[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6681896B2 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP6681896B2
JP6681896B2 JP2017528058A JP2017528058A JP6681896B2 JP 6681896 B2 JP6681896 B2 JP 6681896B2 JP 2017528058 A JP2017528058 A JP 2017528058A JP 2017528058 A JP2017528058 A JP 2017528058A JP 6681896 B2 JP6681896 B2 JP 6681896B2
Authority
JP
Japan
Prior art keywords
heat
load
temperature
heat medium
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017528058A
Other languages
Japanese (ja)
Other versions
JPWO2017009955A1 (en
Inventor
善生 山野
善生 山野
靖 大越
靖 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017009955A1 publication Critical patent/JPWO2017009955A1/en
Application granted granted Critical
Publication of JP6681896B2 publication Critical patent/JP6681896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は熱源にヒートポンプチラーを使用した冷凍システムに関するものである。  The present invention relates to a refrigeration system that uses a heat pump chiller as a heat source.

熱源機としてヒートポンプチラーを用いた冷凍システムとして、ビル又は大規模商業施設などの建物内に熱媒体として水を循環させる水回路を備えた空調システムがある。この種の空調システムでは、水回路の水を負荷側装置であるファンコイルユニット又はエアハンドリングユニットに通過させ、その水の熱で冷暖房を行うようにしている。  As a refrigeration system using a heat pump chiller as a heat source device, there is an air conditioning system provided with a water circuit for circulating water as a heat medium in a building or a building such as a large-scale commercial facility. In this type of air conditioning system, the water in the water circuit is passed through a fan coil unit or an air handling unit that is a load side device, and the heat of the water is used for cooling and heating.

ヒートポンプチラー及び負荷側装置は一つの水回路に対してそれぞれ複数台使用することが一般的であり、各負荷側装置からの水をヘッダで合流した後、各ヒートポンプチラーに分配して水を循環させるようにしている。  It is common to use multiple heat pump chillers and load side devices for each water circuit, and after merging the water from each load side device at the header, distribute it to each heat pump chiller and circulate the water. I am trying to let you.

省電力化のためにはインバータに対応したヒートポンプチラー圧縮機及び水循環ポンプを使用することが有効であり、それらのインバータ制御のため、ヘッダ内の水温を測定し、負荷に対して最適な制御を構築している。  To save power, it is effective to use a heat pump chiller compressor and a water circulation pump that support inverters.To control these inverters, measure the water temperature in the header and perform optimal control for the load. I'm building.

また、複数台のヒートポンプチラーを有する空調システムにおいては、インバータ制御だけでなくヒートポンプチラーの運転台数を制御して省電力化を実現している。  Further, in an air conditioning system having a plurality of heat pump chillers, not only inverter control but also the number of operating heat pump chillers are controlled to realize power saving.

そして、省電力化のため、ヘッダ内の水温を測定してヒートポンプチラーの運転台数を制御する先行例としては、特許文献1がある。本特許文献1には、ヘッダ内の水温を測定し、必要最小限の台数のみを運転させるように制御する空調システムが開示されている。  Then, as a prior example of measuring the water temperature in the header and controlling the operating number of heat pump chillers for power saving, there is Patent Document 1. This patent document 1 discloses an air conditioning system that measures the water temperature in the header and controls so that only the minimum necessary number of units are operated.

特許第3320631号公報Japanese Patent No. 3320631

特許文献1に記載された従来の空調システムは、ヘッダ内の水温のみに基づいてヒートポンプチラーの運転台数を制御しており、ヘッダ内の水温のみでは負荷側装置の循環水情報として不十分である。このため、負荷側装置の現在の熱量、すなわち負荷側装置から空調負荷へ供給可能な現在の熱量を精度良く把握できない。よって、余分な熱量を負荷側装置に供給するようにヒートポンプチラーを運転する可能性があり、空調システム全体の効率低下の原因となっていた。  The conventional air conditioning system described in Patent Document 1 controls the number of operating heat pump chillers based on only the water temperature in the header, and the water temperature in the header alone is insufficient as circulating water information for the load side device. . Therefore, the current heat quantity of the load side apparatus, that is, the current heat quantity that can be supplied from the load side apparatus to the air conditioning load cannot be accurately grasped. Therefore, there is a possibility that the heat pump chiller is operated so as to supply an excessive amount of heat to the load side device, which causes a decrease in the efficiency of the entire air conditioning system.

本発明は、上記のような課題を解決するためになされたもので、負荷側装置の現在の熱量を精度良く把握して、冷凍システムの効率向上を図ることが可能な冷凍システムを提供することを目的とする。  The present invention has been made to solve the above problems, and provides a refrigeration system capable of improving the efficiency of the refrigeration system by accurately grasping the current amount of heat of the load side device. With the goal.

本発明に係る冷凍システムは、冷媒と熱媒体とが熱交換を行う熱源側熱交換器及び圧縮機を有する複数の熱源機と、負荷側熱交換器とファンとを有するファンコイルを備えた負荷側装置と、熱源側熱交換器と負荷側装置の負荷側熱交換器とが配管で接続されてポンプにより熱媒体を循環させ、熱源機が供給する熱量を負荷側装置に搬送する熱媒体回路と、熱媒体の温度を検知する熱媒体温度センサと、熱媒体の圧力を検知する熱媒体圧力センサと、負荷側装置における負荷を判断するための負荷指標として、ファンコイルへの吸込空気の温度を検知する吸込温度センサと、ファンコイルの負荷側熱交換器に流入する熱媒体の流量を調整する電動弁と、熱媒体温度センサ、熱媒体圧力センサ及び吸込温度センサのそれぞれから得た値に基づいて圧縮機及びポンプのそれぞれの運転を制御する制御装置とを備え、制御装置は、負荷側装置の負荷側熱交換器において熱媒体と負荷側空気とが熱交換する熱量である現在熱量を、負荷側熱交換器のそれぞれ入口及び出口における熱媒体の温度と負荷側熱交換器のそれぞれ入口及び出口における熱媒体の圧力とに基づいて演算し、吸込温度センサで検知された吸込温度を目標温度にするために必要な熱量である必要熱量と、現在熱量との差が、予め設定された設定熱量よりも小さい場合には、必要熱量が得られるように、圧縮機及びポンプの運転条件は変更せずに電動弁の開度を広げるように制御し、差が設定熱量より大きい場合、必要熱量が得られるように圧縮機及びポンプの運転を制御するようにしており、圧縮機の制御に際しては、圧縮機の負荷率と圧縮機効率との関係を示す情報を用いて、圧縮機効率が最大となる負荷率で複数の熱源機の圧縮機が運転されるように、圧縮機の運転台数及び圧縮機の運転容量を決定し、ポンプの制御に際しては、熱源側熱交換器の出口の熱媒体の温度が設定温度に維持されるように最適化した、熱媒体の循環量が得られるようにポンプを制御するものである。 A refrigeration system according to the present invention is a load including a plurality of heat source units having a heat source side heat exchanger and a compressor for exchanging heat between a refrigerant and a heat medium, and a fan coil having a load side heat exchanger and a fan. Side device, the heat source side heat exchanger and the load side heat exchanger of the load side device are connected by piping, the heat medium is circulated by a pump, and the heat medium circuit that conveys the amount of heat supplied by the heat source device to the load side device , A heat medium temperature sensor for detecting the temperature of the heat medium, a heat medium pressure sensor for detecting the pressure of the heat medium, and a temperature of the intake air to the fan coil as a load index for judging the load in the load side device. To the values obtained from each of the heat medium temperature sensor, the heat medium pressure sensor, and the suction temperature sensor, and the motorized valve that adjusts the flow rate of the heat medium that flows into the heat exchanger on the load side of the fan coil. On the basis of And a control unit for controlling the respective operation of the compressor and the pump, control unit, now the heat between the heat medium and the load side air is heat to heat exchange in the load-side heat exchanger of the load-side apparatus, the load Calculated based on the temperature of the heat medium at the inlet and outlet of the side heat exchanger and the pressure of the heat medium at the inlet and the outlet of the load side heat exchanger, and set the suction temperature detected by the suction temperature sensor to the target temperature. If the difference between the required heat quantity, which is the heat quantity required to achieve this, and the current heat quantity is less than the preset heat quantity, change the operating conditions of the compressor and pump so that the necessary heat quantity is obtained. Without controlling the opening of the motorized valve, if the difference is larger than the set heat amount, the operation of the compressor and the pump is controlled so that the required heat amount is obtained.When controlling the compressor, compression Using the information indicating the relationship between the load factor and the compressor efficiency of the compressor, the number of compressors and the number of compressors operating so that the compressors of multiple heat source units are operated at the load factor that maximizes the compressor efficiency. When determining the operating capacity and controlling the pump, the pump is controlled to obtain the circulating amount of the heat medium optimized so that the temperature of the heat medium at the outlet of the heat source side heat exchanger is maintained at the set temperature. To do.

