JP2014190564A - Cold water circulation system - Google Patents
Cold water circulation system Download PDFInfo
- Publication number
- JP2014190564A JP2014190564A JP2013064151A JP2013064151A JP2014190564A JP 2014190564 A JP2014190564 A JP 2014190564A JP 2013064151 A JP2013064151 A JP 2013064151A JP 2013064151 A JP2013064151 A JP 2013064151A JP 2014190564 A JP2014190564 A JP 2014190564A
- Authority
- JP
- Japan
- Prior art keywords
- margin
- cold water
- ahu
- air
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 155
- 238000004378 air conditioning Methods 0.000 claims abstract description 83
- 238000001816 cooling Methods 0.000 claims abstract description 49
- 230000007423 decrease Effects 0.000 claims description 8
- 238000000034 method Methods 0.000 description 26
- 238000004364 calculation method Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/85—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/06—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
本発明は、空調に用いられる冷水を供給する冷水循環システムに関する。 The present invention relates to a cold water circulation system that supplies cold water used for air conditioning.
冷水循環システムによって供給される冷水を冷熱として用いる中央熱源式の空調システムが広く用いられている。
上述の空調システムでは、冷水を供給する複数の熱源に一次戻りヘッダおよび一次送りヘッダがつながれ、一次ポンプによって冷水が一次戻りヘッダから熱源を介して一次送りヘッダに送られている。また、冷水を用いて空気を冷却する複数のAHU(エア・ハンドリング・ユニット)に二次送りヘッダおよび二次戻りヘッダがつながれている。一次送りヘッダと二次送りヘッダとの間には、冷水を一次送りヘッダから二次送りヘッダに送る二次ポンプが配置されている。この二次ポンプとしてはインバータ制御されるものが知られている。また、冷水は二次戻りヘッダから一次戻りヘッダに流入するように接続されている。
A central heat source type air conditioning system using cold water supplied by a cold water circulation system as cold heat is widely used.
In the above-described air conditioning system, a primary return header and a primary feed header are connected to a plurality of heat sources that supply cold water, and cold water is sent from the primary return header to the primary feed header via the heat source by a primary pump. Further, a secondary feed header and a secondary return header are connected to a plurality of AHUs (air handling units) that cool the air using cold water. Between the primary feed header and the secondary feed header, a secondary pump that sends cold water from the primary feed header to the secondary feed header is disposed. As this secondary pump, an inverter-controlled one is known. Further, the cold water is connected so as to flow from the secondary return header to the primary return header.
空調システムを循環する冷水の流量を制御する方法としては、上述の二次ポンプから吐出される冷水の圧力を所定の設定値に制御することにより、冷水の流量を制御する方法が知られている。その他にも、に記載されているように、二次送りヘッダから送りだされる冷水の温度である送り温度と、二次戻りヘッダに流入する冷水の温度である戻り温度と、の間の温度差である主管温度差を所定値になるように、二次ポンプから送りだされる冷水の流量を制御する方法も知られている(例えば、特許文献1から3参照。)。 As a method for controlling the flow rate of cold water circulating in the air conditioning system, a method of controlling the flow rate of cold water by controlling the pressure of the cold water discharged from the above-described secondary pump to a predetermined set value is known. . In addition, as described in, the temperature between the feed temperature that is the temperature of the chilled water delivered from the secondary feed header and the return temperature that is the temperature of the chilled water flowing into the secondary return header There is also known a method of controlling the flow rate of cold water sent from the secondary pump so that the main pipe temperature difference, which is the difference, becomes a predetermined value (see, for example, Patent Documents 1 to 3).
特許文献1および2の技術では、AHUで必要されている冷水流量のみを供給することになるため、冷水を搬送する動力を低減すること、言い換えると二次ポンプの消費電力を低減することができる。また、AHUにおける熱負荷が低下した場合であっても、送り温度と戻り温度との温度差を所定値に保つように冷水流量を制御するため、言い換えると、戻り温度が低下する場合であっても、戻り温度を上昇させる制御を行うため、熱源における運転効率を維持することができる。さらに、上述の制御を行うのに必要なセンサが温度センサのみであり、圧力センサは不要となることから、製造コストの低減を図ることができる。 In the techniques of Patent Documents 1 and 2, since only the cold water flow rate required by the AHU is supplied, the power for conveying the cold water can be reduced, in other words, the power consumption of the secondary pump can be reduced. . In addition, even when the heat load in the AHU decreases, the chilled water flow rate is controlled so as to keep the temperature difference between the feed temperature and the return temperature at a predetermined value, in other words, the return temperature decreases. However, since the control for increasing the return temperature is performed, the operation efficiency in the heat source can be maintained. Furthermore, since only the temperature sensor is necessary for performing the above-described control, and no pressure sensor is required, the manufacturing cost can be reduced.
特許文献3には、特定のAHUから出力される警報に基づいて、二次ポンプから送り出される冷水流量を増やす制御が記載されている。この警報は、特定のAHUにおける熱負荷が増加したことを知らせる警報を例示することができる。この制御を行うと、AHUにおける能力不足によって室温などの上昇を抑制することができる。 Patent Document 3 describes control for increasing the flow rate of cold water delivered from a secondary pump based on an alarm output from a specific AHU. This alarm may be an alarm that indicates that the heat load in a particular AHU has increased. When this control is performed, an increase in room temperature or the like can be suppressed due to insufficient capacity in AHU.
従来の中央熱源式の空調システムでは、空調対象ゾーンである室内(フロア内、または、区画内)から取得した室温などの情報に基づいて、AHUに流入する冷水の流量を制御する二方弁の弁開度を推定し、当該二方弁の余裕度(例えば二方弁の弁開度を全開にするまでの余裕)を判断している。この余裕度が所定値よりも大きい限り、二次ポンプの駆動周波数を低下させてAHUに供給される冷水の流量を低下させる制御を行っている。あるいは、上述の余裕度が所定値よりも小さい場合には、二次ポンプの駆動周波数を増加させてAHUに供給される冷水の流量を増加させる制御を行っている。 In a conventional central heat source type air conditioning system, a two-way valve that controls the flow rate of cold water flowing into the AHU based on information such as room temperature acquired from the room (in the floor or in the compartment) that is the air conditioning target zone. The valve opening is estimated, and the margin of the two-way valve (for example, the margin until the valve opening of the two-way valve is fully opened) is determined. As long as the margin is larger than a predetermined value, control is performed to reduce the flow rate of the cold water supplied to the AHU by reducing the drive frequency of the secondary pump. Alternatively, when the above-described margin is smaller than a predetermined value, control is performed to increase the flow rate of the cold water supplied to the AHU by increasing the driving frequency of the secondary pump.
同一のフロアまたは同一の区画(以下、「同一のフロア等」と表記する。)には複数のAHUが配置されており、これらのAHUに対応する二方弁に関する余裕度(複数)が判断されている。上述の制御では、同一のフロア等に配置された全AHUの余裕度から求めた余裕度の平均値が制御に用いられる。そのため、空調制御システムの制御方法によっては、適切な制御が難しくなるという問題があった。例えば、同一のフロア等に配置された温度センサにより測定された室内温度を用いた制御に対する適応性に問題がある可能性があった。 A plurality of AHUs are arranged on the same floor or the same section (hereinafter referred to as “the same floor etc.”), and a margin (a plurality) regarding the two-way valve corresponding to these AHUs is determined. ing. In the above-described control, the average value of the margin obtained from the margins of all AHUs arranged on the same floor or the like is used for the control. Therefore, depending on the control method of the air conditioning control system, there is a problem that appropriate control becomes difficult. For example, there is a possibility that there is a problem in adaptability to control using the room temperature measured by a temperature sensor arranged on the same floor or the like.
上述のように余裕度の平均値を用いて二次ポンプから送出される冷水の流量を制御すると、次に説明する消費エネルギの低減を図りにくい(非省エネになりやすい)という問題が発生する可能性があった。具体的には、冷却対象であるフロア等に配置された情報通信装置(以下、「ICT装置」と表記する。)の一部における室内空気の吸込み温度が上昇した場合であっても、同一フロア等に配置された全てのAHUに対して冷房能力を増加させる制御、言い換えると、二次ポンプから送出される冷水の流量を増加させる制御が行われる場合がある。すると、上述の一部のICT装置との関係が深いAHU(例えば、距離が近いAHU)に冷房能力の余裕があり、当該AHUの冷房能力を増加させるだけで上述の吸込み温度上昇に対処できる場合であっても、全てのAHUの冷房能力を増加させる制御が行われる。そのため、空調システムにおける消費エネルギの低減を図りにくくなっていた。 As described above, when the flow rate of the chilled water sent from the secondary pump is controlled using the average value of the margin, there is a possibility that the energy consumption described below is difficult to reduce (it tends to be non-energy saving). There was sex. Specifically, even if the indoor air suction temperature rises in a part of information communication devices (hereinafter referred to as “ICT devices”) arranged on the floor to be cooled, the same floor Control for increasing the cooling capacity for all AHUs arranged in the same manner, in other words, control for increasing the flow rate of the cold water sent from the secondary pump may be performed. Then, the AHU (for example, AHU having a short distance) having a deep relationship with the above-mentioned part of the ICT devices has a cooling capacity, and the above-described increase in the suction temperature can be dealt with only by increasing the cooling capacity of the AHU. Even so, control is performed to increase the cooling capacity of all AHUs. For this reason, it has been difficult to reduce energy consumption in the air conditioning system.
その一方で、次に説明する高温障害が発生する可能性があるという問題もあった。具体的には、一部のICT装置における室内空気の吸込み温度が上昇した場合に、同一フロア等に配置された全てのAHUに対して冷房能力を増加させる制御が遅れ、一部のICT装置の温度が高くなりすぎる(高温障害が発生する)おそれがあった。つまり、一部のICT装置との関係が深いAHU(例えば、距離が近いAHU)に冷房能力の余裕がない場合には、当該AHUの冷房能力を増加させても吸込み温度の上昇を抑制できない可能性が高い。この場合には、全てのAHUに供給される冷水の流量を増やして全AHUにおける冷房能力を増加させ、吸込み温度の上昇を抑制する制御が行われる。 On the other hand, there is a problem that a high temperature failure described below may occur. Specifically, when the indoor air suction temperature in some ICT devices rises, control for increasing the cooling capacity for all AHUs placed on the same floor or the like is delayed, and some ICT devices There was a risk that the temperature would be too high (high temperature failure would occur). In other words, if the AHU that has a deep relationship with some ICT devices (for example, an AHU that is close to the distance) does not have sufficient cooling capacity, the increase in the suction temperature may not be suppressed even if the cooling capacity of the AHU is increased. High nature. In this case, control is performed to increase the flow rate of cold water supplied to all AHUs to increase the cooling capacity in all AHUs and suppress the rise in suction temperature.
