimidazolines, 1-hydroxyethyl-2-alkylimidazolines, Complexed amines such as 1-acetylaminoethyl-2-alkylimidazoline, 2-alkyl-4-methyl-4-hydroxymethyloxazoline, polyoxyethylene alkylamine, N-alkylpropylenediamine, N-alkylpolyethylenepolyamine, N- Examples thereof include amine derivatives such as alkyl polyethylene polyamine dimethyl sulfate, alkyl biguanide, and long chain amine oxide.
Specific examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, oxyethylene-oxypropylene block copolymer, polyethylene glycol fatty acid ester, polyoxyethylene sorbitan fatty acid ester and the like.
Further, in combination with the above-mentioned emulsifier, a relatively low molecular weight polymer compound having an emulsifying and dispersing ability, for example, polyvinyl alcohol, and modified products thereof, polyacrylamide, polyethylene glycol derivatives, and neutralization of polycarboxylic acid copolymers You may add a thing, casein, etc.

重合時のモノマーの濃度は、通常30〜70質量%程度、好ましくは40〜60質量%程度である。
重合の際に用いる重合開始剤としては、パーオキサイド化合物、アゾ化合物を用いることができる。
パーオキサイド化合物としては、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−ブチルハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジクミルパーオキサイド、シクロヘキサンパーオキサイド、コハク酸パーオキサイド、過硫酸カリウム、過硫酸アンモニウム、過酸化水素等が挙げられる。
アゾ化合物としては、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルプロピオニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、1−[(1−シアノ−1−メチルエチル)アゾ]ホルムアミド、ジメチル2,2’−アゾビス(2−メチルプロピオネート)、4,4’−アゾビス(4−シアノバレリックアシッド)、2,2’−アゾビス(2,4,4−トリメチルペンタン)、2,2’−アゾビス{2−メチル−N−[1,1’−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2,2’−アゾビス{2−(2−イミダゾリン−2−イル)プロパン]ジハイドロクロライド、2,2’−アゾビス{2−(2−イミダゾリン−2−イル)プロパン]ジサルフェートジハイドレート、2,2’−アゾビス{2−[1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル)プロパン]}ジハイドロクロライド、2,2’−アゾビス(1−イミノ−1−ピロリジノ−2−メチルプロパン)ジハイドロクロライド、2,2’−アゾビス(2−メチルプロピオンアミジン)ジハイドロクロライド、2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチルプロピオンアミジン]テトラハイドレート等が挙げられる。
The density | concentration of the monomer at the time of superposition | polymerization is about 30-70 mass% normally, Preferably it is about 40-60 mass%.
As a polymerization initiator used in the polymerization, a peroxide compound or an azo compound can be used.
Peroxide compounds include benzoyl peroxide, lauroyl peroxide, t-butyl hydroperoxide, paramentane hydroperoxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, dicumyl Examples include peroxide, cyclohexane peroxide, succinic peroxide, potassium persulfate, ammonium persulfate, hydrogen peroxide, and the like.
As the azo compound, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2- Methylpropionitrile), 2,2′-azobis (2-methylbutyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl) azo ] Formamide, dimethyl 2,2′-azobis (2-methylpropionate), 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2,4,4-trimethylpentane) 2,2′-azobis {2-methyl-N- [1,1′-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2′-azobis {2- (2-imidazoline-2 Yl) propane] dihydrochloride, 2,2′-azobis {2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2,2′-azobis {2- [1- (2-hydroxy Ethyl) -2-imidazolin-2-yl) propane]} dihydrochloride, 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride, 2,2′-azobis (2 -Methylpropionamidine) dihydrochloride, 2,2'-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, and the like.

分散媒としては、水または有機溶媒、あるいは水と有機溶媒との混合溶媒ものが挙げられる。ここで、親水性有機溶媒としては、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、メチルエチルケトン、メチルイソブチルケトン、アセトン等のケトン類、トルエン、ベンゼン、クロロベンゼン等の芳香族類、ジクロロメタン、1,1,2−トリクロロエタン、ジクロロエタン等のハロゲン化炭化水素、イソプロパノール、エタノール、メタノール、メトキシエタノール等のアルコール類、酢酸エチルが挙げられる。   Examples of the dispersion medium include water or an organic solvent, or a mixed solvent of water and an organic solvent. Here, as the hydrophilic organic solvent, ethers such as tetrahydrofuran, dioxane and dimethoxyethane, ketones such as methyl ethyl ketone, methyl isobutyl ketone and acetone, aromatics such as toluene, benzene and chlorobenzene, dichloromethane, 1,1, Examples include halogenated hydrocarbons such as 2-trichloroethane and dichloroethane, alcohols such as isopropanol, ethanol, methanol, and methoxyethanol, and ethyl acetate.

モノマーとしては、エチレン、プロピレン、スチレン、塩化ビニル、塩化ビニリデン、酢酸ビニル、(メタ)アクリル酸アルキルエステル、不飽和カルボン酸、(メタ)アクリロニトリル、(メタ)アクリルアミド、ブタジエン、イソプレン、クロロプレンよりなる群から選ばれる少なくとも1種が挙げられる。
(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等が挙げられる。
また、(メタ)アクリル酸アルキルエステルとして、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、グリセノールモノ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジビニルベンゼン、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、等の少なくとも1種を使用することもできる。
不飽和カルボン酸としては、(メタ)アクリル酸、クロトン酸、マレイン酸、イタコン酸、フマル酸、モノアルキルマレイン酸、モノアルキルフマル酸等が挙げられる。
As monomers, ethylene, propylene, styrene, vinyl chloride, vinylidene chloride, vinyl acetate, (meth) acrylic acid alkyl ester, unsaturated carboxylic acid, (meth) acrylonitrile, (meth) acrylamide, butadiene, isoprene, chloroprene At least one selected from the group consisting of:
Examples of (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, and (meth) acrylic acid. Examples include octyl, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and the like.
Further, as (meth) acrylic acid alkyl ester, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, polyethylene glycol (meth) acrylate, 2-hydroxy-3 -Phenoxypropyl (meth) acrylate, glycenol mono (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate , Dipropylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane At least 1 such as tra (meth) acrylate, divinylbenzene, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, and the like Seeds can also be used.
Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, maleic acid, itaconic acid, fumaric acid, monoalkylmaleic acid, monoalkylfumaric acid and the like.

連鎖移動剤としては、n−ドデシルメルカプタン、オクチルメルカプタン、t−ブチルメルカプタン、チオグリコール酸、チオリンゴ酸、チオサリチル酸等のメルカプタン類、ジイソプロピルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジエチルチウラムジスルフィド等のスルフィド類、ヨードホルム等のハロゲン化炭化水素、ジフェニルエチレン、p−クロロジフェニルエチレン、p−シアノジフェニルエチレン、α−メチルスチレンダイマー、イオウ等を用いることができる。   Examples of chain transfer agents include mercaptans such as n-dodecyl mercaptan, octyl mercaptan, t-butyl mercaptan, thioglycolic acid, thiomalic acid, thiosalicylic acid, sulfides such as diisopropylxanthogen disulfide, diethylxanthogen disulfide, diethylthiuram disulfide, and iodoform. And the like, diphenylethylene, p-chlorodiphenylethylene, p-cyanodiphenylethylene, α-methylstyrene dimer, sulfur and the like can be used.

重合終了後には、重合禁止剤を添加することが好ましい。重合禁止剤としては、フェノチアジン、2,6−ジ−t−ブチル−4−メチルフェノール、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、トリス(ノニルフェニル)フォスファイト、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、N−フェニル−1−ナフチルアミン、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、2−メルカプトベンズイミダゾール、ハイドロキノン、N,N−ジエチルヒドロキシルアミン等を用いることができる。   It is preferable to add a polymerization inhibitor after completion of the polymerization. Examples of the polymerization inhibitor include phenothiazine, 2,6-di-t-butyl-4-methylphenol, 2,2′-methylenebis (4-ethyl-6-t-butylphenol), tris (nonylphenyl) phosphite, 4 , 4′-thiobis (3-methyl-6-tert-butylphenol), N-phenyl-1-naphthylamine, 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2-mercaptobenzimidazole, hydroquinone N, N-diethylhydroxylamine and the like can be used.

重合反応は、通常、40〜95℃、好ましくは60〜90℃程度の反応温度で、1〜10時間、好ましくは4〜8時間程度行えばよい。
モノマーの添加方法としては、一括添加法、分割添加法、連続添加法等で、乳化されていないモノマーを添加する単量体タップ法、乳化されたモノマーを添加する単量体プレ乳化タップ法等の方法で行うことができる。好ましくは連続添加法で単量体プレ乳化タップ法である。
The polymerization reaction is usually performed at a reaction temperature of about 40 to 95 ° C., preferably about 60 to 90 ° C. for 1 to 10 hours, preferably about 4 to 8 hours.
Monomer addition method includes batch addition method, divided addition method, continuous addition method, monomer tap method for adding non-emulsified monomer, monomer pre-emulsion tap method for adding emulsified monomer, etc. It can be done by the method. A monomer pre-emulsification tapping method is preferred by a continuous addition method.

次に、後乳化法によって樹脂エマルションを得る方法について説明する。
後乳化法は、繊維分散用樹脂を界面活性剤や保護コロイド剤等の分散剤を用いて分散媒に分散させる方法である。
後乳化の際に使用される装置としては、ホモミキサー、ニーダー、コロイドミル、ホモジナイザーなどの高せん断攪拌機、2軸押出機など樹脂の溶融混練に用いる押出機などがいずれも好適に用いられる。これらはバッチ式でも連続式でもよい。
後乳化のプロセスは特に限定されるものではなく、繊維分散用樹脂を加熱溶融し、分散剤を混合した後、熱分散媒と混合し、高せん断攪拌機により急速に攪拌してエマルションを形成する方法、繊維分散用樹脂をあらかじめ有機溶剤に溶解し、分散剤を混合した熱分散媒と混合し、高せん断攪拌機によりエマルション化してから有機溶剤を除去する方法、2軸押出機を用いて繊維分散用樹脂を加熱溶融し、押出機中途より分散剤と熱分散媒を供給して強混練することで連続的にエマルション化する方法などを好適に利用することができる。なお、これらの方法は、特開昭57−61035号公報、特開昭56−2149号公報などに開示されている。
Next, a method for obtaining a resin emulsion by the post-emulsification method will be described.
The post-emulsification method is a method in which a fiber dispersion resin is dispersed in a dispersion medium using a dispersant such as a surfactant or a protective colloid agent.
As an apparatus used in the post-emulsification, any of high shear mixers such as homomixers, kneaders, colloid mills, and homogenizers, and extruders used for melt kneading of resins such as twin screw extruders are preferably used. These may be batch or continuous.
The post-emulsification process is not particularly limited. A method of heating and melting a fiber dispersion resin, mixing a dispersant, mixing with a heat dispersion medium, and rapidly stirring with a high shear stirrer to form an emulsion. The fiber dispersion resin is dissolved in an organic solvent in advance, mixed with a heat dispersion medium mixed with a dispersant, emulsified with a high shear stirrer, and then the organic solvent is removed. For fiber dispersion using a twin screw extruder A method of continuously emulsifying the resin by heating and melting, supplying a dispersant and a heat dispersion medium from the middle of the extruder, and kneading strongly can be suitably used. These methods are disclosed in JP-A-57-61035 and JP-A-56-2149.

後乳化用の分散剤としては、前記重合法における各種界面活性剤を好適に使用できる。分散剤量は繊維分散用樹脂に対して0.1〜20質量部であることが好ましく、2〜15質量部であることがより好ましい。分散剤量が前記下限値以上であれば、樹脂エマルションの平均粒子径が小さくなり、シートの均一性、光学特性などの物性を向上させることができ、また、樹脂エマルション自体の乳化安定性、長期保管安定性を向上させることができる。一方、分散剤量が前記上限値以下であれば、植物繊維による補強効果を確実に発揮させることができる。   As the dispersant for post-emulsification, various surfactants in the polymerization method can be suitably used. The amount of the dispersant is preferably 0.1 to 20 parts by mass, more preferably 2 to 15 parts by mass with respect to the fiber dispersion resin. If the amount of the dispersant is equal to or more than the lower limit, the average particle diameter of the resin emulsion is reduced, and physical properties such as sheet uniformity and optical properties can be improved. Also, the emulsion stability of the resin emulsion itself, long-term Storage stability can be improved. On the other hand, if the amount of the dispersant is not more than the above upper limit value, the reinforcing effect by the plant fiber can be surely exhibited.