本発明によれば、負荷側装置の現在の熱量を精度良く把握して、冷凍システムの効率向上を図ることが可能な冷凍システムを得ることができる。  According to the present invention, it is possible to obtain a refrigeration system capable of improving the efficiency of the refrigeration system by accurately grasping the current amount of heat of the load side device.

本発明の実施の形態1に係る空調システムの構成を示すブロック図である。It is a block diagram which shows the structure of the air conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調システムの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning system which concerns on Embodiment 1 of this invention. 圧縮機の負荷率と圧縮機効率との関係を示した図である。It is a figure showing the relation between the load factor of a compressor and compressor efficiency. 本発明の実施の形態2に係る給湯システムの概略構成図である。It is a schematic block diagram of the hot water supply system which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る給湯システムの動作を示すフローチャートである。5 is a flowchart showing an operation of the hot water supply system according to Embodiment 2 of the present invention.

実施の形態1.
冷凍システムの一例として、ここでは空調システムを挙げて実施の形態1を説明する。
Embodiment 1.
As an example of the refrigeration system, the air-conditioning system will be described here as a first embodiment.

図1は、本発明の実施の形態1に係る空調システムの構成を示すブロック図である。空調システムは、室外に設置される熱源機であるヒートポンプチラー1と、室内に設置される室内機である負荷側装置2と、ポンプ3とを有し、熱媒体としての水が循環する熱媒体回路である水回路4とを備えている。水回路4は、ヒートポンプチラー1と負荷側装置2とを配管で接続してポンプ3により水が循環することで、ヒートポンプチラー1が供給する熱量を負荷側装置2に搬送する回路である。なお、図1ではヒートポンプチラー1及び負荷側装置2がそれぞれ2台ずつ設置されている場合を例示したが、設置台数を限定するものではない。  FIG. 1 is a block diagram showing a configuration of an air conditioning system according to Embodiment 1 of the present invention. The air conditioning system has a heat pump chiller 1 which is a heat source device installed outdoors, a load side device 2 which is an indoor unit installed indoors, and a pump 3, and a heat medium in which water as a heat medium circulates. And a water circuit 4 which is a circuit. The water circuit 4 is a circuit that connects the heat pump chiller 1 and the load side device 2 with piping and circulates water by the pump 3 to convey the amount of heat supplied by the heat pump chiller 1 to the load side device 2. Although FIG. 1 illustrates the case where two heat pump chillers 1 and two load side devices 2 are installed, the number of installed units is not limited.

ヒートポンプチラー1は、インバータにより運転容量が可変な圧縮機11と、フロン等の冷媒の熱で循環水を目的の温度に加熱又は冷却するための熱源側熱交換器としての水冷媒熱交換器12とを備えている。そして、ヒートポンプチラー1は、圧縮機11、減圧装置及び熱交換器を備えた冷媒回路(図示せず)を有し、冷媒が循環する冷媒回路の冷媒と水回路4の循環水とが水冷媒熱交換器12で熱交換することで、冷媒の熱を負荷側装置2に供給する熱源機として機能するようになっている。水回路4は、ヒートポンプチラー1の水冷媒熱交換器12と、負荷側装置2の後述のファンコイル21の負荷側熱交換器21aとの間で水が循環するようになっている。  The heat pump chiller 1 includes a compressor 11 whose operating capacity is variable by an inverter, and a water-refrigerant heat exchanger 12 as a heat source side heat exchanger for heating or cooling circulating water to a target temperature by heat of a refrigerant such as CFC. It has and. The heat pump chiller 1 has a refrigerant circuit (not shown) including a compressor 11, a pressure reducing device, and a heat exchanger, and the refrigerant in the refrigerant circuit in which the refrigerant circulates and the circulating water in the water circuit 4 are water refrigerants. By exchanging heat with the heat exchanger 12, it functions as a heat source device that supplies the heat of the refrigerant to the load side device 2. The water circuit 4 circulates water between the water-refrigerant heat exchanger 12 of the heat pump chiller 1 and a load side heat exchanger 21a of a fan coil 21 of the load side device 2 described later.

負荷側装置2は、ファンコイル21と電動弁22とを備えている。ファンコイル21は、負荷側熱交換器21aと、負荷側熱交換器21aに空気を通過させるファン21bとを備えている。ファンコイル21は、負荷側空気を、水回路4の循環水と負荷側熱交換器21aで熱交換して冷却し、冷却後の負荷側空気を室内に供給する冷房運転と、負荷側空気を水回路4の循環水と負荷側熱交換器21aで熱交換して加熱し、加熱後の負荷側空気を室内に供給する暖房運転とを行う。電動弁22は、水回路4において負荷側熱交換器21aへの循環水の流入量を調整するものである。  The load side device 2 includes a fan coil 21 and a motor-operated valve 22. The fan coil 21 includes a load side heat exchanger 21a and a fan 21b that allows air to pass through the load side heat exchanger 21a. The fan coil 21 exchanges heat between the circulating air of the water circuit 4 and the load-side heat exchanger 21a to cool the load-side air, and cools the load-side air into the room, and the load-side air. A heating operation is performed in which the circulating water in the water circuit 4 and the load side heat exchanger 21a exchange heat to heat and the heated load side air is supplied into the room. The motor-operated valve 22 adjusts the amount of circulating water flowing into the load-side heat exchanger 21a in the water circuit 4.

負荷側装置2は更に、熱媒体温度センサである温度センサ23(23a、23b)と、熱媒体圧力センサである圧力センサ24(24a、24b)と、負荷指標センサである吸込温度センサ25と、湿度センサ26とを備えている。  The load side device 2 further includes a temperature sensor 23 (23a, 23b) that is a heat medium temperature sensor, a pressure sensor 24 (24a, 24b) that is a heat medium pressure sensor, and a suction temperature sensor 25 that is a load index sensor. And a humidity sensor 26.

温度センサ23aは、負荷側熱交換器21aの水入口配管に配置され、負荷側熱交換器21aの入口の循環水の温度を検知する。温度センサ23bは、負荷側熱交換器21aの水出口配管に配置され、負荷側熱交換器21aの出口の循環水の温度を検知する。  The temperature sensor 23a is arranged in the water inlet pipe of the load side heat exchanger 21a and detects the temperature of the circulating water at the inlet of the load side heat exchanger 21a. The temperature sensor 23b is arranged in the water outlet pipe of the load side heat exchanger 21a and detects the temperature of the circulating water at the outlet of the load side heat exchanger 21a.

圧力センサ24aは、負荷側熱交換器21aの水入口配管に配置され、負荷側熱交換器21aの入口の循環水の圧力を検知する。圧力センサ24bは、負荷側熱交換器21aの水出口配管に配置され、負荷側熱交換器21aの出口の循環水の圧力を検知する。  The pressure sensor 24a is arranged in the water inlet pipe of the load side heat exchanger 21a and detects the pressure of the circulating water at the inlet of the load side heat exchanger 21a. The pressure sensor 24b is arranged in the water outlet pipe of the load side heat exchanger 21a and detects the pressure of the circulating water at the outlet of the load side heat exchanger 21a.

吸込温度センサ25は、ファンコイル21のファン21bの風上に配置され、負荷側空気である吸込空気の温度を検知する。湿度センサ26も温度センサと同様にファンコイル21のファン21bの風上に配置され、吸込空気の湿度を検知する。  The intake temperature sensor 25 is arranged on the windward side of the fan 21b of the fan coil 21, and detects the temperature of the intake air that is the load side air. Like the temperature sensor, the humidity sensor 26 is also arranged on the windward side of the fan 21b of the fan coil 21, and detects the humidity of the intake air.