しかしながら、余裕度の平均値を用いて二次ポンプから送出される冷水の流量を制御すると、上述のように一部のICT装置との関係が深いAHUの余裕がない場合でも、余裕度の平均値に余裕があれると判定されれば、AHUに供給される冷水の流量を増やす制御が即座に行われない可能性があり、高温障害が発生するおそれがあった。 However, if the flow rate of the cold water delivered from the secondary pump is controlled using the average value of the margin, even if there is no margin for AHU that has a deep relationship with some ICT devices as described above, the average margin is obtained. If it is determined that the value has a margin, there is a possibility that control for increasing the flow rate of the cold water supplied to the AHU may not be performed immediately, and a high-temperature failure may occur.
本発明は、上記の課題を解決するためになされたものであって、温度調整の信頼性を確保するとともに、消費電力の削減を図ることができる冷水循環システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a chilled water circulation system capable of ensuring reliability of temperature adjustment and reducing power consumption.
上記目的を達成するために、本発明は、以下の手段を提供する。
本発明の冷水循環システムは、冷水を所定温度に冷却する熱源と、所定の区画内に複数配置され、前記冷水と熱交換して前記所定の区画内の空気を冷却する空調機であるAHUと、動力インバータの運転周波数に応じた流量の前記冷水を前記熱源から前記AHUに送るポンプと、前記AHUによる前記所定の区画内の所望箇所の空気温度を調整する寄与率である影響度係数を取得し、所定の第1閾値以上の前記影響度係数を有する前記AHUを空調群とし、前記空調群に属する前記AHUの状態を示す情報に基づいて、前記AHUにおける前記空気を冷却する余剰能力を示す余裕度を算出し、前記空調群に属する前記AHUの前記余裕度から判断される群余裕度を算出し、該群余裕度が所定の第2閾値以上である場合には、前記動力インバータの運転周波数を制御することにより前記ポンプから送り出される前記冷水の流量を減らし、前記群余裕度が前記所定閾値未満である場合には前記ポンプから送り出される前記冷水の流量を増やす制御部と、が設けられていることを特徴とする。
In order to achieve the above object, the present invention provides the following means.
The chilled water circulation system of the present invention includes a heat source that cools chilled water to a predetermined temperature, and an AHU that is a plurality of air conditioners that are arranged in a predetermined section and exchange heat with the cold water to cool the air in the predetermined section. A pump that sends the cold water at a flow rate according to the operating frequency of the power inverter from the heat source to the AHU, and an influence coefficient that is a contribution ratio for adjusting the air temperature at a desired location in the predetermined section by the AHU. The surplus ability to cool the air in the AHU is indicated based on information indicating the state of the AHU belonging to the air conditioning group, with the AHU having the influence coefficient equal to or greater than a predetermined first threshold as the air conditioning group. A margin is calculated, a group margin determined from the margin of the AHU belonging to the air conditioning group is calculated, and when the group margin is equal to or greater than a predetermined second threshold, the power inverter A control unit that reduces the flow rate of the cold water sent from the pump by controlling the operating frequency of the pump, and increases the flow rate of the cold water sent from the pump when the group margin is less than the predetermined threshold, It is provided.
上記発明において前記群余裕度は、前記空調群に属する前記AHUの前記余裕度の平均である余裕度平均値であることが好ましい。
本発明の冷水循環システムによれば、所定の第1閾値以上の影響度係数を有する複数のAHUのグループである空調群を定義し、この空調群に属するAHUの余裕度に基づいてポンプの制御を行うことにより、冷水循環システムによる所定の区画内の温度調整の信頼度を確保しやすくなるとともに、冷水循環システムにおける消費電力の削減を図りやすくなる。つまり、空調群に属するAHUの余裕度の平均値である余裕度平均値に基づいてポンプから送出される冷水の流量を制御するため、所定の区画に配置された全AHUの余裕度の平均値に基づく制御と比較して、所望箇所の空気温度の変化がポンプの制御に反映されやすくなる。
In the above invention, the group margin is preferably a margin average value that is an average of the margins of the AHU belonging to the air conditioning group.
According to the chilled water circulation system of the present invention, an air conditioning group that is a group of a plurality of AHUs having an influence coefficient equal to or greater than a predetermined first threshold is defined, and pump control is performed based on the margin of AHUs belonging to the air conditioning group. By performing the above, it becomes easy to ensure the reliability of temperature adjustment in a predetermined section by the cold water circulation system, and it becomes easy to reduce power consumption in the cold water circulation system. That is, in order to control the flow rate of the chilled water delivered from the pump based on the average value of the margin of AHU belonging to the air conditioning group, the average value of the margin of all AHUs arranged in a predetermined section Compared with control based on the above, a change in air temperature at a desired location is more easily reflected in the control of the pump.
具体的には、所望箇所の空気温度が制御目標である設定温度よりも上昇した場合、余裕度平均値は全AHUの余裕度の平均値よりも小さくなりやすく、ポンプから送出される冷水の流量を増やす制御が行われやすくなる。その結果、AHUの冷房能力が高められ所望箇所の空気温度上昇が抑えられる。 Specifically, when the air temperature at a desired location rises above a set temperature that is a control target, the margin average value tends to be smaller than the average value of all AHU margins, and the flow rate of cold water sent from the pump It becomes easy to perform control to increase. As a result, the cooling capacity of the AHU is increased and an increase in air temperature at a desired location is suppressed.
例えば、所定の区画内に配置された全てのAHUの余裕度の平均値を用いてポンプから送出される冷水の流量を増やす制御を行う場合と比較して、空調群に属する一つのAHUの余裕度が大きい場合には、余裕度平均値に対して当該AHUの余裕度が占める割合は全AHUの余裕度の平均値よりも大きくなり、ポンプから送出される冷水の流量を増やす制御が行われるタイミングが遅くなる。言い換えると、余裕度が大きなAHUの冷房能力を増やす制御を行い、所望箇所の空気温度を設定温度に制御する余裕が生まれる。このようにポンプから送出される冷水の流量を増やすことなく、所望箇所の空気温度の上昇に対処することができるため、冷水循環システムにおける消費エネルギの低減を図りやすくなる。 For example, the margin of one AHU belonging to the air conditioning group is compared with the case where control is performed to increase the flow rate of cold water sent from the pump using the average value of the margins of all AHUs arranged in a predetermined section. When the degree is large, the ratio of the margin of the AHU to the margin average value is larger than the average value of the margins of all AHUs, and control is performed to increase the flow rate of the cold water sent from the pump. Timing is delayed. In other words, control for increasing the cooling capacity of the AHU having a large margin is performed, and a margin for controlling the air temperature at a desired location to the set temperature is created. Thus, since it is possible to cope with an increase in the air temperature at a desired location without increasing the flow rate of the cold water delivered from the pump, it becomes easy to reduce the energy consumption in the cold water circulation system.
上記発明において前記AHUの状態を示す情報は、前記AHUに流入する前記冷水の流量を制御する二方弁の弁開度、前記AHUにおいて熱交換される前記空気を送風するファンの回転周波数、および、前記AHUから吹出される前記空気の設定温度と計測された計測温度との空気温度差の少なくとも一つ以上、または、その組み合わせであることが好ましい。 In the above invention, the information indicating the state of the AHU includes the opening degree of a two-way valve that controls the flow rate of the cold water flowing into the AHU, the rotation frequency of the fan that blows the air that is heat-exchanged in the AHU, and It is preferable that it is at least one of the air temperature difference between the set temperature of the air blown out from the AHU and the measured temperature, or a combination thereof.
このように二方弁の弁開度、ファンの回転周波数、および、空気温度差の少なくとも一つを用いて余裕度を求めることにより、信頼性をさらに確保しやすくなり、ポンプの駆動に用いる動力を低減させやすくなる。つまり、AHUにおける空気を冷却する能力は二方弁の弁開度と相関していると考えられ、弁開度における全開までの余裕は上述の余裕度と相関していると考えられる。そのため、二方弁の弁開度を用いて余裕度を求めることにより、余裕度をより高い精度で求めることができる。ファンの回転周波数や空気温度差についても同様に、AHUにおける空気を冷却する能力と相関していると考えられ、ファンの回転周波数や空気温度差を用いて余裕度を求めることにより、余裕度をより高い精度で求めることができる。 Thus, by obtaining the margin using at least one of the valve opening degree of the two-way valve, the fan rotation frequency, and the air temperature difference, it becomes easier to ensure reliability, and the power used for driving the pump Can be easily reduced. That is, the ability to cool air in AHU is considered to correlate with the valve opening of the two-way valve, and the margin until the valve is fully opened is considered to correlate with the above-described margin. Therefore, the margin can be obtained with higher accuracy by obtaining the margin using the valve opening of the two-way valve. Similarly, the fan rotation frequency and the air temperature difference are considered to correlate with the ability to cool the air in the AHU, and the margin is obtained by calculating the margin using the fan rotation frequency and the air temperature difference. It can be determined with higher accuracy.
上記発明において前記制御部は、前記所定の区画内の前記所望箇所の温度が第1ワーニング閾値を超えた場合には、前記空調群に属する前記AHUに対して、前記余裕度平均値が前記所定の第2閾値以上であるときには、前記ポンプから送り出される前記冷水の流量を減らし、前記余裕度平均値が前記所定の第2閾値未満であるときには前記冷水の流量を増やす制御を行い、前記所望箇所の温度が前記第1ワーニング閾値以下の場合には、前記所定の区画に配置された全ての前記AHUの前記余裕度の平均値である全体平均値を算出し、前記全体平均値が前記所定の第2閾値以上であるときには、前記ポンプから送り出される前記冷水の流量を減らし、前記全体平均値が前記所定の第2閾値未満であるときには前記冷水の流量を増やす制御を行うことが好ましい。 In the above invention, when the temperature of the desired location in the predetermined section exceeds a first warning threshold value, the control unit sets the average margin value to the predetermined value for the AHU belonging to the air conditioning group. The flow rate of the cold water sent out from the pump is reduced, and when the average margin value is less than the predetermined second threshold value, the flow rate of the cold water is increased, and the desired location When the temperature is equal to or lower than the first warning threshold value, an overall average value that is an average value of the margins of all the AHUs arranged in the predetermined section is calculated, and the overall average value is the predetermined threshold value. When the value is equal to or greater than the second threshold, the flow rate of the cold water fed from the pump is reduced, and when the overall average value is less than the predetermined second threshold value, the flow rate of the cold water is increased. Ukoto is preferable.