後乳化法で乳化される樹脂としては、前述の繊維分散用樹脂がいずれも好適に用いられるが、後乳化法は、分散媒中で微分散させるプロセスであり、繊維分散用樹脂を低粘度の溶融状態で分散媒と強攪拌する必要があるため、融点が低いことが好ましい。具体的には、線分散用樹脂の融点は170℃以下であることが好ましく、大気圧下で熱水と混合できる点では、100℃以下であることがより好ましい。なお、融点が170℃を超える繊維分散用樹脂は、熱分散媒と溶融状態で分散させるためには高温、高圧下で混合、攪拌しなければならず、より高圧に対応した大掛かりな生産設備を必要とする。
上記のことから、上述した繊維分散用樹脂の中でも、オレフィン系樹脂であって、融点が35〜170℃のものが好ましく、45〜101℃のものがより好ましい。
また、繊維分散用樹脂が水溶性であっても用いることができるが、シート作製工程での脱水性の観点からは、水と分離しやすい非水溶性の樹脂がより好ましい。
As the resin to be emulsified by the post-emulsification method, any of the aforementioned fiber dispersion resins is preferably used. However, the post-emulsification method is a process of finely dispersing in a dispersion medium. Since it is necessary to vigorously stir with the dispersion medium in the molten state, it is preferable that the melting point is low. Specifically, the melting point of the linear dispersion resin is preferably 170 ° C. or lower, and more preferably 100 ° C. or lower in that it can be mixed with hot water under atmospheric pressure. In order to disperse the fiber dispersion resin having a melting point exceeding 170 ° C. in a molten state with the heat dispersion medium, it must be mixed and stirred at a high temperature and a high pressure, and a large-scale production facility corresponding to a higher pressure is required. I need.
From the above, among the fiber dispersion resins described above, olefin resins having a melting point of 35 to 170 ° C are preferable, and those having a temperature of 45 to 101 ° C are more preferable.
Further, although the fiber dispersion resin can be used even if it is water-soluble, it is more preferably a water-insoluble resin that is easily separated from water from the viewpoint of dehydration in the sheet preparation process.

また、後乳化によって得られた樹脂エマルションとして、水溶性又は水性のポリウレタンエマルションが挙げられる。一例として、ブロック化イソシアネート基を利用した比較的低〜中分子量域の熱反応型ポリウレタンエマルションが挙げられる。他の例として、直鎖状構造を主体とする比較的高分子量域の熱可塑性ポリウレタンエマルションが挙げられる。
これらは、ポリウレタン骨格中にアニオン、カチオン、非イオン等の親水性基を導入して自己乳化もしくは分散する方法、ポリウレタンに上記界面活性剤を添加して強制的に水中に分散する方法により得られる。
Moreover, a water-soluble or aqueous polyurethane emulsion is mentioned as a resin emulsion obtained by post-emulsification. As an example, a relatively low to medium molecular weight range heat-reactive polyurethane emulsion using a blocked isocyanate group may be mentioned. Another example is a relatively high molecular weight thermoplastic polyurethane emulsion mainly composed of a linear structure.
These can be obtained by introducing a hydrophilic group such as anion, cation or nonion into the polyurethane skeleton and self-emulsifying or dispersing, or by adding the above surfactant to polyurethane and forcibly dispersing in water. .

[混合工程]
混合工程は、上記繊維スラリーと上記樹脂エマルションとを混合して混合分散液を調製する工程である。この工程により、植物繊維の一部または全部を繊維分散用樹脂で被覆できると推測される。
混合方法としては、容器に繊維スラリーおよび樹脂エマルションを入れホモミキサー等の攪拌機を用いて攪拌する方法、繊維スラリーおよび樹脂エマルションをラインミキサーに通す方法が挙げられる。
[Mixing process]
The mixing step is a step of mixing the fiber slurry and the resin emulsion to prepare a mixed dispersion. By this step, it is presumed that part or all of the plant fiber can be coated with the fiber dispersing resin.
Examples of the mixing method include a method in which the fiber slurry and the resin emulsion are put in a container and the mixture is stirred using a stirrer such as a homomixer, and the method in which the fiber slurry and the resin emulsion are passed through a line mixer.

繊維スラリーと樹脂エマルションとの混合割合は、繊維分散用樹脂の配合量が植物繊維100質量部に対して1〜500質量部になる割合が好ましく、10〜100質量部になる割合がより好ましく、15〜70質量部になる割合がさらに好ましい。樹脂エマルションの割合が前記下限値以上であれば、得られる植物繊維含有樹脂組成物において、熱可塑性樹脂中の植物繊維の分散性がより向上して、充分に高い強度を確保することができる。一方、樹脂エマルションの割合が前記上限値以下であれば、後述するシート作製工程においてコンポジットシートの剥離性が向上し、生産性がより高くなる。   The mixing ratio of the fiber slurry and the resin emulsion is preferably such that the mixing amount of the fiber dispersing resin is 1 to 500 parts by mass, more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the plant fiber. The ratio which becomes 15-70 mass parts is further more preferable. If the ratio of the resin emulsion is equal to or higher than the lower limit, the dispersibility of the plant fibers in the thermoplastic resin is further improved in the obtained plant fiber-containing resin composition, and a sufficiently high strength can be ensured. On the other hand, if the ratio of the resin emulsion is less than or equal to the above upper limit value, the peelability of the composite sheet is improved and the productivity is further increased in the sheet preparation process described later.

混合分散液には、公知公用の製紙用薬品を適宜使用することができる。製紙用薬品としては、紙力剤、湿潤紙力剤、歩留剤、凝結剤、濾水剤、嵩高剤、粘度調整剤、消泡剤等の各種薬品が挙げられる。   For the mixed dispersion, publicly known and publicly available papermaking chemicals can be appropriately used. Examples of the papermaking chemicals include various chemicals such as paper strength agents, wet strength agents, retention agents, coagulants, filtering agents, bulking agents, viscosity modifiers, and antifoaming agents.

[シート作製工程]
シート作製工程は、混合分散液から、植物繊維および繊維分散用樹脂が混ざり合った状態で含まれるコンポジットシートを作製する工程である。本実施形態では、混合分散液の抄紙によってコンポジットシートを作製する。
[Sheet preparation process]
The sheet preparation step is a step of preparing a composite sheet that is contained in a mixed state of plant fibers and fiber dispersion resin from the mixed dispersion. In this embodiment, a composite sheet is produced by papermaking of the mixed dispersion.

本実施形態におけるシート作製工程では、一般の紙を製造する際に使用される公知の連続抄紙装置を使用することができる。
公知の連続抄紙装置は、ワイヤーパートによる脱水セクションと、プレスパートによる搾水セクションと、ドライヤーパートによる乾燥セクションとを具備する。なお、本明細書では、「脱水」は水を除くことだけでなく、有機溶媒を除くことを意味として含み、「搾水」は水を搾ることだけでなく、有機溶媒を絞ることを意味として含む。
In the sheet manufacturing process in the present embodiment, a known continuous paper making apparatus used when manufacturing general paper can be used.
A known continuous papermaking machine comprises a dewatering section with a wire part, a squeezing section with a press part, and a drying section with a dryer part. In this specification, “dehydration” means not only removing water but also removing an organic solvent, and “squeezing” means not only squeezing water but also squeezing the organic solvent. Including.

脱水セクションとしては、長網抄紙のような紙の製造で通常に使用している公知の脱水方法が使用することができる。
脱水時に使用するワイヤーとしては、一般の抄紙で適用されるワイヤーを用いることができる。具体的には、ステンレス、ブロンズなどの金属ワイヤーやポリエステル、ポリアミド、ポリプロピレン、ポリフッ化ビニリデンなどのプラスチックワイヤーが挙げられる。また、セルロースアセテート基材などのメンブレンフィルターをワイヤーとして使用しても構わない。
ワイヤーの目開きとしては0.2〜200μmが好ましく、0.4〜100μmがよりに好ましい。目開きが前記下限値以上であれば、充分な脱水速度が得られ、前記上限値以下であれば、微細繊維状セルロースの歩留りが高くなる。
As the dewatering section, a known dewatering method which is usually used in the production of paper such as long net paper can be used.
As a wire used at the time of spin-drying | dehydration, the wire applied with general papermaking can be used. Specific examples include metal wires such as stainless steel and bronze and plastic wires such as polyester, polyamide, polypropylene, and polyvinylidene fluoride. Moreover, you may use membrane filters, such as a cellulose acetate base material, as a wire.
The opening of the wire is preferably 0.2 to 200 μm, and more preferably 0.4 to 100 μm. If the mesh opening is equal to or greater than the lower limit, a sufficient dehydration rate can be obtained, and if the mesh is equal to or smaller than the upper limit, the yield of fine fibrous cellulose is increased.

搾水セクションとしては、ロールプレスやシュープレスなどで脱水する公知の方法が使用することができる。
乾燥セクションとしては、紙の製造で用いられている公知の方法を採用することができる。例えば、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、赤外線ヒーターなどの乾燥装置を用いた方法が挙げられる。
As the squeezed section, a known method of dewatering with a roll press or a shoe press can be used.
As the drying section, a known method used in paper production can be employed. For example, a method using a drying device such as a cylinder dryer, a Yankee dryer, hot air drying, or an infrared heater can be used.

コンポジットシートの坪量は1.0〜1000g/mが好ましく、5.0〜500g/mがより好ましく、10.0〜100g/mがさらに好ましい。コンポジットシートの坪量が前記下限値以上であれば、充分なシート強度を確保でき、連続生産しやすくなり、前記上限値以下であれば、脱水時間が短くなり、コンポジットシートの生産性が高くなる。 The basis weight of the composite sheet is preferably 1.0~1000g / m 2, more preferably 5.0~500g / m 2, more preferably 10.0~100g / m 2. If the basis weight of the composite sheet is equal to or greater than the lower limit value, sufficient sheet strength can be ensured, and continuous production is facilitated. If the basis weight is equal to or less than the upper limit value, the dehydration time is shortened and the composite sheet productivity is increased. .

コンポジットシートの厚さは1〜1000μmが好ましく、5.0〜500μmがより好ましく、10.0〜100μmがさらに好ましい。コンポジットシートの厚さが前記下限値以上であれば、充分なシート強度を確保でき、連続生産しやすくなり、前記上限値以下であれば、脱水時間が短くなり、コンポジットシートの生産性が高くなる。   The thickness of the composite sheet is preferably 1-1000 μm, more preferably 5.0-500 μm, and even more preferably 10.0-100 μm. If the thickness of the composite sheet is equal to or greater than the lower limit value, sufficient sheet strength can be secured and continuous production is facilitated. If the thickness is equal to or less than the upper limit value, the dehydration time is shortened and the composite sheet productivity is increased. .

シート作製工程においては、得られたコンポジットシートを粉砕して、細かいシート粉砕物を得ることもできる。コンポジットシートを粉砕することにより、熱可塑性樹脂に対して植物繊維をより容易に分散させることができ、得られる植物繊維含有樹脂組成物の強度をより向上させることができる。
粉砕においては、ミクロフィブリル化処理後の微小繊維の形状を損なわない程度に粉砕することが好ましい。粉砕の際には、公知の粉砕機、例えば、サンプルミル、ハンマーミル、ターボミル、アトマイザー、カッターミル、ビーズミル、ボールミル、ロールミル、ジェットミルなどを使用することができる。またシュレッダーにより細片化してもかまわない。
シート粉砕物の面積は0.1〜2500mmであることが好ましく、0.2〜1000mmであることがより好ましい。
粉砕物の面積が前記下限値未満、前記上限値超のいずれであっても、後述する溶融混練工程において熱可塑性樹脂との混合が不均一になるおそれがあり、また、溶融混練装置への供給が困難になることがある。
In the sheet preparation step, the obtained composite sheet can be pulverized to obtain a fine pulverized sheet. By pulverizing the composite sheet, the plant fibers can be more easily dispersed in the thermoplastic resin, and the strength of the resulting plant fiber-containing resin composition can be further improved.
In pulverization, it is preferable to pulverize to the extent that the shape of the microfiber after the microfibrillation treatment is not impaired. In the pulverization, a known pulverizer such as a sample mill, a hammer mill, a turbo mill, an atomizer, a cutter mill, a bead mill, a ball mill, a roll mill, or a jet mill can be used. Further, it may be shredded with a shredder.
Preferably the area of the sheet pulverized product is 0.1~2500mm 2, more preferably 0.2~1000mm 2.
Even if the area of the pulverized product is less than the lower limit value or more than the upper limit value, the mixture with the thermoplastic resin may be non-uniform in the melt-kneading step described later, and supply to the melt-kneading apparatus Can be difficult.

粉砕後には、スクリーンにより粉砕物の形状、大きさを篩い分けてもよい。篩い分けすると、熱可塑性樹脂と均一に混合しやすくなる。篩い分けに使用されるスクリーンの口径は、熱可塑性樹脂の種類や形状等に応じて適宜選択される。   After pulverization, the shape and size of the pulverized product may be sieved with a screen. Sifting facilitates uniform mixing with the thermoplastic resin. The aperture of the screen used for sieving is appropriately selected according to the type and shape of the thermoplastic resin.

