[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014182906A - Positive electrode active material for alkali storage batteries, and positive electrode for alkali storage batteries - Google Patents

Positive electrode active material for alkali storage batteries, and positive electrode for alkali storage batteries Download PDF

Info

Publication number
JP2014182906A
JP2014182906A JP2013055988A JP2013055988A JP2014182906A JP 2014182906 A JP2014182906 A JP 2014182906A JP 2013055988 A JP2013055988 A JP 2013055988A JP 2013055988 A JP2013055988 A JP 2013055988A JP 2014182906 A JP2014182906 A JP 2014182906A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013055988A
Other languages
Japanese (ja)
Inventor
Yota Kudo
陽太 工藤
Hiroyuki Sakamoto
弘之 坂本
Kazuhiro Okawa
和宏 大川
Akira Takehara
暁 竹原
Satoshi Kudo
聡 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2013055988A priority Critical patent/JP2014182906A/en
Publication of JP2014182906A publication Critical patent/JP2014182906A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for alkali storage batteries which enables suppression of the worsening of capacity characteristic in a high-temperature condition, and to provide a positive electrode for alkali storage batteries including the positive electrode active material for alkali storage batteries.SOLUTION: A positive electrode active material for alkali storage batteries comprises nickel hydroxide particles including nickel as a primary component, and a coating layer including cobalt and yttrium, and covering surfaces of the nickel hydroxide particles. The yttrium included by the coating layer accounts for 1-2 wt.% to 100 wt.% of the nickel hydroxide particles in terms of oxidation yttrium. In X-ray diffraction with Cu Kα rays, the half-peak width of (001)plane peak in the vicinity of 2θ ranging from 16.5 to 21.5° is 0.6 to 0.8°.

Description

本発明は、アルカリ蓄電池に用いられるアルカリ蓄電池用正極活物質、及び、該アルカリ蓄電池用正極活物質を含むアルカリ蓄電池用正極に関する。   The present invention relates to a positive electrode active material for an alkaline storage battery used for an alkaline storage battery, and a positive electrode for an alkaline storage battery containing the positive electrode active material for an alkaline storage battery.

周知のように、携帯用の電子機器の電源として、また、電気自動車やハイブリッド自動車などの電源として、様々なアルカリ蓄電池(二次電池)が用いられている。そして、こうしたアルカリ蓄電池のうち、エネルギー密度が高く、信頼性に優れた蓄電池としてニッケル水素蓄電池がある。このニッケル水素蓄電池は、例えば、水酸化ニッケルを主成分とした正極と水素吸蔵合金を主成分とした負極とがセパレータを介して複数枚積層された極板群を、水酸化カリウムなどからなるアルカリ電解液とともに収納容器に収納して構成される蓄電池である。そして従来、このようなニッケル水素蓄電池に用いられるアルカリ蓄電池用正極活物質の一例が特許文献1に記載されている。   As is well known, various alkaline storage batteries (secondary batteries) are used as power sources for portable electronic devices and as power sources for electric vehicles and hybrid vehicles. Among such alkaline storage batteries, there is a nickel-metal hydride storage battery as a storage battery having high energy density and excellent reliability. This nickel-metal hydride storage battery includes, for example, an electrode plate group in which a plurality of positive electrodes mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy are laminated via a separator, and an alkali composed of potassium hydroxide or the like. It is the storage battery comprised by accommodating in an accommodation container with electrolyte solution. Conventionally, an example of a positive electrode active material for an alkaline storage battery used in such a nickel metal hydride storage battery is described in Patent Document 1.

特許文献1に記載のアルカリ蓄電池用正極活物質は、ニッケルを主成分とする水酸化物粒子からなる正極活物質である。この正極活物質は、水酸化物粒子がニッケル及びイットリウムベースの水酸化物からなる相の層で被覆される。この水酸化物相の割合は、水酸化物粒子の総重量に対し水酸化イットリウムで表して0.15〜3重量%のイットリウムである。これにより、ニッケルを主成分とする水酸化物粒子からなる効率の良いアルカリ蓄電池用活物質が得られるようになる。   The positive electrode active material for alkaline storage batteries described in Patent Document 1 is a positive electrode active material composed of hydroxide particles containing nickel as a main component. This positive electrode active material is coated with a phase layer in which the hydroxide particles consist of nickel and yttrium based hydroxides. The proportion of the hydroxide phase is 0.15 to 3% by weight of yttrium expressed as yttrium hydroxide with respect to the total weight of the hydroxide particles. As a result, an efficient alkaline storage battery active material composed of hydroxide particles mainly composed of nickel can be obtained.

特許第3563586号公報Japanese Patent No. 3563586

ところで、アルカリ蓄電池は、常温よりも高い温度の下で充電されることが多いが、常温(例えば20度)に比べて高温の下では充電効率が低下する傾向がある。そして通常、アルカリ蓄電池は、充電末期後で過充電により酸素を発生するが、酸素の発生は充電を抑制することから充電効率の低下、すなわち容量特性の低下が免れない。特に、高温の下では酸素が発生し易くなるため、こうした不都合が無視できない。そこで近年は、充電が行われることの多い高温下での充電効率の低下を防ぎ、容量特性を維持することのできるアルカリ蓄電池についての研究、開発が進められている。   By the way, although an alkaline storage battery is often charged under temperature higher than normal temperature, there exists a tendency for charge efficiency to fall under high temperature compared with normal temperature (for example, 20 degree | times). Usually, an alkaline storage battery generates oxygen by overcharging after the end of charging. However, since generation of oxygen suppresses charging, a reduction in charging efficiency, that is, a reduction in capacity characteristics is inevitable. In particular, oxygen is easily generated at high temperatures, and such inconvenience cannot be ignored. In recent years, therefore, research and development have been conducted on alkaline storage batteries that can prevent a reduction in charging efficiency at high temperatures that are often charged and maintain capacity characteristics.

本発明は、このような実情に鑑みなされたものであってその目的は、高温下での容量特性の低下を抑制することのできるアルカリ蓄電池用正極活物質、及び、該アルカリ蓄電池用正極活物質を含むアルカリ蓄電池用正極を提供することにある。   The present invention has been made in view of such a situation, and an object thereof is a positive electrode active material for an alkaline storage battery capable of suppressing a decrease in capacity characteristics under high temperature, and a positive electrode active material for the alkaline storage battery. It is providing the positive electrode for alkaline storage batteries containing.