このように、所望箇所の温度と第1ワーニング閾値とを比較して、空調群内の余裕度の平均である余裕度平均値を用いてポンプの制御を行うか、所定の区画内の全AHUの余裕度の平均である全体平均値を用いてポンプの制御を行うかの選択を行うことにより、冷水循環システムによる所定の区画内の温度調整の信頼度をさらに確保しやすくなるとともに、冷水循環システムにおける消費電力の削減をさらに図りやすくなる。 In this way, the temperature of the desired location is compared with the first warning threshold value, and the pump is controlled using the margin average value that is the average margin in the air conditioning group, or all the AHUs in the predetermined section are controlled. By selecting whether to control the pump using the overall average value, which is the average of the margins, it becomes easier to ensure the reliability of temperature adjustment in a predetermined compartment by the chilled water circulation system, and the chilled water circulation It becomes easier to reduce power consumption in the system.
具体的には、所望箇所の温度が第1ワーニング閾値を超えた場合には、AHUの冷房能力変更のみで所望箇所の温度上昇を抑えることが難しいため、より早いタイミングでポンプから送出される冷水の流量を制御できる余裕度平均値を用いた制御を行う。これにより、所望箇所の温度上昇が抑えられやすくなり、所定の区画内の温度調整の信頼度を確保しやすくなる。 Specifically, when the temperature at the desired location exceeds the first warning threshold, it is difficult to suppress the temperature rise at the desired location only by changing the cooling capacity of the AHU. Control is performed using an average margin value that can control the flow rate. Thereby, it becomes easy to suppress the temperature rise of a desired location, and it becomes easy to ensure the reliability of the temperature adjustment in a predetermined division.
その一方で、所望箇所の温度が第1ワーニング閾値以下の場合には、AHUの冷房能力変更のみで所望箇所の温度上昇を抑えられる可能性が高いため、AHUの冷房能力変更の期間を確保しやすい全体平均値を用いた制御を行う。これにより、消費電力が大きくなりやすいポンプから送出される冷水の流量を増やす制御を抑制することができ、消費電力の削減を図りやすくなる。 On the other hand, when the temperature at the desired location is equal to or lower than the first warning threshold, it is highly possible that the temperature rise at the desired location can be suppressed only by changing the cooling capacity of the AHU. Perform control using easy overall average values. Thereby, the control which increases the flow volume of the cold water sent from the pump with which power consumption tends to become large can be suppressed, and it becomes easy to aim at reduction of power consumption.
なお、第1ワーニング閾値は警報閾値と比較して温度が低い閾値である。警報閾値は、それ以上温度が高くなると、冷水循環システムの冷却対象物が高温により不具合を発生する可能性が高くなる温度である。 The first warning threshold is a threshold having a lower temperature than the alarm threshold. The alarm threshold is a temperature at which the possibility that a cooling target in the chilled water circulation system will malfunction due to a high temperature when the temperature is further increased.
上記発明において前記制御部は、前記所望箇所の温度が前記第1ワーニング閾値を超え、かつ、前記余裕度平均値が前記所定の第2閾値以上の場合に、前記空調群に属する前記AHUのそれぞれの前記余裕度と、第2ワーニング閾値との比較を行い、前記余裕度が前記第2ワーニング閾値を下回る前記AHUが存在する場合には、当該AHUにおける冷却後の空気の目標温度である設定温度を下げる制御を行うことが好ましい。 In the above invention, the control unit, each of the AHUs belonging to the air conditioning group when the temperature of the desired location exceeds the first warning threshold value and the margin average value is equal to or greater than the predetermined second threshold value. When the AHU is less than the second warning threshold and the margin is less than the second warning threshold, a set temperature that is a target temperature of air after cooling in the AHU It is preferable to perform control to lower the value.
このように空調群に属するAHUの中から冷房能力に余裕のあるAHUについて設定温度を下げる制御を行うことで、ポンプから送出される冷水の流量の過度な変更を抑制でき、冷水循環システムにおける消費電力の削減をさらに図りやすくなる。つまり、空調群に属するAHUの余裕度と第2ワーニング閾値とを比較して、余裕度が第2ワーニング値を下回るAHUは冷房能力に余裕があるAHUとみなすことができる。このAHUの設定温度を下げて冷房能力を高めることにより、ポンプから送出される冷水の流量を増やすことなく、所望箇所の温度上昇を抑制することができる。 In this way, by controlling to lower the set temperature for AHUs with sufficient cooling capacity among the AHUs belonging to the air conditioning group, excessive changes in the flow rate of chilled water sent from the pump can be suppressed, and consumption in the chilled water circulation system It becomes easier to reduce power consumption. That is, by comparing the margin of AHU belonging to the air conditioning group with the second warning threshold value, an AHU whose margin is less than the second warning value can be regarded as an AHU having a sufficient cooling capacity. By increasing the cooling capacity by lowering the set temperature of this AHU, it is possible to suppress an increase in temperature at a desired location without increasing the flow rate of cold water sent from the pump.
上記発明において前記余裕度は、1−(前記二方弁の弁開度)、1−(前記ファンの回転周波数/最大周波数)、および、前記設定温度−前記計測温度、の少なくとも一つであることが好ましい。 In the above invention, the margin is at least one of 1- (valve opening of the two-way valve), 1- (rotational frequency / maximum frequency of the fan), and set temperature-measured temperature. It is preferable.
このように余裕度を求めることにより、二方弁の弁開度、ファンの回転周波数のいずれに基づいても余裕度を0から1までの数値で表すことができる。そのため、余裕度と所定閾値との比較などの余裕度を求めた後の制御処理を、AHUの状態を示す情報の種類に応じて変える必要がなくなる。 By obtaining the margin in this way, the margin can be expressed by a numerical value from 0 to 1 based on either the valve opening degree of the two-way valve or the rotational frequency of the fan. Therefore, it is not necessary to change the control processing after obtaining the margin such as a comparison between the margin and the predetermined threshold according to the type of information indicating the state of the AHU.
上記発明において前記余裕度が、1−(前記二方弁の弁開度)、または、1−(前記ファンの回転周波数/最大周波数)である場合に、前記余裕度の前記所定の第2閾値を、(前記AHUの常用台数)/(前記AHUの常用台数+前記AHUの予備台数)とすることが好ましい。 In the above invention, when the margin is 1- (valve opening of the two-way valve) or 1- (rotational frequency / maximum frequency of the fan), the predetermined second threshold value of the margin. Is preferably (the number of regular AHUs) / (the number of regular AHUs + the number of spare AHUs).
このようにAHUの常用台数および予備台数に基づく所定の第2閾値を規定することにより、室内空気の温度調整能力の信頼性を更に確保しやすくなる。ここで常用台数は、冷水循環システムを備えた空調システムにおける負荷に対応するために必要とされる最低限のAHUの台数であり、予備台数は、空調システムにおける温度調整能力の信頼性を確保するために予備で設けられるAHUの台数である。 Thus, by defining the predetermined second threshold value based on the regular number and the spare number of AHUs, it becomes easier to ensure the reliability of the temperature adjustment capability of the indoor air. Here, the regular number is the minimum number of AHUs required to cope with the load in the air conditioning system equipped with the chilled water circulation system, and the spare number ensures the reliability of the temperature adjustment capability in the air conditioning system. Therefore, it is the number of AHUs provided in reserve.
上記発明において前記余裕度が前記所定の第2閾値未満と判定された場合に、前記ポンプに適用された運転設定を記憶し、記憶した後に、前記ポンプから送り出される前記冷水の流量を減らす際に、記憶された前記運転設定の近傍では、前回の制御における前記冷水の流量の減少量よりも、減少させる量を減らすことが好ましい。 In the above invention, when it is determined that the margin is less than the predetermined second threshold, the operation setting applied to the pump is stored, and after the storage, the flow rate of the cold water sent from the pump is reduced. In the vicinity of the stored operation setting, it is preferable to reduce the amount to be decreased rather than the amount of decrease in the flow rate of the cold water in the previous control.
このように記憶された運転設定の近傍においては、1回あたりの冷水の減少量を小さくすることにより、記憶された運転設定の近傍において細やかな制御が行われ、制御の安定性を確保しやすくなる。 In the vicinity of the stored operation settings in this way, by reducing the amount of decrease in cold water per time, fine control is performed in the vicinity of the stored operation settings, and it is easy to ensure the stability of the control. Become.
上記発明において前記所望箇所は、前記所定の区画内に配置された冷却対象である熱を発生する機器における空気の吸込み部であることが好ましい。
このように所望箇所を、IT(情報技術)装置やICT(情報通信技術)装置等のように熱を発生する電子機器の冷却用空気の吸込み部とすることにより、空調群を適切に定義することができる。つまり、電子機器の冷却に影響を与える冷却用空気の吸込み部における空気温度に基づいて空調群を定義することで、定義の精度が高まり冷水循環システムによる所定の区画内の温度調整の信頼度をさらに確保しやすくなるとともに、冷水循環システムにおける消費電力の削減をさらに図りやすくなる。
In the above invention, the desired location is preferably an air suction portion in a device that generates heat, which is a cooling target, disposed in the predetermined section.
Thus, the air conditioning group is appropriately defined by setting a desired portion as a cooling air suction portion of an electronic device that generates heat such as an IT (information technology) device or an ICT (information communication technology) device. be able to. In other words, by defining the air conditioning group based on the air temperature in the cooling air suction section that affects the cooling of the electronic equipment, the accuracy of the definition increases and the reliability of temperature adjustment in a given compartment by the chilled water circulation system increases. Further, it becomes easier to secure, and it becomes easier to reduce power consumption in the cold water circulation system.
本発明の冷水循環システムによれば、所定の第1閾値以上の影響度係数を有する複数のAHUのグループである空調群を定義し、この空調群に属するAHUの余裕度に基づいてポンプの制御を行うことにより、温度調整の信頼性を確保するとともに、消費電力の削減を図ることができるという効果を奏する。 According to the chilled water circulation system of the present invention, an air conditioning group that is a group of a plurality of AHUs having an influence coefficient equal to or greater than a predetermined first threshold is defined, and pump control is performed based on the margin of AHUs belonging to the air conditioning group. As a result, the reliability of temperature adjustment is ensured and the power consumption can be reduced.
この発明の一実施形態に係る冷水循環システムを備えた空調システムについて、図1から図4を参照しながら説明する。
本実施形態では、データセンタの空調に本発明に係る空調システム(冷水循環システム)1を用いた例に適用して説明する。なお、データセンタにはIT(情報技術)装置やICT(情報通信技術)装置を構成する多数のサーバやコンピュータなどの電子機器51が、フロア(所定の区画)F内にコールドアイルCおよびホットアイルHを形成するように配置されたラック55に収納されている(図4参照。)。空調システム1は、これらの電子機器51から発生する大量の熱を処理するために用いられる。
An air conditioning system including a cold water circulation system according to an embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, description will be made by applying to an example in which an air conditioning system (cold water circulation system) 1 according to the present invention is used for air conditioning of a data center. In the data center, there are a large number of electronic devices 51 such as servers and computers constituting IT (information technology) devices and ICT (information communication technology) devices, and a cold aisle C and hot aisle C in a floor (predetermined section) F. It is stored in a rack 55 arranged so as to form H (see FIG. 4). The air conditioning system 1 is used to process a large amount of heat generated from these electronic devices 51.