<植物繊維修飾剤>
本発明におけるC)植物繊維修飾剤とは、セルロース繊維の表面に存在する水酸基と反応可能な官能基を少なくとも一つ有する化合物であって、熱可塑性樹脂と複合化する際にセルロース繊維の再凝集性を低下させる化合物であり、たとえば、イソシアナート基を含む化合物、エポキシ基を含む化合物、アミノ基を含む化合物、酸、酸無水物、アルコール、シラン化合物、ハロゲン化試薬、環状エステル化合物、環状アミド化合物等よりなる群から選ばれる1種または2種以上が挙げられる。2種以上を組み合わせる場合は、異なる2種以上の官能基をセルロース繊維に導入することができる。これら植物繊維修飾剤の中では、ハロゲン化試薬、酸無水物基を含む化合物、エポキシ基を含む化合物、シラン化合物、環状アミド化合物、環状エステル化合物が好ましい。その中でも、溶融混練工程で選択される混練温度において気体状、もしくは液体状の形態を示すC)植物繊維修飾剤の方が、植物繊維のヒドロキシル基との接触しやすさの観点から、より好ましい。
<Plant fiber modifier>
The C) plant fiber modifier in the present invention is a compound having at least one functional group capable of reacting with a hydroxyl group present on the surface of the cellulose fiber, and re-aggregates the cellulose fiber when complexed with the thermoplastic resin. A compound containing an isocyanate group, a compound containing an epoxy group, a compound containing an amino group, an acid, an acid anhydride, an alcohol, a silane compound, a halogenating reagent, a cyclic ester compound, a cyclic amide 1 type, or 2 or more types chosen from the group which consists of a compound etc. are mentioned. When combining 2 or more types, two or more different functional groups can be introduced into the cellulose fiber. Among these plant fiber modifiers, halogenated reagents, compounds containing acid anhydride groups, compounds containing epoxy groups, silane compounds, cyclic amide compounds, and cyclic ester compounds are preferred. Among these, C) a plant fiber modifier that exhibits a gaseous or liquid form at the kneading temperature selected in the melt-kneading step is more preferable from the viewpoint of easy contact with the hydroxyl group of the plant fiber. .

酸としては、例えばヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、パルミチン酸、ステアリン酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ベヘニン酸、等の飽和脂肪酸、オレイン酸、エルカ酸、等の不飽和脂肪酸、アクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ノルボルネンジカルボン酸、ビシクロ[2,2,1]ヘプト−2−エン−5,6−ジカルボン酸などのカルボン酸、ω−アミノカルボキシル酸の様なカルボン酸基の他に別種の官能基を持ったカルボン酸等が挙げられる。   Examples of the acid include hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, palmitic acid, stearic acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, behenic acid, Saturated fatty acids such as oleic acid, erucic acid, acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, norbornene dicarboxylic acid, bicyclo Carboxylic acids such as [2,2,1] hept-2-ene-5,6-dicarboxylic acid, carboxylic acids having different functional groups in addition to carboxylic acid groups such as ω-aminocarboxylic acid It is done.

酸無水物とは、2個のオキソ酸、より好ましくは2個のカルボキシル基から脱水縮合することにより生成する酸無水物を有する化合物を示す。例えば、分子中に2個以上のカルボン酸を有する化合物が脱水縮合することで生成される環状構造を有する酸無水物、オキソ酸、より好ましくはカルボキシル基を有する複数の分子が脱水縮合することで生成する酸無水物等が例示される。環状構造を有する酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水フタル酸、テトラヒドロ無水フタル酸、無水コハク酸、5−ノルボルネン−2,3−ジカルボン酸無水物、3,6−エポキシ−1,2,3,6−テトラヒドロフタル酸無水物、テトラシクロ[ 6 .2 .1 .1 3 , 6 .0 2 , 7 ] ドデカ−9−エン−4 ,5−ジカルボン酸無水物、2,7−オクタジエン−1−イルコハク酸無水物、アルキルあるいはアルケニル無水コハク酸等が例示される。また、カルボキシル基を有する複数の分子が脱水縮合することで生成する酸無水物としては、無水ヘキサン酸、無水酢酸、無水プロピオン酸、酪酸無水物、イソ酪酸無水物、オクタン酸無水物、グルタル酸無水物、ヘキサン酸無水物等が例示され、さらには、カルボキシル基を有する複数の異なる化合物が脱水縮合することで生成する酸無水物、いわゆる混合酸無水物(例えば、酢酸プロピオン酸無水物等)であってもよい。 An acid anhydride refers to a compound having an acid anhydride formed by dehydration condensation from two oxo acids, more preferably two carboxyl groups. For example, an acid anhydride having a cyclic structure formed by dehydration condensation of a compound having two or more carboxylic acids in the molecule, an oxo acid, and more preferably a plurality of molecules having a carboxyl group may undergo dehydration condensation. The acid anhydride etc. which are produced | generated are illustrated. Examples of acid anhydrides having a cyclic structure include maleic anhydride, itaconic anhydride, citraconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, succinic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride, 3, 6-epoxy-1,2,3,6-tetrahydrophthalic anhydride, tetracyclo [6. 2. 1. 1 3, 6 . 0 2, 7 ] Dodeca-9-ene-4,5-dicarboxylic anhydride, 2,7-octadien-1-yl succinic anhydride, alkyl or alkenyl succinic anhydride and the like. In addition, acid anhydrides produced by dehydration condensation of a plurality of molecules having a carboxyl group include hexanoic anhydride, acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, octanoic anhydride, glutaric acid Examples include anhydrides, hexanoic anhydrides, and acid anhydrides produced by dehydration condensation of a plurality of different compounds having a carboxyl group, so-called mixed acid anhydrides (for example, acetic acid propionic acid anhydrides) It may be.

ハロゲン化試薬としては、例えばヘキサノイルハライド、ヘプタノイルハライド、オクタノイルハライド、ノナノイルハライド、デカノイルハライド、ラウロイルハライド、パルミトイルハライド、ステアロイルハライド等が挙げられる。   Examples of the halogenating reagent include hexanoyl halide, heptanoyl halide, octanoyl halide, nonanoyl halide, decanoyl halide, lauroyl halide, palmitoyl halide, stearoyl halide and the like.

アルコールとしては、例えばペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ドデカノール、セタノール、オクタデカノール、ラウリルアルコール、セチルアルコール、ステアリルアルコール等が挙げられる。   Examples of the alcohol include pentanol, hexanol, heptanol, octanol, nonanol, decanol, dodecanol, cetanol, octadecanol, lauryl alcohol, cetyl alcohol, stearyl alcohol and the like.

イソシアナート基を含む化合物としては、例えばペンチルイソシアナート、ヘキシルイソシアナート、シクロペンチルイソシアナート、シクロヘキシルイソシアナート等が挙げられる。   Examples of the compound containing an isocyanate group include pentyl isocyanate, hexyl isocyanate, cyclopentyl isocyanate, cyclohexyl isocyanate, and the like.

エポキシ基を含む化合物としては、アリルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、p−(tert−ブチル)フェニルグリシジルエーテル、2,6−ジブロモフェニルグリシジルエーテル、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリシジルアクリレート、グリシジルメタクリレート、2−メチルアリルグリシジルエーテル、スチレン−p−グリシジルエーテル、4−ヒドロキシブチルアクリレートグリシジルエーテル、1,2−エポキシ−9−デセン、ブチルグリシジルエーテル、グリシドール等が挙げられる。   Examples of the compound containing an epoxy group include allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, p- (tert-butyl) phenyl glycidyl ether, 2,6-dibromophenyl glycidyl ether, resorcinol diglycidyl ether, neopentyl glycol. Diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycidyl acrylate, glycidyl methacrylate, 2-methylallyl glycidyl ether, styrene-p-glycidyl ether, 4-hydroxybutyl acrylate glycidyl ether, 1,2-epoxy-9- Examples include decene, butyl glycidyl ether, and glycidol.

アミノ基を含む化合物としては、オクチルアミン、ステアリルアミン、ラウリルアミン、オレイルアミン、ジステアリルアミン、ミリスチルアミン、セチルアミン、オレイルアミン、ベヘニルアミン、オレイルプロピレンジアミン等の脂肪酸アミン、シクロへキシルアミン、ジメチルアミノシクロヘキサン、アニリン、クロロアニリン、アミノベンゼンスルホン酸、ニトロアニリン、ニトロソアニリン、メチルニトロソアニリン、N−メチルアニリン等の飽和もしくは不飽和脂環式アミンおよびその誘導体、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、フェニルエタノールアミン、ナフチルエタノールアミン、メチルジエタノールアミン、アミノフェノール、アミノ安息香酸等のアミノアルコール類、エチレンジアミン、ヘキサメチレンジアミンといった複数のアミノ基を有した化合物、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、ロイシン、イソロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン等のアミノ酸類、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、アリルアミン等が挙げられる。   Compounds containing amino groups include octylamine, stearylamine, laurylamine, oleylamine, distearylamine, myristylamine, cetylamine, oleylamine, behenylamine, oleylpropylenediamine and other fatty acid amines, cyclohexylamine, dimethylaminocyclohexane, aniline , Saturated or unsaturated alicyclic amines such as chloroaniline, aminobenzenesulfonic acid, nitroaniline, nitrosoaniline, methylnitrosoaniline, N-methylaniline and their derivatives, monoethanolamine, diethanolamine, triethanolamine, phenylethanolamine , Naphthylethanolamine, methyldiethanolamine, aminophenol, aminoalcohols such as aminobenzoic acid, ethylene dia , Compounds having multiple amino groups such as hexamethylenediamine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, leucine, isoleucine, lysine, methionine, phenylalanine, proline, serine, threonine, Examples include amino acids such as tryptophan, tyrosine, and valine, methylamine, dimethylamine, ethylamine, diethylamine, and allylamine.

シラン化合物は、主としてメトキシシランやエトキシシランを含む化合物である。具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン、n−オクチルトリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、テトラエトキシシラン、テトラメトキシシラン、メチルトリメトシキシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキサメチルジシラザン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、等が挙げられ、さらに好ましくは、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシランが挙げられる。これら化合物は単量体であってもよいが、単量体の1種または2種以上がオリゴマーを形成していてもよい。   The silane compound is a compound mainly containing methoxysilane or ethoxysilane. Specific examples include vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltri. Methoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N 2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-chloropropyltrimethoxy Silane, 3-ureidopropyltriethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, n-octyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, tetraethoxysilane, tetra Methoxysilane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexamethyldisilazane, hexyltrimethyl Kishishiran, decyl trimethoxysilane, etc., and more preferably, 3-aminopropyltrimethoxysilane, and 3-aminopropyltriethoxysilane. These compounds may be monomers, but one or more of the monomers may form an oligomer.

環状エステル化合物とは、分子構造内にラクトン構造を有した化合物である。また、ラクトン構造とは、エステル基を構成する原子が形成した環状構造であり、ヒドロキシル基とカルボキシル基が脱水縮合した構造である。環状エステル化合物としては、α−ラクトン、β−ラクトン、γ−ラクトン、δ−ラクトン、ε−ラクトン等が挙げられる。より具体的には、α-アセトラクトン、α-アンゲリカラクトン、ε-カプロラクトン、δ-バレロラクトン、β-プロピオラクトン、γ-ブチロラクトン、γ-クロトノラクトン、γ−ペンタノラクトン、γ-ドデカノラクトン、γ-ヘキサノラクトン、DL−ラクチド、D−マンノン酸δ−ラクトン、2−フラノン、ペンタノ−4−ラクトン等が挙げられる。   The cyclic ester compound is a compound having a lactone structure in the molecular structure. The lactone structure is a cyclic structure formed by atoms constituting an ester group, and is a structure in which a hydroxyl group and a carboxyl group are dehydrated and condensed. Examples of the cyclic ester compound include α-lactone, β-lactone, γ-lactone, δ-lactone, and ε-lactone. More specifically, α-acetolactone, α-angelica lactone, ε-caprolactone, δ-valerolactone, β-propiolactone, γ-butyrolactone, γ-crotonolactone, γ-pentanolactone, γ-dodeca Nolactone, γ-hexanolactone, DL-lactide, D-mannonic acid δ-lactone, 2-furanone, pentano-4-lactone and the like.

環状アミド化合物とは、分子構造内にラクタム構造を有した化合物である。また、ラクタム構造とは、アミド基を構成する窒素原子を含む原子が形成した環状構造であり、カルボキシル基とアミノ基が脱水縮合した構造である。環状アミド化合物としては、主環が炭素数4〜12であるω−ラクタムがあり、より具体的には、α−ラクタム、β-ラクタム、γ-ラクタム、δ-ラクタム、ε−ラクタム等が挙げられる。その中ではさらに、γ−ブチロラクタム、ε−カプロラクタム、ω−エナントラクタム、ω−カプリロラクタム、ω−ラウロラクタム、ω−ヘプタラクタム、ω−オクタラクタム、ω−ウンデカラクタム、ω−ラウロラクタムが好ましい。   The cyclic amide compound is a compound having a lactam structure in the molecular structure. The lactam structure is a cyclic structure formed by atoms including nitrogen atoms constituting the amide group, and is a structure in which a carboxyl group and an amino group are dehydrated and condensed. Cyclic amide compounds include ω-lactams having a main ring of 4 to 12 carbon atoms, and more specifically α-lactams, β-lactams, γ-lactams, δ-lactams, ε-lactams, and the like. It is done. Among them, γ-butyrolactam, ε-caprolactam, ω-enantolactam, ω-caprolactam, ω-laurolactam, ω-heptalactam, ω-octalactam, ω-undecalactam, and ω-laurolactam are further included. preferable.