上記課題を解決するアルカリ蓄電池用正極活物質は、ニッケルを主成分とする水酸化ニッケル粒子を備えるアルカリ蓄電池用正極活物質であって、前記水酸化ニッケル粒子の表面を被覆する層としてコバルト及びイットリウムを含む被覆層を備え、前記被覆層に含まれるイットリウムは、酸化イットリウム(Y)で表して前記水酸化ニッケル粒子100重量%に対して、1重量%以上、かつ、2重量%以下であり、CuKα線を使用するX線回折の「2θ=16.5°〜21.5°」付近に位置する(001)面のピークの半価幅が、「0.6°」以上、かつ、「0.8°」以下であることを要旨とする。 A positive electrode active material for an alkaline storage battery that solves the above problems is a positive electrode active material for an alkaline storage battery that includes nickel hydroxide particles mainly composed of nickel, and includes cobalt and yttrium as a layer covering the surface of the nickel hydroxide particles. The yttrium contained in the coating layer is represented by yttrium oxide (Y 2 O 3 ) and expressed as yttrium oxide (Y 2 O 3 ) in an amount of 1 wt% or more and 2 wt% or less. The half width of the peak on the (001) plane located in the vicinity of “2θ = 16.5 ° to 21.5 °” of X-ray diffraction using CuKα rays is “0.6 °” or more, and , “0.8 °” or less.

上記課題を解決するアルカリ蓄電池用正極は、ニッケルを主成分とする水酸化ニッケル粒子をアルカリ蓄電池用活物質として含むアルカリ蓄電池用正極であって、前記アルカリ蓄電池用活物質として、上記のアルカリ蓄電池用活物質を用いたことを要旨とする。   The positive electrode for an alkaline storage battery that solves the above problem is a positive electrode for an alkaline storage battery that includes nickel hydroxide particles mainly composed of nickel as an active material for the alkaline storage battery, and the alkaline storage battery for the alkaline storage battery described above. The gist is that an active material is used.

この構成によるように、正極活物質の表面の結晶構造について、(001)面のピークの半価幅を「0.6°」以上、かつ、「0.8°」以下とすることにより、その正極活物質の高温環境下における利用率が高く維持されるようになる。また、この結晶構造であれば、タップ密度も高く維持されるため、正極活物質の密度が高くなり正極としての容量密度も高く維持される。これにより、高温下での容量特性の低下が抑制されるアルカリ蓄電池用正極活物質や、アルカリ蓄電池用正極が得られるようになる。   According to this configuration, with respect to the crystal structure of the surface of the positive electrode active material, the half width of the peak of the (001) plane is set to “0.6 °” or more and “0.8 °” or less. The utilization factor of the positive electrode active material in a high temperature environment is maintained high. In addition, with this crystal structure, the tap density is also maintained high, so the density of the positive electrode active material is increased and the capacity density as the positive electrode is also maintained high. Thereby, the positive electrode active material for alkaline storage batteries and the positive electrode for alkaline storage batteries in which a decrease in capacity characteristics at high temperatures is suppressed can be obtained.

好ましい構成として、上記のアルカリ蓄電池用正極活物質において、当該アルカリ蓄電池用正極活物質の平均粒径は5μm以上、かつ、20μm以下であることを要旨とする。
このような構成によれば、平均粒径を5[μm]以上、かつ、20[μm]以下の範囲にすることによって、高温環境下での利用率が高く維持されるとともに、タップ密度も高く維持されるアルカリ蓄電池用正極活物質が得られるようになる。
As a preferable configuration, the above-described positive electrode active material for alkaline storage battery is summarized in that the average particle size of the positive electrode active material for alkaline storage battery is 5 μm or more and 20 μm or less.
According to such a configuration, by making the average particle size in the range of 5 [μm] or more and 20 [μm] or less, the utilization factor in a high temperature environment is maintained high and the tap density is also high. The positive electrode active material for alkaline storage batteries to be maintained can be obtained.

好ましい構成として、前記被覆層は、コバルトとイットリウムとの同時晶出により形成されることを要旨とする。
このような構成によれば、コバルトとイットリウムとの同時晶出により被覆層におけるコバルトとイットリウムの分散を均一化させることにより、高温環境下での利用率が高く維持される正極活物質が好適に得られるようになる。
The gist is that the coating layer is formed by simultaneous crystallization of cobalt and yttrium.
According to such a configuration, a positive electrode active material that maintains a high utilization rate in a high-temperature environment is preferable by uniformizing the dispersion of cobalt and yttrium in the coating layer by simultaneous crystallization of cobalt and yttrium. It will be obtained.

好ましい構成として、前記同時晶出は、反応晶析法による晶出であることを要旨とする。
このような構成によれば、反応晶析法によって、水酸化ニッケル粒子にコバルトとイットリウムとを同時晶出させた被覆層を形成することができる。
A preferred configuration is that the simultaneous crystallization is crystallization by a reaction crystallization method.
According to such a configuration, a coating layer in which cobalt hydroxide and yttrium are simultaneously crystallized on nickel hydroxide particles can be formed by a reactive crystallization method.

このようなアルカリ蓄電池用正極活物質、及び、該アルカリ蓄電池用正極活物質を含むアルカリ蓄電池用正極によれば、高温下での容量特性の低下が抑制される。   According to such a positive electrode active material for alkaline storage batteries and a positive electrode for alkaline storage batteries including the positive electrode active material for alkaline storage batteries, a decrease in capacity characteristics at high temperatures is suppressed.

アルカリ蓄電池用正極活物質の一実施形態において、その被覆層の結晶構造を示す(001)面のピークの半価幅と高温利用率との関係について示すグラフ。The graph shown about the relationship between the half value width of the peak of the (001) plane which shows the crystal structure of the coating layer, and high temperature utilization factor in one Embodiment of the positive electrode active material for alkaline storage batteries. 同実施形態のアルカリ蓄電池用正極活物質において、その被覆層の結晶構造を示す(001)面のピークの半価幅とタップ密度との関係について示すグラフ。In the positive electrode active material for alkaline storage batteries of the same embodiment, the graph which shows about the relationship between the half value width of the peak of (001) plane and the tap density which show the crystal structure of the coating layer.