空調システム1には、図1に示すように、複数の熱源10と、一次送りヘッダ11と、一次戻りヘッダ12と、一次ポンプ13と、一次冷水回路14と、熱源コントローラ15と、複数のAHU(エア・ハンドリング・ユニット)20と、AHUコントローラ25と、二次送りヘッダ31と、二次戻りヘッダ32と、冷水主管35と、二次ポンプ(ポンプ)33と、ポンプコントローラ38と、統合コントローラ(制御部)41と、が主に設けられている。 As shown in FIG. 1, the air conditioning system 1 includes a plurality of heat sources 10, a primary feed header 11, a primary return header 12, a primary pump 13, a primary chilled water circuit 14, a heat source controller 15, and a plurality of AHUs. (Air handling unit) 20, AHU controller 25, secondary feed header 31, secondary return header 32, chilled water main pipe 35, secondary pump (pump) 33, pump controller 38, and integrated controller (Control unit) 41 is mainly provided.
熱源10は、AHU20において室内空気の冷却に用いられる冷水を供給するものである。より具体的には、AHU20において室内空気の熱を吸収して温度が高くなった冷水を冷却し、所定温度の冷水として再びAHU20に送り出すものである。熱源10としては、圧縮機、凝縮器、膨張弁、蒸発器、およびファン部(図示せず)などを備えた空冷チラーなどの冷凍機を例示することができる。 The heat source 10 supplies cold water used for cooling indoor air in the AHU 20. More specifically, the AHU 20 absorbs the heat of the room air and cools the cold water whose temperature has been increased, and sends it to the AHU 20 again as cold water having a predetermined temperature. Examples of the heat source 10 include a refrigerator such as an air-cooled chiller including a compressor, a condenser, an expansion valve, an evaporator, and a fan unit (not shown).
なお、熱源10から供給される冷水は、室内空気と比較して温度の低い水との意味で冷水と表記しているものである。そのため室内空気の温度が高い場合には、一般的に温かいと感じられる温度の水(温水)が熱源10から供給されてもよい。さらに、本実施形態では、熱源10から供給される熱媒として水を用いた例に適用して説明しているが、水以外の熱媒を用いてもよく、熱を運搬する媒体である熱媒の種類を限定するものではない。 In addition, the cold water supplied from the heat source 10 is described as cold water in the sense of water having a lower temperature than indoor air. Therefore, when the temperature of the indoor air is high, water (hot water) having a temperature generally felt as warm may be supplied from the heat source 10. Furthermore, in this embodiment, the description is applied to an example in which water is used as the heat medium supplied from the heat source 10, but a heat medium other than water may be used, and heat that is a medium that carries heat. The type of the medium is not limited.
一次送りヘッダ11は、熱源10から送り出された冷水が流入し、二次送りヘッダ31へ冷水を供給するヘッダである。一次戻りヘッダ12は、二次戻りヘッダ32から冷水が流入し、熱源10へ冷水を送り出すヘッダである。 The primary feed header 11 is a header into which cold water sent out from the heat source 10 flows and supplies cold water to the secondary feed header 31. The primary return header 12 is a header in which cold water flows from the secondary return header 32 and sends the cold water to the heat source 10.
一次冷水回路14は、熱源10、一次送りヘッダ11および一次戻りヘッダ12を接続し、冷水が循環する流路を形成するものである。一次ポンプ13は、熱源10から一次送りヘッダ11へ冷水を吐出するポンプである。本実施形態では、一次ポンプ13が熱源10の内部に配置されている例に適用して説明するが、熱源10から独立して配置されていてもよく配置位置を限定するものではない。 The primary chilled water circuit 14 connects the heat source 10, the primary feed header 11 and the primary return header 12, and forms a flow path through which chilled water circulates. The primary pump 13 is a pump that discharges cold water from the heat source 10 to the primary feed header 11. In the present embodiment, description will be made by applying to an example in which the primary pump 13 is disposed inside the heat source 10, but the primary pump 13 may be disposed independently from the heat source 10, and the arrangement position is not limited.
熱源コントローラ15は、図1および図2に示すように、CPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するマイクロコンピュータであり、熱源10および一次ポンプ13を制御するものであり、統合コントローラ41により制御されるものでもある。例えば、熱源10から送り出される冷水の温度を制御するものであり、一次ポンプ13から送り出される冷水の流量を制御するものである。 As shown in FIGS. 1 and 2, the heat source controller 15 is a microcomputer having a CPU (Central Processing Unit), ROM, RAM, input / output interface, and the like, and controls the heat source 10 and the primary pump 13. It is also controlled by the integrated controller 41. For example, the temperature of the cold water sent out from the heat source 10 is controlled, and the flow rate of the cold water sent out from the primary pump 13 is controlled.
AHU20は、図1に示すように、熱源10から供給される冷水を用いて、サーバ等の熱によって温度が高くなったフロアの室内空気を冷却するものである。本実施形態では、データセンタのフロアFに複数のAHU20が配置され、当該フロアFが複数設けられている例に適用して説明する。 As shown in FIG. 1, the AHU 20 uses cold water supplied from the heat source 10 to cool indoor air on a floor whose temperature has been increased by heat from a server or the like. In the present embodiment, a description will be given by applying to an example in which a plurality of AHUs 20 are arranged on a floor F of a data center and a plurality of the floors F are provided.
AHU20には、熱源から供給される冷水の流量を調節する二方弁21と、AHU20により冷却されてフロアへ吹出される空気の温度を測定する吹出口温度センサ22と、が設けられている。AHU20としては、熱交換器であるコイル(図示せず)、当該コイルに室内空気を通風させるファン23などが主に設けられたものを例示することができる。 The AHU 20 is provided with a two-way valve 21 that adjusts the flow rate of cold water supplied from a heat source, and an outlet temperature sensor 22 that measures the temperature of air cooled by the AHU 20 and blown to the floor. Examples of the AHU 20 include a coil (not shown) that is a heat exchanger, and a fan 23 that mainly allows indoor air to flow through the coil.
二次送りヘッダ31は、一次送りヘッダ11から冷水が流入し、AHU20に向けて冷水を供給するヘッダである。一次送りヘッダ11と二次送りヘッダ31との間に二次ポンプ33および戻り配管34が配置されている。 The secondary feed header 31 is a header in which cold water flows from the primary feed header 11 and supplies cold water to the AHU 20. A secondary pump 33 and a return pipe 34 are arranged between the primary feed header 11 and the secondary feed header 31.
二次ポンプ33は冷水を一次送りヘッダ11から二次送りヘッダ31に送り出すポンプであり、ポンプコントローラ38によって制御される動力インバータにより駆動されるポンプである。戻り配管34は、一次送りヘッダ11と二次送りヘッダ31との間をつなぎ、過剰に二次送りヘッダ31に送られた冷水を一次送りヘッダ11に戻す配管である。戻り配管34には、冷水の流量を調節する調節弁が設けられている。 The secondary pump 33 is a pump that feeds cold water from the primary feed header 11 to the secondary feed header 31, and is a pump driven by a power inverter controlled by a pump controller 38. The return pipe 34 is a pipe that connects between the primary feed header 11 and the secondary feed header 31 and returns the cold water that is excessively sent to the secondary feed header 31 to the primary feed header 11. The return pipe 34 is provided with an adjustment valve that adjusts the flow rate of the cold water.
二次戻りヘッダ32は、AHU20から戻ってきた冷水が流入し、一次戻りヘッダ12へ冷水を供給するヘッダである。冷水主管35は、二次送りヘッダ31、AHU20および二次戻りヘッダ32を接続し、冷水が流れる流路を形成するものである。冷水主管35における二次送りヘッダ31の近傍、および、二次戻りヘッダ32の近傍には、それぞれ冷水の温度を測定する送り温度センサ36および戻り温度センサ37が配置されている。 The secondary return header 32 is a header through which the cold water returned from the AHU 20 flows and supplies the cold water to the primary return header 12. The cold water main pipe 35 connects the secondary feed header 31, the AHU 20, and the secondary return header 32, and forms a flow path through which cold water flows. A feed temperature sensor 36 and a return temperature sensor 37 for measuring the temperature of the cold water are disposed in the vicinity of the secondary feed header 31 and the secondary return header 32 in the cold water main pipe 35, respectively.
AHUコントローラ25は、図1および図2に示すように、CPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するマイクロコンピュータであって、AHU20におけるフロアの室内空気を冷却する冷房能力を制御するものであり、統合コントローラ41により制御されるものでもある。AHU20の冷房能力は、二方弁21の開度や、ファン23によって通風される風量を調節することにより制御される。 As shown in FIGS. 1 and 2, the AHU controller 25 is a microcomputer having a CPU (Central Processing Unit), a ROM, a RAM, an input / output interface, etc., and has a cooling capacity for cooling indoor air on the floor in the AHU 20. And is also controlled by the integrated controller 41. The cooling capacity of the AHU 20 is controlled by adjusting the opening degree of the two-way valve 21 and the amount of air passed by the fan 23.
AHUコントローラ25は、予め定められた設定値と、吹出口温度センサ22により測定された空気温度、または、フロア温度センサ24により測定された空気温度との温度差が所定範囲内になるように制御を行う。本実施形態では一つのフロアFに一つのAHUコントローラ25が配置され、当該AHUコントローラ25は、フロアFに配置された全てのAHU20を制御する例に適用して説明する。 The AHU controller 25 controls the temperature difference between a predetermined set value and the air temperature measured by the outlet temperature sensor 22 or the air temperature measured by the floor temperature sensor 24 to be within a predetermined range. I do. In the present embodiment, one AHU controller 25 is arranged on one floor F, and the AHU controller 25 will be described as applied to an example of controlling all AHUs 20 arranged on the floor F.
ポンプコントローラ38は、CPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するマイクロコンピュータであって、二次ポンプ33から送り出される冷水の流量を制御するものであり、統合コントローラ41により制御されるものでもある。より具体的には、動力インバータの運転周波数を制御することにより二次ポンプ33から送り出される冷水の流量を制御するものである。 The pump controller 38 is a microcomputer having a CPU (Central Processing Unit), a ROM, a RAM, an input / output interface, and the like, and controls the flow rate of cold water delivered from the secondary pump 33. It is also controlled. More specifically, the flow rate of the cold water delivered from the secondary pump 33 is controlled by controlling the operating frequency of the power inverter.