植物繊維含有樹脂組成物におけるC)植物繊維修飾剤の含有量は、B)植物繊維組成物中の植物繊維100質量部に対し、0.1〜200質量部であることが好ましく、1〜150質量部であることがより好ましく、2〜100質量部であることがさらに好ましい。この範囲より低ければ、植物繊維の修飾量が少なすぎ、植物繊維の熱可塑性樹脂への分散性が悪いばかりでなく、機械物性の低下にもつながる。この範囲より高ければ、樹脂組成物中の植物繊維修飾剤の残渣が多くなり、機械物性が低下するばかりでなく、臭気や樹脂の変色等の原因となる。   The content of the C) plant fiber modifier in the plant fiber-containing resin composition is preferably 0.1 to 200 parts by mass, and 1 to 150 parts per 100 parts by mass of the plant fiber in the plant fiber composition. It is more preferable that it is a mass part, and it is further more preferable that it is 2-100 mass parts. If it is lower than this range, the modification amount of the plant fiber is too small, and not only the dispersibility of the plant fiber in the thermoplastic resin is bad, but also the mechanical properties are lowered. If it is higher than this range, the residue of the plant fiber modifier in the resin composition is increased, which not only deteriorates the mechanical properties, but also causes odor and discoloration of the resin.

<他の成分>
本発明の植物繊維含有樹脂組成物には、本発明の組成物の機能の主旨を逸脱しない範囲において、他の機能を付加するために、酸化防止剤、紫外線吸収剤、滑剤、帯電防止剤、着色剤、顔料、架橋剤、発泡剤、核剤、難燃剤、充填材などの添加剤を配合してもよい。
<Other ingredients>
In order to add other functions to the plant fiber-containing resin composition of the present invention without departing from the gist of the function of the composition of the present invention, an antioxidant, an ultraviolet absorber, a lubricant, an antistatic agent, You may mix | blend additives, such as a coloring agent, a pigment, a crosslinking agent, a foaming agent, a nucleating agent, a flame retardant, and a filler.

本発明の植物繊維含有樹脂組成物には、本発明の組成物の機能の主旨を逸脱しない範囲において、各種の樹脂改質材などを配合してもよい。その他の成分としては、ブタジエン系ゴム、イソブチレンゴム、イソプレン系ゴム、天然ゴム、ニトリルゴム、石油樹脂などが挙げられ、これらは単独でも混合物でもよい。   Various resin modifiers and the like may be blended with the plant fiber-containing resin composition of the present invention within a range not departing from the gist of the function of the composition of the present invention. Examples of other components include butadiene rubber, isobutylene rubber, isoprene rubber, natural rubber, nitrile rubber, and petroleum resin, and these may be used alone or in a mixture.

<植物繊維凝集物>
植物繊維含有樹脂組成物中に植物繊維由来の粗大な凝集物が存在する場合、仮に、ミクロフィブリル化した植物繊維が大多数であったとしても、樹脂組成物の引張破断伸びおよび耐衝撃性が低下する。これは、粗大な凝集物が破壊の起点となって応力が集中する為である。
植物繊維含有樹脂組成物中の粗大粒子の存在確認、および寸法の測定は光学顕微鏡による直接観察で実施する事が可能である。例えば、植物繊維がセルロースであり、熱可塑性樹脂がポリオレフィン系樹脂である場合、該繊維を含有した樹脂組成物の成形体からカミソリやミクロトーム等を用いて薄切片に加工し、それを光学顕微鏡で観察する事により、セルロース繊維の粗大凝集物の有無とその寸法を確認する事が可能である。その際、セルロース繊維をよう素溶液等で染色すると、より観察が容易となる。
植物繊維の粗大凝集物とは、下記の繊維長および繊維幅の双方の寸法を満たす粗大凝集物を指す。すなわち、凝集物の長さが、300μm以下、好ましくは250μm以下、より好ましくは200μm以下、さらに好ましくは150μm以下であれば、植物繊維含有樹脂組成物の耐衝撃性の低下が小さい。凝集物の幅が、80μm以下、好ましくは60μm以下、より好ましくは45μm以下、さらに好ましくは30μm以下であれば、植物繊維含有樹脂組成物の耐衝撃性の低下が少ない。すなわち、長さが300μmより長く、かつ、幅が80μmより大きい凝集物が粗大凝集物である。例えば、繊維長が300μmよりも長くても、その繊維幅が、80μm以下、好ましくは60μm以下、より好ましくは45μm以下、さらに好ましくは30μm以下であれば、耐衝撃性の低下は小さくなる。また、凝集物の最少繊維長、および最少繊維幅は、光学顕微鏡で観察されない。これは、光学顕微鏡の測定限界が光の波長の影響を受けるためで、例えば、1μm以下の観察は実質的に難しい。その為、凝集物の寸法の最少範囲を決定する事は出来ないが、理論的には植物繊維の最少径、例えば、セルロース繊維であれば、4nm程度が最少幅となる。なお、繊維長が300μm以上であっても、繊維幅が光学顕微鏡で観察できないレベルであれば、それを含有せしめた樹脂組成物の耐衝撃性は低下しない。
<Plant fiber aggregate>
When coarse aggregates derived from plant fibers are present in the plant fiber-containing resin composition, even if the majority of the microfibrillated plant fibers are present, the tensile breaking elongation and impact resistance of the resin composition are high. descend. This is because coarse agglomerates become the starting point of fracture and stress concentrates.
The confirmation of the presence of coarse particles in the plant fiber-containing resin composition and the measurement of dimensions can be carried out by direct observation with an optical microscope. For example, when the plant fiber is cellulose and the thermoplastic resin is a polyolefin resin, the resin composition molded body containing the fiber is processed into a thin section using a razor, a microtome, etc., and this is processed with an optical microscope. By observing it, it is possible to confirm the presence and size of coarse aggregates of cellulose fibers. At that time, if cellulose fibers are dyed with iodine solution or the like, the observation becomes easier.
The coarse aggregate of plant fiber refers to a coarse aggregate that satisfies both the fiber length and fiber width dimensions described below. That is, if the length of the aggregate is 300 μm or less, preferably 250 μm or less, more preferably 200 μm or less, and even more preferably 150 μm or less, the decrease in impact resistance of the plant fiber-containing resin composition is small. When the width of the aggregate is 80 μm or less, preferably 60 μm or less, more preferably 45 μm or less, and even more preferably 30 μm or less, the impact resistance of the plant fiber-containing resin composition is less deteriorated. That is, an aggregate having a length longer than 300 μm and a width greater than 80 μm is a coarse aggregate. For example, even if the fiber length is longer than 300 μm, if the fiber width is 80 μm or less, preferably 60 μm or less, more preferably 45 μm or less, and even more preferably 30 μm or less, the decrease in impact resistance is small. Further, the minimum fiber length and the minimum fiber width of the aggregate are not observed with an optical microscope. This is because the measurement limit of the optical microscope is affected by the wavelength of light, and for example, observation of 1 μm or less is substantially difficult. Therefore, although the minimum range of the size of the aggregate cannot be determined, theoretically, the minimum width of the plant fiber, for example, about 4 nm is the minimum width in the case of cellulose fiber. Even when the fiber length is 300 μm or more, the impact resistance of the resin composition containing the fiber width does not decrease as long as the fiber width is not observable with an optical microscope.

「植物繊維含有樹脂組成物の製造」
(溶融混練工程)
溶融混練工程とは、A)熱可塑性樹脂と、B)植物繊維組成物と、C)植物繊維修飾剤とを、溶融混練しながら複合化する工程である。溶融混練工程は、主に二つの工程からなる。すなわち、B)植物繊維組成物中の植物繊維とC)植物繊維修飾剤とを複合化させる工程と、B)植物繊維組成物中の植物繊維をA)熱可塑性樹脂中に分散させる工程、である。これら工程は、同時に進行されていてもよいし、適宜適当な順序で行われてもよい。
"Manufacture of plant fiber-containing resin composition"
(Melting and kneading process)
The melt-kneading step is a step in which A) a thermoplastic resin, B) a plant fiber composition, and C) a plant fiber modifier are combined while being melt-kneaded. The melt-kneading process mainly consists of two processes. That is, B) a step of combining a plant fiber in a plant fiber composition and C) a plant fiber modifier, and B) a step of dispersing the plant fiber in the plant fiber composition in A) a thermoplastic resin. is there. These steps may be performed simultaneously, or may be performed in an appropriate order.

溶融混練装置としては、単軸押出機、二軸押出機、二軸混練機、ニーダー、バンバリーミキサー、往復式混練機(BUSS KNEADER)、ロール混練機等、公知の混練装置を使用する事ができる。これらのうち、生産性や作業の簡便性を考慮すると、単軸押出機、二軸押出機、二軸混練機、バンバリーミキサー、往復式混練機が好ましい。溶融混練装置の選定にあたって、混練機内部の密閉性が高い装置を選んだ方が、より効果的に高い分散性を有し、かつ、粗大凝集物が実質的に存在しない植物繊維含有樹脂組成物を製造する事ができる。すなわち、植物繊維をC)植物繊維修飾剤で修飾するにあたり、押出機内部からC)植物繊維修飾剤の漏えいが少ない方が、より効率的に修飾できるためである。
具体的な溶融混練方法としては、例えば以下の様な方法を挙げる事ができる。あらかじめ、A)熱可塑性樹脂とB)植物繊維組成物とC)植物繊維修飾剤とを、タンブラーミキサーやスーパーミキサー、スーパーフローター、ヘンシェルミキサー等で均一に混合させ、それらを単軸押出機または二軸押出機に投入し、溶融混練を行う方法、A)熱可塑性樹脂とB)植物繊維組成物とを単軸押出機または二軸押出機で溶融混練し、得られた混練物に、さらにC)植物繊維修飾剤を加えて、再度、単軸押出機または二軸押出機で溶融混練する方法、A)熱可塑性樹脂とC)植物繊維修飾剤とを単軸押出機または二軸押出機で溶融混練し、得られた混練物に、さらにB)植物繊維組成物を加えて、再度、単軸押出機または二軸押出機で溶融混練する方法、二軸押出機を用い、先にA)熱可塑性樹脂とB)植物繊維組成物を混練させ、押出機の途中でC)植物繊維修飾剤を添加し、さらに溶融混練する方法、二軸押出機を用い、先にA)熱可塑性樹脂とC)植物繊維修飾剤を混練させ、押出の途中でB)植物繊維組成物を添加し、さらに溶融混練する方法等を例示できる。植物繊維の分散性を高める為に、植物繊維が複合化された樹脂組成物をさらに別工程で溶融混練してもよい。原料として用いた植物繊維組成物中に粗大な繊維凝集物が存在していたとしても、溶融混練の過程で、粗大な繊維凝集物は再解繊させられ、植物繊維含有樹脂組成中には実質的に粗大凝集物が存在しなくなる。A)熱可塑性樹脂や植物繊維組成物から発生する水分その他の揮発分や、揮発性のC)植物繊維修飾剤を用いた場合の残留揮発成分等を除去する為、ベントの開放や、脱気設備を用いてもよい。
As the melt-kneading apparatus, a known kneading apparatus such as a single-screw extruder, a twin-screw extruder, a twin-screw kneader, a kneader, a Banbury mixer, a reciprocating kneader (BUSS KNEADER), a roll kneader, or the like can be used. . Of these, a single screw extruder, a twin screw extruder, a twin screw kneader, a Banbury mixer, and a reciprocating kneader are preferable in consideration of productivity and workability. When selecting a melt-kneading apparatus, a plant fiber-containing resin composition having a higher dispersibility and a substantial absence of coarse agglomerates is more effective when an apparatus having a high hermeticity inside the kneader is selected. Can be manufactured. That is, when the plant fiber is modified with C) the plant fiber modifier, modification can be performed more efficiently if the leakage of the C) plant fiber modifier is less from the inside of the extruder.
Specific examples of the melt-kneading method include the following methods. In advance, A) thermoplastic resin, B) plant fiber composition and C) plant fiber modifier are uniformly mixed with a tumbler mixer, super mixer, super floater, Henschel mixer, etc. A method in which the mixture is put into a screw extruder and melt kneaded, and A) a thermoplastic resin and B) a plant fiber composition are melt kneaded with a single screw extruder or a twin screw extruder. A method of adding a plant fiber modifier and melt-kneading again with a single screw extruder or a twin screw extruder, A) a thermoplastic resin and C) a plant fiber modifier with a single screw extruder or a twin screw extruder A method in which B) a plant fiber composition is further added to the kneaded material obtained by melt-kneading and the mixture is melt-kneaded again with a single-screw extruder or a twin-screw extruder, using a twin-screw extruder. Kneading thermoplastic resin and B) plant fiber composition In the middle of the extruder, C) a method of adding a plant fiber modifier and further melt-kneading, using a twin screw extruder, A) a thermoplastic resin and C) a plant fiber modifier are first kneaded, Examples thereof include B) a method of adding a plant fiber composition and further melt-kneading. In order to enhance the dispersibility of the plant fiber, the resin composition in which the plant fiber is combined may be melt-kneaded in a further step. Even if coarse fiber aggregates exist in the plant fiber composition used as a raw material, the coarse fiber aggregates are re-defibrated during the melt-kneading process, and the plant fiber-containing resin composition is substantially Coarse aggregates are not present. A) Opening of vents and deaeration to remove moisture and other volatiles generated from thermoplastic resins and plant fiber compositions, and residual volatile components when volatile C) plant fiber modifiers are used. Equipment may be used.

