JP2014173025A - Hydrogenation purification method for vacuum gas oil - Google Patents
Hydrogenation purification method for vacuum gas oil Download PDFInfo
- Publication number
- JP2014173025A JP2014173025A JP2013047808A JP2013047808A JP2014173025A JP 2014173025 A JP2014173025 A JP 2014173025A JP 2013047808 A JP2013047808 A JP 2013047808A JP 2013047808 A JP2013047808 A JP 2013047808A JP 2014173025 A JP2014173025 A JP 2014173025A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- gas oil
- vacuum gas
- hydrorefining
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
【課題】高い脱硫活性および脱窒素活性を示す、減圧軽油の水素化精製方法を提供する。
【解決手段】アルミナを含む耐火性無機酸化物に有機溶媒に溶解したチタンアルコキシドを原料としてゾルゲル法にてチタンをチタニア換算で耐火性無機酸化物に対して0.5〜15質量%担持した後、乾燥および/または焼成工程を経て調製された担体に、モリブデン、コバルトおよびニッケルからなる活性金属を担持した後、焼成して得られる触媒を用いて、水素気流下で減圧軽油中の硫黄および窒素を除去することを特徴とする減圧軽油の水素化精製方法。
【選択図】なしDisclosed is a hydrorefining method for vacuum gas oil that exhibits high desulfurization activity and denitrification activity.
SOLUTION: After titanium alkoxide dissolved in an organic solvent in a refractory inorganic oxide containing alumina is used as a raw material, titanium is supported in an amount of 0.5 to 15% by mass with respect to the refractory inorganic oxide by titania conversion. The sulfur and nitrogen contained in a vacuum gas oil under a hydrogen gas stream using a catalyst obtained by supporting an active metal composed of molybdenum, cobalt and nickel on a carrier prepared through a drying and / or calcination step, followed by calcination A method for hydrorefining vacuum gas oil, characterized by removing water.
[Selection figure] None
Description
本発明は水素の存在下で減圧軽油中の硫黄および窒素を高度に除去する水素化精製方法に関する。 The present invention relates to a hydrorefining method that highly removes sulfur and nitrogen in vacuum gas oil in the presence of hydrogen.
近年、液体燃料においては、硫黄含有量をより低減させることが要求されている。その要求に対して、国内石油会社では既に様々なクリーン燃料製造法を検討してきた。特にガソリンにおいては硫黄分10ppm以下の規制があるため、石油会社では触媒の改良や設備の増設等の対応策を採ってきた。
一般に、ガソリンの主基材は流動接触分解装置(FCC)で生成する分解ガソリンである。したがって、ガソリン中の硫黄分を低減するためには、分解ガソリン中の硫黄分を低減することが重要である。
分解ガソリン中の硫黄分はFCCの原料である減圧軽油中の硫黄分に依存し、減圧軽油中の硫黄分が多いほど、分解ガソリン中の硫黄分も高くなることが知られている。したがって、硫黄分が低いクリーンなガソリンを製造するためには、FCCの原料である減圧軽油中の硫黄分をあらかじめ高度に除去する必要がある。
通常、減圧軽油を脱硫するための水素化精製処理装置(FCCの前処理)では、水素化精製用触媒を充填した固定床反応塔にて、水素気流中、高温高圧の反応条件で減圧軽油を水素化精製する処理が行なわれる。水素化精製用触媒としては、アルミナ等の担体にモリブテンやコバルト等の活性金属が担持されたものが広く使用されている。
減圧軽油の水素化精製における脱硫活性は、担体の種類、活性金属の種類や量に影響を受けることが知られている。例えば、非特許文献1には、担体(アルミナまたはシリカ)および活性金属(モリブテンまたはモリブテンとコバルトの混合)の影響が開示されている。また、非特許文献2には、担体としてジルコニアやチタニアを用い、活性金属としてニッケルやタングステンを用いた触媒の脱硫活性について開示されている。更に特許文献1にはアルミナにシリカやボリアを添加した担体を用いる事で触媒活性(脱硫および脱窒素)が向上することが開示されている。
In recent years, liquid fuels have been required to further reduce the sulfur content. In response to this demand, domestic oil companies have already considered various clean fuel production methods. In particular, gasoline has a sulfur content of 10 ppm or less, so oil companies have taken measures such as improving the catalyst and adding equipment.
In general, the main base material of gasoline is cracked gasoline produced by a fluid catalytic cracker (FCC). Therefore, in order to reduce the sulfur content in gasoline, it is important to reduce the sulfur content in cracked gasoline.
It is known that the sulfur content in cracked gasoline depends on the sulfur content in the vacuum gas oil that is the raw material of FCC, and the sulfur content in the cracked gasoline increases as the sulfur content in the vacuum gas oil increases. Therefore, in order to produce clean gasoline having a low sulfur content, it is necessary to highly remove in advance the sulfur content in the vacuum gas oil that is the raw material of FCC.
Normally, hydrorefining equipment (FCC pretreatment) for desulfurizing vacuum gas oil is used in a fixed-bed reaction tower packed with a hydrotreating catalyst in a hydrogen stream under high-temperature and high-pressure reaction conditions. A hydrorefining treatment is performed. As hydrorefining catalysts, catalysts in which an active metal such as molybdenum or cobalt is supported on a carrier such as alumina are widely used.
It is known that the desulfurization activity in hydrorefining of vacuum gas oil is affected by the type of carrier and the type and amount of active metal. For example, Non-Patent Document 1 discloses the influence of a support (alumina or silica) and an active metal (molybten or a mixture of molybten and cobalt). Non-Patent Document 2 discloses desulfurization activity of a catalyst using zirconia or titania as a support and nickel or tungsten as an active metal. Further, Patent Document 1 discloses that catalytic activity (desulfurization and denitrogenation) is improved by using a support obtained by adding silica or boria to alumina.
ところで、減圧軽油の水素化精製用触媒には、高い脱硫活性に加えて、高い脱窒素活性も要求される。これは、FCCで使用される触媒が窒素を含んだ化合物により被毒を受けて、分解ガソリン収率が低下するためである。しかしながら、長年の研究、改良にもかかわらず、脱硫活性だけでなく、脱窒素活性も高い水素化精製用触媒はいまだに知られていないのが実情であった。 By the way, in addition to high desulfurization activity, high denitrogenation activity is required for the catalyst for hydrorefining of vacuum gas oil. This is because the catalyst used in FCC is poisoned by a compound containing nitrogen, and the yield of cracked gasoline is lowered. However, despite many years of research and improvement, the actual situation is that a catalyst for hydrorefining not only having high desulfurization activity but also high denitrogenation activity is still unknown.
本発明の目的は、脱硫活性および脱窒素活性の両方に優れた減圧軽油の水素化精製用触媒を製造し、それを用いることにより硫黄分および窒素分を高度に除去できる減圧軽油の水素化精製方法を提供することにある。 The object of the present invention is to produce a catalyst for hydrorefining of vacuum gas oil that is excellent in both desulfurization activity and denitrogenation activity, and to use it for hydrorefining of vacuum gas oil that can highly remove sulfur and nitrogen It is to provide a method.
本発明者らは鋭意検討した結果、アルミナを含む耐火性無機酸化物に特定のチタン化合物を原料としてゾルゲル法にてチタンを担持した担体を得、該担体に特定の活性金属を担持した触媒を用いることで、上述の課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have obtained a carrier supporting titanium by a sol-gel method using a specific titanium compound as a raw material for a refractory inorganic oxide containing alumina, and a catalyst supporting a specific active metal on the carrier. By using it, it discovered that the above-mentioned subject could be solved and came to complete this invention.
すなわち、本発明は、アルミナを含む耐火性無機酸化物に有機溶媒に溶解したチタンアルコキシドを原料としてゾルゲル法にてチタンをチタニア換算で耐火性無機酸化物に対して0.5〜15質量%担持した後、乾燥および/または焼成工程を経て調製された担体に、モリブデン、コバルトおよびニッケルからなる活性金属を担持した後、焼成して得られる触媒を用いて、水素気流下で減圧軽油中の硫黄および窒素を除去することを特徴とする減圧軽油の水素化精製方法に関する。 That is, in the present invention, titanium alkoxide dissolved in an organic solvent in a refractory inorganic oxide containing alumina is used as a raw material, and titanium is supported in an amount of 0.5 to 15% by mass with respect to the refractory inorganic oxide by titania conversion. After that, sulfur in vacuum gas oil under a hydrogen stream is supported under a hydrogen stream using a catalyst obtained by supporting active metal composed of molybdenum, cobalt and nickel on a carrier prepared through drying and / or calcination processes. And a method for hydrorefining vacuum gas oil, characterized by removing nitrogen.
本発明の水素化精製方法により、減圧軽油中の硫黄および窒素を高度に除去することができる。 By the hydrorefining method of the present invention, sulfur and nitrogen in the vacuum gas oil can be highly removed.
以下に本発明を詳述する。 The present invention is described in detail below.
本発明の減圧軽油の水素化精製方法に用いられる触媒は、アルミナを含む耐火性無機酸化物に、有機溶媒に溶解したチタンアルコキシドを原料としてゾルゲル法にてチタンを担持した後、乾燥および/または焼成工程を経て調製された担体に、モリブデン、コバルトおよびニッケルからなる活性金属を担持した後、焼成して得られる触媒である。 The catalyst used in the hydrorefining method of vacuum gas oil of the present invention is a refractory inorganic oxide containing alumina, supported on titanium by a sol-gel method using titanium alkoxide dissolved in an organic solvent as a raw material, and then dried and / or This is a catalyst obtained by carrying an active metal composed of molybdenum, cobalt and nickel on a carrier prepared through a calcining step and calcining it.
アルミナを含む耐火性無機酸化物としては、通常用いられるアルミナを主成分として含む耐火性無機酸化物であれば良く特に制限されないが、アルミナ、シリカ・アルミナなどが挙げられる。特に、シリカを3〜20質量%、好ましくは5〜15質量%含んだシリカ−アルミナ複合酸化物を用いると本発明の効果が大きいため好ましい。シリカが3質量%未満または20質量%を超えると最終的に得られた触媒の脱硫性能が低下する傾向にあるので好ましくない。 The refractory inorganic oxide containing alumina is not particularly limited as long as it is a refractory inorganic oxide mainly containing alumina as a main component, and examples thereof include alumina and silica / alumina. In particular, it is preferable to use a silica-alumina composite oxide containing 3 to 20% by mass, preferably 5 to 15% by mass of silica, because the effect of the present invention is great. If the silica content is less than 3% by mass or more than 20% by mass, the desulfurization performance of the finally obtained catalyst tends to deteriorate, which is not preferable.
触媒担体は、アルミナを含む耐火性無機酸化物に、有機溶媒に溶解したチタンアルコキシドを原料としてゾルゲル法にてチタンを担持した後、乾燥および/または焼成工程を経て調製される。
すなわち、本発明におけるチタンの担持は、従来のチタン含有水溶液を用いた含浸法または共沈法とは異なり以下のように行う必要がある。
The catalyst carrier is prepared through a drying and / or firing step after supporting titanium by a sol-gel method using a titanium alkoxide dissolved in an organic solvent as a raw material in a refractory inorganic oxide containing alumina.
In other words, the titanium loading in the present invention must be performed as follows, unlike the conventional impregnation method or coprecipitation method using a titanium-containing aqueous solution.
チタンを担持するためのチタン原料は、有機溶媒に溶解したチタンアルコキシドに限定される。チタンアルコキシドは一般式Ti(OR)4(ここで、Rはアルキル基を示す。)で表れる化合物であり、特に限定されないが、炭素数1〜8のアルキル基を有するチタンアルコキシドが好ましい。炭素数が8を超えると所定量のチタンを担持するのに必要な時間が長くなり、製造効率が低下する傾向にある。Rとしては、例えばメチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基などを挙げることができる。 The titanium raw material for supporting titanium is limited to titanium alkoxide dissolved in an organic solvent. The titanium alkoxide is a compound represented by the general formula Ti (OR) 4 (where R represents an alkyl group), and is not particularly limited, but a titanium alkoxide having an alkyl group having 1 to 8 carbon atoms is preferred. When the number of carbon atoms exceeds 8, the time required to support a predetermined amount of titanium becomes longer, and the production efficiency tends to be lowered. Examples of R include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, and an isobutyl group.
チタンアルコキシドを溶解する有機溶媒は特に限定されるものではないが、具体的にはエタノール、プロパノール、イソプロパノール、ブタノールなどのアルコール類、ジメチルエーテル、ジエチルエーテルなどのエーテル類、ヘキサン、トルエンなどの炭化水素類を挙げることができる。この中でも、価格の観点またはチタンアルコキシドの反応性制御の点からエタノールおよびヘキサンが好ましい。 The organic solvent for dissolving the titanium alkoxide is not particularly limited. Specifically, alcohols such as ethanol, propanol, isopropanol and butanol, ethers such as dimethyl ether and diethyl ether, and hydrocarbons such as hexane and toluene. Can be mentioned. Among these, ethanol and hexane are preferable from the viewpoint of cost or the reactivity control of titanium alkoxide.
有機溶媒に溶解したチタンアルコキシドは、ゾルゲル法にてアルミナを含む耐火性無機酸化物へ担持される。
具体的には、アルミナを含む耐火性無機酸化物を、チタンアルコキシドを溶解した非水溶液にその全体が浸るように入れ、0.5時間〜24時間程度放置する。この時、超音波照射を行うことで所定量のチタンを担持するのに必要な放置時間を短縮することができる。
なお、この時用いられる耐火性無機酸化物は成型体であれば、その形状および長さは制限されることなく使用できる。ただし、アルミナを含む耐火性無機酸化物(成型体)の平均細孔径は60〜180Åであることが好ましい。60Å未満では減圧軽油中の硫黄化合物が触媒の細孔に入りにくくなり、また180Åを超えると表面積が小さくなるため活性金属が凝集し易くなり、結果として脱硫性能が低下する傾向にある。
なお、耐火性無機酸化物の平均細孔径は水銀圧入法により測定したものであり、水銀の表面張力480dyne/cm、接触角150°を用いて計算した値である。
Titanium alkoxide dissolved in an organic solvent is supported on a refractory inorganic oxide containing alumina by a sol-gel method.
Specifically, a refractory inorganic oxide containing alumina is placed so that the whole is immersed in a non-aqueous solution in which titanium alkoxide is dissolved, and left for about 0.5 to 24 hours. At this time, it is possible to shorten the standing time required to carry a predetermined amount of titanium by performing ultrasonic irradiation.
In addition, if the refractory inorganic oxide used at this time is a molded object, the shape and length can be used without restriction. However, the average pore diameter of the refractory inorganic oxide (molded body) containing alumina is preferably 60 to 180 mm. If it is less than 60%, the sulfur compound in the vacuum gas oil hardly enters the pores of the catalyst, and if it exceeds 180%, the surface area becomes small and the active metal tends to aggregate, and as a result, the desulfurization performance tends to decrease.
In addition, the average pore diameter of the refractory inorganic oxide is measured by a mercury intrusion method, and is a value calculated using a mercury surface tension of 480 dyne / cm and a contact angle of 150 °.
所定時間放置した後、溶液をデカンテーションまたは濾過等を行い有機溶媒等の大部分を除去する。その後、担体を通常30〜150℃、好ましくは50〜130℃で0.5〜10時間程度乾燥し、有機溶媒等を完全に除去する。30℃未満では溶媒除去が不十分であり、150℃を超えても溶媒除去効果が小さいので、それぞれ好ましくない。
乾燥後、通常300〜550℃、好ましくは350〜500℃で、空気中にて焼成することで、乾燥のみの場合と比較して高い脱硫活性が得られる。300℃未満または550℃を超えると脱硫活性が低下する傾向にあるので、それぞれ好ましくない。
After standing for a predetermined time, the solution is decanted or filtered to remove most of the organic solvent and the like. Thereafter, the support is usually dried at 30 to 150 ° C., preferably 50 to 130 ° C. for about 0.5 to 10 hours to completely remove the organic solvent and the like. If it is less than 30 degreeC, solvent removal is inadequate, and even if it exceeds 150 degreeC, since the solvent removal effect is small, it is unpreferable, respectively.
After drying, it is usually 300 to 550 ° C., preferably 350 to 500 ° C., and high desulfurization activity can be obtained by baking in air compared with the case of only drying. If it is less than 300 ° C. or exceeds 550 ° C., the desulfurization activity tends to decrease, which is not preferable.
上記のようにして本発明における担体が得られる。担体中のチタンの含有量は、その酸化物(TiO2)換算で0.5〜15質量%であることが好ましい。0.5質量%未満の場合、高い脱硫活性および脱窒素活性が得られにくくなる傾向にあるので好ましくない。また15質量%を超えた場合、脱硫活性が減少する傾向にあると共に、触媒価格が高価になるので好ましくない。 The carrier in the present invention is obtained as described above. The titanium content in the carrier is preferably 0.5 to 15% by mass in terms of its oxide (TiO 2 ). If it is less than 0.5% by mass, it tends to be difficult to obtain high desulfurization activity and denitrification activity, which is not preferable. On the other hand, if it exceeds 15% by mass, the desulfurization activity tends to decrease and the catalyst price becomes expensive.
本発明においては、上記方法にて得られた担体にモリブデン、コバルト、ニッケルの3種類の金属を担持する必要がある。これら活性金属を担持する方法は通常使用される方法であれば良く特に制限されないが、例えば含浸法を挙げることができる。金属成分の担持量はそれぞれ以下の通りである。 In the present invention, it is necessary to support three kinds of metals, molybdenum, cobalt, and nickel, on the support obtained by the above method. The method for supporting these active metals is not particularly limited as long as it is a commonly used method, and examples thereof include an impregnation method. The supported amounts of metal components are as follows.
モリブデンの担持量は、触媒に対し、酸化物(MoO3)換算で、好ましくは10〜25質量%であり、より好ましくは16〜23質量%である。10質量%未満では活性点が不足し、また25質量%を超えるとモリブデンが凝集し易くなり、結果として脱硫活性および脱窒素活性が低下する傾向にあるので好ましくない。
コバルトの担持量は、触媒に対し、酸化物(CoO)換算で、好ましくは0.5〜6.0質量%であり、より好ましくは1.5〜5.0質量%である。0.5質量%未満、または6.0質量%を超えると、脱硫活性および脱窒素活性が低下する傾向にある。
ニッケルの担持量は、触媒に対し、酸化物(NiO)換算で、好ましくは0.2〜4.0質量%であり、より好ましくは0.5〜2.5質量%である。0.2質量%未満では脱窒素活性が著しく低下し、また4.0質量%を超えると脱硫活性が低下する傾向にある。
The supported amount of molybdenum is preferably 10 to 25% by mass and more preferably 16 to 23% by mass in terms of oxide (MoO 3 ) with respect to the catalyst. If it is less than 10% by mass, the active sites are insufficient, and if it exceeds 25% by mass, molybdenum tends to aggregate, and as a result, desulfurization activity and denitrogenation activity tend to decrease.
The amount of cobalt supported is preferably 0.5 to 6.0% by mass, more preferably 1.5 to 5.0% by mass in terms of oxide (CoO) with respect to the catalyst. When it is less than 0.5% by mass or exceeds 6.0% by mass, the desulfurization activity and the denitrification activity tend to decrease.
The supported amount of nickel is preferably 0.2 to 4.0% by mass, more preferably 0.5 to 2.5% by mass in terms of oxide (NiO) with respect to the catalyst. If it is less than 0.2% by mass, the denitrification activity is remarkably reduced, and if it exceeds 4.0% by mass, the desulfurization activity tends to be reduced.
モリブデン、コバルト、ニッケルは同時に担持しても、別々に担持しても脱硫性能に大きな違いは見られないが、触媒製造コスト削減の観点から同時に担持することが好ましい。 Molybdenum, cobalt and nickel can be supported simultaneously or separately, but no significant difference in desulfurization performance is observed, but it is preferable to support them simultaneously from the viewpoint of reducing catalyst production costs.
また、活性金属とともにリンを担持することで、脱硫性能を向上させることができるので好ましい。リンの担持量はモリブデンに対して0.05〜0.50mol/molが好ましく、より好ましくは0.10〜0.40mol/molである。0.05mol/mol未満または0.50mol/molを超えると脱硫活性および脱窒素活性が減少する傾向にあるので、それぞれ好ましくない。
リンの担持法は特に限定されないが、例えば、活性金属を含浸する溶液にリンの化合物添加し、活性金属と共に担持する方法が好ましく採用される。
In addition, it is preferable to support phosphorus together with the active metal because desulfurization performance can be improved. The amount of phosphorus supported is preferably 0.05 to 0.50 mol / mol, more preferably 0.10 to 0.40 mol / mol with respect to molybdenum. If it is less than 0.05 mol / mol or more than 0.50 mol / mol, the desulfurization activity and the denitrification activity tend to decrease, which is not preferable.
The method for supporting phosphorus is not particularly limited. For example, a method of adding a phosphorus compound to a solution impregnated with an active metal and supporting it with the active metal is preferably employed.
活性金属担持後は、420〜650℃、好ましくは450〜600℃で、通常1〜3時間、空気中で焼成して担持した金属成分を酸化物へ変換する。420℃未満または650℃を超えると脱硫活性及び脱窒素活性が低下する傾向にあるので、それぞれ好ましくない。 After supporting the active metal, the supported metal component is converted into an oxide by firing in air at 420 to 650 ° C., preferably 450 to 600 ° C., usually for 1 to 3 hours. When the temperature is lower than 420 ° C. or exceeds 650 ° C., the desulfurization activity and the denitrification activity tend to decrease, which is not preferable.
本発明は、上記により製造した触媒を用いて、水素気流下で減圧軽油を水素化精製することにより、減圧軽油中の硫黄および窒素を高度に除去することができる。 The present invention can highly remove sulfur and nitrogen in vacuum gas oil by hydrorefining vacuum gas oil under a hydrogen stream using the catalyst produced as described above.
本発明において減圧軽油とは、沸点が360〜550℃の留分を70容量%以上含んだ留分であって、石油精製における減圧蒸留装置からの留出分やFCC装置で製造されるボトム分(CLO留分)などを挙げる事ができる。その他に、オイルサンド由来の合成原油、石炭液化油、ビチュメン改質油などに由来する油も挙げることができる。 In the present invention, the vacuum gas oil is a fraction containing 70% by volume or more of a fraction having a boiling point of 360 to 550 ° C., and is a distillate from a vacuum distillation apparatus in petroleum refining or a bottom fraction produced by an FCC apparatus. (CLO fraction). In addition, oil derived from synthetic oil derived from oil sand, coal liquefied oil, bitumen reformed oil, and the like can also be mentioned.
本発明における減圧軽油の水素化精製は、通常用いられる方法であれば良く特に制限されるものではなく、例えば固定床反応装置に触媒を充填、さらに予備硫化処理をした後に、水素雰囲気下、高温高圧条件で行う方法が挙げられる。 The hydrorefining of vacuum gas oil in the present invention is not particularly limited as long as it is a commonly used method. For example, a fixed bed reactor is charged with a catalyst and further subjected to preliminary sulfidation, and then heated under a hydrogen atmosphere at a high temperature. Examples include a method performed under high pressure conditions.
予備硫化処理は、従来より製油精製で実施されている定法で行う事ができる。即ち、反応装置に充填された触媒を200〜350℃の範囲にて、水素気流下で硫化水素ガス、ジメチルジスルフィドまたは直留軽油など硫黄を含んだ化合物を用いて金属成分を酸化物から硫化物へと変換する。 The preliminary sulfidation treatment can be performed by a conventional method that has been conventionally practiced in refinery. That is, the catalyst charged in the reactor is converted from an oxide to a sulfide using a compound containing sulfur such as hydrogen sulfide gas, dimethyl disulfide or straight-run gas oil in a hydrogen stream in the range of 200 to 350 ° C. Convert to.
減圧軽油の水素化精製における反応温度は通常300〜420℃である。300℃未満では脱硫活性および脱窒素活性が著しく低下する傾向にあり実用的でない。また420℃を超えると触媒劣化が顕著になると共に、反応装置の耐熱温度(通常約425℃)に近づく為、好ましくない。 The reaction temperature in hydrorefining of vacuum gas oil is usually 300 to 420 ° C. If it is less than 300 ° C., the desulfurization activity and the denitrification activity tend to be remarkably lowered, which is not practical. Moreover, when it exceeds 420 degreeC, since catalyst deterioration will become remarkable and it will approach the heat-resistant temperature (usually about 425 degreeC) of a reaction apparatus, it is unpreferable.
減圧軽油の水素化精製における反応圧力(水素分圧)は3〜15MPaであることが好ましく、より好ましくは5〜10MPaである。3MPa未満では脱硫活性および脱窒素活性が著しく低下する傾向にあり、また15MPaを超えると水素消費が大きくなり運転コストが増加するので好ましくない。 The reaction pressure (hydrogen partial pressure) in hydrorefining of vacuum gas oil is preferably 3 to 15 MPa, more preferably 5 to 10 MPa. If it is less than 3 MPa, desulfurization activity and denitrogenation activity tend to decrease remarkably, and if it exceeds 15 MPa, hydrogen consumption increases and the operating cost increases, which is not preferable.
減圧軽油の水素化精製における液空間速度は特に制限されないが、0.2〜4.0h−1であることが好ましく、より好ましくは0.5〜3.5h−1である。0.2h−1未満では処理量が低いので生産性が低くなり実用的ではない。また4.0h−1を超えると反応温度が高くなり、触媒劣化が速くなるので好ましくない。 Liquid hourly space velocity in the hydrogenation refining of vacuum gas oil is not particularly restricted, it is preferably 0.2~4.0H -1, more preferably 0.5~3.5h -1. If it is less than 0.2h- 1 , the throughput is low, so the productivity is low and it is not practical. On the other hand, if it exceeds 4.0 h −1 , the reaction temperature becomes high and the catalyst deterioration is accelerated.
減圧軽油の水素化精製における水素/油比は150〜600Nm3/kLであることが好ましく、より好ましくは200〜400Nm3/kLである。水素/油比が150Nm3/kL未満では脱硫活性が低下するので好ましくない。また600Nm3/kLを超えても脱硫活性および脱窒素活性に大きな変化がなく、運転コストが増加するだけなので好ましくない。 Preferably a hydrogen / oil ratio in hydrotreating of vacuum gas oil is 150 to 600 nm 3 / kL, and more preferably from 200 to 400 nm 3 / kL. A hydrogen / oil ratio of less than 150 Nm 3 / kL is not preferable because desulfurization activity is reduced. Further, if it exceeds 600 Nm 3 / kL, there is no significant change in desulfurization activity and denitrification activity, which is not preferable because it only increases the operating cost.
以下に実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.
[触媒aの調製]
塩基性アルミニウム塩水溶液と酸性アルミニウム塩水溶液とを中和して得られたアルミナ水和物スラリー(Al2O3換算で3kg)を洗浄して副生塩を除去し、得られたアルミナ水和物をpH10.5に調整し、95℃で10時間熟成した。熟成終了後のスラリーを脱水し、所定の水分量までニーダーで濃縮捏和し、アルミナ捏和物を得た。得られたアルミナ捏和物に硝酸190gを添加し、再度所定の水分量まで濃縮捏和した後、1.8mmの円柱形状に成型し110℃で乾燥した。乾燥した成型品は550℃の温度で3時間焼成し、アルミナを得た。
アルミナの平均細孔径を測定すると100Åであった。本発明での平均細孔径は、水銀圧入法により測定したものであり、水銀の表面張力480dyne/cm、接触角150°を用いて計算した値である。
[Preparation of catalyst a]
(In terms of Al 2 O 3 3 kg) basic aluminum salt solution and the alumina hydrate slurry obtained by neutralizing an acidic aluminum salt aqueous solution was washed with a by-product salts were removed, the obtained alumina hydrate The product was adjusted to pH 10.5 and aged at 95 ° C. for 10 hours. The slurry after completion of aging was dehydrated and concentrated and kneaded with a kneader to a predetermined moisture content to obtain an alumina kneaded product. 190 g of nitric acid was added to the obtained alumina kneaded product, and after concentration and kneading again to a predetermined moisture content, it was molded into a 1.8 mm cylindrical shape and dried at 110 ° C. The dried molded product was fired at a temperature of 550 ° C. for 3 hours to obtain alumina.
The average pore diameter of alumina was measured to be 100 mm. The average pore diameter in the present invention is measured by a mercury intrusion method, and is a value calculated using a surface tension of 480 dyne / cm and a contact angle of 150 °.
上記アルミナ1kgおよびエタノール2Lを5L容器に入れ、10分間超音波照射した。その後、Ti(OiPr)4を300g含むエタノール溶液1.3Lを加え、1分間超音波照射した後、3時間静置した。静置後、デカンテーションによる溶媒除去およびエタノール洗浄を行い、得られた固形物を空気中、120℃で3時間乾燥し、更に480℃で2時間焼成すること事でチタニアを含む担体(チタニア−アルミナ担体)を得た。この担体中のチタニア含有量は4重量%であった。 1 kg of the alumina and 2 L of ethanol were placed in a 5 L container and irradiated with ultrasonic waves for 10 minutes. Thereafter, 1.3 L of an ethanol solution containing 300 g of Ti (OiPr) 4 was added, followed by ultrasonic irradiation for 1 minute, and then allowed to stand for 3 hours. After standing, the solvent was removed by decantation and the ethanol was washed. The obtained solid was dried in air at 120 ° C. for 3 hours, and further calcined at 480 ° C. for 2 hours, whereby a carrier containing titania (titania- Alumina support) was obtained. The titania content in this carrier was 4% by weight.
次いで三酸化モリブデン258g、塩基性炭酸コバルト54g、塩基性炭酸ニッケル12gをイオン交換水で懸濁し、この懸濁液にリンゴ酸85gを加えて溶解させた含浸液を得、前述の担体1kgに噴霧含浸させた。この含浸品を乾燥した後、480℃で1時間焼成して目的の触媒aを得た。この触媒における酸化モリブデン、酸化コバルトおよび酸化ニッケルの担持量は、触媒に対し、それぞれ20重量%、2.5重量%および0.5重量%であった。 Next, 258 g of molybdenum trioxide, 54 g of basic cobalt carbonate, and 12 g of basic nickel carbonate are suspended in ion-exchanged water, and 85 g of malic acid is added to the suspension to dissolve it. Impregnated. The impregnated product was dried and then calcined at 480 ° C. for 1 hour to obtain the desired catalyst a. The supported amounts of molybdenum oxide, cobalt oxide and nickel oxide in this catalyst were 20% by weight, 2.5% by weight and 0.5% by weight, respectively, with respect to the catalyst.
[触媒bの調製]
Ti(OiPr)4を800g使用したこと以外は触媒aと同様の調製を行い、チタニア−アルミナ担体を得た。この担体中のチタニア含有量は10.5重量%であった。
触媒の調製は触媒aと同様にして、触媒bを得た。この触媒における酸化モリブデン、酸化コバルトおよび酸化ニッケルの担持量は、触媒に対し、それぞれ20重量%、2.5重量%および0.5重量%であった。
[Preparation of catalyst b]
A titania-alumina carrier was obtained in the same manner as catalyst a except that 800 g of Ti (OiPr) 4 was used. The titania content in this carrier was 10.5% by weight.
The catalyst was prepared in the same manner as catalyst a to obtain catalyst b. The supported amounts of molybdenum oxide, cobalt oxide and nickel oxide in this catalyst were 20% by weight, 2.5% by weight and 0.5% by weight, respectively, with respect to the catalyst.
[触媒cの調製]
担体として触媒aと同様のチタニア−アルミナ担体を用い、触媒の調製は、三酸化モリブデン228g、塩基性炭酸コバルト54g、塩基性炭酸ニッケル24g、リンゴ酸95gを用いたこと以外は触媒aと同様にして調製を行い、触媒cを得た。この触媒における酸化モリブデン、酸化コバルトおよび酸化ニッケルの担持量は、触媒に対し、それぞれ18重量%、2.5重量%および1.0重量%であった。
[Preparation of catalyst c]
The same titania-alumina carrier as catalyst a was used as the carrier, and the catalyst was prepared in the same manner as catalyst a except that 228 g of molybdenum trioxide, 54 g of basic cobalt carbonate, 24 g of basic nickel carbonate, and 95 g of malic acid were used. And catalyst c was obtained. The supported amounts of molybdenum oxide, cobalt oxide and nickel oxide in this catalyst were 18% by weight, 2.5% by weight and 1.0% by weight, respectively, with respect to the catalyst.
[触媒dの調製]
担体として触媒aと同様のチタニア−アルミナ担体を用い、触媒の調製は、リンゴ酸の代わりにリン酸65gを用いたこと以外は触媒aと同様の調製を行い、触媒dを得た。この触媒における酸化モリブデン、酸化コバルト、酸化ニッケルおよび五酸化リンの担持量は、触媒に対し、それぞれ20重量%、2.5重量%、0.5重量%および3.0重量%であった。
[Preparation of catalyst d]
The same titania-alumina carrier as that of catalyst a was used as the carrier, and the catalyst was prepared in the same manner as catalyst a except that 65 g of phosphoric acid was used instead of malic acid to obtain catalyst d. The supported amounts of molybdenum oxide, cobalt oxide, nickel oxide and phosphorus pentoxide in this catalyst were 20% by weight, 2.5% by weight, 0.5% by weight and 3.0% by weight, respectively, with respect to the catalyst.
[触媒eの調製]
触媒aのアルミナ調製において、アルミナ捏和物に硝酸を添加しなかったこと、市販シリカゾルS−20L(日揮触媒化成製)1.5kgを添加したこと以外は同様の操作を行い、シリカ含有量が10重量%のシリカ−アルミナを得た。アルミナの代わりにこのシリカ−アルミナを用いた以外は触媒aと同様の調製を行い、チタニア−シリカ−アルミナ担体を得た。このチタニア−シリカ−アルミナ担体中のチタニア含有量は4重量%であった。
担体として上記チタニア−シリカ−アルミナ担体を用いた以外は触媒aと同様の調製を行い、触媒eを得た。この触媒における酸化モリブデン、酸化コバルトおよび酸化ニッケルの担持量は、触媒に対し、それぞれ20重量%、2.5重量%および0.5重量%であった。
[Preparation of catalyst e]
In the alumina preparation of catalyst a, the same operation was performed except that nitric acid was not added to the alumina hydrate, and 1.5 kg of commercially available silica sol S-20L (manufactured by JGC Catalysts and Chemicals) was added. 10% by weight of silica-alumina was obtained. A titania-silica-alumina carrier was obtained in the same manner as in catalyst a except that this silica-alumina was used instead of alumina. The titania content in the titania-silica-alumina support was 4% by weight.
A catalyst e was obtained in the same manner as in the catalyst a except that the titania-silica-alumina carrier was used as the carrier. The supported amounts of molybdenum oxide, cobalt oxide and nickel oxide in this catalyst were 20% by weight, 2.5% by weight and 0.5% by weight, respectively, with respect to the catalyst.
[触媒fの調製]
Ti(OiPr)4の代わりにTi(OnBu)4を650g使用し、静置時間を3時間から6時間に変更したこと以外は触媒aと同様の調製を行いチタニア−アルミナ担体を得た。この担体中のチタニア含有量は8.2重量%であった。
触媒の調製は、触媒cと同様の調製を行い、触媒fを得た。この触媒における酸化モリブデン、酸化コバルトおよび酸化ニッケルの担持量は、触媒に対し、それぞれ18重量%、2.5重量%および1.0重量%であった。
[Preparation of catalyst f]
A titania-alumina support was obtained in the same manner as in the catalyst a except that 650 g of Ti (OnBu) 4 was used instead of Ti (OiPr) 4 and the standing time was changed from 3 hours to 6 hours. The titania content in this carrier was 8.2% by weight.
The catalyst was prepared in the same manner as catalyst c to obtain catalyst f. The supported amounts of molybdenum oxide, cobalt oxide and nickel oxide in this catalyst were 18% by weight, 2.5% by weight and 1.0% by weight, respectively, with respect to the catalyst.
[触媒gの調製]
担体として、チタニア−アルミナ担体の代わりにチタニア担持前のアルミナを用いたこと以外は、触媒aと同様の調製を行い、触媒gを得た。この触媒における酸化モリブデン、酸化コバルトおよび酸化ニッケルの担持量は、触媒に対し、それぞれ20重量%、2.5重量%および0.5重量%であった。
[Preparation of catalyst g]
A catalyst g was obtained in the same manner as in the catalyst a except that alumina before supporting titania was used instead of the titania-alumina carrier as the carrier. The supported amounts of molybdenum oxide, cobalt oxide and nickel oxide in this catalyst were 20% by weight, 2.5% by weight and 0.5% by weight, respectively, with respect to the catalyst.
[触媒hの調製]
担体調製において、塩基性アルミニウム塩水溶液を中和する酸溶液として酸性アルミニウム塩水溶液に硫酸チタニル水溶液(チタニア換算で4質量%)を加えた溶液を用いたこと以外は触媒aと同様の調製を行い、チタニア−アルミナ担体を得た。担体中のチタニア含有量は4重量%であった。
触媒の調製は、触媒aと同様の調製を行い、触媒hを得た。この触媒における酸化モリブデン、酸化コバルトおよび酸化ニッケルの担持量は、触媒に対し、それぞれ20重量%、2.5重量%および0.5重量%であった。
[Preparation of catalyst h]
In the carrier preparation, the same preparation as that of the catalyst a was performed except that a solution obtained by adding a titanyl sulfate aqueous solution (4% by mass in terms of titania) to an acidic aluminum salt aqueous solution as an acid solution for neutralizing the basic aluminum salt aqueous solution was used. A titania-alumina support was obtained. The titania content in the carrier was 4% by weight.
The catalyst was prepared in the same manner as catalyst a to obtain catalyst h. The supported amounts of molybdenum oxide, cobalt oxide and nickel oxide in this catalyst were 20% by weight, 2.5% by weight and 0.5% by weight, respectively, with respect to the catalyst.
[触媒iの調製]
担体調製において、アルミナ捏和物に市販のチタニア粉TA−300(富士チタン(株)製)を添加したこと以外は触媒aと同様の調製を行い、チタニア−アルミナ担体を得た。担体中のチタニア含有量は4重量%であった。
触媒の調製は、触媒aと同様の調製を行い、触媒iを得た。この触媒における酸化モリブデン、酸化コバルトおよび酸化ニッケルの担持量は、触媒に対し、それぞれ20重量%、2.5重量%および0.5重量%であった。
[Preparation of catalyst i]
In the carrier preparation, a titania-alumina carrier was obtained in the same manner as catalyst a except that commercially available titania powder TA-300 (Fuji Titanium Co., Ltd.) was added to the alumina kneaded product. The titania content in the carrier was 4% by weight.
The catalyst was prepared in the same manner as catalyst a to obtain catalyst i. The supported amounts of molybdenum oxide, cobalt oxide and nickel oxide in this catalyst were 20% by weight, 2.5% by weight and 0.5% by weight, respectively, with respect to the catalyst.
[触媒jの調製]
担体は触媒aと同じチタニア−アルミナ担体を使用した。塩基性炭酸ニッケルを使用しなかったこと以外は、触媒aと同様の活性金属担持を実施し、触媒jを得た。酸化モリブデンおよび酸化コバルトの触媒に対する担持量は、それぞれ20重量%および2.5重量%であった。
[Preparation of catalyst j]
The same titania-alumina support as catalyst a was used. Except that basic nickel carbonate was not used, active metal loading was carried out in the same manner as catalyst a to obtain catalyst j. The supported amounts of molybdenum oxide and cobalt oxide on the catalyst were 20% by weight and 2.5% by weight, respectively.
[実施例1]
触媒a100mlを固定床反応装置に充填し、H2Sを3容量%含んだ水素気流下、320℃で20時間予備硫化処理を行い、触媒を活性化した。その後、減圧軽油(15℃における密度:0.9266g/ml、硫黄分:2.3重量%、窒素分:1000重量ppm)を通油し、水素気流下、液空間速度2.0h−1、水素分圧6.5MPa、水素油比422Nm3/kL、反応温度340℃、360℃、380℃にて水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Example 1]
100 ml of catalyst a was charged into a fixed bed reactor, and presulfided at 320 ° C. for 20 hours under a hydrogen stream containing 3% by volume of H 2 S to activate the catalyst. Then, vacuum gas oil (density at 15 ° C .: 0.9266 g / ml, sulfur content: 2.3 wt%, nitrogen content: 1000 wt ppm) was passed through, under a hydrogen stream, liquid space velocity 2.0 h −1 , Hydrogenation purification was performed at a hydrogen partial pressure of 6.5 MPa, a hydrogen oil ratio of 422 Nm 3 / kL, and reaction temperatures of 340 ° C., 360 ° C., and 380 ° C. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
[実施例2]
触媒bを用いたこと以外は、実施例1と同様の予備硫化および水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Example 2]
The same preliminary sulfidation and hydrorefining as in Example 1 were carried out except that the catalyst b was used. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
[実施例3]
触媒cを用いたこと以外は、実施例1と同様の予備硫化および水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Example 3]
The same presulfidation and hydrorefining as in Example 1 were carried out except that the catalyst c was used. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
[実施例4]
触媒dを用いたこと以外は、実施例1と同様の予備硫化および水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Example 4]
The same preliminary sulfidation and hydrorefining as in Example 1 were carried out except that the catalyst d was used. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
[実施例5]
触媒eを用いたこと以外は、実施例1と同様の予備硫化および水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Example 5]
The same preliminary sulfidation and hydrorefining as in Example 1 were carried out except that the catalyst e was used. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
[実施例6]
触媒fを用いたこと以外は、実施例1と同様の予備硫化および水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Example 6]
The same preliminary sulfidation and hydrorefining as in Example 1 were carried out except that the catalyst f was used. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
[比較例1]
触媒gを用いたこと以外は、実施例1と同様の予備硫化および水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Comparative Example 1]
The same preliminary sulfidation and hydrorefining as in Example 1 were carried out except that the catalyst g was used. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
[比較例2]
触媒hを用いたこと以外は、実施例1と同様の予備硫化および水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Comparative Example 2]
Presulfidation and hydrorefining were performed in the same manner as in Example 1 except that the catalyst h was used. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
[比較例3]
触媒iを用いたこと以外は、実施例1と同様の予備硫化および水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Comparative Example 3]
Presulfidation and hydrorefining were performed in the same manner as in Example 1 except that the catalyst i was used. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
[比較例4]
触媒jを用いたこと以外は、実施例1と同様の予備硫化および水素化精製を実施した。各反応温度にて得られた生成油の硫黄分を表1に、窒素分を表2に示す。
[Comparative Example 4]
The same preliminary sulfidation and hydrorefining as in Example 1 were carried out except that the catalyst j was used. The sulfur content of the product oil obtained at each reaction temperature is shown in Table 1, and the nitrogen content is shown in Table 2.
以上の結果より、チタンアルコキシドを原料としてゾルゲル法にてチタニアが添加された担体にモリブデン、コバルトおよびニッケルが担持された触媒は、他の方法でチタニアが添加された触媒よりも高い脱硫活性および脱窒素活性を有する事がわかる。更に、担体がシリカを含むとき、または金属担持液にリンが含まれるとき、その効果が大きい事がわかる。 From the above results, a catalyst in which molybdenum, cobalt, and nickel are supported on a support in which titania is added by a sol-gel method using titanium alkoxide as a raw material has higher desulfurization activity and desulfurization than catalysts in which titania is added by other methods. It can be seen that it has nitrogen activity. Furthermore, it can be seen that the effect is great when the support contains silica or when the metal support liquid contains phosphorus.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013047808A JP2014173025A (en) | 2013-03-11 | 2013-03-11 | Hydrogenation purification method for vacuum gas oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013047808A JP2014173025A (en) | 2013-03-11 | 2013-03-11 | Hydrogenation purification method for vacuum gas oil |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014173025A true JP2014173025A (en) | 2014-09-22 |
Family
ID=51694607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013047808A Pending JP2014173025A (en) | 2013-03-11 | 2013-03-11 | Hydrogenation purification method for vacuum gas oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014173025A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016194686A1 (en) * | 2015-05-29 | 2016-12-08 | Jxエネルギー株式会社 | Method for producing hydrotreated oil and method for producing catalytic cracked oil |
JP2017177063A (en) * | 2016-03-31 | 2017-10-05 | Jxtgエネルギー株式会社 | Method for producing hydrorefining catalyst |
JP2017177062A (en) * | 2016-03-31 | 2017-10-05 | Jxtgエネルギー株式会社 | Method for producing hydrotreating catalyst |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5409600A (en) * | 1992-04-13 | 1995-04-25 | Texaco Inc. | Hydrodesulfurization and hydrodenitrogenation over a transition metal oxide aerogel catalyst |
JP2001104790A (en) * | 1999-10-07 | 2001-04-17 | Tonengeneral Sekiyu Kk | Hydrotreating catalyst and method for hydrotreating hydrocarbon oil using the same |
JP2005254141A (en) * | 2004-03-11 | 2005-09-22 | Nippon Oil Corp | Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil |
JP2010222458A (en) * | 2009-03-23 | 2010-10-07 | Jx Nippon Oil & Energy Corp | Hydrorefining method of hydrocarbon oil |
-
2013
- 2013-03-11 JP JP2013047808A patent/JP2014173025A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5409600A (en) * | 1992-04-13 | 1995-04-25 | Texaco Inc. | Hydrodesulfurization and hydrodenitrogenation over a transition metal oxide aerogel catalyst |
JP2001104790A (en) * | 1999-10-07 | 2001-04-17 | Tonengeneral Sekiyu Kk | Hydrotreating catalyst and method for hydrotreating hydrocarbon oil using the same |
JP2005254141A (en) * | 2004-03-11 | 2005-09-22 | Nippon Oil Corp | Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbon oil |
JP2010222458A (en) * | 2009-03-23 | 2010-10-07 | Jx Nippon Oil & Energy Corp | Hydrorefining method of hydrocarbon oil |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016194686A1 (en) * | 2015-05-29 | 2016-12-08 | Jxエネルギー株式会社 | Method for producing hydrotreated oil and method for producing catalytic cracked oil |
JP2017177063A (en) * | 2016-03-31 | 2017-10-05 | Jxtgエネルギー株式会社 | Method for producing hydrorefining catalyst |
JP2017177062A (en) * | 2016-03-31 | 2017-10-05 | Jxtgエネルギー株式会社 | Method for producing hydrotreating catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6506430B2 (en) | Improved resid hydroprocessing catalyst containing titania | |
JP5547923B2 (en) | Heavy oil hydrocracking catalyst and method for hydrotreating heavy oil using the same | |
JP6134334B2 (en) | Silica-containing alumina support, catalyst produced therefrom and method of use thereof | |
WO2011040224A1 (en) | Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method | |
TW201325714A (en) | Hydrogenation catalyst and method for producing same | |
JP2011072928A (en) | Hydrodesulfurization catalyst for hydrocarbon oil and method for manufacturing the same | |
JP5841481B2 (en) | Method for hydrotreating heavy residual oil | |
JP2018167196A (en) | Desulfurization catalyst for hydrocarbon oil and method for producing desulfurization catalyst | |
JP2014173025A (en) | Hydrogenation purification method for vacuum gas oil | |
JP5150540B2 (en) | Hydrorefining method of hydrocarbon oil | |
JP5340101B2 (en) | Hydrorefining method of hydrocarbon oil | |
JP4969754B2 (en) | Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization | |
JP4409996B2 (en) | Process for producing low sulfur catalytic cracking gasoline | |
JP5841480B2 (en) | Method for hydrotreating heavy residual oil | |
JP2011208030A (en) | Method for producing hydrogenated har oil | |
JP5220456B2 (en) | Decomposition method of atmospheric distillation residue oil | |
RU2603776C1 (en) | Method of hydrocracking hydrocarbon material | |
JP2019177356A (en) | Hydrotreating catalyst for heavy hydrocarbon oil, method for producing hydrotreating catalyst for heavy hydrocarbon oil, and hydrotreating method for heavy hydrocarbon oil | |
JP5265426B2 (en) | Hydrorefining catalyst and method for producing the same, and hydrorefining method of hydrocarbon oil | |
JP5031790B2 (en) | Method for producing catalyst for hydrorefining of light oil and hydrorefining method of light oil | |
JP2004083615A (en) | Method for producing low sulfur catalytic cracking gasoline | |
JP5060045B2 (en) | Method for producing catalyst, catalytic cracking catalyst, and method for producing low sulfur catalytic cracking gasoline | |
JP2008266420A (en) | Method for hydrogenating gas oil | |
JP2014173026A (en) | Hydrogenation purification method for light gas oil | |
JP2005169232A (en) | Hydrogenating/desulfurizing catalyst for hydrocarbon oil and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160823 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170307 |