二次ポンプ33から送り出される冷水の流量は、送り温度センサ36によって測定される二次送りヘッダ31から送りだされる冷水の温度である送り温度と、戻り温度センサ37によって測定される二次戻りヘッダ32に流入する冷水の温度である戻り温度と、の間の温度差である冷水往還温度差が所定範囲に収まるように制御されている。 The flow rate of the chilled water delivered from the secondary pump 33 includes the feed temperature, which is the temperature of the chilled water sent from the secondary feed header 31 measured by the feed temperature sensor 36, and the secondary return measured by the return temperature sensor 37. Control is performed so that a cold water return temperature difference that is a temperature difference between the return temperature that is the temperature of the cold water flowing into the header 32 falls within a predetermined range.
統合コントローラ41は、空調システム1を統合的に制御するものであり、CPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するマイクロコンピュータである。統合コントローラ41には、フロアFに配置された電子機器51における冷却用空気の吸込み部52の近傍に設けられた吸込み部温度センサ53により測定された空気の温度の測定信号が入力されている。その一方で、統合コントローラ41から熱源コントローラ15、AHUコントローラ25およびポンプコントローラ38に制御信号が出力されている。 The integrated controller 41 controls the air conditioning system 1 in an integrated manner, and is a microcomputer having a CPU (Central Processing Unit), ROM, RAM, input / output interface, and the like. The integrated controller 41 receives an air temperature measurement signal measured by a suction portion temperature sensor 53 provided in the vicinity of the cooling air suction portion 52 in the electronic device 51 disposed on the floor F. On the other hand, control signals are output from the integrated controller 41 to the heat source controller 15, the AHU controller 25 and the pump controller 38.
ROM等に記憶されている制御プログラムは、CPUを演算部42として機能させるものであり、ROM等を記憶部43として機能させるものである。なお、統合コントローラ41、ポンプコントローラ38、AHUコントローラ25および熱源コントローラ15による空調システム1の制御については後述する。 The control program stored in the ROM or the like causes the CPU to function as the calculation unit 42 and causes the ROM or the like to function as the storage unit 43. Control of the air conditioning system 1 by the integrated controller 41, the pump controller 38, the AHU controller 25, and the heat source controller 15 will be described later.
次に、上記の構成からなる空調システム1における制御について説明する。まず、本実施形態の空調システム1の特徴である空調システム1の制御内容について、図3および図4を参照しながら説明する。 Next, control in the air conditioning system 1 having the above configuration will be described. First, the control content of the air conditioning system 1 which is the characteristic of the air conditioning system 1 of this embodiment is demonstrated, referring FIG. 3 and FIG.
空調システム1の運転が開始されると、図3に示すように、統合コントローラ41はワーニングが発報されているか否かの判定処理を実行する(S11)。ワーニングは、吸込み部温度センサ53に測定された空気温度が第1ワーニング閾値を超えた場合に発報されるものであり、統合コントローラ41により発報される。 When the operation of the air conditioning system 1 is started, as shown in FIG. 3, the integrated controller 41 executes a process for determining whether or not a warning has been issued (S11). The warning is issued when the air temperature measured by the suction portion temperature sensor 53 exceeds the first warning threshold, and is issued by the integrated controller 41.
なお、上述のワーニングは統合コントローラ41により発報されてもよいし、AHUコントローラ25から発報されてもよい。第1ワーニング閾値は、フロアFに配置された電子機器51に影響を与えない室内温度の上限である警報閾値よりも温度が低い閾値である。 The above warning may be issued by the integrated controller 41 or may be issued by the AHU controller 25. The first warning threshold is a threshold having a temperature lower than an alarm threshold that is an upper limit of the indoor temperature that does not affect the electronic device 51 arranged on the floor F.
S11の判定処理においてワーニングが発報されていないと判定された場合(NOの場合)には、再びS11に戻り、ワーニング発報の有無を判定する処理を実行する。
ワーニングが発報されていると判定された場合(YESの場合)、統合コントローラ41の演算部42は影響度係数を計算する処理を実行する(S12)。影響度係数は、フロアFの所望箇所における、当該フロアFに配置された各AHU20による空気温度を調整する寄与率(影響を与える程度)を示す係数である。所望箇所は、電子機器51における冷却用空気の吸込み部52の近傍、より具体的には、吸込み部温度センサ53が配置された位置を挙げることができる。
If it is determined in S11 that the warning has not been issued (in the case of NO), the process returns to S11 again to execute a process for determining whether or not a warning is issued.
When it is determined that a warning has been issued (in the case of YES), the calculation unit 42 of the integrated controller 41 executes a process of calculating an influence coefficient (S12). The influence degree coefficient is a coefficient indicating a contribution rate (degree of influence) for adjusting the air temperature by each AHU 20 arranged on the floor F at a desired location on the floor F. The desired location may be the vicinity of the cooling air suction portion 52 in the electronic device 51, more specifically, the position where the suction portion temperature sensor 53 is disposed.
なお、影響度係数を取得する方法としては、特開2006−064283号公報に記載されている実際に影響度係数を測定して求める方法や、所望箇所からAHU20までの距離や、フロアFのレイアウトなどを考慮した演算式に基づいて算出する方法など、種々の方法を用いることができ特にその方法を限定するものではない。 In addition, as a method of acquiring the influence coefficient, the method of actually measuring the influence coefficient described in JP-A-2006-064283, the distance from the desired location to the AHU 20, the layout of the floor F, and the like. Various methods can be used such as a method of calculating based on an arithmetic expression that takes into consideration the above, and the method is not particularly limited.
また、本実施形態のように空調システム1の統合コントローラ41が影響度係数を計算して求めてもよいし、空調システム1以外の空調制御システムにより求められた影響度係数を、通信手段を介して統合コントローラ41が取得してもよい。 Further, as in the present embodiment, the integrated controller 41 of the air conditioning system 1 may calculate the influence degree coefficient, or the influence degree coefficient obtained by the air conditioning control system other than the air conditioning system 1 may be obtained via the communication means. Then, the integrated controller 41 may acquire it.
それぞれのAHU20に対して影響度係数の計算が行われると、演算部42は、次に空調群20Gの定義を行う演算処理を行う(S13)。空調群20Gは、フロアFに配置された複数のAHU20のうち、所定の第1閾値以上の影響度係数を有するAHU20から構成されるグループである。言い換えると、所望箇所に対して、ある程度以上の空気温度を調整する寄与率を有する複数のAHU20からなるグループである。所定の第1閾値は、フロアFのレイアウトや、冷却対象である電子機器51の種類などに応じて適宜その値を設定できるものであり、値自体を限定するものではない。 When the influence coefficient is calculated for each AHU 20, the calculation unit 42 performs calculation processing for defining the air conditioning group 20G (S13). The air conditioning group 20G is a group configured of AHUs 20 having an influence coefficient equal to or greater than a predetermined first threshold among the plurality of AHUs 20 arranged on the floor F. In other words, it is a group consisting of a plurality of AHUs 20 having a contribution rate of adjusting the air temperature above a certain level with respect to the desired location. The predetermined first threshold value can be appropriately set according to the layout of the floor F, the type of the electronic device 51 to be cooled, and the like, and does not limit the value itself.
例えば、図4の模式図に示すように一つのコールドアイルCを挟んで対向配置された一対のラック55に配置された4つの電子機器51において、発熱量が増加する発熱異常が発生した場合、当該4つの電子機器51に距離的に近い位置に配置された2台のAHU20が空調群20Gとして定義される。 For example, as shown in the schematic diagram of FIG. 4, when a heat generation abnormality in which a heat generation amount is increased occurs in four electronic devices 51 disposed in a pair of racks 55 that are opposed to each other with one cold aisle C interposed therebetween, Two AHUs 20 arranged at positions close to the four electronic devices 51 are defined as an air conditioning group 20G.
次いで演算部42は、定義された空調群20Gに属するAHU20の余裕度に基づき、その平均である余裕度平均値(群余裕度)を計算する演算処理を行う(S14)。余裕度は、AHU20における室内空気を冷却する余剰能力を示す指標であり、次に記載する3つの計算式の少なくとも1つを用いて求められる。 Next, the calculation unit 42 performs calculation processing for calculating a margin average value (group margin) that is an average based on the margin of the AHU 20 belonging to the defined air conditioning group 20G (S14). The margin is an index indicating a surplus capacity for cooling the indoor air in the AHU 20, and is obtained using at least one of the following three calculation formulas.
1−(二方弁21の弁開度) ・・・(1)
1−(ファン23の回転周波数/最大周波数) ・・・(2)
設定温度−計測温度 ・・・(3)
ここで式(1)における二方弁21の弁開度は全閉を0とし全開を1とするものである。
1- (Valve opening degree of the two-way valve 21) (1)
1- (Rotation frequency of fan 23 / maximum frequency) (2)
Set temperature-Measured temperature (3)
Here, the valve opening degree of the two-way valve 21 in the equation (1) is such that 0 is fully closed and 1 is fully opened.
式(2)における最大周波数は、ファン23の最大回転周波数のことである。式(3)における設定温度はフロアFの室内温度の目標温度であり、計測温度はフロア温度センサ24によって測定された室内温度であり、設定温度−計測温度はフロアFにおける空気温度差を表している。AHU20の吹出空気の目標温度とし吹出空気設定温度−吹出空気計測温度としてもよい。 The maximum frequency in Equation (2) is the maximum rotation frequency of the fan 23. The set temperature in Equation (3) is the target temperature of the indoor temperature of the floor F, the measured temperature is the indoor temperature measured by the floor temperature sensor 24, and the set temperature-measured temperature represents the air temperature difference on the floor F. Yes. It is good also as a target temperature of the blowing air of AHU20 and blowing air preset temperature-blowing air measurement temperature.
なお、余裕度平均値(群余裕度)は、上述のように式(1)から式(3)のいずれかを用いて求めた余裕度の平均として求めてもよいし、二方弁21の弁開度の平均値として求めてもよいし、弁開度が100%である二方弁21の台数、または、台数の割合として求めてもよく、特に求め方を限定するものではない。 The marginal average value (group margin) may be obtained as an average of the margins obtained by using any one of formulas (1) to (3) as described above. You may obtain | require as an average value of a valve opening degree, and may obtain | require as the number of the two-way valves 21 whose valve opening degree is 100%, or the ratio of the number, and it does not specifically limit how to obtain.
その後、演算部42は、求められた余裕度平均値に余裕があるか否かを判定する処理を行う(S15)。例えば、余裕度平均値が余裕度閾値(所定の第2閾値)以上(言い換えると、余裕がある)であるか、余裕度閾値未満である(言い換えると、余裕がない)か、を判定する処理を実行する。 Thereafter, the calculation unit 42 performs a process of determining whether or not the obtained margin average value has a margin (S15). For example, processing for determining whether the margin average value is equal to or greater than the margin threshold (predetermined second threshold) (in other words, there is a margin) or less than the margin threshold (in other words, there is no margin). Execute.