植物繊維含有樹脂組成物の製造における、溶融混練時の温度は、熱可塑性樹脂の溶融温度に応じて適宜設定されるが、例えば、70〜300℃の範囲内とされる。特に、熱可塑性樹脂としてオレフィン系樹脂を用いる場合、混練温度としては、70℃〜300℃の範囲、好ましくは80℃〜250℃の範囲、さらに好ましくは85℃〜230℃、より好適には90℃〜200℃の範囲がよい。この範囲を下回る場合、混練すべき樹脂が溶融せず、実質的に製造する事が不可能である。この範囲を上回る場合、製造に供したA)熱可塑性樹脂およびB)植物繊維組成物が熱によるダメージを受けて分子鎖の断裂、酸化劣化、変性等が発生し、機械物性を低下させるばかりでなく、不快な臭気の発生や変色につながる。   The temperature at the time of melt kneading in the production of the plant fiber-containing resin composition is appropriately set according to the melting temperature of the thermoplastic resin, and is, for example, in the range of 70 to 300 ° C. In particular, when an olefin resin is used as the thermoplastic resin, the kneading temperature is in the range of 70 ° C to 300 ° C, preferably in the range of 80 ° C to 250 ° C, more preferably in the range of 85 ° C to 230 ° C, and more preferably 90 ° C. The range of ° C to 200 ° C is good. Below this range, the resin to be kneaded does not melt and is virtually impossible to manufacture. If this range is exceeded, the A) thermoplastic resin and B) plant fiber composition used for production are damaged by heat, resulting in molecular chain breakage, oxidative degradation, modification, and the like, resulting in a decrease in mechanical properties. Without any unpleasant odor or discoloration.

植物繊維含有樹脂組成物の製造における溶融混練時間は、C)植物繊維修飾剤とB)植物繊維組成物中の植物繊維との化学反応の面から長い方が好ましいが、生産性との兼ね合いを考えて適宜設定される。例えば、バンバリーミキサーの様なバッチ式の混練機を用いた場合、1〜100分の範囲内であれば、植物繊維の修飾と生産性を両立する事ができるが、生産性を考慮に入れなければ、これ以上の時間であっても製造は可能である。また、例えば、単軸押出機、二軸押出機、往復式混練機(BUSS KNEADER)の様な連続式の混練機を用いた場合、その滞留時間は1〜20分の範囲内であれば、植物繊維の修飾と生産性を両立することができるが、生産性を考慮に入れなければ、これ以上の時間であっても製造は可能である。   The melt kneading time in the production of the plant fiber-containing resin composition is preferably longer from the viewpoint of the chemical reaction between C) the plant fiber modifier and B) the plant fiber in the plant fiber composition. It is set as appropriate. For example, when a batch-type kneader such as a Banbury mixer is used, if it is within the range of 1 to 100 minutes, both plant fiber modification and productivity can be achieved, but productivity must be taken into consideration. For example, the manufacturing can be performed even in a longer time. Further, for example, when a continuous kneader such as a single screw extruder, a twin screw extruder, a reciprocating kneader (BUSS KNEADER) is used, if the residence time is within a range of 1 to 20 minutes, Although it is possible to achieve both plant fiber modification and productivity, if the productivity is not taken into consideration, the production is possible even in a longer time.

以下において、本発明を実施例及び比較例によって具体的に説明し、好適な各実施例のデータ及び各実施例と各比較例の対照により、本発明の構成の合理性と有意性及び従来技術に対する卓越性を実証する。   In the following, the present invention will be described in detail by way of examples and comparative examples, and the rationality and significance of the configuration of the present invention and the prior art by comparing the data of each preferred example and the comparison between each example and each comparative example. Demonstrate excellence against

(植物繊維組成物繊維の製造)
[繊維スラリー]
針葉樹晒クラフトパルプ(王子製紙社製、JIS P8121に従って測定されるカナダ標準濾水度(CSF)550ml)を、熊谷理化工業製ダブルディスクリファイナーを用い叩解した。繊維水スラリーに含まれる繊維の平均繊維長は0.66mm、平均繊維幅は300nmであった。
(Manufacture of plant fiber composition fibers)
[Fiber slurry]
Softwood bleached kraft pulp (manufactured by Oji Paper Co., Ltd., Canada Standard Freeness (CSF) 550 ml measured according to JIS P8121) was beaten using a double disc refiner made by Kumagai Rika Kogyo. The average fiber length of the fibers contained in the fiber water slurry was 0.66 mm, and the average fiber width was 300 nm.

[樹脂エマルジョン]
樹脂エマルジョンの製造は特開2007−326913号公報に記載された方法に準拠して実施した。原料は日本ポリエチレン株式会社製エチレン−メチルアクリレート−無水マレイン酸共重合体(商品名:レクスパールET、グレード:ET330H)、カチオン性高分子界面活性剤、および水である。
具体的には、エチレン−メチルアクリレート−無水マレイン酸共重合体を同方向回転噛合型二軸スクリュー押出機のホッパーより100質量部/時間の割合で連続供給し、同押出機のベント部に設けた供給口より、固形分35質量%のカチオン性高分子界面活性剤の水溶液を26.8質量部/時間(固形分としては8質量部/時間)の割合で、ギヤーポンプ(吐出圧力3Kg/cm2G)で加圧して連続的に供給しながら、加熱温度110℃ で連続的に押出して製造した。ここで用いるカチオン性高分子界面活性剤は2007−326913号公報に記載された方法に準拠して製造した。
使用した樹脂エマルションは、エチレン−メチルアクリレート−無水マレイン酸共重合体が平均粒径1μmの大きさで水中に分散したものである。この樹脂エマルジョンの不揮発成分は45.3%、pHは4.6である。
平均粒子径の測定は、特開2011−46776号公報に記載の方法に準拠して測定した。具体的には、島津製作所(株)製レーザ回折式粒度分布測定装置SALD−2000シリーズを用い、屈折率:1.50−0.20iの条件で、体積分布におけるメディアン径を測定した。
不揮発成分の測定は、特開2011−46776号公報に記載の方法に準拠して測定した。具体的には、水系エマルジョンサンプル約1gを精秤し熱風循環乾燥機で105℃、3時間乾燥させた後、デシケーターの中で放冷後、その質量を測定し、下記の式にしたがい、不揮発分を算出した。
不揮発分[%]=(乾燥後の試料の質量/乾燥前の試料の質量)×100
樹脂エマルションのpHはJIS Z8802「pH測定方法」に準拠して測定した。
[Resin emulsion]
The resin emulsion was produced according to the method described in JP-A-2007-326913. The raw materials are an ethylene-methyl acrylate-maleic anhydride copolymer (trade name: Lexpearl ET, grade: ET330H) manufactured by Nippon Polyethylene Co., Ltd., a cationic polymer surfactant, and water.
Specifically, the ethylene-methyl acrylate-maleic anhydride copolymer is continuously supplied from the hopper of the same direction rotating meshing twin screw extruder at a rate of 100 parts by mass / hour, and provided in the vent portion of the extruder. From a supply port, an aqueous solution of a cationic polymer surfactant having a solid content of 35% by mass at a rate of 26.8 parts by mass / hour (the solid content is 8 parts by mass / hour) is a gear pump (discharge pressure 3 Kg / cm 2 G). ) And continuously extruding at a heating temperature of 110 ° C. The cationic polymer surfactant used here was produced according to the method described in 2007-326913.
The resin emulsion used was an ethylene-methyl acrylate-maleic anhydride copolymer dispersed in water with an average particle size of 1 μm. This resin emulsion has a non-volatile component of 45.3% and a pH of 4.6.
The average particle diameter was measured according to the method described in JP 2011-46776 A. Specifically, the median diameter in the volume distribution was measured using a laser diffraction particle size distribution analyzer SALD-2000 series manufactured by Shimadzu Corporation under the condition of refractive index: 1.50-0.20i.
The nonvolatile component was measured according to the method described in JP 2011-46776 A. Specifically, about 1 g of an aqueous emulsion sample was precisely weighed and dried with a hot air circulating dryer at 105 ° C. for 3 hours, then allowed to cool in a desiccator, and its mass was measured. Minutes were calculated.
Nonvolatile content [%] = (mass of sample after drying / mass of sample before drying) × 100
The pH of the resin emulsion was measured according to JIS Z8802 “pH measurement method”.

[植物繊維組成物(B−1)の製造]
上記、繊維スラリー70部(固形分換算)と、上記、樹脂エマルション30部(固形分換算)と混合した。
この混合スラリーを攪拌しながらカチオン性高分子歩留剤ND−200C(ハイモ社製)46ppmを添加し、更にアニオン性高分子歩留剤FA−230(ハイモ社製)46ppmを添加した。
次いで、その混合分散液を、日本フィルコン社製の二重織りのプラスチックワイヤー上で吸引脱水することにより抄紙して、微細繊維状セルロースと樹脂エマルションとで構成された含水ウェブを得た。その含水ウェブを、シリンダーロールを用いて乾燥して、坪量30.8g/mのシート状の植物繊維含有組成物(B−1)を得た。
[Production of plant fiber composition (B-1)]
70 parts of the fiber slurry (in terms of solid content) and 30 parts of the resin emulsion (in terms of solid content) were mixed.
While stirring this mixed slurry, 46 ppm of cationic polymer retention agent ND-200C (manufactured by Hymo) was added, and 46 ppm of anionic polymer retention agent FA-230 (manufactured by Hymo) was further added.
Next, the mixed dispersion liquid was subjected to suction paper dehydration on a double woven plastic wire manufactured by Nippon Filcon Co., Ltd. to obtain a water-containing web composed of fine fibrous cellulose and a resin emulsion. The water-containing web was dried using a cylinder roll to obtain a sheet-like plant fiber-containing composition (B-1) having a basis weight of 30.8 g / m 2 .

(実施例1)植物繊維含有樹脂組成物(D−1)の製造
線状低密度ポリエチレン(日本ポリエチレン社製、商品名:F30HG、表中では「LLDPE」と表記する。)5.0kg、植物繊維組成物(B−1)365g、無水マレイン酸(日油株式会社製、商品名:SY−A)12.5gをヘンシェルミキサーで十分混合後、50mm単軸押出機を用い、設定温度160℃、回転速度80回/分で混練し、ダイスから吐出されたストランドをペレット形状に加工した。得られたペレットを、ラボプラストミルのミキサー(株式会社東洋精機製作所製、ローラミキサR60)を用い、設定温度160℃、回転速度75回転/分、で10分間混練した。混練後、ミキサーから混練物を回収し、植物繊維含有樹脂組成物(D−1)を得た。
(Example 1) Production of plant fiber-containing resin composition (D-1) Linear low density polyethylene (manufactured by Nippon Polyethylene Co., Ltd., trade name: F30HG, described as “LLDPE” in the table) 5.0 kg, plant After sufficiently mixing 365 g of the fiber composition (B-1) and 12.5 g of maleic anhydride (manufactured by NOF Corporation, trade name: SY-A) with a Henschel mixer, the set temperature is 160 ° C. using a 50 mm single screw extruder. The kneading was carried out at a rotational speed of 80 times / min, and the strand discharged from the die was processed into a pellet shape. The obtained pellets were kneaded for 10 minutes at a preset temperature of 160 ° C. and a rotational speed of 75 revolutions / minute using a Laboplast mill mixer (manufactured by Toyo Seiki Seisakusho, roller mixer R60). After kneading, the kneaded product was recovered from the mixer to obtain a plant fiber-containing resin composition (D-1).

(実施例2)植物繊維含有樹脂組成物(D−2)の製造
無水マレイン酸の添加量を50gに変更した以外は、実施例1と同様の方法で植物繊維含有樹脂組成物(D−2)を得た。
(Example 2) Production of plant fiber-containing resin composition (D-2) A plant fiber-containing resin composition (D-2) was produced in the same manner as in Example 1, except that the amount of maleic anhydride added was changed to 50 g. )

(実施例3)植物繊維含有樹脂組成物(D−3)の製造
無水マレイン酸の添加量を125gに変更した以外は、実施例1と同様の方法で植物繊維含有樹脂組成物(D−3)を得た。
(Example 3) Production of plant fiber-containing resin composition (D-3) A plant fiber-containing resin composition (D-3) was produced in the same manner as in Example 1 except that the amount of maleic anhydride added was changed to 125 g. )

(比較例1)植物繊維含有樹脂組成物(D−4)の製造
無水マレイン酸を添加しない以外は、実施例1と同様の方法で植物繊維含有樹脂組成物(D−4)を得た。
(Comparative Example 1) Production of plant fiber-containing resin composition (D-4) A plant fiber-containing resin composition (D-4) was obtained in the same manner as in Example 1 except that maleic anhydride was not added.