以下、アルカリ蓄電池用正極活物質(以下、正極活物質)を具体化した一実施形態、及び該正極活物質を含むアルカリ蓄電池用正極の一例について説明する。
本実施形態では、正極活物質がアルカリ蓄電池としてのニッケル水素蓄電池の正極を構成する活物質である場合について例示する。このニッケル水素蓄電池は、密閉型電池であり、電気自動車やハイブリッド自動車の電源として用いられる電池である。ニッケル水素蓄電池は、例えば、水素吸蔵合金を含む所定枚数の図示しない負極と、水酸化ニッケル(Ni(OH))を含む所定枚数の正極とを、耐アルカリ性樹脂の不織布から構成されるセパレータを介して積層した電極群を備えている。負極は、パンチングメタルなどからなる基板としての電極支持体に水素吸蔵合金粉末を塗布して製作される。正極は、金属多孔体である発泡ニッケル基板からなる基板に水酸化ニッケル粒子を含む上述の正極活物質を充填して製作される。そして、ニッケル水素蓄電池は、電極群の正極を正極側の集電板に接続させ、電極群の負極を負極側の集電板に接続させ、電解液とともに樹脂製の電槽内に収容して構成される。
Hereinafter, an embodiment in which a positive electrode active material for an alkaline storage battery (hereinafter, positive electrode active material) is embodied and an example of an alkaline storage battery positive electrode including the positive electrode active material will be described.
In this embodiment, the case where the positive electrode active material is an active material constituting the positive electrode of a nickel-metal hydride storage battery as an alkaline storage battery is illustrated. This nickel metal hydride storage battery is a sealed battery, and is a battery used as a power source for electric vehicles and hybrid vehicles. The nickel-metal hydride storage battery includes, for example, a separator composed of a non-woven fabric of an alkali-resistant resin, a predetermined number of negative electrodes (not shown) including a hydrogen storage alloy, and a predetermined number of positive electrodes including nickel hydroxide (Ni (OH) 2 ). And an electrode group laminated. The negative electrode is manufactured by applying hydrogen storage alloy powder to an electrode support as a substrate made of punching metal or the like. The positive electrode is manufactured by filling a substrate made of a foamed nickel substrate, which is a metal porous body, with the above-described positive electrode active material containing nickel hydroxide particles. The nickel-metal hydride storage battery has the positive electrode of the electrode group connected to the current collector plate on the positive electrode side, the negative electrode of the electrode group connected to the current collector plate on the negative electrode side, and is housed in a resin battery case together with the electrolyte. Composed.

次に、このニッケル水素蓄電池の作製について説明する。
[水酸化ニッケル粒子の作製]
本実施形態では、正極板に含まれる水酸化ニッケル粒子を、マグネシウムを固溶状態で含む水酸化ニッケル粒子として作製した。
Next, production of this nickel metal hydride storage battery will be described.
[Production of nickel hydroxide particles]
In this embodiment, the nickel hydroxide particles contained in the positive electrode plate were produced as nickel hydroxide particles containing magnesium in a solid solution state.

すなわち、硫酸ニッケルと硫酸マグネシウムを含む混合液、水酸化ナトリウム水溶液、アンモニア水溶液を用意し、それぞれを、反応槽内に供給し、所定量のマグネシウムを固溶する水酸化ニッケルを作製した。その結果、水酸化ニッケル粉末の平均粒径10[μm]となった。なお、水酸化ニッケル粉末の平均粒径は、レーザ回析/散乱式粒度分布測定装置により測定した。   That is, a mixed solution containing nickel sulfate and magnesium sulfate, an aqueous sodium hydroxide solution, and an aqueous ammonia solution were prepared, and each was supplied into a reaction vessel to produce nickel hydroxide that solid-dissolves a predetermined amount of magnesium. As a result, the average particle diameter of the nickel hydroxide powder was 10 [μm]. The average particle diameter of the nickel hydroxide powder was measured with a laser diffraction / scattering particle size distribution analyzer.

なお、水酸化ニッケル粉末の平均粒径は、10[μm]以外の大きさでも製造可能である。但し、平均粒径が5[μm]より小さい正極活物質を製造するには、反応槽内での滞留時間(反応時間)を短くしなければならないが、短時間で生成した正極活物質は、嵩高い粒子となるため正極充填密度が低下する。このため、平均粒径が5[μm]より小さい正極活物質は、正極の容量密度を低下させてしまう。逆に、平均粒径が20[μm]より大きい正極活物質を用いた場合、充放電過程における水酸化ニッケルの結晶構造の影響により、正極の膨張が著しくなる。この影響で、セパレータ内の電解液が減少(ひいては枯渇)してしまい、サイクル寿命特性が低下してしまう。そこで、水酸化ニッケル粉末の平均粒径は、5[μm]以上、かつ、20[μm]以下の間で製造することが好ましい。   The average particle diameter of the nickel hydroxide powder can be manufactured with a size other than 10 [μm]. However, in order to produce a positive electrode active material having an average particle size smaller than 5 [μm], the residence time (reaction time) in the reaction vessel must be shortened. Since the particles become bulky, the positive electrode packing density decreases. For this reason, the positive electrode active material having an average particle size smaller than 5 [μm] reduces the capacity density of the positive electrode. On the contrary, when a positive electrode active material having an average particle size larger than 20 [μm] is used, the positive electrode expands significantly due to the influence of the crystal structure of nickel hydroxide in the charge / discharge process. Due to this influence, the electrolyte in the separator is reduced (and eventually depleted), and the cycle life characteristics are deteriorated. Therefore, the nickel hydroxide powder is preferably produced with an average particle diameter of 5 [μm] or more and 20 [μm] or less.

[正極活物質の製作]
次に、上述のようにして得られた、水酸化ニッケル粒子の表面に、水酸化コバルトと水酸化イットリウムとを析出(晶出)させた被覆層(以下、イットリウム含有水酸化コバルト被覆ともいう)を形成する。これにより、コバルト化合物とイットリウム化合物とが混晶した被覆層により被覆されている水酸化ニッケル粒子から構成される正極活物質を製作した。
[Production of positive electrode active material]
Next, a coating layer in which cobalt hydroxide and yttrium hydroxide are precipitated (crystallized) on the surface of the nickel hydroxide particles obtained as described above (hereinafter also referred to as yttrium-containing cobalt hydroxide coating). Form. Thus, a positive electrode active material composed of nickel hydroxide particles coated with a coating layer in which a cobalt compound and an yttrium compound were mixed was manufactured.