ここで余裕度が上述の式(1)または式(2)を用いて算出されている場合の余裕度閾値としては、(AHU20の常用台数)/(AHU20の常用台数+AHU20の予備台数)から求められる値を例示することができる。このようにすることで、室内空気の温度調整能力の信頼性を更に確保しやすくなる。 Here, the margin threshold when the margin is calculated using the above-described formula (1) or formula (2) is obtained from (AHU20 regular number) / (AHU20 regular number + AHU20 spare number). Examples of possible values can be given. By doing in this way, it becomes easier to ensure the reliability of the temperature adjustment capability of room air.
ここで常用台数は、空調システム1に要求される冷房負荷に対応するために必要とされる最低限のAHU20の台数であり、予備台数は、空調システム1における温度調整能力の信頼性を確保するために予備で設けられるAHU20の台数である。 Here, the regular number is the minimum number of AHUs 20 required to cope with the cooling load required for the air conditioning system 1, and the spare number ensures the reliability of the temperature adjustment capability in the air conditioning system 1. Therefore, it is the number of AHUs 20 provided in reserve.
S15において余裕度平均値に余裕があると判定された場合(YESの場合)、演算部42は更に、空調群20Gに属するAHU20の個々について余裕度が個別ワーニング閾値(第2ワーニング閾値)を超えているか否かを判定する処理を行う(S16)。 If it is determined in S15 that the margin average value has a margin (in the case of YES), the calculating unit 42 further exceeds the margin for each of the AHUs 20 belonging to the air conditioning group 20G (second warning threshold). The process which determines whether it is is performed is performed (S16).
余裕度が個別ワーニング閾値を超えていると判定された場合(YESの場合)、言い換えると個別ワーニング閾値を超える余裕度を有するAHU20が存在する場合、統合コントローラ41は次の制御を行う。つまり、空調群20Gに属するAHU20のうち、余裕度が大きなAHU20に対して冷房能力の制御を優先して行う処理を実行する(S17)。例えば、余裕度が大きなAHU20に対してのみ、フロアFに吹出す空気の温度の目標温度である設定温度を下げる制御が行われる。その後、統合コントローラ41はS11に戻り上述の制御を繰り返し行う。 When it is determined that the margin exceeds the individual warning threshold (in the case of YES), in other words, when there is an AHU 20 having a margin exceeding the individual warning threshold, the integrated controller 41 performs the following control. That is, the process which gives priority to the control of the cooling capacity is executed on the AHU 20 having a large margin among the AHUs 20 belonging to the air conditioning group 20G (S17). For example, only for the AHU 20 having a large margin, control is performed to lower the set temperature, which is the target temperature of the air blown to the floor F. Thereafter, the integrated controller 41 returns to S11 and repeats the above control.
その一方で、S16において余裕度が個別ワーニング閾値以下であると判定された場合(NOの場合)、言い換えると個別ワーニング閾値を超える余裕度を有するAHU20が存在しない場合、統合コントローラ41はS11に戻り上述の制御を繰り返し行う。 On the other hand, when it is determined in S16 that the margin is equal to or less than the individual warning threshold (in the case of NO), in other words, when there is no AHU 20 having a margin exceeding the individual warning threshold, the integrated controller 41 returns to S11. The above control is repeated.
また、S15において余裕度平均値に余裕がないと判定された場合(NOの場合)、統合コントローラ41は、二次ポンプ33を駆動する周波数を上げる制御処理を行う(S18)。二次ポンプ33を駆動する周波数が増加すると、二次ポンプ33から送出される冷水の流量が増加する。言い換えると熱源10からAHU20に送りこまれる冷水の流量が増加し、AHU20における冷房能力が増加する。 When it is determined in S15 that the margin average value has no margin (in the case of NO), the integrated controller 41 performs a control process for increasing the frequency for driving the secondary pump 33 (S18). If the frequency which drives the secondary pump 33 increases, the flow volume of the cold water sent out from the secondary pump 33 will increase. In other words, the flow rate of cold water sent from the heat source 10 to the AHU 20 increases, and the cooling capacity of the AHU 20 increases.
なお、ラック55に新たな電子機器51が追加されたり、電子機器51の配置が変更されたりするなど、設置状況が変更されることにより上述の影響係数が変化する場合がある。この場合には、空調群20Gの定義が再度行われる。 Note that the above-described influence coefficient may change due to a change in the installation state, such as when a new electronic device 51 is added to the rack 55 or the arrangement of the electronic device 51 is changed. In this case, the definition of the air conditioning group 20G is performed again.
次に、本実施形態の空調システム1における通常運転時の制御について説明する。具体的には、S11の判定においてワーニングが発報されていない状態における空調システム1における制御について説明する。 Next, control during normal operation in the air conditioning system 1 of the present embodiment will be described. Specifically, control in the air conditioning system 1 in a state where no warning is issued in the determination of S11 will be described.
この場合、統合コントローラ41は、フロアFに配置された全てのAHU20の余裕度を求め、この余裕度の平均であるフロア平均値(全体平均値)を算出する処理を行う。その後、演算部42は、求められたフロア平均値に余裕があるか否かを判定する処理を行う。例えば、フロア平均値が余裕度閾値以上(言い換えると、余裕がある)であるか、余裕度閾値未満である(言い換えると、余裕がない)か、を判定する処理を実行する。 In this case, the integrated controller 41 obtains a margin of all the AHUs 20 arranged on the floor F, and performs a process of calculating a floor average value (overall average value) that is an average of the margins. Thereafter, the calculation unit 42 performs a process of determining whether or not the obtained floor average value has a margin. For example, a process of determining whether the floor average value is greater than or equal to the margin threshold (in other words, there is a margin) or less than the margin threshold (in other words, there is no margin) is executed.
その結果、フロア平均値が余裕度閾値以上であるとき、統合コントローラ41は、二次ポンプ33から送り出される冷水の流量を減らす制御信号を出力する処理を行う。その一方で、フロア平均値が余裕度閾値未満であるとき、統合コントローラ41は、二次ポンプ33から送り出される冷水の流量を増やす制御信号を出力する処理を行う。 As a result, when the floor average value is equal to or greater than the margin threshold value, the integrated controller 41 performs a process of outputting a control signal for reducing the flow rate of the cold water sent from the secondary pump 33. On the other hand, when the floor average value is less than the margin threshold value, the integrated controller 41 performs a process of outputting a control signal for increasing the flow rate of the cold water sent from the secondary pump 33.
また、送り温度センサ36により測定された冷水の温度と、戻り温度センサ37によって測定された冷水の温度との間の温度差である冷水往還温度差が、所定の温度差よりも小さい場合には、統合コントローラ41は、二次ポンプ33から送り出される冷水の流量を減少させる制御を行う。具体的には、統合コントローラ41は、ポンプコントローラ38を介して二次ポンプ33を駆動する動力インバータに運転周波数を低下させる制御信号を出力する。 When the cold water return temperature difference, which is a temperature difference between the temperature of the cold water measured by the feed temperature sensor 36 and the temperature of the cold water measured by the return temperature sensor 37, is smaller than a predetermined temperature difference. The integrated controller 41 performs control to reduce the flow rate of the cold water sent out from the secondary pump 33. Specifically, the integrated controller 41 outputs a control signal for lowering the operation frequency to the power inverter that drives the secondary pump 33 via the pump controller 38.
この場合、二次ポンプ33に適用された運転設定を記憶部43に記憶する処理を行い、二次ポンプ33から送り出される冷水の流量を減らす処理を行う際に、記憶された運転設定の近傍では、冷水の流量の減少量を前回の制御時よりも小さくする制御を行ってもよい。さらに記憶された運転設定の近傍では、冷水の流量を減らす制御を行う間隔を、他の場合よりも長くする制御を行ってもよい。 In this case, when performing the process of storing the operation setting applied to the secondary pump 33 in the storage unit 43 and performing the process of reducing the flow rate of the cold water delivered from the secondary pump 33, in the vicinity of the stored operation setting. In addition, it is possible to perform a control for making the amount of decrease in the flow rate of the cold water smaller than in the previous control. Further, in the vicinity of the stored operation setting, the control for reducing the flow rate of the cold water may be controlled to be longer than in other cases.
このように記憶された運転設定の近傍においては、1回あたりの冷水の減少量を小さくすることにより、記憶された運転設定の近傍において細やかな制御が行われ、制御の安定性を確保しやすくなる。 In the vicinity of the stored operation settings in this way, by reducing the amount of decrease in cold water per time, fine control is performed in the vicinity of the stored operation settings, and it is easy to ensure the stability of the control. Become.
上記の構成の空調システム1によれば、所定の第1閾値以上の影響度係数を有する複数のAHU20のグループである空調群20Gを定義し、この空調群20Gに属するAHU20の余裕度に基づいて二次ポンプ33の制御を行うことにより、空調システム1によるフロアF内の温度調整の信頼度を確保しやすくなるとともに、空調システム1における消費電力の削減を図りやすくなる。つまり、空調群20Gに属するAHU20の余裕度の平均値である余裕度平均値に基づいて二次ポンプ33から送出される冷水の流量を制御するため、フロアFに配置された全AHU20の余裕度の平均値に基づく制御と比較して、所望箇所の空気温度の変化が二次ポンプ33の制御に反映されやすくなる。 According to the air conditioning system 1 having the above configuration, the air conditioning group 20G that is a group of a plurality of AHUs 20 having an influence coefficient equal to or greater than a predetermined first threshold is defined, and based on the margin of the AHUs 20 belonging to the air conditioning group 20G. By controlling the secondary pump 33, it becomes easy to ensure the reliability of the temperature adjustment in the floor F by the air conditioning system 1, and it becomes easy to reduce the power consumption in the air conditioning system 1. That is, in order to control the flow rate of the cold water sent from the secondary pump 33 based on the margin average value which is the average value of the margin of the AHU 20 belonging to the air conditioning group 20G, the margin of all the AHUs 20 arranged on the floor F Compared with the control based on the average value, the change in the air temperature at the desired location is more easily reflected in the control of the secondary pump 33.
具体的には、所望箇所の空気温度が制御目標である設定温度よりも上昇した場合、余裕度平均値は全AHU20の余裕度の平均値よりも小さくなりやすく、二次ポンプ33から送出される冷水の流量を増やす制御が行われやすくなる。その結果、AHU20の冷房能力が高められ所望箇所の空気温度上昇が抑えられる。 Specifically, when the air temperature at the desired location rises above the set temperature that is the control target, the margin average value tends to be smaller than the average value of the margins of all AHUs 20 and is sent from the secondary pump 33. Control to increase the flow rate of cold water is easily performed. As a result, the cooling capacity of the AHU 20 is enhanced and an increase in air temperature at a desired location is suppressed.