<評価>
各例について、引張特性及び粗大凝集物について以下の方法により評価した。評価結果を表1に示す。
<Evaluation>
For each example, the tensile properties and coarse aggregates were evaluated by the following methods. The evaluation results are shown in Table 1.

[引張降伏強度・引張破壊伸びの測定]
○引張試験サンプルの作製方法
各実施例および各比較例のペレットを、寸法:150mm×150mm、厚さ2mmの加熱プレス用モールドに入れ、表面温度190℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで樹脂を溶融すると共に溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、4.9MPaの圧力をかけた状態で、10℃/分の速度で徐々に冷却し、温度が室温付近まで低下したところでモールドから成形板を取り出した。得られた成形板を温度23±2℃、湿度50±5℃の環境下で48時間以上、状態調節した。状態調節後のプレス板からJIS K 7113−1995に記載の2号試験片の形状に打ち抜き、引張試験サンプルとした。
○引張試験条件
上記試験片を用い、JIS K 7113−1995に準じて、引張降伏強度・引張破壊伸びを測定した。引張試験機として株式会社エーアンドディー社製のテンシロン(型式:RTG−1250)を用いた。引張速度は50mm/分で実施した。
[Measurement of tensile yield strength and tensile fracture elongation]
○ Preparation method of tensile test sample The pellets of each example and each comparative example were put into a hot press mold having dimensions of 150 mm x 150 mm and a thickness of 2 mm, and preheated for 5 minutes in a hot press machine having a surface temperature of 190 ° C. The resin was melted by repeating pressurization and decompression, and the residual gas in the molten resin was degassed, and further pressurized at 4.9 MPa and held for 5 minutes. Thereafter, the plate was gradually cooled at a rate of 10 ° C./min with a pressure of 4.9 MPa applied, and the molded plate was taken out of the mold when the temperature dropped to near room temperature. The obtained molded plate was conditioned for 48 hours or more in an environment of temperature 23 ± 2 ° C. and humidity 50 ± 5 ° C. The pressed plate after the state adjustment was punched into the shape of No. 2 test piece described in JIS K 7113-1995 to obtain a tensile test sample.
Tensile test conditions Tensile yield strength and tensile elongation at break were measured according to JIS K 7113-1995 using the above test pieces. Tensilon (model: RTG-1250) manufactured by A & D Co., Ltd. was used as a tensile tester. The tensile speed was 50 mm / min.

[引張衝撃強度の測定]
○引張衝撃強度試験サンプルの作製方法
各実施例および各比較例のペレットを、寸法:50mm×60mm、厚さ1mmの加熱プレス用モールドに入れ、表面温度190℃の熱プレス機中で5分間予熱後、加圧と減圧を繰り返すことで樹脂を溶融すると共に溶融樹脂中の残留気体を脱気し、更に4.9MPaで加圧し、5分間保持した。その後、4.9MPaの圧力をかけた状態で、10℃/分の速度で徐々に冷却し、温度が室温付近まで低下したところでモールドから成形板を取り出した。得られた成形板を温度23±2℃、湿度50±5℃の環境下で48時間以上、状態調節した。状態調節後のプレス板からASTM D1822 Type−Sの形状の試験片を打ち抜き、引張衝撃強度試験サンプルとした。
○引張衝撃強度試験条件
上記試験片を用い、JIS K 7160−1996のB法を参考として引張衝撃強度を測定した。なお、JIS K 7160−1996と異なるのは、試験片の形状のみである。その他測定条件等に関しては、JIS K 7160−1996に準じた方法で試験を実施した。
[Measurement of tensile impact strength]
Preparation method of tensile impact strength test sample The pellets of each example and each comparative example were placed in a hot press mold having dimensions of 50 mm × 60 mm and a thickness of 1 mm, and preheated for 5 minutes in a hot press machine having a surface temperature of 190 ° C. Thereafter, the resin was melted by repeating pressurization and decompression, and the residual gas in the molten resin was deaerated, and further pressurized at 4.9 MPa and held for 5 minutes. Thereafter, the plate was gradually cooled at a rate of 10 ° C./min with a pressure of 4.9 MPa applied, and the molded plate was taken out of the mold when the temperature dropped to near room temperature. The obtained molded plate was conditioned for 48 hours or more in an environment of temperature 23 ± 2 ° C. and humidity 50 ± 5 ° C. A test piece having the shape of ASTM D1822 Type-S was punched out of the press plate after the state adjustment to obtain a tensile impact strength test sample.
-Tensile impact strength test conditions Tensile impact strength was measured using the above test piece with reference to method B of JIS K 7160-1996. The only difference from JIS K 7160-1996 is the shape of the test piece. Regarding other measurement conditions, etc., the test was carried out by a method according to JIS K 7160-1996.

[植物繊維の粗大凝集物の観察]
上記[引張衝撃強度の測定]と同様の方法で植物繊維含有樹脂組成物の成形板を調整した。ロータリーミクロトーム(株式会社日本ミクロトーム研究所製)にスチールナイフ(株式会社ミクロトーム研究所製 型番:T−40)を取り付け、成形板を厚み約10μmの薄切片に加工した。その後、該薄切片を濃度0.05mol/lのよう素液(関東化学株式会社製)で染色した。染色によりセルロースのみが着色した。染色した薄切片をスライドグラス上に、流動パラフィン(関東化学株式会社製)およびカバーグラスを用いて固定した。スライドグラス上に固定された薄切片を、対物レンズ20倍、接眼レンズ20倍のレンズを取り付けた光学顕微鏡で観察し、460μm×370μm程度の視野の写真を撮影した。具体例として、図1に実施例3の植物繊維含有樹脂組成物の写真を示し、図2に比較例1の植物繊維含有樹脂組成物の写真を示す。同一サンプルについて、ランダムに観察場所を変えて5枚の写真を撮影し、最も大きかった凝集物の寸法を、凝集物寸法とした、この凝集物寸法の大きさが、繊維長300μm以上、繊維幅60μm以上の双方を満たした場合、植物繊維含有樹脂組成物中に粗大凝集物が存在すると規定した。
[Observation of coarse aggregates of plant fibers]
A molded plate of the plant fiber-containing resin composition was prepared in the same manner as in the above [Measurement of tensile impact strength]. A steel knife (manufactured by Microtome Laboratories Co., Ltd., model number: T-40) was attached to a rotary microtome (manufactured by Japan Microtome Laboratories Co., Ltd.), and the molded plate was processed into thin sections having a thickness of about 10 μm. Thereafter, the thin section was stained with iodine solution (manufactured by Kanto Chemical Co., Inc.) having a concentration of 0.05 mol / l. Only cellulose was colored by dyeing. The stained thin section was fixed on a slide glass using liquid paraffin (manufactured by Kanto Chemical Co., Inc.) and a cover glass. The thin slice fixed on the slide glass was observed with an optical microscope equipped with a 20 × objective lens and a 20 × eyepiece lens, and a photograph with a field of view of about 460 μm × 370 μm was taken. As a specific example, the photograph of the vegetable fiber containing resin composition of Example 3 is shown in FIG. 1, and the photograph of the vegetable fiber containing resin composition of the comparative example 1 is shown in FIG. For the same sample, five photographs were taken at different observation locations at random, and the largest aggregate size was defined as the aggregate size. The aggregate size was a fiber length of 300 μm or more, and a fiber width. When both of 60 μm or more were satisfied, it was defined that coarse aggregates were present in the plant fiber-containing resin composition.

〔実施例と比較例の結果の考察〕
実施例1〜3は、LLDPEが100質量部に対しセルロース繊維が5質量部、無水マレイン酸がセルロース繊維100質量部に対し、5質量部〜50質量部の範囲で複合化された植物繊維含有樹脂組成物である。これら実施例と、無水マレイン酸を添加しない比較例1と比較すると、引張降伏強度こそ同程度であるものの、引張破壊伸び、および引張衝撃強度が優れている。すなわち、植物繊維修飾剤として無水マレイン酸を用い、本発明による方法によって製造された植物繊維含有樹脂組成物であれば、強度と引張破壊伸び、および耐衝撃性をバランス良く維持した植物繊維含有樹脂組成物を製造できる事を示した。また、植物繊維の分散性が本発明の範囲内である植物繊維含有樹脂組成であれば、強度と引張破壊伸び、および耐衝撃性をバランス良く維持することが可能である事を示した。
[Consideration of results of Examples and Comparative Examples]
Examples 1-3 are plant fiber containing LLDPE compounded in a range of 5 parts by mass to 50 parts by mass with respect to 100 parts by mass of cellulose fiber and 5 parts by mass of maleic anhydride with respect to 100 parts by mass of cellulose fiber. It is a resin composition. Compared with these examples and Comparative Example 1 in which maleic anhydride is not added, although the tensile yield strength is comparable, the tensile elongation at break and the tensile impact strength are excellent. That is, if a plant fiber-containing resin composition produced by the method of the present invention using maleic anhydride as a plant fiber modifier, the plant fiber-containing resin maintains a good balance of strength, tensile fracture elongation, and impact resistance. It was shown that the composition can be manufactured. Further, it was shown that the plant fiber-containing resin composition having the plant fiber dispersibility within the range of the present invention can maintain the strength, tensile fracture elongation, and impact resistance in a well-balanced manner.

以上の各実施例の良好な結果、及び各比較例との対照により、本発明の構成(発明特定事項)の有意性と合理性及び従来技術に対する卓越性が明確にされている。   The significance and rationality of the configuration of the present invention (invention specific matter) and the superiority over the prior art are clarified by the good results of each of the above examples and the comparison with each comparative example.

本発明の製造方法により得られた植物繊維含有樹脂組成物は高い強度と耐衝撃性を有するため、パーソナルコンピュータ、携帯電話、携帯端末等の情報機器、家電製品の筐体、文具、事務機器、家具、スポーツ用品、自動車の内装材および外装材、航空機の内装材、輸送用機器の部品、建築材料などに好適に使用することができる。また、該植物繊維含有樹脂組成物は電気絶縁性にも優れるため、電気機器、電子機器、通信機器にも好適に使用できる。   Since the plant fiber-containing resin composition obtained by the production method of the present invention has high strength and impact resistance, personal computers, mobile phones, portable terminals and other information equipment, home appliance housings, stationery, office equipment, It can be suitably used for furniture, sports equipment, automobile interior and exterior materials, aircraft interior materials, parts for transportation equipment, building materials, and the like. Moreover, since this vegetable fiber containing resin composition is excellent also in electrical insulation, it can be used conveniently also for an electric equipment, an electronic device, and a communication apparatus.

Claims (15)