具体的には、まず、反応槽内の水酸化ニッケル粒子を含む水溶液(懸濁液)中に、硫酸コバルト水溶液及び硫酸イットリウム水溶液(コバルトの塩、及び、イットリウムの塩を含む水溶液)を供給するとともに、水酸化ナトリウム水溶液(アルカリ水溶液)を供給する。そして、この反応槽内を攪拌して、硫酸コバルト水溶液及び硫酸イットリウム水溶液と、水酸化ナトリウム水溶液とを反応させて、反応槽内の水酸化ニッケル粒子の表面に、コバルト水酸化物とイットリウム水酸化物とを同時に析出(同時晶出)させた(反応晶析法)。コバルト水酸化物とイットリウム水酸化物とを同時に析出させることにより、イットリウム水酸化物がコバルト水酸化物に均一に含有されるようになる。続いて、この反応槽内に空気を供給して、コバルト水酸化物とイットリウム水酸化物とが析出された水酸化ニッケル粒子をアルカリ水溶液中で空気バブリングにより酸化処理し、コバルト酸化物及びイットリウム酸化物からなる被覆層を形成させた。その後、水洗・脱水後に100℃以上、かつ、130℃以下の温度にされた大気雰囲気下において乾燥させて、イットリウム含有水酸化コバルト被覆からなる被覆層を有する水酸化ニッケル粒子から構成される正極活物質を得た。なおこの正極活物質は、水酸化ニッケル粒子の重量(100重量%)に対し、コバルト化合物の被覆量が5重量%になるとともに、イットリウム化合物(Y)の被覆量が1重量%〜2重量%になるように調整した。また、コバルトの平均価数は2.9であった。 Specifically, first, an aqueous cobalt sulfate solution and an aqueous yttrium sulfate solution (an aqueous solution containing a cobalt salt and an yttrium salt) are supplied into an aqueous solution (suspension) containing nickel hydroxide particles in the reaction vessel. At the same time, an aqueous sodium hydroxide solution (alkaline aqueous solution) is supplied. Then, the inside of the reaction vessel is stirred to cause the cobalt sulfate aqueous solution and the yttrium sulfate aqueous solution to react with the sodium hydroxide aqueous solution, so that cobalt hydroxide and yttrium hydroxide are formed on the surface of the nickel hydroxide particles in the reaction vessel. Were simultaneously precipitated (simultaneous crystallization) (reaction crystallization method). By depositing the cobalt hydroxide and the yttrium hydroxide simultaneously, the yttrium hydroxide is uniformly contained in the cobalt hydroxide. Subsequently, air was supplied into the reaction vessel, and nickel hydroxide particles on which cobalt hydroxide and yttrium hydroxide were precipitated were oxidized by air bubbling in an alkaline aqueous solution, and cobalt oxide and yttrium oxidation were performed. A covering layer made of a material was formed. Thereafter, the positive electrode active composed of nickel hydroxide particles having a coating layer made of a yttrium-containing cobalt hydroxide coating is dried in an air atmosphere at a temperature of 100 ° C. or higher and 130 ° C. or lower after washing and dehydration. Obtained material. The positive electrode active material has a cobalt compound coating amount of 5% by weight and a yttrium compound (Y 2 O 3 ) coating amount of 1% by weight to 100% by weight of the nickel hydroxide particles. It adjusted so that it might become 2 weight%. Moreover, the average valence of cobalt was 2.9.

一般に、水酸化ニッケル粒子にマグネシウム化合物が含まれている場合、充電電位の高いマグネシウムを含むマグネシウム固溶水酸化ニッケル粒子は電池の出力が大きくなるものの、充電時に酸素を発生させる酸素過電圧が低くなるため高温充電効率が著しく低下する。そこで本実施形態では、イットリウム酸化物をコバルト酸化物被覆層に含有させることで、正極活物質の充電末期の酸素過電圧を高くして、酸素の発生を抑制させて、高温充電効率の低下が抑制されるようにしている。ところで、コバルト酸化物被覆層にイットリウム酸化物を含有させると酸素過電圧が著しく高くなることが知られており、その効果は、イットリウム酸化物が充電における反応場であるコバルト酸化物被膜層に均一に分布することで高められるものと考えられている。   In general, when nickel hydroxide particles contain a magnesium compound, magnesium solid solution nickel hydroxide particles containing magnesium having a high charging potential increase the battery output, but lower the oxygen overvoltage that generates oxygen during charging. Therefore, the high-temperature charging efficiency is remarkably reduced. Therefore, in the present embodiment, by including yttrium oxide in the cobalt oxide coating layer, the oxygen overvoltage at the end of charging of the positive electrode active material is increased to suppress the generation of oxygen, thereby suppressing the decrease in high-temperature charging efficiency. To be. By the way, it is known that when the cobalt oxide coating layer contains yttrium oxide, the oxygen overvoltage is remarkably increased, and the effect of the yttrium oxide is uniformly applied to the cobalt oxide coating layer which is a reaction field in charging. It is thought that it can be enhanced by distribution.

なお、被膜層は薄いため、この被膜層を有する水酸化ニッケル粒子からなる正極活物質の平均粒径も10[μm]となる。また、正極活物質の平均粒径を、5[μm]以上、かつ、20[μm]以下の間で製造することもできる。   Since the coating layer is thin, the average particle diameter of the positive electrode active material made of nickel hydroxide particles having this coating layer is also 10 [μm]. Moreover, the average particle diameter of a positive electrode active material can also be manufactured between 5 [micrometers] or more and 20 [micrometers] or less.

次いで、CuKα線を使用するX線回折測定を行い、コバルト化合物及びイットリウム化合物を含む被覆層の結晶構造を調査した。その結果、このX線回折パターンにおいて、「2θ=16.5°〜21.5°」付近に位置する(001)面のピークの半価幅は「0.6°」であった。なお、X線回折装置として、株式会社リガク製のRINT2200を用いており、測定条件は以下の通りである。   Next, X-ray diffraction measurement using CuKα rays was performed, and the crystal structure of the coating layer containing the cobalt compound and the yttrium compound was investigated. As a result, in this X-ray diffraction pattern, the half width of the peak on the (001) plane located in the vicinity of “2θ = 16.5 ° to 21.5 °” was “0.6 °”. In addition, RINT2200 made from Rigaku Corporation is used as the X-ray diffraction apparatus, and the measurement conditions are as follows.

<X線回折測定条件>
X線:CuKα,45kV,40mA
スリット:SS=0.04rad,DS=0.5°
走査モード:continuous
Step Size:0.017°
Time per Step:50sec
Scan Speed:0.042°/sec
[ニッケル正極の製作]
次に、正極板を構成するニッケル正極を作製した。具体的には、まず、上述のようにして得られた正極活物質粉末に、所定量の金属コバルトなどの添加物と、水と、増粘剤とを加え、混練することにより、ペースト状にした。
<X-ray diffraction measurement conditions>
X-ray: CuKα, 45kV, 40mA
Slit: SS = 0.04 rad, DS = 0.5 °
Scanning mode: continuous
Step Size: 0.017 °
Time per Step: 50sec
Scan Speed: 0.042 ° / sec
[Production of nickel positive electrode]
Next, the nickel positive electrode which comprises a positive electrode plate was produced. Specifically, first, a predetermined amount of an additive such as cobalt metal, water, and a thickener are added to the positive electrode active material powder obtained as described above, and kneaded to form a paste. did.