これらの各センサ23〜26の検知信号は後述の負荷側制御装置27に出力される。  Detection signals of these sensors 23 to 26 are output to a load side control device 27 described later.

負荷側装置2は更に、各センサ23〜26の検知信号を受け取る負荷側制御装置27と、空気調和システム全体を制御する中央制御装置50とを備えている。  The load side device 2 further includes a load side control device 27 that receives the detection signals of the sensors 23 to 26, and a central control device 50 that controls the entire air conditioning system.

負荷側制御装置27は、負荷側装置2内の各センサ23〜26の信号を制御信号線31を介して後述の中央制御装置30に送信したり、負荷側装置2で必要な熱量の演算をしたりする。負荷側制御装置27は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。  The load-side control device 27 transmits signals of the sensors 23 to 26 in the load-side device 2 to the central control device 30 described later via the control signal line 31, and calculates the amount of heat required by the load-side device 2. To do The load-side control device 27 can be configured by hardware such as a circuit device that realizes its function, or can be configured by an arithmetic device such as a microcomputer and a CPU and software executed on the arithmetic device. it can.

中央制御装置30は、制御信号線31で接続されたヒートポンプチラー1とポンプ3と負荷側装置2とのそれぞれから得た情報に基づいて最適な運転条件を演算し、ヒートポンプチラー1とポンプ3とに運転指示を出力して制御する。中央制御装置30は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。  The central controller 30 calculates optimum operating conditions based on the information obtained from each of the heat pump chiller 1, the pump 3, and the load side device 2 connected by the control signal line 31, and the heat pump chiller 1 and the pump 3 are connected to each other. The operation instruction is output to and controlled. The central control device 30 can be configured by hardware such as a circuit device that realizes its function, or can be configured by an arithmetic device such as a microcomputer and a CPU and software executed on the arithmetic device. .

なお、ここでは、空調システム全体の運転制御を、負荷側制御装置27と中央制御装置30との間でデータ通信を行って連携処理する構成を示したが、中央制御装置30に負荷側制御装置27の機能も持たせ、中央制御装置30で空調システム全体の運転制御を行う構成としてもよい。負荷側制御装置27及び中央制御装置30は本発明に係る制御装置を構成している。  In addition, here, the configuration is shown in which the operation control of the entire air conditioning system is performed by the data communication between the load-side control device 27 and the central control device 30 to perform cooperative processing. The configuration may be such that the central controller 30 also controls the operation of the entire air conditioning system by providing the function of 27. The load side control device 27 and the central control device 30 form a control device according to the present invention.

図2は、本発明の実施の形態1に係る空調システムの動作を示すフローチャートである。
このように構成された空調システムでは、吸込温度センサ25及び湿度センサ26を用いて吸込空気の温湿度を検知する(S1)。そして、負荷側制御装置27は、吸込温度センサ25で検知された吸込空気温度が目標温度に一致するかを判断する(S2)。吸込温度センサ25で検知された吸込空気温度は、負荷側の現在の負荷を判断するための負荷指標に相当する。そして、負荷側制御装置27は、吸込空気温度が目標温度に一致しなければ、吸込空気温度を目標温度にするために必要な熱量を、吸込温度センサ25及び湿度センサ26で得た吸込空気の温湿度に基づいて演算する(S3)。
FIG. 2 is a flowchart showing the operation of the air conditioning system according to Embodiment 1 of the present invention.
In the air conditioning system configured as above, the temperature and humidity of the intake air are detected using the intake temperature sensor 25 and the humidity sensor 26 (S1). Then, the load-side control device 27 determines whether the suction air temperature detected by the suction temperature sensor 25 matches the target temperature (S2). The intake air temperature detected by the intake temperature sensor 25 corresponds to a load index for determining the current load on the load side. Then, if the intake air temperature does not match the target temperature, the load-side control device 27 determines the amount of heat required to bring the intake air temperature to the target temperature by using the intake air sensor 25 and the humidity sensor 26. The calculation is performed based on the temperature and humidity (S3).

この「必要熱量」の演算に際しては、吸込空気温度に加えて吸込空気湿度も用いることで、より正確な熱量を演算できる。すなわち、例えば温湿度が高い場所を冷房する場合、空気中の水蒸気を水に相変化させながら空気を冷やすため、潜熱分を含めて熱を奪う必要がある。このため、湿度が高いときは、湿度が低いときに比べてより多くの冷却能力が必要となる。このように潜熱も考慮することで、より正確な「必要熱量」を演算できる。なお、上記の観点から、「必要熱量」を演算するにあたっては吸込空気湿度を用いることが好ましいが、少なくとも吸込空気温度を用いればよい。  In calculating the "required heat quantity", more accurate heat quantity can be calculated by using the intake air humidity in addition to the intake air temperature. That is, for example, when cooling a place where the temperature and humidity are high, it is necessary to remove heat including latent heat in order to cool the air while changing the water vapor in the air into water. Therefore, when the humidity is high, more cooling capacity is required than when the humidity is low. By taking latent heat into consideration in this way, a more accurate “required heat quantity” can be calculated. From the above viewpoint, it is preferable to use the suction air humidity when calculating the “required heat quantity”, but at least the suction air temperature may be used.

次に、負荷側制御装置27は、温度センサ23及び圧力センサ24を用いて、循環水の水温及び水圧を検知し、「負荷側熱交換器21aから空調負荷へ供給可能な現在の熱量」を演算する(S4)。以下、循環水の水温及び水圧の情報を負荷側制御情報ということがある。  Next, the load-side control device 27 detects the water temperature and water pressure of the circulating water using the temperature sensor 23 and the pressure sensor 24, and determines the “current heat quantity that can be supplied from the load-side heat exchanger 21a to the air conditioning load”. Calculate (S4). Hereinafter, the information on the water temperature and the water pressure of the circulating water may be referred to as load-side control information.

そして、負荷側制御装置27は、電動弁22の開度調整を行って負荷側熱交換器21aに流れる循環水の流量を変更することで、「必要熱量」を得ることができるかどうかを判断する(S5)。この判断は、具体的には「必要熱量」と「負荷側熱交換器21aから空調負荷へ供給可能な現在の熱量」との差と予め設定された設定熱量との比較により行う。すなわち、「必要熱量」と「負荷側熱交換器21aから空調負荷へ供給可能な現在の熱量」との差が設定熱量がよりも小さい場合、電動弁22の開度調整を行って負荷側熱交換器21aに流れる流量を変更することで、「必要熱量」を得ることができると判断する。一方、「必要熱量」と「負荷側熱交換器21aから空調負荷へ供給可能な現在の熱量」との差が設定熱量より大きい場合には、負荷側制御装置27は、電動弁22の開度調整では「必要熱量」を得ることはできないと判断する。  Then, the load-side control device 27 determines whether or not the "required heat amount" can be obtained by adjusting the opening degree of the motor-operated valve 22 and changing the flow rate of the circulating water flowing through the load-side heat exchanger 21a. Yes (S5). This determination is made by comparing the difference between the "necessary heat quantity" and the "current heat quantity that can be supplied from the load side heat exchanger 21a to the air conditioning load" with a preset heat quantity. That is, when the difference between the "required heat quantity" and the "current heat quantity that can be supplied from the load side heat exchanger 21a to the air conditioning load" is smaller than the set heat quantity, the opening degree of the electrically operated valve 22 is adjusted to adjust the load side heat quantity. It is determined that the "required heat quantity" can be obtained by changing the flow rate of the exchanger 21a. On the other hand, when the difference between the "required heat amount" and the "current heat amount that can be supplied from the load side heat exchanger 21a to the air conditioning load" is larger than the set heat amount, the load side control device 27 causes the opening degree of the motor-operated valve 22 to open. It is judged that the "necessary amount of heat" cannot be obtained by adjustment.