A)熱可塑性樹脂と、B)植物繊維組成物と、C)植物繊維修飾剤とを、溶融混練しながら複合化する事を特徴とする樹脂組成物の製造方法であって、B)植物繊維組成物中の植物繊維が以下の条件を満たすことを特徴とする植物繊維含有樹脂組成物の製造方法。
1.平均繊維長が、0.1〜0.7mm
2.平均繊維幅が、2〜15000nm
A method for producing a resin composition comprising combining A) a thermoplastic resin, B) a plant fiber composition, and C) a plant fiber modifier while melt-kneading, and B) a plant fiber A method for producing a plant fiber-containing resin composition, wherein the plant fiber in the composition satisfies the following conditions.
1. Average fiber length is 0.1-0.7mm
2. Average fiber width is 2 to 15000 nm
溶融されたA)熱可塑性樹脂中でB)植物繊維組成物中の植物繊維とC)植物繊維修飾剤とを複合化させる工程と、B)植物繊維組成物中の植物繊維をA)熱可塑性樹脂中に分散させる工程、を少なくとも含むことを特徴とする、請求項1に記載の植物繊維含有樹脂組成物の製造方法。   In the molten A) thermoplastic resin, B) a step of compounding the plant fiber in the plant fiber composition with C) a plant fiber modifier; B) the plant fiber in the plant fiber composition is A) thermoplastic The method for producing a plant fiber-containing resin composition according to claim 1, comprising at least a step of dispersing in a resin. C)植物繊維修飾剤が、酸、酸無水物、アルコール、ハロゲン化試薬、シラン化合物、イソシアネート基含有化合物、アミノ基含有化合物、環状アミド化合物、環状エステル化合物から選択される官能基を含んだ化合物であることを特徴とする、請求項1または2に記載の植物繊維含有樹脂組成物の製造方法。   C) Compound in which the plant fiber modifier contains a functional group selected from an acid, an acid anhydride, an alcohol, a halogenating reagent, a silane compound, an isocyanate group-containing compound, an amino group-containing compound, a cyclic amide compound, and a cyclic ester compound The method for producing a plant fiber-containing resin composition according to claim 1, wherein the method is a plant fiber-containing resin composition. C)植物繊維修飾剤が、カルボン酸または酸無水物を含んだ化合物であることを特徴とする、請求項1〜3のいずれか一項に記載の植物繊維含有樹脂組成物の製造方法。   The method for producing a plant fiber-containing resin composition according to any one of claims 1 to 3, wherein the plant fiber modifier is a compound containing a carboxylic acid or an acid anhydride. A)熱可塑性樹脂が、オレフィン系樹脂であることを特徴とする、請求項1〜4のいずれか一項に記載の植物繊維含有樹脂組成物の製造方法。   A) A thermoplastic resin is an olefin resin, The manufacturing method of the vegetable fiber containing resin composition as described in any one of Claims 1-4 characterized by the above-mentioned. A)熱可塑性樹脂100質量部に対し、B)植物繊維組成物中の植物繊維が0.1〜100質量部であることを特徴とする、請求項1〜5のいずれか一項に記載の植物繊維含有樹脂組成物の製造方法。   The plant fiber in the plant fiber composition is 0.1 to 100 parts by mass with respect to 100 parts by mass of A) the thermoplastic resin, according to any one of claims 1 to 5. A method for producing a plant fiber-containing resin composition. B)植物繊維組成物中の植物繊維100質量部に対し、C)植物繊維修飾剤が0.1〜200質量部であることを特徴とする、請求項1〜6のいずれか一項に記載の植物繊維含有樹脂組成物の製造方法。   B) The plant fiber modifier is 0.1 to 200 parts by mass with respect to 100 parts by mass of the plant fiber in the plant fiber composition, according to any one of claims 1 to 6. Of producing a vegetable fiber-containing resin composition. B)植物繊維組成物中の植物繊維が解繊処理されていることを特徴とする、請求項1〜7のいずれか一項に記載の植物繊維含有樹脂組成物の製造方法。   B) The method for producing a plant fiber-containing resin composition according to any one of claims 1 to 7, wherein the plant fiber in the plant fiber composition has been defibrated. A)熱可塑性樹脂が、エチレン単独重合体、エチレンとα‐オレフィンとの共重合体、エチレンとビニル基と極性基を有するモノマーとの共重合体、のいずれかであることを特徴とする、請求項1〜8のいずれか一項に記載の植物繊維含有樹脂組成物の製造方法。   A) The thermoplastic resin is any one of an ethylene homopolymer, a copolymer of ethylene and an α-olefin, and a copolymer of ethylene, a vinyl group and a monomer having a polar group, The manufacturing method of the vegetable fiber containing resin composition as described in any one of Claims 1-8. B)植物繊維組成物がセルロースウェブ(セルロース/エマルジョンウェブ)であることを特徴とする、請求項1〜9のいずれか一項に記載の植物繊維含有樹脂組成物の製造方法。   B) The method for producing a plant fiber-containing resin composition according to any one of claims 1 to 9, wherein the plant fiber composition is a cellulose web (cellulose / emulsion web). A)熱可塑性樹脂と、B)植物繊維組成物と、C)植物繊維修飾剤とを含む植物繊維含有樹脂組成物であって、B)植物繊維組成物の水酸基の一部または全部がC)植物繊維修飾剤によって化学修飾されており、さらにB)植物繊維組成物に含まれる植物繊維が以下の条件を満たすことを特徴とする植物繊維含有樹脂組成物であって、植物繊維含有樹脂組成物中にセルロースナノファイバーが分散されており、粗大凝集物が実質的に見つからない植物繊維含有樹脂組成物。
1.平均繊維長が、0.0001〜0.7mm
2.平均繊維幅が、2〜15000nm
A plant fiber-containing resin composition comprising A) a thermoplastic resin, B) a plant fiber composition, and C) a plant fiber modifier, wherein B) part or all of the hydroxyl groups of the plant fiber composition are C) A plant fiber-containing resin composition that is chemically modified with a plant fiber modifier, and further B) the plant fiber contained in the plant fiber composition satisfies the following conditions: A vegetable fiber-containing resin composition in which cellulose nanofibers are dispersed and coarse aggregates are substantially not found.
1. Average fiber length is 0.0001 to 0.7 mm
2. Average fiber width is 2 to 15000 nm
C)植物繊維修飾剤が、酸、酸無水物、アルコール、ハロゲン化試薬、シラン化合物、イソシアネート基含有化合物、アミノ基含有化合物、環状アミド化合物、環状エステル化合物から選択される官能基を含んだ化合物であることを特徴とする、請求項11に記載の植物繊維含有樹脂組成物。   C) Compound in which the plant fiber modifier contains a functional group selected from an acid, an acid anhydride, an alcohol, a halogenating reagent, a silane compound, an isocyanate group-containing compound, an amino group-containing compound, a cyclic amide compound, and a cyclic ester compound The plant fiber-containing resin composition according to claim 11, wherein A)熱可塑性樹脂が、オレフィン系樹脂であることを特徴とする、請求項11または12に記載の植物繊維含有樹脂組成物。   The plant fiber-containing resin composition according to claim 11 or 12, wherein A) the thermoplastic resin is an olefin resin. A)熱可塑性樹脂100質量部に対し、B)植物繊維組成物中の植物繊維が0.1〜100質量部であることを特徴とする、請求項11〜13のいずれか一項に記載の植物繊維含有樹脂組成物。   The plant fiber in B) plant fiber composition is 0.1-100 mass parts with respect to 100 mass parts of A) thermoplastic resins, It is characterized by the above-mentioned. A plant fiber-containing resin composition. B)植物繊維組成物中の植物繊維100質量部に対し、C)植物繊維修飾剤が0.1〜200質量部であることを特徴とする、請求項11〜14のいずれか一項に記載の植物繊維含有樹脂組成物。   B) The plant fiber modifier is 0.1 to 200 parts by mass with respect to 100 parts by mass of the plant fiber in the plant fiber composition, according to any one of claims 11 to 14. Plant fiber-containing resin composition.
JP2013070448A 2013-03-28 2013-03-28 Plant fiber-containing resin composition and production method thereof Pending JP2014193959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070448A JP2014193959A (en) 2013-03-28 2013-03-28 Plant fiber-containing resin composition and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070448A JP2014193959A (en) 2013-03-28 2013-03-28 Plant fiber-containing resin composition and production method thereof

Publications (1)

Publication Number Publication Date
JP2014193959A true JP2014193959A (en) 2014-10-09

Family

ID=51839425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070448A Pending JP2014193959A (en) 2013-03-28 2013-03-28 Plant fiber-containing resin composition and production method thereof

Country Status (1)

Country Link
JP (1) JP2014193959A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057470A (en) * 2013-08-12 2015-03-26 信越化学工業株式会社 Production method of water-soluble cellulose ether having low polymerization degree and production method of composition for film coating containing the same
JP2016017096A (en) * 2014-07-04 2016-02-01 王子ホールディングス株式会社 Method of producing fiber-containing resin composition
JP2016094540A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Method for producing thermoplastic resin composition
WO2016133076A1 (en) * 2015-02-17 2016-08-25 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion
WO2017043452A1 (en) * 2015-09-07 2017-03-16 花王株式会社 Resin composition
JP2017105983A (en) * 2015-12-03 2017-06-15 国立大学法人京都大学 Resin composition and method for producing the same
JP2017119736A (en) * 2015-12-28 2017-07-06 国立大学法人愛媛大学 Nanofiber-containing material, manufacturing method of nanofiber-containing material and nanofiber recovery method
JP2017190404A (en) * 2016-04-14 2017-10-19 新中村化学工業株式会社 Burned paste composition and manufacturing method of copolymer
KR101826497B1 (en) 2016-09-29 2018-02-07 한국화학연구원 Process for producing carbohydrate nanofibers under dry condition
WO2018030392A1 (en) * 2016-08-08 2018-02-15 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
JP2018154671A (en) * 2017-03-15 2018-10-04 東洋インキScホールディングス株式会社 Resin composition and molding
JP2019026702A (en) * 2017-07-28 2019-02-21 東洋レヂン株式会社 Thermoplastic composite resin, filament for 3d printer using the resin, and method for producing them
JP2019035005A (en) * 2017-08-10 2019-03-07 王子ホールディングス株式会社 Resin composition containing cellulose fiber, method of manufacturing the same, and molded article
JP2019131774A (en) * 2018-02-02 2019-08-08 株式会社スギノマシン Cellulose nanofiber-containing resin composition
EP3438207A4 (en) * 2016-03-31 2019-11-06 Furukawa Electric Co., Ltd. Thermoplastic resin composition, thermoplastic resin composition production method, cellulose-reinforced resin molded product, and cellulose-reinforced resin molded product manufacturing method
WO2019230573A1 (en) * 2018-05-31 2019-12-05 大王製紙株式会社 Fibrous cellulose and production method thereof, and fibrous cellulose composite resin and production method thereof
JP2019210330A (en) * 2018-05-31 2019-12-12 大王製紙株式会社 Fibrous cellulose composite resin and production method therefor
JP2019210333A (en) * 2018-05-31 2019-12-12 大王製紙株式会社 Production method of fibrous cellulose composite resin
JP2019210331A (en) * 2018-05-31 2019-12-12 大王製紙株式会社 Fibrous cellulose composite resin and production method therefor
JP2020011452A (en) * 2018-07-18 2020-01-23 住友林業株式会社 Manufacturing method of compression molding of cellulose fiber
WO2020116518A1 (en) 2018-12-05 2020-06-11 古河電気工業株式会社 Cellulose fiber-dispersed resin composite material, molded body, and composite member
CN112262175A (en) * 2018-07-13 2021-01-22 大王制纸株式会社 Fibrous cellulose-containing material and method for producing same, fibrous cellulose dried body and method for producing same, and fibrous cellulose composite resin and method for producing same
JP2021036054A (en) * 2020-11-20 2021-03-04 大王製紙株式会社 Fibrous cellulose and production method therefor, and fibrous cellulose composite resin and production method therefor
EP3878907A4 (en) * 2019-06-06 2022-02-23 Saiden Chemical Industry Co., Ltd. Composite resin composition and method for producing composite resin composition
WO2022044605A1 (en) * 2020-08-27 2022-03-03 日東電工株式会社 Polarizing plate, method for producing same, and polarizing plate with retardation layer and image display device, each using said polarizing plate
CN114369316A (en) * 2022-01-17 2022-04-19 中国第一汽车股份有限公司 Composite material and preparation method and application thereof
CN114644807A (en) * 2022-04-28 2022-06-21 长虹美菱股份有限公司 Plant fiber modified ABS material and refrigerator decoration strip prepared from same
US11466140B2 (en) 2016-03-31 2022-10-11 Furukawa Electric Co., Ltd. Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11566118B2 (en) 2016-02-18 2023-01-31 Starlite Co., Ltd. Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition
US11578192B2 (en) 2017-09-29 2023-02-14 Furukawa Electric Co., Ltd. Molded article
US11597818B2 (en) 2017-09-29 2023-03-07 Furukawa Electric Co., Ltd. Molded article
US11629244B2 (en) 2016-03-31 2023-04-18 Furukawa Electric Co., Ltd. Thermoplastic resin composition, cellulose-reinforced thermoplastic resin composition, method of producing cellulose-reinforced thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11746215B2 (en) 2017-09-29 2023-09-05 Furukawa Electric Co., Ltd. Molded article
US11891498B2 (en) 2017-10-31 2024-02-06 Furukawa Electric Co., Ltd. Molded article provided with a resin part

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610296A (en) * 1991-12-23 1994-01-18 Hercules Inc Paper manufacture for increasing normal-condition strength of paper
JPH09316247A (en) * 1996-05-27 1997-12-09 Mitsui Petrochem Ind Ltd Polyolefin-based resin composition, composite material and production thereof
JP2008163284A (en) * 2006-12-04 2008-07-17 Nichimen Kagaku Kogyo Kk Composite material and production method thereof
JP2008297479A (en) * 2007-06-01 2008-12-11 Daicel Polymer Ltd Method for producing cellulose fiber-containing thermoplastic resin composition
JP2011219571A (en) * 2010-04-07 2011-11-04 Mitsubishi Paper Mills Ltd Method for producing cellulose-containing thermoplastic resin, the cellulose-containing thermoplastic resin, and molded body of the same
JP2011246615A (en) * 2010-05-27 2011-12-08 Oji Paper Co Ltd Method of manufacturing fiber composite material
JP2012111855A (en) * 2010-11-25 2012-06-14 Yasuhara Chemical Co Ltd Natural fiber composite composition, molded body obtained from natural fiber composite composition, and method for producing natural fiber composite composition
JP2012201852A (en) * 2011-03-28 2012-10-22 Mitsubishi Paper Mills Ltd Cellulose-compounded film and method of manufacturing cellulose-compounded film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610296A (en) * 1991-12-23 1994-01-18 Hercules Inc Paper manufacture for increasing normal-condition strength of paper
JPH09316247A (en) * 1996-05-27 1997-12-09 Mitsui Petrochem Ind Ltd Polyolefin-based resin composition, composite material and production thereof
JP2008163284A (en) * 2006-12-04 2008-07-17 Nichimen Kagaku Kogyo Kk Composite material and production method thereof
JP2008297479A (en) * 2007-06-01 2008-12-11 Daicel Polymer Ltd Method for producing cellulose fiber-containing thermoplastic resin composition
JP2011219571A (en) * 2010-04-07 2011-11-04 Mitsubishi Paper Mills Ltd Method for producing cellulose-containing thermoplastic resin, the cellulose-containing thermoplastic resin, and molded body of the same
JP2011246615A (en) * 2010-05-27 2011-12-08 Oji Paper Co Ltd Method of manufacturing fiber composite material
JP2012111855A (en) * 2010-11-25 2012-06-14 Yasuhara Chemical Co Ltd Natural fiber composite composition, molded body obtained from natural fiber composite composition, and method for producing natural fiber composite composition
JP2012201852A (en) * 2011-03-28 2012-10-22 Mitsubishi Paper Mills Ltd Cellulose-compounded film and method of manufacturing cellulose-compounded film