そして、このペーストを発泡ニッケル基板に充填し、乾燥した後、加圧成形することにより、ニッケル正極板を製作した。次いで、このニッケル正極板を所定の大きさに切断し、ニッケル正極、すなわち正極板を得ることができた。なお、ニッケル電極(正極板)の理論容量は、活物質中のニッケルが一電子反応をするものとして計算している。   The paste was filled into a foamed nickel substrate, dried, and then pressure-molded to produce a nickel positive electrode plate. Subsequently, this nickel positive electrode plate was cut into a predetermined size, and a nickel positive electrode, that is, a positive electrode plate was obtained. The theoretical capacity of the nickel electrode (positive electrode plate) is calculated on the assumption that nickel in the active material undergoes a one-electron reaction.

[アルカリ蓄電池の製作]
次に、公知の手法により、水素吸蔵合金を含む負極を製作した。具体的には、所定粒径に調整した水素吸蔵合金粉末を電極支持体に所定量塗工することにより、正極よりも大きい容量の負極板を得ることができた。
[Production of alkaline storage batteries]
Next, a negative electrode containing a hydrogen storage alloy was manufactured by a known method. Specifically, by applying a predetermined amount of hydrogen storage alloy powder adjusted to a predetermined particle size to the electrode support, a negative electrode plate having a capacity larger than that of the positive electrode could be obtained.

次いで、上記負極板と、上記正極板とを、耐アルカリ性樹脂の不織布から構成されるセパレータを介して積層し、集電板と接続して、水酸化カリウム(KOH)を主成分とした電解液とともに樹脂製の電槽内に収容することで、角形の密閉型ニッケル水素蓄電池を作製した。   Next, the negative electrode plate and the positive electrode plate are laminated via a separator made of a non-woven fabric of alkali-resistant resin, connected to a current collector plate, and an electrolytic solution mainly composed of potassium hydroxide (KOH) A rectangular sealed nickel-metal hydride storage battery was produced by housing the battery in a resin battery case.

また、上述の本実施形態と同様の製造方法によって、コバルト化合物及びイットリウム化合物を含む被覆層の結晶構造として、「2θ=16.5°〜21.5°」付近に位置する(001)面のピークの半価幅が「0.5°」付近の水酸化ニッケル粒子から構成される正極活物質を得た。同様に、「0.65°」付近の水酸化ニッケル粒子から構成される正極活物質、「0.7°」付近の水酸化ニッケル粒子から構成される正極活物質、「0.8°」付近の水酸化ニッケル粒子から構成される正極活物質、及び「0.85°」付近の水酸化ニッケル粒子から構成される正極活物質を得た。そしてそれぞれの水酸化ニッケル粒子から構成される正極活物質を含む正極板を有するアルカリ蓄電池をそれぞれ作製した。   Further, by the manufacturing method similar to that of the present embodiment described above, the (001) plane located near “2θ = 16.5 ° to 21.5 °” as the crystal structure of the coating layer containing the cobalt compound and the yttrium compound. A positive electrode active material composed of nickel hydroxide particles having a half width of the peak in the vicinity of “0.5 °” was obtained. Similarly, a positive electrode active material composed of nickel hydroxide particles near “0.65 °”, a positive electrode active material composed of nickel hydroxide particles near “0.7 °”, and around “0.8 °” Positive electrode active material composed of nickel hydroxide particles and a positive electrode active material composed of nickel hydroxide particles in the vicinity of “0.85 °”. And the alkaline storage battery which has a positive electrode plate containing the positive electrode active material comprised from each nickel hydroxide particle was produced, respectively.

[高温利用率と(001)面のピークの半価幅との関係]
図1に示すように、被覆層の(001)面のピークの半価幅が「0.5°」、「0.6°」及び「0.8°」である水酸化ニッケル粒子から構成される正極活物質を含む正極板を有するそれぞれのアルカリ蓄電池について、それぞれの高温利用率[%]を測定した。そしてそれぞれの高温利用率[%]として、半価幅が「0.5°」のとき約79.5%(グラフA1)、半価幅が「0.6°」のとき約82%(グラフA2)、半価幅が「0.5°」のとき約87.5%(グラフA3)の値を得た。すなわち、高温利用率は、半価幅が「0.5°」のときよりも半価幅が「0.6°」のときは約2.5%高い値となり、また、半価幅が「0.8°」のときは約8%高い値となった。
[Relationship between high temperature utilization factor and half-width of peak of (001) plane]
As shown in FIG. 1, the coating layer is composed of nickel hydroxide particles whose (001) plane peak half-widths are “0.5 °”, “0.6 °”, and “0.8 °”. Each high-temperature utilization rate [%] was measured for each alkaline storage battery having a positive electrode plate containing a positive electrode active material. The high-temperature utilization ratio [%] is about 79.5% (graph A1) when the half width is “0.5 °”, and about 82% (graph) when the half width is “0.6 °”. A2) When the half width was “0.5 °”, a value of about 87.5% (graph A3) was obtained. That is, the high temperature utilization rate is about 2.5% higher when the half width is “0.6 °” than when the half width is “0.5 °”. At “0.8 °”, the value was about 8% higher.

ところで、本実施形態の「高温利用率」は、環境温度が「60℃」の下で、所定の充電容量分だけ充電したニッケル水素蓄電池から放電された容量の充電容量に対する割合であり、次式により算出される。   By the way, the “high temperature utilization rate” of the present embodiment is the ratio of the capacity discharged from the nickel-metal hydride storage battery charged by a predetermined charge capacity under the environmental temperature of “60 ° C.” to the charge capacity, Is calculated by

高温利用率[%]=放電容量[Ah]/充電容量[Ah]×100
ここで、放電容量は、環境温度が「60℃」の下、ニッケル水素蓄電池に所定の充電容量分を充電した後、該蓄電池から充電容量の10分の1の放電電流を放電することにより得られる容量[Ah]である。このとき放電容量は、測定された放電電流と、計測された放電開始から放電終止電圧(1V)までの時間との積により示される。なお一般に、蓄電池は放電容量が大きいほど優れていると判断される。
High temperature utilization rate [%] = discharge capacity [Ah] / charge capacity [Ah] × 100
Here, the discharge capacity is obtained by charging a nickel hydride storage battery for a predetermined charge capacity under an environmental temperature of “60 ° C.”, and then discharging a discharge current of 1/10 of the charge capacity from the storage battery. Capacity [Ah]. At this time, the discharge capacity is represented by the product of the measured discharge current and the measured time from the start of discharge to the end-of-discharge voltage (1 V). In general, it is judged that the storage battery is more excellent as the discharge capacity is larger.