負荷側制御装置27は、電動弁22の開度調整で「必要熱量」を得ることができると判断した場合は、「必要熱量」に応じて電動弁22の開度調整を行い(S6)、ステップS4に戻る。  When the load side control device 27 determines that the "necessary heat amount" can be obtained by adjusting the opening amount of the electric valve 22, the load side control device 27 adjusts the opening amount of the electric valve 22 according to the "necessary heat amount" (S6), It returns to step S4.

一方、負荷側制御装置27は、電動弁22の開度調整では「必要熱量」を得ることはできないと判断した場合、その旨の情報、すなわち運転条件の変更が必要である旨の情報を制御信号線31を介して中央制御装置30に伝送する。ここで、負荷側制御装置27から中央制御装置30に、運転条件の変更が必要である旨の情報を伝送する際には、この情報に、負荷側装置2で得た、現在の負荷側制御情報(循環水の水温及び水圧)も含めて伝送する。  On the other hand, when the load-side control device 27 determines that the "necessary heat amount" cannot be obtained by adjusting the opening degree of the motor-operated valve 22, the load-side control device 27 controls the information indicating that, that is, the information indicating that the operating condition needs to be changed. It is transmitted to the central control unit 30 via the signal line 31. Here, when the information indicating that the operating condition needs to be changed is transmitted from the load side control device 27 to the central control device 30, the current load side control obtained by the load side device 2 is added to this information. Information (water temperature and pressure of circulating water) is also transmitted.

以上のステップS1〜ステップS6の処理は各負荷側制御装置27のそれぞれで行われている。よって、各負荷側制御装置27のそれぞれにおける熱量状況に応じて、各負荷側制御装置27の一部又は全部から運転条件の変更が必要である旨の情報(負荷側制御情報を含む)が中央制御装置30に集められることになる。  The processes of steps S1 to S6 described above are performed by each of the load-side control devices 27. Therefore, the information (including the load side control information) indicating that it is necessary to change the operating condition from some or all of the load side control devices 27 according to the heat quantity situation in each of the load side control devices 27 is in the center. It will be collected in the control device 30.

そして、中央制御装置30は、ヒートポンプチラー1及びポンプ3から得た運転情報と、負荷側装置2の各負荷側制御装置27から得た負荷側制御情報(循環水の水温及び水圧)とに基づいて各ヒートポンプチラー1及びポンプ3のそれぞれの運転を制御する。すなわち、前記運転情報と前記負荷側制御情報とに基づいて最適な運転条件を演算し、各ヒートポンプチラー1とポンプ3とのそれぞれに運転指示を出力する(S7)。なお、ヒートポンプチラー1及びポンプ3から得た運転情報とは、具体的には例えば現在の運転容量が該当する。  Then, the central control device 30 is based on the operation information obtained from the heat pump chiller 1 and the pump 3 and the load side control information (circulation water temperature and water pressure) obtained from each load side control device 27 of the load side device 2. And controls the operation of each heat pump chiller 1 and pump 3. That is, the optimal operating conditions are calculated based on the operating information and the load-side control information, and operating instructions are output to each of the heat pump chillers 1 and the pump 3 (S7). Note that the operation information obtained from the heat pump chiller 1 and the pump 3 specifically corresponds to, for example, the current operation capacity.

ここで、圧縮機11の効率は、空調システムの省電力化の実現に最も影響するため、中央制御装置30は、複数の圧縮機11を効率の良い負荷率で運転させるように運転指示を決定する。圧縮機11の負荷率について示したのが次の図3である。  Here, since the efficiency of the compressor 11 most affects the realization of the power saving of the air conditioning system, the central control device 30 determines the operation instruction to operate the plurality of compressors 11 at the efficient load factor. To do. FIG. 3 below shows the load factor of the compressor 11.

図3は、圧縮機の負荷率と圧縮機効率との関係を示した図である。図3に示す関係を有する圧縮機11の場合、定格運転での負荷率を100%とした場合に50%付近の効率がよい。このため、ヒートポンプチラー1が例えば10台設置されており、10台全てを負荷率100%で運転させる場合を運転要求100%としたとき、運転要求50%を実現するには、5台を負荷率100%で運転することで対応できる。しかし、この圧縮機11は負荷率100%で運転するよりも負荷率50%で運転した方が圧縮効率が良いため、負荷率50%で10台の圧縮機11を運転させるようにする。また、運転要求40%の場合には、圧縮機8台を負荷率50%で運転させるようにすればよい。  FIG. 3 is a diagram showing the relationship between the load factor of the compressor and the compressor efficiency. In the case of the compressor 11 having the relationship shown in FIG. 3, the efficiency is around 50% when the load factor in rated operation is 100%. Therefore, for example, 10 heat pump chillers 1 are installed, and if all 10 are operated at a load factor of 100%, the operation demand is 100%. It can be handled by operating at a rate of 100%. However, since the compression efficiency of this compressor 11 is better when it is operated at a load factor of 50% than when it is operated at a load factor of 100%, 10 compressors 11 are operated at a load factor of 50%. Further, when the operation request is 40%, eight compressors may be operated at a load factor of 50%.

上記運転要求率は、ヒートポンプチラー1及びポンプ3から得た運転情報と、負荷側装置2とから得た負荷側制御情報(循環水の水温及び水圧)を中央制御装置30で演算することで得られる必要熱量で決まり、運転要求率から圧縮機11の負荷率が最適になるように圧縮機11を制御する。  The operation request rate is obtained by calculating operation information obtained from the heat pump chiller 1 and the pump 3 and load side control information (circulating water temperature and water pressure) obtained from the load side device 2 in the central controller 30. The compressor 11 is controlled so that the load factor of the compressor 11 is optimized from the operation request rate, depending on the required heat quantity required.

以上の考え方に基づき最適化した運転台数及び運転容量でヒートポンプチラー1の圧縮機11を運転させる。つまり、中央制御装置30は、圧縮機効率が最大となる負荷率(ここでは50%)を含む設定負荷率範囲内で圧縮機11が運転されるように最適な運転条件(圧縮機11の運転台数及び圧縮機11の運転容量)を決定する。  The compressor 11 of the heat pump chiller 1 is operated with the operating number and operating capacity optimized based on the above concept. That is, the central control device 30 operates under the optimum operating condition (operation of the compressor 11) so that the compressor 11 operates within a set load ratio range including a load ratio (here, 50%) that maximizes the compressor efficiency. The number of units and the operating capacity of the compressor 11) are determined.

また、中央制御装置30は負荷側装置2の圧力センサ10から得られる水圧に基づいて、水回路4において運転上、最低必要な水循環量を維持しつつ、ヒートポンプチラー1の出口水温が設定水温に維持されるように最適化した水循環量が得られるようにポンプ3の運転容量を制御する。  Further, the central control device 30 maintains the minimum water circulation amount required for operation in the water circuit 4 based on the water pressure obtained from the pressure sensor 10 of the load side device 2, while the outlet water temperature of the heat pump chiller 1 becomes the set water temperature. The operating capacity of the pump 3 is controlled so that a water circulation amount optimized to be maintained is obtained.

以上のように実施の形態1によれば、負荷側の熱量、すなわち「負荷側熱交換器21aから空調負荷へ供給可能な現在の熱量」を循環水の水温と水圧とを用いて把握できるため、循環水の水温のみを用いていた従来に比べて精度良く把握することができる。  As described above, according to the first embodiment, the amount of heat on the load side, that is, the “current amount of heat that can be supplied from the load side heat exchanger 21a to the air conditioning load” can be grasped using the water temperature and water pressure of the circulating water. Therefore, it is possible to grasp more accurately than in the conventional case where only the water temperature of the circulating water is used.

そして、「必要熱量」と、ヒートポンプチラー1及びポンプ3の運転情報と、負荷側制御情報(循環水の水温及び水圧)とに基づいて、圧縮機11の運転容量と循環水の水量とを最適に調整することができるため、空調システム全体の高効率化という効果を得ることができる。  Then, the operating capacity of the compressor 11 and the amount of circulating water are optimized based on the "required heat amount", the operating information of the heat pump chiller 1 and the pump 3, and the load side control information (water temperature and water pressure of the circulating water). Therefore, the effect of improving the efficiency of the entire air conditioning system can be obtained.

また、「必要熱量」を演算するにあたり、吸込温度センサ25で検知した吸込空気温度に加えて、更に湿度センサ26で検知した吸込空気湿度を用いることで、より正確に熱量を演算できる。このように湿度を用いた「必要熱量」の演算を冷房時に行うことで、湿度を考慮した快適な空調を高効率に行うことが可能となる。  Further, in calculating the "required heat quantity", the heat quantity can be calculated more accurately by using the suction air temperature detected by the humidity sensor 26 in addition to the suction air temperature detected by the suction temperature sensor 25. In this way, by performing the calculation of the "required heat quantity" using the humidity during cooling, it is possible to perform comfortable air conditioning in consideration of the humidity with high efficiency.

また、「必要熱量」と「負荷側熱交換器21aから空調負荷へ供給可能な現在の熱量」との差が設定熱量よりも小さい場合には、圧縮機11及びポンプ3の運転条件を変更せずとも、電動弁22の制御を行うことで、「必要熱量」を得ることができる。  If the difference between the "required heat quantity" and the "current heat quantity that can be supplied from the load side heat exchanger 21a to the air conditioning load" is smaller than the set heat quantity, change the operating conditions of the compressor 11 and the pump 3. It is possible to obtain the "necessary amount of heat" by controlling the motor-operated valve 22.

また、圧力センサ24で検知された水圧に基づいて、水回路4において運転上、最低必要な循環量を維持しつつ、負荷側熱交換器21aの出口水温が設定水温に維持されるようにポンプ3を制御することができる。  Further, based on the water pressure detected by the pressure sensor 24, the pump is operated so that the outlet water temperature of the load side heat exchanger 21a is maintained at the set water temperature while maintaining the minimum circulation amount required for operation in the water circuit 4. 3 can be controlled.

また、中央制御装置30に、ユーザインターフェースを追加して監視環境を整えることで、空調システム全体の高効率化を確実に行うためのエネルギー管理及びシステム監視を行うことができるという効果がある。  Further, by adding a user interface to the central controller 30 to prepare a monitoring environment, there is an effect that energy management and system monitoring for surely improving the efficiency of the entire air conditioning system can be performed.

なお、本実施の形態1では、水回路4を循環する熱媒体を水としたが、水に凝固点を降下させる添加物を混ぜたブライン等に置き換えることができる。  In the first embodiment, the heat medium circulating in the water circuit 4 is water, but it can be replaced with brine or the like in which water is mixed with an additive that lowers the freezing point.

実施の形態2.
上記実施の形態1は、冷凍システムの一例として空調システムを挙げたが、実施の形態2は給湯システムの例を説明するものである。
Embodiment 2.
Although the air conditioner system was mentioned as an example of the refrigeration system in the above-mentioned Embodiment 1, Embodiment 2 explains an example of a hot water supply system.

図4は、本発明の実施の形態2に係る給湯システムの概略構成図である。
給湯システムは、給湯機として機能する熱源機であるヒートポンプチラー41と、ヒートポンプチラー41で加熱された水を貯えておくための貯湯タンクである密閉型タンク42と、ヒートポンプチラー41で加熱された水を密閉型タンク42に貯留する一方、給湯端末43に供給する給湯回路である水回路44とを備えている。密閉型タンク42は本発明の負荷側装置に相当する。
FIG. 4 is a schematic configuration diagram of a hot water supply system according to Embodiment 2 of the present invention.
The hot water supply system includes a heat pump chiller 41 which is a heat source device functioning as a hot water supply device, a closed tank 42 which is a hot water storage tank for storing water heated by the heat pump chiller 41, and water heated by the heat pump chiller 41. Is stored in the closed tank 42, and a water circuit 44 that is a hot water supply circuit that supplies the hot water to the hot water supply terminal 43. The sealed tank 42 corresponds to the load side device of the present invention.

水回路44は、水回路44aと水回路44bとを備えている。水回路44aは、ヒートポンプチラー41と密閉型タンク42とを配管で接続してポンプ49により水が循環することで、ヒートポンプチラー1が供給する熱量を密閉型タンク42に搬送する回路である。水回路44bは、密閉型タンク42と給湯端末43とを配管で接続して、給湯端末側ポンプであるポンプ45により水を循環させる回路である。  The water circuit 44 includes a water circuit 44a and a water circuit 44b. The water circuit 44a is a circuit that connects the heat pump chiller 41 and the hermetically sealed tank 42 with a pipe and circulates water by the pump 49 to convey the amount of heat supplied by the heat pump chiller 1 to the hermetically sealed tank 42. The water circuit 44b is a circuit in which the closed tank 42 and the hot water supply terminal 43 are connected by a pipe, and water is circulated by a pump 45 which is a hot water supply terminal side pump.

給湯端末43は、例えばシャワー又はカランである。なお、図4ではヒートポンプチラー1が3台設置され、密閉型タンク42が1台設置されている場合を示したが、設置台数を限定するものではない。  The hot water supply terminal 43 is, for example, a shower or a Karan. Although FIG. 4 shows the case where three heat pump chillers 1 are installed and one closed tank 42 is installed, the number of installed units is not limited.

ヒートポンプチラー41の構成は図1に示した実施の形態1のヒートポンプチラー1と同様であり、インバータにより運転容量が可変な圧縮機11と、フロン等の冷媒の熱で水を目的の温度に加熱するための水冷媒熱交換器12とを備えている。そして、ヒートポンプチラー41は、圧縮機11、減圧装置及び熱交換器を備えた冷媒回路(図示せず)を有し、冷媒が循環する冷媒回路の冷媒と水回路44aの水とが水冷媒熱交換器12で熱交換することで、冷媒の熱を密閉型タンク42に供給する熱源機として機能するようになっている。  The configuration of the heat pump chiller 41 is the same as that of the heat pump chiller 1 according to the first embodiment shown in FIG. 1, and the compressor 11 whose operating capacity is variable by an inverter and the heat of the refrigerant such as CFC heats water to a target temperature. And a water-refrigerant heat exchanger 12 for The heat pump chiller 41 has a refrigerant circuit (not shown) including the compressor 11, a pressure reducing device, and a heat exchanger, and the refrigerant of the refrigerant circuit in which the refrigerant circulates and the water of the water circuit 44a are water refrigerant heat. By exchanging heat with the exchanger 12, it functions as a heat source unit that supplies the heat of the refrigerant to the sealed tank 42.

水回路44bには、熱媒体温度センサである温度センサ46(46a、46b)と、熱媒体圧力センサである圧力センサ47(47a、47b)とが設けられている。  The water circuit 44b is provided with a temperature sensor 46 (46a, 46b) that is a heat medium temperature sensor and a pressure sensor 47 (47a, 47b) that is a heat medium pressure sensor.

温度センサ46aは、密閉型タンク42の水入口配管に配置され、密閉型タンク42の入口の循環水の温度を検知する。温度センサ46bは、密閉型タンク42の水出口配管に配置され、密閉型タンク42の出口の循環水の温度を検知する。温度センサ46bは、本発明の負荷指標センサを構成している。  The temperature sensor 46 a is arranged in the water inlet pipe of the sealed tank 42 and detects the temperature of the circulating water at the inlet of the sealed tank 42. The temperature sensor 46b is arranged in the water outlet pipe of the sealed tank 42 and detects the temperature of the circulating water at the outlet of the sealed tank 42. The temperature sensor 46b constitutes the load index sensor of the present invention.

圧力センサ47aは、密閉型タンク42の水入口配管に配置され、密閉型タンク42の入口の循環水の圧力を検知する。圧力センサ47bは、密閉型タンク42の水出口配管に配置され、密閉型タンク42の出口の循環水の圧力を検知する。  The pressure sensor 47 a is arranged in the water inlet pipe of the sealed tank 42 and detects the pressure of the circulating water at the inlet of the sealed tank 42. The pressure sensor 47b is arranged in the water outlet pipe of the sealed tank 42 and detects the pressure of the circulating water at the outlet of the sealed tank 42.

これらの各センサ46、47の検知信号は後述の負荷側制御装置48に出力される。  The detection signals of these sensors 46 and 47 are output to a load side control device 48 described later.

給湯システムは更に、各センサ46、47の検知信号を受け取る負荷側制御装置48と、給湯システム全体を制御する中央制御装置50とを備えている。  The hot water supply system further includes a load-side control device 48 that receives detection signals from the sensors 46 and 47, and a central control device 50 that controls the entire hot water supply system.

負荷側制御装置48は、各センサ46、47の信号を制御信号線51を介して中央制御装置50に送信したり、密閉型タンク42内の温度を目標水温に維持するのに必要な熱量を演算したりする。また、負荷側制御装置48にはポンプ45が接続されている。負荷側制御装置48は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。  The load-side control device 48 transmits the signals of the respective sensors 46 and 47 to the central control device 50 via the control signal line 51, and controls the amount of heat required to maintain the temperature in the sealed tank 42 at the target water temperature. To calculate. A pump 45 is connected to the load side control device 48. The load-side control device 48 can be configured by hardware such as a circuit device that realizes its function, or can be configured by an arithmetic device such as a microcomputer and a CPU and software executed on the arithmetic device. it can.

中央制御装置50は、制御信号線51でヒートポンプチラー41及び負荷側制御装置48に接続されており、ヒートポンプチラー41とポンプ45と負荷側制御装置48とのそれぞれから得た情報に基づいて最適な運転条件を演算し、ヒートポンプチラー41とポンプ45とに運転指示を出力する。中央制御装置50は、その機能を実現する回路デバイスのようなハードウェアで構成することもできるし、マイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成することもできる。  The central control device 50 is connected to the heat pump chiller 41 and the load side control device 48 by the control signal line 51, and is optimal based on the information obtained from each of the heat pump chiller 41, the pump 45, and the load side control device 48. The operating condition is calculated and the operating instruction is output to the heat pump chiller 41 and the pump 45. The central control device 50 can be configured by hardware such as a circuit device that realizes its function, or can be configured by an arithmetic device such as a microcomputer or a CPU and software executed on the arithmetic device. .

なお、ここでは、給湯システム全体の運転制御を、負荷側制御装置48と中央制御装置50との間でデータ通信を行って連携処理する構成を示したが、中央制御装置50に負荷側制御装置48の機能も持たせ、中央制御装置50で給湯システム全体の運転制御を行う構成としてもよい。負荷側制御装置48及び中央制御装置50が本発明に係る制御装置を構成している。  Here, the operation control of the entire hot water supply system is shown by performing the data communication between the load side control device 48 and the central control device 50 to perform cooperative processing, but the central control device 50 controls the load side control device. It is also possible to provide the functions of 48 and control the operation of the entire hot water supply system by the central controller 50. The load side control device 48 and the central control device 50 constitute the control device according to the present invention.

図5は、本発明の実施の形態2に係る給湯システムの動作を示すフローチャートである。
このように構成された給湯システムでは、温度センサ46及び圧力センサ47を用いて循環水の水温及び水圧を検知する(S11)。そして、負荷側制御装置48は温度センサ46bで検知された密閉型タンク42の出口水温が目標水温に一致するかを判断する(S12)。温度センサ46bで検知された出口水温は、負荷側の現在の負荷を判断するための負荷指標に相当する。そして、負荷側制御装置48は、出口水温が目標水温に一致しなければ、出口水温を目標温度に維持するために必要な「必要熱量」を温度センサ46及び圧力センサ47の検知結果に基づいて演算する(S13)。「必要熱量」は、「密閉型タンク42から給湯負荷へ供給可能な現在の熱量」も踏まえて演算する。具体的には、負荷側制御装置48は、出口水温と目標水温との温度差と、温度センサ46及び圧力センサ47の検知結果に基づいて演算する。
FIG. 5 is a flowchart showing an operation of the hot water supply system according to Embodiment 2 of the present invention.
In the hot water supply system thus configured, the temperature sensor 46 and the pressure sensor 47 are used to detect the water temperature and water pressure of the circulating water (S11). Then, the load-side control device 48 determines whether the outlet water temperature of the sealed tank 42 detected by the temperature sensor 46b matches the target water temperature (S12). The outlet water temperature detected by the temperature sensor 46b corresponds to a load index for determining the current load on the load side. Then, if the outlet water temperature does not match the target water temperature, the load-side control device 48 determines the “necessary heat amount” required to maintain the outlet water temperature at the target temperature based on the detection results of the temperature sensor 46 and the pressure sensor 47. Calculate (S13). The "necessary heat quantity" is also calculated in consideration of the "current heat quantity that can be supplied from the closed tank 42 to the hot water supply load". Specifically, the load-side control device 48 calculates based on the temperature difference between the outlet water temperature and the target water temperature and the detection results of the temperature sensor 46 and the pressure sensor 47.

密閉型タンク42内の水温を目標水温に維持するのに必要な熱量には、給湯端末43から流出した熱量も影響するが、その影響は温度センサ46と圧力センサ47の値に現れる。このため、温度センサ46と圧力センサ47の値を用いることで、給湯端末43から流出した熱量も考慮した上での、密閉型タンク42内の水温を目標水温に維持するのに必要な熱量を演算できる。  The heat quantity required to maintain the water temperature in the closed tank 42 at the target water temperature is also affected by the heat quantity flowing out from the hot water supply terminal 43, but the influence appears in the values of the temperature sensor 46 and the pressure sensor 47. Therefore, by using the values of the temperature sensor 46 and the pressure sensor 47, the amount of heat required to maintain the water temperature in the sealed tank 42 at the target water temperature, in consideration of the amount of heat flowing out from the hot water supply terminal 43, is set. Can be calculated.

そして、負荷側制御装置48は、演算した「必要熱量」の情報を制御信号線51を介して中央制御装置50に伝送する。  Then, the load-side control device 48 transmits the calculated “necessary heat amount” information to the central control device 50 via the control signal line 51.

中央制御装置50は、負荷側制御装置48から伝送されてきた「必要熱量」とヒートポンプチラー41の運転情報とに基づいて最適な運転条件を演算し、各ヒートポンプチラー41の圧縮機11及びポンプ49に運転指示を出力して(S14)、それぞれの運転容量を制御する。なお、各ヒートポンプチラー41の圧縮機11の運転台数、圧縮機11及びポンプ49の運転容量を決定するにあたっての考え方は実施の形態1と同様である。  The central controller 50 calculates optimum operating conditions based on the “necessary amount of heat” transmitted from the load side controller 48 and the operating information of the heat pump chiller 41, and the compressor 11 and the pump 49 of each heat pump chiller 41. A driving instruction is output to (S14) to control each driving capacity. The concept of determining the number of operating compressors 11 of each heat pump chiller 41 and the operating capacities of the compressors 11 and the pumps 49 is the same as that of the first embodiment.

また、負荷側制御装置48は、給湯端末43の使用による水回路44bの圧力低下を水回路44b内に配置された圧力センサ47で検知する。そして、負荷側制御装置48は、検知された水圧に基づき、給湯端末43の水圧を設定水圧に維持するように最適化した水循環量が得られるようにポンプ45の運転容量を制御する。  Further, the load-side control device 48 detects a pressure drop in the water circuit 44b due to the use of the hot water supply terminal 43, by the pressure sensor 47 arranged in the water circuit 44b. Then, the load-side control device 48 controls the operating capacity of the pump 45 based on the detected water pressure so that a water circulation amount optimized to maintain the water pressure of the hot water supply terminal 43 at the set water pressure is obtained.

また、給湯端末43が使用されていない場合にも、使用時すぐに温水を出せるように給湯端末43近傍まで水を循環させる必要がある。そのときは、負荷側制御装置48は、密閉型タンク42出入口の温度センサ46の温度差を一定に保つように、ポンプ45を必要最小限で運転させる。  Further, even when the hot water supply terminal 43 is not used, it is necessary to circulate the water up to the vicinity of the hot water supply terminal 43 so that hot water can be immediately supplied at the time of use. At that time, the load-side control device 48 operates the pump 45 to the minimum necessary so as to keep the temperature difference of the temperature sensor 46 at the inlet / outlet of the sealed tank 42 constant.

以上のように、実施の形態2によれば、循環水の水温及び圧力と負荷指標とを用いて密閉型タンク42から給湯負荷へ供給可能な現在の熱量及び必要熱量を演算するため、循環水の水温のみを用いていた従来に比べてこれらの熱量を精度良く把握することができる。その結果、運転容量と循環水の水量とを最適に調整することができるため、空調システム全体の高効率化という効果が得られる。  As described above, according to the second embodiment, the current heat quantity and the necessary heat quantity that can be supplied from the closed tank 42 to the hot water supply load are calculated using the water temperature and pressure of the circulating water and the load index. It is possible to accurately grasp these heat quantities as compared with the conventional case where only the water temperature is used. As a result, the operating capacity and the amount of circulating water can be optimally adjusted, and the effect of improving the efficiency of the entire air conditioning system can be obtained.

また、密閉型タンク42の水入口配管及び水出口配管に圧力センサ47を配置し、ポンプ45に運転指示を出すことで、給湯端末43の水圧を維持できる給湯システムが実現できる。給湯端末43が使用されていない場合、密閉型タンク42の水入口配管及び水出口配管に温度センサ46を配置し、ポンプ45を必要最小限で運転させることで、水回路44bの保温運転時の省電力が実現できる。  Further, by arranging the pressure sensor 47 in the water inlet pipe and the water outlet pipe of the closed tank 42 and issuing an operation instruction to the pump 45, a hot water supply system capable of maintaining the water pressure of the hot water supply terminal 43 can be realized. When the hot water supply terminal 43 is not used, the temperature sensor 46 is arranged in the water inlet pipe and the water outlet pipe of the hermetically sealed tank 42, and the pump 45 is operated at a necessary minimum, so that the temperature of the water circuit 44b during the warming operation is reduced. Power saving can be realized.

ところで上記実施の形態1及び実施の形態2で説明したシステムは、フロン等の冷媒の熱で水を目的の温度に加熱又は冷却するための熱交換器を有するヒートポンプチラーを熱源機として使用したシステムであるが、本発明の冷凍システムは、熱源機として上記のヒートポンプチラーを使用したものに限られたものではない。他に例えば、その他のチラー、ボイラー及び電気給湯器を熱源としたシステムにも利用できることは、言うまでもない。  By the way, the system described in the first and second embodiments is a system in which a heat pump chiller having a heat exchanger for heating or cooling water to a target temperature by heat of a refrigerant such as CFC is used as a heat source device. However, the refrigeration system of the present invention is not limited to the one using the above heat pump chiller as the heat source device. Needless to say, the present invention can be applied to other chillers, boilers, and systems using electric water heaters as heat sources.

1 ヒートポンプチラー、2 負荷側装置、3 ポンプ、4 水回路、5 制御信号線、6 制御装置、7 中継基板、10 圧力センサ、11 圧縮機、12 水冷媒熱交換器、21 ファンコイル、21a 負荷側熱交換器、21b ファン、22 電動弁、23(23a、23b) 温度センサ(熱媒体温度センサ)、24(24a、24b) 圧力センサ(熱媒体圧力センサ)、25 吸込温度センサ、26 湿度センサ、27 負荷側制御装置、30 中央制御装置、31 制御信号線、41 ヒートポンプチラー、42
密閉型タンク、43 給湯端末、44(44a、44b) 水回路、45 ポンプ、46(46a、46b) 温度センサ(熱媒体温度センサ)、47(47a、47b) 圧力センサ(熱媒体圧力センサ)、48 負荷側制御装置、49 ポンプ、50 中央制御装置、51 制御信号線。
1 heat pump chiller, 2 load side device, 3 pump, 4 water circuit, 5 control signal line, 6 control device, 7 relay board, 10 pressure sensor, 11 compressor, 12 water refrigerant heat exchanger, 21 fan coil, 21a load Side heat exchanger, 21b fan, 22 electric valve, 23 (23a, 23b) temperature sensor (heat medium temperature sensor), 24 (24a, 24b) pressure sensor (heat medium pressure sensor), 25 suction temperature sensor, 26 humidity sensor , 27 load side control device, 30 central control device, 31 control signal line, 41 heat pump chiller, 42
Closed tank, 43 hot water supply terminal, 44 (44a, 44b) water circuit, 45 pump, 46 (46a, 46b) temperature sensor (heat medium temperature sensor), 47 (47a, 47b) pressure sensor (heat medium pressure sensor), 48 load side control device, 49 pump, 50 central control device, 51 control signal line.

Claims (6)

冷媒と熱媒体とが熱交換を行う熱源側熱交換器及び圧縮機を有する複数の熱源機と、
負荷側熱交換器とファンとを有するファンコイルを備えた負荷側装置と、
前記熱源側熱交換器と前記負荷側装置の前記負荷側熱交換器とが配管で接続されてポンプにより前記熱媒体を循環させ、前記熱源機が供給する熱量を前記負荷側装置に搬送する熱媒体回路と、
前記熱媒体の温度を検知する熱媒体温度センサと、
前記熱媒体の圧力を検知する熱媒体圧力センサと、
前記負荷側装置における負荷を判断するための負荷指標として、前記ファンコイルへの吸込空気の温度を検知する吸込温度センサと、
前記ファンコイルの前記負荷側熱交換器に流入する前記熱媒体の流量を調整する電動弁と、
前記熱媒体温度センサ、前記熱媒体圧力センサ及び前記吸込温度センサのそれぞれから得た値に基づいて前記圧縮機及び前記ポンプのそれぞれの運転を制御する制御装置とを備え、
前記制御装置は、
前記負荷側装置の前記負荷側熱交換器において前記熱媒体と負荷側空気とが熱交換する熱量である現在熱量を、前記負荷側熱交換器のそれぞれ入口及び出口における前記熱媒体の温度と前記負荷側熱交換器のそれぞれ入口及び出口における前記熱媒体の圧力とに基づいて演算し、
前記吸込温度センサで検知された吸込温度を目標温度にするために必要な熱量である必要熱量と、前記現在熱量との差が、予め設定された設定熱量よりも小さい場合には、前記必要熱量が得られるように、前記圧縮機及び前記ポンプの運転条件は変更せずに前記電動弁の開度を広げるように制御し、
前記差が前記設定熱量より大きい場合、前記必要熱量が得られるように前記圧縮機及び前記ポンプの運転を制御するようにしており、
前記圧縮機の制御に際しては、前記圧縮機の負荷率と圧縮機効率との関係を示す情報を用いて、前記圧縮機効率が最大となる負荷率で複数の前記熱源機の前記圧縮機が運転されるように、前記圧縮機の運転台数及び前記圧縮機の運転容量を決定し、前記ポンプの制御に際しては、前記熱源側熱交換器の出口の前記熱媒体の温度が設定温度に維持されるように最適化した、前記熱媒体の循環量が得られるように前記ポンプを制御する冷凍システム。
A plurality of heat source units having a heat source side heat exchanger and a compressor that perform heat exchange between the refrigerant and the heat medium,
A load side device including a fan coil having a load side heat exchanger and a fan;
The heat source-side heat exchanger and the load-side heat exchanger of the load-side device are connected by piping to circulate the heat medium by a pump, and the heat supplied by the heat-source device is transferred to the load-side device. A medium circuit,
A heat medium temperature sensor for detecting the temperature of the heat medium,
A heat medium pressure sensor for detecting the pressure of the heat medium,
As a load index for determining the load in the load side device, a suction temperature sensor for detecting the temperature of the suction air to the fan coil,
An electric valve that adjusts the flow rate of the heat medium flowing into the load-side heat exchanger of the fan coil,
A heat medium temperature sensor, a control device for controlling the operation of each of the compressor and the pump based on the values obtained from each of the heat medium pressure sensor and the suction temperature sensor,
The control device is
Wherein in the load-side heat exchanger of the load-side apparatus and the heat medium of the current amount of heat is a heat load and air heat exchange, and the temperature of the heat medium in each of the inlet and outlet of the load-side heat exchanger Calculated based on the pressure of the heat medium at each inlet and outlet of the load side heat exchanger ,
If the difference between the required heat quantity that is the heat quantity necessary to bring the suction temperature detected by the suction temperature sensor to the target temperature and the current heat quantity is less than the preset heat quantity, then the necessary heat quantity In order to obtain the above, the operating conditions of the compressor and the pump are controlled to be widened without changing the operating conditions,
When the difference is larger than the set heat amount, the operation of the compressor and the pump is controlled so as to obtain the required heat amount,
When controlling the compressor, using the information indicating the relationship between the load factor of the compressor and the compressor efficiency, the compressors of the plurality of heat source units operate at the load factor that maximizes the compressor efficiency. As described above, the number of operating compressors and the operating capacity of the compressor are determined, and when controlling the pump, the temperature of the heat medium at the outlet of the heat source side heat exchanger is maintained at the set temperature. A refrigeration system that controls the pump to obtain a circulation amount of the heat medium optimized as described above.
前記制御装置は、前記負荷側装置に備えられた第1装置と、冷凍システム全体の制御を行う第2装置とを備え、
前記第1装置は、前記差が前記設定熱量より大きい場合、前記熱媒体温度センサで検知した温度と前記熱媒体圧力センサで検出した圧力とからなる負荷側制御情報を、前記第2装置に伝送して前記運転条件の変更を要請し、
前記第2装置は、前記要請を受けて前記圧縮機及び前記ポンプの運転を制御する請求項1記載の冷凍システム。
The control device includes a first device included in the load-side device, and a second device that controls the entire refrigeration system,
When the difference is larger than the set heat quantity, the first device transmits load-side control information including a temperature detected by the heat medium temperature sensor and a pressure detected by the heat medium pressure sensor to the second device. And request a change in the operating conditions,
The refrigeration system according to claim 1, wherein the second device controls the operation of the compressor and the pump in response to the request.
前記熱媒体温度センサは、前記負荷側熱交換器の出入口の熱媒体の温度をそれぞれ検知する温度センサであり、
前記熱媒体圧力センサは、前記負荷側熱交換器の前記熱媒体の出入口の圧力をそれぞれ検知する圧力センサである請求項1又は請求項2記載の冷凍システム。
The heat medium temperature sensor is a temperature sensor for detecting the temperature of the heat medium at the inlet and outlet of the load side heat exchanger,
The refrigeration system according to claim 1 or 2, wherein the heat medium pressure sensor is a pressure sensor that detects a pressure at an inlet / outlet of the heat medium of the load side heat exchanger .
前記ファンコイルへの吸込空気の湿度を検知する湿度センサを更に備え、
前記制御装置は、前記湿度センサで検知した湿度を更に用いて前記圧縮機及び前記ポンプの運転を制御する請求項1〜請求項3の何れか一項に記載の冷凍システム。
Further comprising a humidity sensor for detecting the humidity of the air drawn into the fan coil,
The refrigeration system according to any one of claims 1 to 3, wherein the control device further controls the operation of the compressor and the pump by further using the humidity detected by the humidity sensor.
前記制御装置は前記湿度センサで検知した湿度を用いた前記圧縮機及び前記ポンプの運転制御を、前記ファンコイルで前記熱媒体と空気とを熱交換して前記空気を冷却して室内に供給する冷房時に行う請求項4記載の冷凍システム。   The control device controls the operation of the compressor and the pump using the humidity detected by the humidity sensor, and the heat exchange between the heat medium and air is performed by the fan coil to cool the air and supply it to the room. The refrigeration system according to claim 4, which is performed during cooling. 前記制御装置は、前記熱媒体圧力センサで検知された圧力に基づいて、前記熱媒体回路において運転上、最低必要な循環量を維持しつつ、前記負荷側熱交換器の出口水温が設定水温に維持されるように前記ポンプの運転を制御する請求項1〜請求項5の何れか一項に記載の冷凍システム。   The control device, based on the pressure detected by the heat medium pressure sensor, in operation in the heat medium circuit, while maintaining the minimum required circulation amount, the outlet water temperature of the load side heat exchanger to the set water temperature. The refrigeration system according to claim 1, wherein the operation of the pump is controlled so as to be maintained.
JP2017528058A 2015-07-14 2015-07-14 Refrigeration system Active JP6681896B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070184 WO2017009955A1 (en) 2015-07-14 2015-07-14 Refrigeration system

Publications (2)

Publication Number Publication Date
JPWO2017009955A1 JPWO2017009955A1 (en) 2018-01-25
JP6681896B2 true JP6681896B2 (en) 2020-04-15

Family

ID=57757911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017528058A Active JP6681896B2 (en) 2015-07-14 2015-07-14 Refrigeration system

Country Status (3)

Country Link
JP (1) JP6681896B2 (en)
GB (1) GB2555064B (en)
WO (1) WO2017009955A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6942575B2 (en) * 2017-09-11 2021-09-29 東芝キヤリア株式会社 Heat source water control method and heat source water control device
CN109237713B (en) * 2018-09-25 2020-06-09 珠海格力电器股份有限公司 Water multi-connected unit operation control method and device, medium and water multi-connected air conditioning system
CN109357555A (en) * 2018-10-31 2019-02-19 河南省建筑科学研究院有限公司 A kind of heat exchanger and its control system based on heat source offer
CN112082238B (en) * 2020-09-30 2021-08-13 美的集团股份有限公司 Control method of mobile air conditioner, mobile air conditioner and storage medium
WO2023181374A1 (en) * 2022-03-25 2023-09-28 三菱電機株式会社 Air conditioning system
WO2024154324A1 (en) * 2023-01-20 2024-07-25 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163631A (en) * 1997-08-28 1999-03-05 Yamatake Honeywell Co Ltd Equipment for controlling temperature of supply water
JP4134781B2 (en) * 2003-03-26 2008-08-20 株式会社日立プラントテクノロジー Air conditioning equipment
JP2009192186A (en) * 2008-02-18 2009-08-27 Hitachi Appliances Inc Refrigeration system
JP5005578B2 (en) * 2008-02-21 2012-08-22 高砂熱学工業株式会社 Air conditioning control system, air conditioning control program, and air conditioning control method
JP5071155B2 (en) * 2008-02-28 2012-11-14 株式会社デンソー Heat pump type hot water supply apparatus and control method thereof
JP2012032034A (en) * 2010-07-29 2012-02-16 Hitachi Appliances Inc Liquid supply device
JP6048168B2 (en) * 2013-01-29 2016-12-21 ダイキン工業株式会社 Secondary refrigerant air conditioning system
JP6264598B2 (en) * 2013-04-04 2018-01-24 清水建設株式会社 Heat source operation navigation system and method

Also Published As

Publication number Publication date
WO2017009955A1 (en) 2017-01-19
GB2555064A (en) 2018-04-18
JPWO2017009955A1 (en) 2018-01-25
GB2555064B (en) 2020-09-23
GB201800132D0 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6681896B2 (en) Refrigeration system
US9797614B2 (en) Air conditioning system
US9562701B2 (en) Temperature control system and air conditioning system
CN109196287B (en) Air conditioning system
US8660702B2 (en) Central cooling and circulation energy management control system
JP6570746B2 (en) Heat medium circulation system
US9644876B2 (en) Refrigeration cycle apparatus
US11959652B2 (en) Machine learning apparatus, air conditioning system, and machine learning method
US20130312443A1 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JPWO2016071947A1 (en) Refrigeration cycle apparatus and refrigeration cycle apparatus abnormality detection system
JP2012141113A (en) Air conditioning/water heating device system
KR20160051596A (en) Air-conditioning system
JP6095360B2 (en) Thermal load treatment system
JP2017009269A (en) Air conditioning system
JP2017009269A5 (en)
JP2021004702A (en) Outside air treatment device and air conditioning system
JP2016095102A (en) Control device of outdoor air conditioner
JP2016095101A (en) Control method of outdoor air conditioner
JP2014126234A (en) Heat load processing system
JP2536313B2 (en) Operation control device for air conditioner
JP2021012009A (en) Water quantity regulating device
JP2006046839A (en) Cold and hot water carrying system
WO2016024504A1 (en) Load distribution system
US10317120B2 (en) Air conditioning system with indoor and ventilation circuits
JP2016102635A (en) Air conditioner system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190402

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200324

R150 Certificate of patent or registration of utility model

Ref document number: 6681896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250