例えば、フロアF内に配置された全てのAHU20の余裕度の平均値を用いて二次ポンプ33から送出される冷水の流量を増やす制御を行う場合と比較して、空調群20Gに属する一つのAHU20の余裕度が大きい場合には、余裕度平均値に対して当該AHU20の余裕度が占める割合は全AHU20の余裕度の平均値よりも大きくなり、二次ポンプ33から送出される冷水の流量を増やす制御が行われるタイミングが遅くなる。言い換えると、余裕度が大きなAHU20の冷房能力を増やす制御を行い、所望箇所の空気温度を設定温度に制御する余裕が生まれる。このように二次ポンプ33から送出される冷水の流量を増やすことなく、所望箇所の空気温度の上昇に対処することができるため、空調システム1における消費エネルギの低減を図りやすくなる。 For example, compared with the case where control is performed to increase the flow rate of cold water delivered from the secondary pump 33 using the average value of the margins of all the AHUs 20 arranged in the floor F, one of the ones belonging to the air conditioning group 20G When the margin of the AHU 20 is large, the ratio of the margin of the AHU 20 to the margin average value is larger than the average value of the margins of all the AHUs 20, and the flow rate of the cold water sent from the secondary pump 33 The timing at which the control to increase is delayed. In other words, control for increasing the cooling capacity of the AHU 20 having a large margin is performed, and a margin for controlling the air temperature at a desired location to the set temperature is created. Thus, since it is possible to cope with an increase in the air temperature at a desired location without increasing the flow rate of the cold water delivered from the secondary pump 33, it becomes easy to reduce energy consumption in the air conditioning system 1.
上述の式(1)、式(2)、式(3)の少なくとも一つを用いて余裕度を求めることにより、信頼性をさらに確保しやすくなり、二次ポンプ33の駆動に用いる動力を低減させやすくなる。つまり、AHU20における空気を冷却する能力は二方弁21の弁開度と相関していると考えられ、弁開度における全開までの余裕は上述の余裕度と相関していると考えられる。そのため、二方弁21の弁開度を用いて余裕度を求めることにより、余裕度をより高い精度で求めることができる。ファン23の回転周波数や空気温度差についても同様に、AHU20における空気を冷却する能力と相関していると考えられ、ファン23の回転周波数や空気温度差を用いて余裕度を求めることにより、余裕度をより高い精度で求めることができる。 By obtaining the margin using at least one of the above formulas (1), (2), and (3), it becomes easier to ensure reliability and the power used to drive the secondary pump 33 is reduced. It becomes easy to let you. That is, the ability to cool the air in the AHU 20 is considered to correlate with the valve opening degree of the two-way valve 21, and the margin until the valve opening degree is fully open is considered to correlate with the above-described margin. Therefore, by obtaining the allowance using the valve opening degree of the two-way valve 21, the allowance can be obtained with higher accuracy. Similarly, the rotational frequency of the fan 23 and the air temperature difference are considered to correlate with the ability of the AHU 20 to cool the air. By obtaining the margin using the rotational frequency of the fan 23 and the air temperature difference, a margin is obtained. The degree can be obtained with higher accuracy.
さらに上述の式(1)、式(2)、式(3)のいずれかを用いて余裕度を求めることにより、余裕度を0から1までの数値で表すことができる。そのため、余裕度と所定閾値との比較などの余裕度を求めた後の制御処理が行いやすくなる。 Furthermore, the margin can be expressed by a numerical value from 0 to 1 by obtaining the margin using any one of the above-described formulas (1), (2), and (3). Therefore, it becomes easy to perform control processing after obtaining a margin such as a comparison between the margin and a predetermined threshold.
所望箇所の温度と第1ワーニング閾値とを比較して、空調群20G内の余裕度の平均である余裕度平均値を用いて二次ポンプ33の制御を行うか、フロアF内の全AHU20の余裕度の平均である全体平均値を用いて二次ポンプ33の制御を行うかの選択を行うことにより、空調システム1によるフロアF内の温度調整の信頼度をさらに確保しやすくなるとともに、空調システム1における消費電力の削減をさらに図りやすくなる。 The temperature of the desired location is compared with the first warning threshold value, and the secondary pump 33 is controlled using a margin average value that is the average of the margins in the air conditioning group 20G, or all the AHUs 20 in the floor F are controlled. By selecting whether to control the secondary pump 33 using the overall average value which is the average of the margins, it becomes easier to ensure the reliability of temperature adjustment in the floor F by the air conditioning system 1 and air conditioning. It becomes easier to reduce power consumption in the system 1.
具体的には、所望箇所の温度が第1ワーニング閾値を超えた場合には、AHU20の冷房能力変更のみで所望箇所の温度上昇を抑えることが難しいため、より早いタイミングで二次ポンプ33から送出される冷水の流量を制御できる余裕度平均値を用いた制御を行う。これにより、所望箇所の温度上昇が抑えられやすくなり、フロアF内の温度調整の信頼度を確保しやすくなる。 Specifically, when the temperature at the desired location exceeds the first warning threshold, it is difficult to suppress the temperature rise at the desired location only by changing the cooling capacity of the AHU 20, and therefore the pump is sent out from the secondary pump 33 at an earlier timing. Control is performed using a margin average value that can control the flow rate of the chilled water. Thereby, it becomes easy to suppress the temperature rise of a desired location, and it becomes easy to ensure the reliability of the temperature adjustment in the floor F.
その一方で、所望箇所の温度が第1ワーニング閾値以下の場合には、AHU20の冷房能力変更のみで所望箇所の温度上昇を抑えられる可能性が高いため、AHU20の冷房能力変更の期間を確保しやすい全体平均値を用いた制御を行う。これにより、消費電力が大きくなりやすい二次ポンプ33から送出される冷水の流量を増やす制御を抑制することができ、消費電力の削減を図りやすくなる。 On the other hand, if the temperature at the desired location is equal to or lower than the first warning threshold, it is highly possible that the temperature rise at the desired location can be suppressed only by changing the cooling capability of the AHU 20, so a period for changing the cooling capability of the AHU 20 is secured. Perform control using easy overall average values. Thereby, the control which increases the flow volume of the cold water sent from the secondary pump 33 in which power consumption tends to become large can be suppressed, and it becomes easy to aim at reduction of power consumption.
空調群20Gに属するAHU20の中から冷房能力に余裕のあるAHU20について設定温度を下げる制御を行うことで、二次ポンプ33から送出される冷水の流量の過度な変更を抑制でき、空調システム1における消費電力の削減をさらに図りやすくなる。つまり、空調群20Gに属するAHU20の余裕度と個別ワーニング閾値とを比較して、余裕度が個別ワーニング閾値を下回るAHU20は冷房能力に余裕があるAHU20とみなすことができる。このAHU20の設定温度を下げて冷房能力を高めることにより、二次ポンプ33から送出される冷水の流量を増やすことなく、所望箇所の温度上昇を抑制することができる。 By performing control to lower the set temperature for the AHU 20 having sufficient cooling capacity among the AHUs 20 belonging to the air conditioning group 20G, an excessive change in the flow rate of the cold water sent from the secondary pump 33 can be suppressed. It becomes easier to reduce power consumption. That is, by comparing the margin of the AHU 20 belonging to the air conditioning group 20G and the individual warning threshold, the AHU 20 whose margin is less than the individual warning threshold can be regarded as the AHU 20 having a margin in cooling capacity. By raising the cooling capacity by lowering the set temperature of the AHU 20, it is possible to suppress an increase in temperature at a desired location without increasing the flow rate of cold water sent from the secondary pump 33.
所望箇所を、IT(情報技術)装置やICT(情報通信技術)装置等のように熱を発生する電子機器51の冷却用空気の吸込み部52とすることにより、空調群20Gを適切に定義することができる。つまり、電子機器51の冷却に影響を与える冷却用空気の吸込み部52における空気温度に基づいて空調群20Gを定義することで、定義の精度が高まり空調システム1によるフロアF内の温度調整の信頼度をさらに確保しやすくなるとともに、空調システム1における消費電力の削減をさらに図りやすくなる。 The air-conditioning group 20G is appropriately defined by setting the desired location as the cooling air suction portion 52 of the electronic device 51 that generates heat, such as an IT (information technology) device or an ICT (information communication technology) device. be able to. That is, by defining the air conditioning group 20G based on the air temperature in the cooling air suction portion 52 that affects the cooling of the electronic device 51, the accuracy of the definition increases and the reliability of temperature adjustment in the floor F by the air conditioning system 1 increases. The degree of power consumption can be more easily secured, and the power consumption in the air conditioning system 1 can be further reduced.
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上記の実施の形態においては、本発明に係る空調システムをデータセンタに用いる例に適用して説明したが、用いる対象はデータセンタに限られるものではなく、他の設備に適用できるものである。 The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, the air conditioning system according to the present invention is applied to the example of using the data center. However, the object to be used is not limited to the data center, and can be applied to other facilities. is there.
1…空調システム(冷水循環システム)、10…熱源、20…AHU(エア・ハンドリング・ユニット)、20G…空調群、21…二方弁、23…ファン、33…二次ポンプ(ポンプ)、41…統合コントローラ(制御部)、F…フロア(所定の区画) DESCRIPTION OF SYMBOLS 1 ... Air conditioning system (cold water circulation system), 10 ... Heat source, 20 ... AHU (air handling unit), 20G ... Air conditioning group, 21 ... Two-way valve, 23 ... Fan, 33 ... Secondary pump (pump), 41 ... Integrated controller (control unit), F ... Floor (predetermined section)
Claims (9)
所定の区画内に複数配置され、前記冷水と熱交換して前記所定の区画内の空気を冷却する空調機であるAHUと、
動力インバータの運転周波数に応じた流量の前記冷水を前記熱源から前記AHUに送るポンプと、
前記AHUによる前記所定の区画内の所望箇所の空気温度を調整する寄与率である影響度係数を取得し、
所定の第1閾値以上の前記影響度係数を有する前記AHUを空調群とし、
前記空調群に属する前記AHUの状態を示す情報に基づいて、前記AHUにおける前記空気を冷却する余剰能力を示す余裕度を算出し、前記空調群に属する前記AHUの前記余裕度から判断される群余裕度を算出し、
該群余裕度が所定の第2閾値以上である場合には、前記動力インバータの運転周波数を制御することにより前記ポンプから送り出される前記冷水の流量を減らし、
前記群余裕度が前記所定閾値未満である場合には前記ポンプから送り出される前記冷水の流量を増やす制御部と、
が設けられていることを特徴とする冷水循環システム。 A heat source for cooling cold water to a predetermined temperature;
AHU, which is an air conditioner that is arranged in a plurality of predetermined sections and heat-exchanges with the cold water to cool the air in the predetermined sections;
A pump that sends the cold water at a flow rate according to the operating frequency of the power inverter from the heat source to the AHU;
Obtaining an influence coefficient which is a contribution ratio for adjusting the air temperature at a desired location in the predetermined section by the AHU;
The AHU having the influence coefficient equal to or greater than a predetermined first threshold is defined as an air conditioning group,
A group calculated based on information indicating the state of the AHU belonging to the air-conditioning group, and calculating a margin indicating a surplus capacity for cooling the air in the AHU, and determined from the margin of the AHU belonging to the air-conditioning group Calculate the margin,
If the group margin is greater than or equal to a predetermined second threshold, the flow rate of the cold water delivered from the pump is reduced by controlling the operating frequency of the power inverter,
When the group margin is less than the predetermined threshold, a controller that increases the flow rate of the cold water sent from the pump;
A chilled water circulation system characterized in that is provided.