[タップ密度と(001)面のピークの半価幅との関係]
図2に示すように、被覆層の(001)面のピークの半価幅が「0.65°」、「0.7°」、「0.8°」及び「0.85°」である水酸化ニッケル粒子から構成される正極活物質を含む正極板を有するそれぞれのアルカリ蓄電池について、それぞれのタップ密度[g/cc]を測定した。そしてそれぞれのタップ密度[g/cc]として、半価幅が「0.65°」のとき約2.05(点B1)、半価幅が「0.7°」のとき約2.05(点B2)や約2.04(点B3)、半価幅が「0.8°」のとき約2.02(点B4)や約2.00(点B5)、半価幅が「0.85°」のとき約1.97(点B6)の値を得た。すなわち、タップ密度は、半価幅が「0.65°」や「0.7°」のときよりも半価幅が「0.8°」や「0.85°」のとき2〜3%程度低下した。
[Relationship between tap density and half width of peak of (001) plane]
As shown in FIG. 2, the half-value widths of the peaks on the (001) plane of the coating layer are “0.65 °”, “0.7 °”, “0.8 °”, and “0.85 °”. About each alkaline storage battery which has a positive electrode plate containing the positive electrode active material comprised from nickel hydroxide particle, each tap density [g / cc] was measured. Each tap density [g / cc] is about 2.05 (point B1) when the half width is “0.65 °”, and about 2.05 when the half width is “0.7 °”. When the point B2) is about 2.04 (point B3) and the half-value width is “0.8 °”, about 2.02 (point B4) or about 2.00 (point B5), and the half-value width is “0. When the angle was 85 °, a value of about 1.97 (point B6) was obtained. That is, the tap density is 2-3% when the half width is “0.8 °” or “0.85 °” than when the half width is “0.65 °” or “0.7 °”. Degraded to some extent.

ところで、タップ密度は、日本工業規格の金属粉−タップ密度測定方法(JIS Z 2512:2006)に従って測定した。
[高温容量]
ニッケル水素蓄電池は、「高温利用率」が高くなることに応じて「高温容量」も相対的に大きくなり、「高温利用率」が低くなることに応じて「高温容量」も相対的に小さくなる。すなわち、図1に示す、「高温利用率」と(001)面のピークの半価幅との関係によれば、被覆層の(001)面のピークの半価幅が「0.5°」よりも大きい、「0.6°」や「0.8°」であるときの方が「高温容量」のより大きいニッケル水素電池を得ることができる。
By the way, the tap density was measured in accordance with Japanese Industrial Standard metal powder-tap density measurement method (JIS Z 2512: 2006).
[High temperature capacity]
The nickel-metal hydride storage battery has a relatively high “high temperature capacity” as the “high temperature utilization rate” increases, and a “high temperature capacity” also decreases as the “high temperature utilization rate” decreases. . That is, according to the relationship between the “high temperature utilization factor” and the half width of the peak on the (001) plane shown in FIG. 1, the half width of the peak on the (001) plane of the coating layer is “0.5 °”. A nickel-metal hydride battery having a larger “high temperature capacity” can be obtained when it is larger than “0.6 °” or “0.8 °”.

なお、ニッケル水素電池の特性としては、「高温利用率」は80%以上であることが好ましいと考えられている。よって「高温利用率」を基準とすれば、好ましい「高温容量」特性を有するニッケル水素蓄電池は、正極活物質の被覆層が、(001)面のピークの半価幅が「0.6°」以上である被覆層を有する水酸化ニッケル粒子を含み構成されていることが好ましい。   As a characteristic of the nickel-metal hydride battery, it is considered that the “high temperature utilization factor” is preferably 80% or more. Therefore, on the basis of “high temperature utilization rate”, the nickel hydride storage battery having a preferable “high temperature capacity” characteristic has a positive electrode active material coating layer having a (001) plane peak half width of “0.6 °”. It is preferable that nickel hydroxide particles having a coating layer as described above are included.

また、ニッケル水素電池の特性としては、「タップ密度」が2.02[g/cc]よりも低下すると正極活物質の正極充填密度が低くなり容量密度が低下され、いわゆる正極容量密度が不十分になると考えられている。このことから、「タップ密度」を基準とすれば、好ましい「高温容量」特性を有するニッケル水素蓄電池は、正極活物質の被覆層が、(001)面のピークの半価幅が「0.8°」以下である被覆層を有する水酸化ニッケル粒子を含み構成されていることが好ましい。   In addition, as a characteristic of the nickel metal hydride battery, when the “tap density” is lower than 2.02 [g / cc], the positive electrode filling density of the positive electrode active material is lowered and the capacity density is lowered, so-called positive electrode capacity density is insufficient. It is thought to be. Therefore, based on the “tap density”, the nickel-metal hydride storage battery having a preferable “high-temperature capacity” characteristic has a half-width of the peak of the (001) plane of the coating layer of the positive electrode active material of “0.8”. It is preferable that nickel hydroxide particles having a coating layer of “°” or less are included.

本実施形態の作用について述べる。
上述のように、「高温容量」の高いニッケル水素蓄電池は、正極活物質の被覆層の(001)面のピークの半価幅が、「高温利用率」を基準とすると「0.6°」以上である一方、「タップ密度」を基準とすると「0.8°」以下である。つまり、ニッケル水素蓄電池は、正極活物質の被覆層の(001)面のピークの半価幅が「0.6°」以上、かつ、「0.8°」以下であると「高温容量」が高くなる。
The operation of this embodiment will be described.
As described above, in the nickel metal hydride storage battery having a high “high temperature capacity”, the half width of the peak on the (001) plane of the coating layer of the positive electrode active material is “0.6 °” based on the “high temperature utilization rate”. On the other hand, when “tap density” is used as a reference, it is “0.8 °” or less. That is, the nickel-metal hydride storage battery has a “high temperature capacity” when the half-value width of the peak of the (001) plane of the coating layer of the positive electrode active material is “0.6 °” or more and “0.8 °” or less. Get higher.

よって、(001)面のピークの半価幅が「0.6°」以上、かつ、「0.8°」以下である被覆層を有するニッケル蓄電池用正極活物質、及び、該ニッケル蓄電池用正極活物質を含むニッケル蓄電池用正極によれば、「高温容量」の高いニッケル水素蓄電池を得ることができる。   Accordingly, a positive electrode active material for a nickel storage battery having a coating layer in which the half width of the peak of the (001) plane is “0.6 °” or more and “0.8 °” or less, and the positive electrode for the nickel storage battery According to the positive electrode for a nickel storage battery containing an active material, a nickel hydride storage battery having a high “high temperature capacity” can be obtained.

以上説明したように、本実施形態のアルカリ蓄電池用正極活物質、及び、該アルカリ蓄電池用正極活物質を含むアルカリ蓄電池用正極によれば、以下に列記するような効果が得られるようになる。   As explained above, according to the positive electrode active material for alkaline storage battery of this embodiment and the positive electrode for alkaline storage battery containing the positive electrode active material for alkaline storage battery, the effects listed below can be obtained.

(1)正極活物質の表面の結晶構造について、(001)面のピークの半価幅を「0.6°」以上、かつ、「0.8°」以下とすることにより、その正極活物質の高温環境下における利用率(高温利用率)が高く維持されるようになる。また、この結晶構造であれば、タップ密度も高く維持されるため、正極活物質の密度が高くなり正極としての容量密度も高く維持される。これにより、高温下での容量特性の低下が抑制されるアルカリ蓄電池用正極活物質が得られる。   (1) Regarding the crystal structure of the surface of the positive electrode active material, by setting the half-value width of the peak of the (001) plane to “0.6 °” or more and “0.8 °” or less, the positive electrode active material The utilization factor (high temperature utilization factor) in a high temperature environment is maintained high. In addition, with this crystal structure, the tap density is also maintained high, so the density of the positive electrode active material is increased and the capacity density as the positive electrode is also maintained high. Thereby, the positive electrode active material for alkaline storage batteries in which a decrease in capacity characteristics at high temperatures is suppressed can be obtained.

(2)平均粒径を5[μm]以上、かつ、20[μm]以下の範囲にすることによって、高温環境下での利用率が高く維持されるとともに、タップ密度も高く維持されるアルカリ蓄電池用正極活物質が得られる。   (2) Alkaline storage battery in which the average particle size is in the range of 5 [μm] or more and 20 [μm] or less, so that the utilization rate in a high temperature environment is maintained high and the tap density is also maintained high. A positive electrode active material is obtained.

(3)コバルトとイットリウムとの同時晶出により被覆層におけるコバルトとイットリウムの分散を均一化させることにより、高温環境下での利用率が高く維持される正極活物質を好適に得ることができる。   (3) By making the dispersion of cobalt and yttrium uniform in the coating layer by simultaneous crystallization of cobalt and yttrium, a positive electrode active material that maintains a high utilization rate in a high temperature environment can be suitably obtained.

(4)反応晶析法によって、水酸化ニッケル粒子にコバルトとイットリウムとを同時晶出させた被覆層を形成することができる。
(その他の実施形態)
なお上記実施形態は、以下の態様で実施することもできる。
(4) A coating layer in which cobalt hydroxide and yttrium are simultaneously crystallized from nickel hydroxide particles can be formed by a reactive crystallization method.
(Other embodiments)
In addition, the said embodiment can also be implemented with the following aspects.

・上記実施形態以外の方法であっても、水酸化ニッケル粒子を作製できるのであれば、水酸化ニッケル粒子の作製に公知の方法を用いることができる。これにより、アルカリ蓄電池用正極活物質の製造自由度の向上が図られるようになる。   -Even if it is a method other than the said embodiment, if a nickel hydroxide particle is producible, a well-known method can be used for preparation of a nickel hydroxide particle. Thereby, the improvement of the manufacturing freedom of the positive electrode active material for alkaline storage batteries comes to be achieved.

・上記実施形態では、水酸化ニッケル粒子はマグネシウム化合物を含む場合について例示した。しかしこれに限らず、水酸化ニッケル粒子は、被覆層で被覆することができるのであれば、マグネシウム化合物の他に、亜鉛化合物やコバルト化合物などを含んでもよい。これにより、アルカリ蓄電池用正極活物質の製造自由度の向上が図られるようになる。   -In above-mentioned embodiment, the nickel hydroxide particle illustrated about the case where a magnesium compound is included. However, the present invention is not limited thereto, and the nickel hydroxide particles may contain a zinc compound, a cobalt compound, or the like in addition to the magnesium compound as long as the nickel hydroxide particles can be coated with the coating layer. Thereby, the improvement of the manufacturing freedom of the positive electrode active material for alkaline storage batteries comes to be achieved.

・上記実施形態では、被覆層のコバルトの平均価数は2.9である場合について例示した。しかしこれに限らず、被覆層のコバルトの平均価数は2.6以上、かつ、3.0以下のいずれの値でもよい。これにより、アルカリ蓄電池用正極活物質の製造自由度の向上が図られるようになる。   -In the said embodiment, it illustrated about the case where the average valence of cobalt of a coating layer is 2.9. However, the present invention is not limited to this, and the average valence of cobalt in the coating layer may be any value of 2.6 or more and 3.0 or less. Thereby, the improvement of the manufacturing freedom of the positive electrode active material for alkaline storage batteries comes to be achieved.

・上記実施形態では、被覆層を反応晶析法にて形成する場合について例示した。しかしこれに限らず、被覆層の形成には、コバルト化合物とイットリウム化合物とが均一に分布する被覆層を形成することができるのであれば反応晶析法以外の公知の方法を用いることができる。これにより、アルカリ蓄電池用正極活物質の製造自由度の向上が図られるようになる。   -In the said embodiment, it illustrated about the case where a coating layer is formed by the reaction crystallization method. However, the present invention is not limited to this, and a known method other than the reaction crystallization method can be used for forming the coating layer as long as the coating layer in which the cobalt compound and the yttrium compound are uniformly distributed can be formed. Thereby, the improvement of the manufacturing freedom of the positive electrode active material for alkaline storage batteries comes to be achieved.

・上記実施形態では、ニッケル水素蓄電池は自動車の電源として用いられる場合について例示した。しかしこれに限らず、ニッケル水素蓄電池は、電源が必要なものであれば、自動車以外の電源として用いてもよい。これにより、アルカリ蓄電池用正極活物質、及びアルカリ蓄電池用正極の適用範囲の拡大が図られるようになる。   -In the said embodiment, the nickel hydride storage battery illustrated about the case where it is used as a power supply of a motor vehicle. However, the present invention is not limited to this, and the nickel-metal hydride storage battery may be used as a power source other than an automobile as long as it requires a power source. Thereby, the application range of the positive electrode active material for alkaline storage batteries and the positive electrode for alkaline storage batteries is expanded.

A1,A2,A3…グラフ、B1,B2,B3,B4,B5,B6…点。   A1, A2, A3 ... graph, B1, B2, B3, B4, B5, B6 ... points.

Claims (5)

ニッケルを主成分とする水酸化ニッケル粒子を備えるアルカリ蓄電池用正極活物質であって、
前記水酸化ニッケル粒子の表面を被覆する層としてコバルト及びイットリウムを含む被覆層を備え、
前記被覆層に含まれるイットリウムは、酸化イットリウム(Y)で表して前記水酸化ニッケル粒子100重量%に対して、1重量%以上、かつ、2重量%以下であり、CuKα線を使用するX線回折の「2θ=16.5°〜21.5°」付近に位置する(001)面のピークの半価幅が、「0.6°」以上、かつ、「0.8°」以下である
ことを特徴とするアルカリ蓄電池用正極活物質。
A positive electrode active material for an alkaline storage battery comprising nickel hydroxide particles mainly composed of nickel,
A coating layer containing cobalt and yttrium as a layer covering the surface of the nickel hydroxide particles;
The yttrium contained in the coating layer is expressed by yttrium oxide (Y 2 O 3 ) and is 1% by weight or more and 2% by weight or less with respect to 100% by weight of the nickel hydroxide particles, and uses CuKα rays. The half width of the peak on the (001) plane located in the vicinity of “2θ = 16.5 ° to 21.5 °” of X-ray diffraction is “0.6 °” or more and “0.8 °” A positive electrode active material for an alkaline storage battery, characterized by:
請求項1に記載のアルカリ蓄電池用正極活物質において、
当該アルカリ蓄電池用正極活物質の平均粒径は5μm以上、かつ、20μm以下である
ことを特徴とするアルカリ蓄電池用正極活物質。
In the positive electrode active material for alkaline storage batteries according to claim 1,
The average particle size of the positive electrode active material for alkaline storage batteries is 5 μm or more and 20 μm or less.
前記被覆層は、コバルトとイットリウムとの同時晶出により形成される
請求項1又は2に記載のアルカリ蓄電池用正極活物質。
The positive electrode active material for an alkaline storage battery according to claim 1, wherein the coating layer is formed by simultaneous crystallization of cobalt and yttrium.
前記同時晶出は、反応晶析法による晶出である
請求項3に記載のアルカリ蓄電池用正極活物質。
The positive electrode active material for an alkaline storage battery according to claim 3, wherein the simultaneous crystallization is crystallization by a reactive crystallization method.
ニッケルを主成分とする水酸化ニッケル粒子をアルカリ蓄電池用活物質として含むアルカリ蓄電池用正極であって、
前記アルカリ蓄電池用活物質として、請求項1〜4のいずれか一項に記載のアルカリ蓄電池用活物質を用いた
ことを特徴とするアルカリ蓄電池用正極。
A positive electrode for an alkaline storage battery comprising nickel hydroxide particles mainly composed of nickel as an active material for an alkaline storage battery,
The positive electrode for alkaline storage batteries, wherein the alkaline storage battery active material according to any one of claims 1 to 4 is used as the alkaline storage battery active material.
JP2013055988A 2013-03-19 2013-03-19 Positive electrode active material for alkali storage batteries, and positive electrode for alkali storage batteries Pending JP2014182906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055988A JP2014182906A (en) 2013-03-19 2013-03-19 Positive electrode active material for alkali storage batteries, and positive electrode for alkali storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013055988A JP2014182906A (en) 2013-03-19 2013-03-19 Positive electrode active material for alkali storage batteries, and positive electrode for alkali storage batteries

Publications (1)

Publication Number Publication Date
JP2014182906A true JP2014182906A (en) 2014-09-29

Family

ID=51701430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013055988A Pending JP2014182906A (en) 2013-03-19 2013-03-19 Positive electrode active material for alkali storage batteries, and positive electrode for alkali storage batteries

Country Status (1)

Country Link
JP (1) JP2014182906A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349353A (en) * 1991-05-27 1992-12-03 Yuasa Corp Nickel electrode active mass for alkali storage battery
JPH1021909A (en) * 1996-07-03 1998-01-23 Sanyo Electric Co Ltd Non-sintered nickel electrode for alkaline storage battery
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP2004071304A (en) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd Positive active material for alkaline storage battery, positive electrode and alkaline storage battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349353A (en) * 1991-05-27 1992-12-03 Yuasa Corp Nickel electrode active mass for alkali storage battery
JPH1021909A (en) * 1996-07-03 1998-01-23 Sanyo Electric Co Ltd Non-sintered nickel electrode for alkaline storage battery
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP2004071304A (en) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd Positive active material for alkaline storage battery, positive electrode and alkaline storage battery using the same

Similar Documents

Publication Publication Date Title
CN103457001B (en) Alkaline storage battery
JP2012023049A (en) Composite positive electrode material and its manufacturing method
JP5686700B2 (en) Positive electrode active material for alkaline storage battery, method for producing positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, and alkaline storage battery
US9882203B2 (en) Alkaline battery and method for manufacturing alkaline battery
JP6094902B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP2000113904A (en) Alkaline storage battery
JP2012204177A (en) Cobalt-free alkaline secondary battery
JP2000003706A (en) Positive electrode and positive electrode active material for alkaline storage battery
JP5629187B2 (en) Positive electrode for alkaline storage battery and method for producing the same
JP4573510B2 (en) Alkaline storage battery and battery pack
CN106104856B (en) Non-aqueous electrolyte secondary battery
WO2014049966A1 (en) Cathode active material for alkaline storage battery, alkaline storage battery and alkaline storage battery cathode containing same, and nickel-hydrogen storage battery
JP5853799B2 (en) Alkaline storage battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2014182906A (en) Positive electrode active material for alkali storage batteries, and positive electrode for alkali storage batteries
WO2015019647A1 (en) Nickel-metal hydride storage battery
JP2021086834A (en) Positive electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
KR102028849B1 (en) Positive electrode active material and alkaline battery
JP5735334B2 (en) Positive electrode for alkaline storage battery, method for producing positive electrode for alkaline storage battery, alkaline storage battery, and method for producing alkaline storage battery
WO2012014895A1 (en) Sintered nickel cathode, method of manufacturing same, and alkaline storage battery employing the sintered nickel cathode
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JP2003187805A (en) Nickel/hydrogen storage battery
JP2015028895A (en) Electrolyte for secondary battery using semiconductor and method for manufacturing electrolyte for secondary battery using semiconductor
JP2015028897A (en) Positive electrode of secondary battery using semiconductor
JP2015028898A (en) Collector for secondary battery using semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206