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015057470A (en) * 2013-08-12 2015-03-26 信越化学工業株式会社 Production method of water-soluble cellulose ether having low polymerization degree and production method of composition for film coating containing the same
JP2016017096A (en) * 2014-07-04 2016-02-01 王子ホールディングス株式会社 Method of producing fiber-containing resin composition
JP2016094540A (en) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 Method for producing thermoplastic resin composition
CN107250790A (en) * 2015-02-17 2017-10-13 日本制纸株式会社 The evaluation method of cellulose nano-fibrous dispersion liquid
US11092587B2 (en) 2015-02-17 2021-08-17 Nippon Paper Industries Co., Ltd. Method for evaluating cellulose nanofiber dispersion
JPWO2016133076A1 (en) * 2015-02-17 2018-01-18 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion
WO2016133076A1 (en) * 2015-02-17 2016-08-25 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion
WO2017043452A1 (en) * 2015-09-07 2017-03-16 花王株式会社 Resin composition
CN107949605A (en) * 2015-09-07 2018-04-20 花王株式会社 Resin combination
US10738169B2 (en) 2015-09-07 2020-08-11 Kao Corporation Resin composition
JP7125697B2 (en) 2015-12-03 2022-08-25 国立大学法人京都大学 Resin composition and its manufacturing method
JP2017105983A (en) * 2015-12-03 2017-06-15 国立大学法人京都大学 Resin composition and method for producing the same
JP2017119736A (en) * 2015-12-28 2017-07-06 国立大学法人愛媛大学 Nanofiber-containing material, manufacturing method of nanofiber-containing material and nanofiber recovery method
US11566118B2 (en) 2016-02-18 2023-01-31 Starlite Co., Ltd. Nanofiber dispersion, method of producing nanofiber dispersion, powdery nanofibers obtainable from the dispersion, resin composition containing the powdery nanofibers ad molding material for 3D printer using the resin composition
US11629244B2 (en) 2016-03-31 2023-04-18 Furukawa Electric Co., Ltd. Thermoplastic resin composition, cellulose-reinforced thermoplastic resin composition, method of producing cellulose-reinforced thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
EP3438207A4 (en) * 2016-03-31 2019-11-06 Furukawa Electric Co., Ltd. Thermoplastic resin composition, thermoplastic resin composition production method, cellulose-reinforced resin molded product, and cellulose-reinforced resin molded product manufacturing method
US11597817B2 (en) 2016-03-31 2023-03-07 Furukawa Electric Co., Ltd Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
US11466140B2 (en) 2016-03-31 2022-10-11 Furukawa Electric Co., Ltd. Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article of cellulose-reinforced resin, and method of producing molded article of cellulose-reinforced resin
JP2017190404A (en) * 2016-04-14 2017-10-19 新中村化学工業株式会社 Burned paste composition and manufacturing method of copolymer
US11105789B2 (en) 2016-08-08 2021-08-31 Nippon Paper Industries Co., Ltd. Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
EP3499218A4 (en) * 2016-08-08 2020-04-29 Nippon Paper Industries Co., Ltd. Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
EP4179880A1 (en) * 2016-08-08 2023-05-17 Nippon Paper Industries Co., Ltd. Cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
CN109313124A (en) * 2016-08-08 2019-02-05 日本制纸株式会社 The evaluation method of cellulose nano-fibrous dispersion liquid, cellulose nano-fibrous aqueous dispersions and contain cellulose nano-fibrous food, cosmetics and rubber composition
WO2018030392A1 (en) * 2016-08-08 2018-02-15 日本製紙株式会社 Method for evaluating cellulose nanofiber dispersion, cellulose nanofiber aqueous dispersion, and cellulose nanofiber-containing food, cosmetic, and rubber composition
KR101826497B1 (en) 2016-09-29 2018-02-07 한국화학연구원 Process for producing carbohydrate nanofibers under dry condition
JP2018154671A (en) * 2017-03-15 2018-10-04 東洋インキScホールディングス株式会社 Resin composition and molding
JP2019026702A (en) * 2017-07-28 2019-02-21 東洋レヂン株式会社 Thermoplastic composite resin, filament for 3d printer using the resin, and method for producing them
JP2019035005A (en) * 2017-08-10 2019-03-07 王子ホールディングス株式会社 Resin composition containing cellulose fiber, method of manufacturing the same, and molded article
US11578192B2 (en) 2017-09-29 2023-02-14 Furukawa Electric Co., Ltd. Molded article
US11597818B2 (en) 2017-09-29 2023-03-07 Furukawa Electric Co., Ltd. Molded article
US11746215B2 (en) 2017-09-29 2023-09-05 Furukawa Electric Co., Ltd. Molded article
US11891498B2 (en) 2017-10-31 2024-02-06 Furukawa Electric Co., Ltd. Molded article provided with a resin part
JP2019131774A (en) * 2018-02-02 2019-08-08 株式会社スギノマシン Cellulose nanofiber-containing resin composition
JP2019210330A (en) * 2018-05-31 2019-12-12 大王製紙株式会社 Fibrous cellulose composite resin and production method therefor
JP7128660B2 (en) 2018-05-31 2022-08-31 大王製紙株式会社 METHOD FOR MANUFACTURING FIBROUS CELLULOSE COMPOSITE RESIN
WO2019230573A1 (en) * 2018-05-31 2019-12-05 大王製紙株式会社 Fibrous cellulose and production method thereof, and fibrous cellulose composite resin and production method thereof
JP2019210332A (en) * 2018-05-31 2019-12-12 大王製紙株式会社 Fibrous cellulose and production method therefor, and fibrous cellulose composite resin and production method therefor
CN112041386A (en) * 2018-05-31 2020-12-04 大王制纸株式会社 Fibrous cellulose and method for producing same, and fibrous cellulose composite resin and method for producing same
US12012469B2 (en) 2018-05-31 2024-06-18 Daio Paper Corporation Fibrous cellulose and method for manufacturing the same, and fibrous cellulose composite resin and method for manufacturing the same
JP2019210331A (en) * 2018-05-31 2019-12-12 大王製紙株式会社 Fibrous cellulose composite resin and production method therefor
KR20210016337A (en) 2018-05-31 2021-02-15 다이오 페이퍼 코퍼레이션 Fibrous cellulose and its manufacturing method, and fibrous cellulose composite resin and its manufacturing method
JP7179495B2 (en) 2018-05-31 2022-11-29 大王製紙株式会社 Fibrous cellulose composite resin and method for producing the same
JP2019210333A (en) * 2018-05-31 2019-12-12 大王製紙株式会社 Production method of fibrous cellulose composite resin
JP7139155B2 (en) 2018-05-31 2022-09-20 大王製紙株式会社 Fibrous cellulose composite resin and method for producing the same
CN112262175A (en) * 2018-07-13 2021-01-22 大王制纸株式会社 Fibrous cellulose-containing material and method for producing same, fibrous cellulose dried body and method for producing same, and fibrous cellulose composite resin and method for producing same
US12037482B2 (en) 2018-07-13 2024-07-16 Daio Paper Corporation Fibrous cellulose-containing material and method for producing same, dried fibrous cellulose and method for producing same, and fibrous cellulose composite resin and method for producing same
JP2020011452A (en) * 2018-07-18 2020-01-23 住友林業株式会社 Manufacturing method of compression molding of cellulose fiber
JPWO2020116518A1 (en) * 2018-12-05 2021-10-28 古河電気工業株式会社 Cellulose Fiber Dispersed Resin Composites, Molds, and Composites
EP3892434A4 (en) * 2018-12-05 2022-08-03 Furukawa Electric Co., Ltd. Cellulose fiber-dispersing resin composite material, formed body, and composite member
CN112739513B (en) * 2018-12-05 2023-02-17 古河电气工业株式会社 Cellulose fiber-dispersed resin composite material, molded article, and composite member
WO2020116518A1 (en) 2018-12-05 2020-06-11 古河電気工業株式会社 Cellulose fiber-dispersed resin composite material, molded body, and composite member
CN112739513A (en) * 2018-12-05 2021-04-30 古河电气工业株式会社 Cellulose fiber-dispersed resin composite material, molded article, and composite member
US11390738B2 (en) 2019-06-06 2022-07-19 Saiden Chemical Industry Co., Ltd. Composite resin composition and method for producing composite resin composition
EP3878907A4 (en) * 2019-06-06 2022-02-23 Saiden Chemical Industry Co., Ltd. Composite resin composition and method for producing composite resin composition
WO2022044605A1 (en) * 2020-08-27 2022-03-03 日東電工株式会社 Polarizing plate, method for producing same, and polarizing plate with retardation layer and image display device, each using said polarizing plate
CN115989139A (en) * 2020-08-27 2023-04-18 日东电工株式会社 Polarizing plate and method for producing same, and polarizing plate with retardation layer and image display device using same
JP7240364B2 (en) 2020-08-27 2023-03-15 日東電工株式会社 Polarizing plate, manufacturing method thereof, and polarizing plate with retardation layer and image display device using the polarizing plate
CN115989139B (en) * 2020-08-27 2023-08-15 日东电工株式会社 Polarizing plate, method for producing same, polarizing plate with retardation layer using same, and image display device
JP2022038845A (en) * 2020-08-27 2022-03-10 日東電工株式会社 Polarizing plate, manufacturing method therefor, polarizing plate with retardation layer using the same, and image display device
JP7252187B2 (en) 2020-11-20 2023-04-04 大王製紙株式会社 METHOD FOR MANUFACTURING FIBROUS CELLULOSE COMPOSITE RESIN
JP2021036054A (en) * 2020-11-20 2021-03-04 大王製紙株式会社 Fibrous cellulose and production method therefor, and fibrous cellulose composite resin and production method therefor
CN114369316B (en) * 2022-01-17 2023-10-27 中国第一汽车股份有限公司 Composite material and preparation method and application thereof
CN114369316A (en) * 2022-01-17 2022-04-19 中国第一汽车股份有限公司 Composite material and preparation method and application thereof
CN114644807A (en) * 2022-04-28 2022-06-21 长虹美菱股份有限公司 Plant fiber modified ABS material and refrigerator decoration strip prepared from same

Similar Documents

Publication Publication Date Title
JP2014193959A (en) Plant fiber-containing resin composition and production method thereof
JP5916842B2 (en) Method for producing vegetable fiber-containing resin composition and method for producing pulverized product
JP5644864B2 (en) Method for producing fine fibrous cellulose composite prepreg sheet, method for producing fine fibrous cellulose composite sheet, and method for producing fine fibrous cellulose composite laminate sheet
WO2018230600A1 (en) Fine cellulose fibers, production method therefor, slurry, and composite
Balea et al. Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives
JP5825653B1 (en) Method for producing easily dispersible cellulose composition, and method for producing aqueous dispersion treatment agent for cellulose
JP5757765B2 (en) Resin composition containing modified microfibrillated plant fiber
JP6570103B2 (en) A composite resin composition and a method for producing the composite resin composition.
JP6591304B2 (en) Easily dispersible cellulose composition, method for producing easily dispersible cellulose composition, cellulose dispersed resin composition, and method for producing cellulose dispersed resin composition
JP2017128717A (en) Fine cellulose fiber-containing resin composition and method for producing the same
JP5477265B2 (en) Method for producing fine fibrous cellulose composite porous sheet
JP6787136B2 (en) Fine cellulose fiber-containing resin composition and its manufacturing method
CN103476802A (en) Modified cellulose nanofibers, manufacturing method therefor, and resin composition using same
JP7044300B2 (en) Rubber composition and method for producing rubber composition
WO2015050126A1 (en) Nanocomposite and nanocomposite-manufacturing process
JP2011149124A (en) Method for producing fine-fibrous cellulose composite sheet-laminated form
JP2015168914A (en) Method for producing fine fibrous cellulose composite sheet
JP6787533B1 (en) Method for Producing Modified Cellulose Fiber Blended Resin Composition
JP2020063327A (en) Production method of composite material and composite material
JP7153152B1 (en) Resin composition and method for producing resin composition
JP6572700B2 (en) Molded body and sheet for molded body
JP2019035005A (en) Resin composition containing cellulose fiber, method of manufacturing the same, and molded article
JP2019147965A (en) Fiber-reinforced resin molding and sheet for fiber-reinforced resin molding
JP7340195B2 (en) Fine cellulose fibers, their production methods, slurries and composites
WO2022210498A1 (en) Resin composition and production method for resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170418