前記所定の区画内の前記所望箇所の温度が第1ワーニング閾値を超えた場合には、前記空調群に属する前記AHUに対して、前記余裕度平均値が前記所定の第2閾値以上であるときには、前記ポンプから送り出される前記冷水の流量を減らし、前記余裕度平均値が前記所定の第2閾値未満であるときには前記冷水の流量を増やす制御を行い、
前記所望箇所の温度が前記第1ワーニング閾値以下の場合には、前記所定の区画に配置された全ての前記AHUの前記余裕度の平均値である全体平均値を算出し、
前記全体平均値が前記所定の第2閾値以上であるときには、前記ポンプから送り出される前記冷水の流量を減らし、前記全体平均値が前記所定の第2閾値未満であるときには前記冷水の流量を増やす制御を行うことを特徴とする請求項2または3に記載の冷水循環システム。 The controller is
When the temperature of the desired location in the predetermined section exceeds a first warning threshold, the margin average value is equal to or higher than the predetermined second threshold for the AHU belonging to the air conditioning group. , Reducing the flow rate of the cold water sent out from the pump, and performing control to increase the flow rate of the cold water when the margin average value is less than the predetermined second threshold,
When the temperature of the desired location is equal to or lower than the first warning threshold value, an overall average value that is an average value of the margins of all the AHUs arranged in the predetermined section is calculated,
Control that decreases the flow rate of the chilled water delivered from the pump when the overall average value is equal to or greater than the predetermined second threshold value, and increases the flow rate of the chilled water when the overall average value is less than the predetermined second threshold value. The cold water circulation system according to claim 2 or 3, wherein
前記所望箇所の温度が前記第1ワーニング閾値を超え、かつ、前記余裕度平均値が前記所定の第2閾値以上の場合に、前記空調群に属する前記AHUのそれぞれの前記余裕度と、第2ワーニング閾値との比較を行い、
前記余裕度が前記第2ワーニング閾値を下回る前記AHUが存在する場合には、当該AHUにおける冷却後の空気の目標温度である設定温度を下げる制御を行うことを特徴とする請求項2から4のいずれか1項に記載の冷水循環システム。 The controller is
When the temperature of the desired location exceeds the first warning threshold value and the margin average value is equal to or greater than the predetermined second threshold, the margin of each of the AHUs belonging to the air conditioning group, and second Compare with the warning threshold,
5. The control according to claim 2, wherein when there is the AHU whose margin is lower than the second warning threshold, control is performed to lower a set temperature that is a target temperature of air after cooling in the AHU. The cold-water circulation system of any one of Claims.
前記余裕度の前記所定の第2閾値を、(前記AHUの常用台数)/(前記AHUの常用台数+前記AHUの予備台数)とすることを特徴とする請求項6記載の冷水循環システム。 When the margin is 1- (valve opening of the two-way valve) or 1- (rotational frequency / maximum frequency of the fan),
The chilled water circulation system according to claim 6, wherein the predetermined second threshold value of the margin is (the number of regular AHUs) / (the number of regular AHUs + the number of spare AHUs).
記憶した後に、前記ポンプから送り出される前記冷水の流量を減らす際に、記憶された前記運転設定の近傍では、前回の制御における前記冷水の流量の減少量よりも、減少させる量を減らすことを特徴とする請求項1から6のいずれか1項に記載の冷水循環システム。 When it is determined that the margin is less than the predetermined second threshold, the operation setting applied to the pump is stored,
When the flow rate of the cold water sent out from the pump is reduced after storing, the amount to be reduced is reduced in the vicinity of the stored operation setting, rather than the amount of decrease in the flow rate of the cold water in the previous control. The cold water circulation system according to any one of claims 1 to 6.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013064151A JP6052883B2 (en) | 2013-03-26 | 2013-03-26 | Cold water circulation system |
PCT/JP2014/058561 WO2014157347A1 (en) | 2013-03-26 | 2014-03-26 | Cold water circulation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013064151A JP6052883B2 (en) | 2013-03-26 | 2013-03-26 | Cold water circulation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014190564A true JP2014190564A (en) | 2014-10-06 |
JP6052883B2 JP6052883B2 (en) | 2016-12-27 |
Family
ID=51624311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013064151A Expired - Fee Related JP6052883B2 (en) | 2013-03-26 | 2013-03-26 | Cold water circulation system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6052883B2 (en) |
WO (1) | WO2014157347A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107143979A (en) * | 2017-05-22 | 2017-09-08 | 青岛海尔空调器有限总公司 | Control method, control device and the air conditioner of multi-split air conditioner |
JP2018096553A (en) * | 2016-12-08 | 2018-06-21 | 株式会社Nttファシリティーズ | Cold water circulation system |
CN110160126A (en) * | 2019-04-18 | 2019-08-23 | 广东智科电子股份有限公司 | Frequency conversion heating multi-connected machine control method, device, equipment and storage medium |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6400978B2 (en) * | 2014-08-20 | 2018-10-03 | 株式会社Nttファシリティーズ | Heat medium circulation system |
CN109059152B (en) * | 2018-08-01 | 2024-03-05 | 浙江陆特能源科技股份有限公司 | Water ring heat pump air conditioning system operation system and method based on data center |
CN109556240B (en) * | 2018-12-13 | 2020-11-20 | 珠海格力电器股份有限公司 | Control method and device of air conditioning system, machine room air conditioning system and computer equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0875224A (en) * | 1994-09-09 | 1996-03-19 | Shinryo Corp | Water sending pressure controller |
JP2006064283A (en) * | 2004-08-26 | 2006-03-09 | Ntt Power & Building Facilities Inc | Air conditioner monitoring system and method |
JP2007205605A (en) * | 2006-01-31 | 2007-08-16 | Tokyo Electric Power Co Inc:The | Air conditioning system |
JP2011179755A (en) * | 2010-03-01 | 2011-09-15 | Hitachi Cable Ltd | Cold-water circulating system |
JP2011247560A (en) * | 2010-05-31 | 2011-12-08 | Ntt Facilities Inc | Method of controlling operation of air-conditioning control system |
JP2012193877A (en) * | 2011-03-15 | 2012-10-11 | Ntt Facilities Inc | Cooperative control method of air conditioner with data processing load distribution |
-
2013
- 2013-03-26 JP JP2013064151A patent/JP6052883B2/en not_active Expired - Fee Related
-
2014
- 2014-03-26 WO PCT/JP2014/058561 patent/WO2014157347A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0875224A (en) * | 1994-09-09 | 1996-03-19 | Shinryo Corp | Water sending pressure controller |
JP2006064283A (en) * | 2004-08-26 | 2006-03-09 | Ntt Power & Building Facilities Inc | Air conditioner monitoring system and method |
JP2007205605A (en) * | 2006-01-31 | 2007-08-16 | Tokyo Electric Power Co Inc:The | Air conditioning system |
JP2011179755A (en) * | 2010-03-01 | 2011-09-15 | Hitachi Cable Ltd | Cold-water circulating system |
JP2011247560A (en) * | 2010-05-31 | 2011-12-08 | Ntt Facilities Inc | Method of controlling operation of air-conditioning control system |
JP2012193877A (en) * | 2011-03-15 | 2012-10-11 | Ntt Facilities Inc | Cooperative control method of air conditioner with data processing load distribution |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018096553A (en) * | 2016-12-08 | 2018-06-21 | 株式会社Nttファシリティーズ | Cold water circulation system |
CN107143979A (en) * | 2017-05-22 | 2017-09-08 | 青岛海尔空调器有限总公司 | Control method, control device and the air conditioner of multi-split air conditioner |
CN110160126A (en) * | 2019-04-18 | 2019-08-23 | 广东智科电子股份有限公司 | Frequency conversion heating multi-connected machine control method, device, equipment and storage medium |
CN110160126B (en) * | 2019-04-18 | 2021-02-09 | 广东智科电子股份有限公司 | Variable-frequency heating multi-split control method, device, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP6052883B2 (en) | 2016-12-27 |
WO2014157347A1 (en) | 2014-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10203128B2 (en) | Cold water circulation system with control of supply of cold water based on degree of air handler surplus | |
JP6052883B2 (en) | Cold water circulation system | |
US10098264B2 (en) | Air-conditioning apparatus | |
JP5907247B2 (en) | Integrated air conditioning system and its control device | |
US10215427B2 (en) | Air conditioning system and method for controlling air conditioning system | |
US11686517B2 (en) | On board chiller capacity calculation | |
US10247458B2 (en) | Chilled water system efficiency improvement | |
JP6681896B2 (en) | Refrigeration system | |
JP4693645B2 (en) | Air conditioning system | |
JP6363428B2 (en) | Heat medium circulation system | |
JP7490831B2 (en) | Air conditioning system control device, control method, control program, and air conditioning system | |
JP6125836B2 (en) | Cold water circulation system | |
JP5423080B2 (en) | Local cooling system, its control device, program | |
JP6213781B2 (en) | External controller control method | |
JP5526716B2 (en) | Air conditioning system | |
JP2016095102A (en) | Control device of outdoor air conditioner | |
JP6982146B2 (en) | Air conditioning system controls, control methods, control programs and air conditioning systems | |
JP5940608B2 (en) | Heat medium circulation system | |
JP6787726B2 (en) | Air conditioning system controls, control methods, control programs and air conditioning systems | |
JP7043573B2 (en) | Air conditioning system controls, control methods, control programs, and air conditioning systems | |
JP7015105B2 (en) | Air conditioning system control device, control method, control program and air conditioning system | |
WO2012020494A1 (en) | Localized cooling system, control device thereof, and program | |
JP2013061096A (en) | Local air conditioning system, control device of the same, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6052883 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |