[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014036113A - キャパシタ - Google Patents

キャパシタ Download PDF

Info

Publication number
JP2014036113A
JP2014036113A JP2012176495A JP2012176495A JP2014036113A JP 2014036113 A JP2014036113 A JP 2014036113A JP 2012176495 A JP2012176495 A JP 2012176495A JP 2012176495 A JP2012176495 A JP 2012176495A JP 2014036113 A JP2014036113 A JP 2014036113A
Authority
JP
Japan
Prior art keywords
pore
capacitor
diamino
benzene
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012176495A
Other languages
English (en)
Inventor
Yoshio Hatsushiro
善夫 初代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2012176495A priority Critical patent/JP2014036113A/ja
Priority to PCT/JP2013/071368 priority patent/WO2014024921A1/ja
Priority to CN201380031967.XA priority patent/CN104380409A/zh
Priority to US14/413,390 priority patent/US20150162138A1/en
Priority to CA2880530A priority patent/CA2880530A1/en
Priority to EP13827796.7A priority patent/EP2884512A1/en
Priority to KR20157005778A priority patent/KR20150041053A/ko
Priority to TW102128463A priority patent/TW201419329A/zh
Publication of JP2014036113A publication Critical patent/JP2014036113A/ja
Priority to IN1690DEN2015 priority patent/IN2015DN01690A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】周波数応答速度が高くて、高速で充放電可能なキャパシタを提供することを目的としている。
【解決手段】炭素材料を含む分極性電極と、電解液とを備え、且つ、上記電解液として40質量%の硫酸を用いた場合の周波数応答速度が、0.7Hz以上であることを特徴とするものであり、上記炭素材料として、細孔とこの細孔の外郭を構成する炭素質壁とを備え、上記細孔は開気孔で、気孔部分が連続するような構成となっている多孔質炭素が用いられている。
【選択図】図3

Description

本発明はキャパシタに関し、特に、電極材料として多孔質炭素を用いた電気二重層キャパシタに関するものである。
電気エネルギーを蓄えるデバイスとしては、電極での化学反応により電気エネルギーを蓄える二次電池と、電極への電解質イオンの物理的吸着により電気エネルギーを蓄えるキャパシタとがある。このように、キャパシタはイオン分子が電荷を蓄える構成であるため、充放電による劣化は少なく、優れたサイクル特性を示す。このため、各種の電気機器等に用いられている。
ここで、近年の電気機器の発達に伴って、キャパシタを高容量化するという要請があり、高容量化に関する提案が多数なされている(例えば、下記特許文献1参照)。
しかしながら、キャパシタの更なる特性向上や多用途化を図るには、単に高容量化するだけでは不十分である。尚、キャパシタに関する論文で、位相角と周波数との関係を示すボードプロットが記載されているものは存在するが(下記非特許文献1、2参照)、当該文献ではキャパシタの電気化学特性について、十分に考察されていないのが実情である。
特開2010−114356号公報
Electrochimica Acta55(2010)2817-2823 Electrochemistry78 No.11(2010)929-933
そこで本発明者らが鋭意研究したところ、キャパシタの更なる特性向上や多用途化を図るには、周波数応答速度の向上を図る必要があることを見出した。ところが、従来は、キャパシタの周波数応答速度に関する提案はされていなかった。また、上記非特許文献1、2では、キャパシタンス成分についての解析がされているが、キャパシタの周波数応答速度に関して解析されていない。そこで、本発明者が、非特許文献1、2に記載のボードプロットより読み取ったところ、当該キャパシタにおける周波数応答速度は0.05〜0.35Hz程度であった。しかしながら、このような値では周波数応答速度が極めて低く、高速で充放電できないという課題があった。
そこで本発明は、周波数応答速度が高くて、高速で充放電可能なキャパシタを提供することを目的としている。
上記目的を達成するために本発明のキャパシタは、炭素材料を含む分極性電極と、電解液とを備え、且つ、上記電解液として40質量%の硫酸を用いた場合の周波数応答速度が、0.7Hz以上であることを特徴とする。
周波数応答速度が0.7Hz以上であれば、炭素材料の表面でのイオンの吸脱着が迅速になるので、放電時には素早く電流を取り出すことができる一方、充電時には素早く充電を完了することができる。したがって、高速での充放電が可能になる。
尚、電解液として40質量%の硫酸を用いた場合とあるが、当該記載により、本発明の電解液を硫酸に限定するものではない。即ち、電解液として40質量%の硫酸を用いた場合とあるのは、周波数応答速度は電解液の種類により異なるため、どの電解液を用いたのかを明確化する必要性があるからであり、電解液の種類を硫酸に限定する意図から記載したものではない。
上記炭素材料として、細孔とこの細孔の外郭を構成する炭素質壁とを備え、上記細孔は開気孔で、気孔部分が連続するような構成となっている多孔質炭素が用いられていることが望ましい。
上記構成の如く、細孔は開気孔で、気孔部分が連続するような構成となっていれば(炭素質壁の形状という点から表すと、炭素質壁が3次元網目構造を成していれば)、炭素材料内への電解液の拡散が円滑に行われるので、イオンの吸脱着が迅速に行われる。
尚、本明細書においては、細孔の径が2nm以上のものをメソ孔と称することがあり、細孔の径が2nm未満のものをミクロ孔と称することがある。
また、上記細孔とは、3次元網目構造を形成する細孔を示し、例えば鋳型を酸溶液で溶出させた跡に生じた、鋳型材料の大きさがほぼ反映された細孔(メソ孔)を示すものであり、当該細孔の壁面から炭素壁内に生じた細孔(ミクロ孔)は含まれない。更に、本明細書における細孔とは、特に断り書きがある場合を除き、ミクロ孔は含まれない。
上記細孔の径が2nm以上150nm以下であることが望ましい。
細孔径が2nm未満になると、炭素材料内への電解液の拡散が円滑に行われなくなることがある一方、細孔径が150nmを超えると、炭素質壁の形状が保てなくなるからである。
上記細孔の容量は0.2ml/g以上であることが望ましい。
細孔の容量が0.2ml/g未満であると、比表面積を確保することが困難となるからである。尚、細孔の容量は3.0ml/g以下であることが望ましい。炭素質壁が3次元網目構造を保持する必要があるからである。
上記多孔質炭素の比表面積が200m/g以上であることが望ましい。
比表面積が200m/g未満であると、三次元網目構造を形成し難いという問題があり、気孔の形成量が不十分で、炭素材料内への電解液の拡散が悪くなることがある。尚、比表面積の上限は2500m/g以下であることが望ましい。比表面積が2500m/gを超えると、炭素質壁の形状が保てなくなることがあり、細孔を十分形成できない可能性がある。
本発明によれば、周波数応答速度が高くて、高速で充放電可能なキャパシタを提供できるといった優れた効果を奏する。
本発明の製造工程を示す図であって、同図(a)はポリアミック酸樹脂と酸化マグネシウムとを混合した状態を示す説明図、同図(b)は混合物を熱処理した状態を示す説明図、同図(c)は多孔質炭素を示す説明図。 セルA1に用いられている多孔質炭素のTEM(透過電子顕微鏡)写真。 セルA1〜A4、Zにおける周波数と位相角との関係を示すグラフ。 セルA1、A2、A4における複素平面アドミッタンスプロットを示すグラフ。 セルZにおける複素平面アドミッタンスプロットを示すグラフ。
以下、本発明の実施形態を以下に説明する。
電極活物質としての多孔質炭素と、導電助剤と、結着剤とを、溶媒(例えば、水)中で混合して電極スラリーを作製した後、この電極スラリーを集電体に塗布し、更に、乾燥することにより評価用電極を作製する。次いで、この評価用電極を正電極材料に用い、対電極(負極)として例えば白金板を用い、電解液として例えば硫酸水溶液を用いて、電気二重層キャパシタを作製することができる。
本発明の電極活物質に用いる多孔質炭素は、以下のようにして作製できる。先ず、有機質樹脂を含む流動性材料と、アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩等のアルカリ土類金属化合物から成る鋳型粒子とを湿式もしくは乾式混合して混合物を作製する。次に、この混合物を非酸化雰囲気或いは減圧雰囲気の下、例えば500℃以上の温度で炭化させる。最後に、洗浄処理することで鋳型粒子を取り除き、これによって、多孔質炭素を作製できる。このようにして作製した多孔質炭素は、大きさが略同等である多数の細孔を有している。
ここで、鋳型粒子の径や有機質樹脂の種類を変えることによって、細孔径、多孔質炭素の細孔分布、及び、炭素質壁の厚みを調整することができる。したがって、鋳型粒子の径と有機質樹脂の種類とを適宜選択することによって、より均一な細孔径を有し、より大きな細孔容量を有する多孔質炭素を作製することも可能となる。
具体的に、上記有機質樹脂としては、単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドが好ましく用いられる。当該ポリイミドは、酸成分とジアミン成分との重縮合により得ることができる。但し、この場合、酸成分及びジアミン成分のいずれか一方又は両方に、一つ以上の窒素原子もしくはフッ素原子を含む必要がある。
具体的には、ポリイミドの前駆体であるポリアミド酸を成膜し、溶媒を加熱除去することによりポリアミド酸膜を得る。次に、得られたポリアミド酸膜を200℃以上で熱イミド化することによりポリイミドを製造することができる。
前記ジアミンとしては、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン〔2,2−Bis(4−aminophenyl)hexafluoropropane〕、2,2−ビス(トリフルオロメチル)−ベンジジン〔2,2’−Bis(trifluoromethyl)−benzidine〕、4,4’−ジアミノオクタフルオロビフェニルや、3,3’−ジフルオロ−4,4’−ジアミノジフェニルメタン,3,3’−ジフルオロ−4,4’−ジアミノジフェニルエーテル、3,3’−ジ(トリフルオロメチル)−4,4’−ジアミノジフェニルエーテル、3,3’−ジフルオロ−4,4’−ジアミノジフェニルプロパン、3,3’−ジフルオロ−4,4’−ジアミノジフェニルヘキサフルオロプロパン、3,3’−ジフルオロ−4,4’−ジアミノベンゾフェノン、3,3’,5,5’−テトラフルオロ−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラ(トリフルオロメチル)−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラフルオロ−4,4’−ジアミノジフェニルプロパン、3,3’,5,5’−テトラ(トリフルオロメチル)−4,4’−ジアミノジフェニルプロパン、3,3’,5,5’−テトラフルオロ−4,4−ジアミノジフェニルヘキサフルオロプロパン、1,3−ジアミノ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−メチル−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−メトキシ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−2,4,6−トリフロオロー5−(パ−フルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−クロロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−プブロモ−5−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−4−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−4−メチル−5−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−4−メトキシ−5−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−3,4,6−トリフルオロ−5−(パーフルオロノネニルオキシ)ヘンゼン、1,2−ジアミノ−4−クロロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,2一ジアミノ−4−ブロモ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−3−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−2−メチル−5−(パーフルオロノネニルオキシ)ペンセン、1,4−ジアミノ−2−メトキシ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−2,3,6−トリフルオロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−2−クロロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4一ジアミノ−2−プブロモ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−メチル−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−メトキシ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−2,4,6−トリフルオロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−クロロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−ブロモ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−メチル−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−メトキシ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−3,4,6−トリフルオロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−クロロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−ブロモ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−3−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−メチル−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−メトキシ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2,3,6−トリフルオロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−クロロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−プロモ−5−(パーフルオロヘキセニルオキシ)ベンゼンやフッ素原子を含まないp−フェニレンジアミン(PPD)、ジオキシジアニリン等の芳香族ジアミンが例示できる。また、上記ジアミン成分は上記各芳香族ジアミンを2種以上組み合わせて使用してもよい。
一方、酸成分としては、フッ素原子を含む4,4−ヘキサフルオロイソプロピリデンジフタル酸無水物(6FDA)、およびフッ素原子を含まない3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)等が挙げられる。
また、ポリイミド前駆体の溶媒として用いる有機溶媒は、N−メチル−2−ピロリドン、ジメチルホルムアミド等が挙げられる。
イミド化の手法としては公知の方法〔例えば高分子学会編「新高分子実験学」共立出版、1996年3月28日、第3巻高分子の合成・反応(2)158頁参照〕に示されるように、加熱あるいは化学イミド化のどちらの方法に従ってもよく、本発明はこのイミド化の方法には左右されない。
上記ポリイミド以外の樹脂としては、炭素化収率が40質量%以上85質量%以下の樹脂、例えばフェノール樹脂や石油系タールピッチ等を使用できる他、炭素化収率が4質量%以上40質量%以下の有機樹脂であっても十分に使用できる。例えば、このような炭素化収率が低い有機樹脂としては、ポリビニルアルコールや酢酸ビニル、又は、これら2種の樹脂の混合物や、クエン酸カルシウム、クエン酸マグネシウム、クエン酸バリウム、シュウ酸カルシウム、シュウ酸マグネシウム、シュウ酸バリウム、酢酸カルシウム、酢酸マグネシウム、酢酸バリウムやこれら9種の有機酸塩のn水和物(n=1〜10)を使用できる。
尚、鋳型粒子の径は略同径であることが望ましい。鋳型粒子の径が略同径となっていれば、鋳型粒子はマトリックス中(焼成物中)に均一に分散されるので、鋳型粒子間の間隔のバラツキが小さくなる。したがって、炭素質壁の厚みが均一に近い三次元網目構造であって、同一サイズの連続孔が形成される構成となるからである。
また、アルカリ土類金属化合物を鋳型粒子として用いるのは、アルカリ土類金属化合物は弱酸或いはお湯により除去することができる(即ち、強酸を用いることなく鋳型粒子を取り除くことができる)ので、鋳型粒子を除去するステップにおいて、多孔質炭素自体の性状が変化するのを抑制することができるからである。尚、弱酸を用いた場合には、除去スピードが早くなるという利点がある一方、お湯を用いた場合には、酸が残留して不純物となるという不都合を防止できるという利点がある。また、鋳型粒子を除去するステップにおいて、溶出した酸化物溶液は再び原料として使用が可能であり、多孔質炭素の製造コストを低減できる。
更に、前記混合物の炭化は、非酸化雰囲気或いは減圧雰囲気で、500℃以上、1500℃以下の温度で行うことが好ましい。高炭素収率の樹脂は高分子であるため、500℃未満では炭素化が不十分で細孔の発達が十分でない場合がある一方、1500℃以上では収縮が大きく、酸化物が焼結し粗大化するため、細孔のサイズが小さくなって比表面積が小さくなるからである。非酸化性雰囲気とは、アルゴン雰囲気或いは窒素雰囲気等であり、減圧雰囲気とは133Pa(1torr)以下の雰囲気である。
尚、上記多孔質炭素の嵩密度は0.1g/cc以上1.0g/cc以下であることが望ましい。嵩密度が0.1g/cc未満であると、比表面積を確保することが困難であり、炭素質壁の形状が保てなくなることがある一方、嵩密度が1.0g/cc以下を超えると、三次元網目構造を形成し難く、細孔の形成が不十分となることがある。
また、電解液としては硫酸水溶液に限定するものではなく、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、水酸化ナトリウム、水酸化カリウム等の水系電解液や、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、アセトニトリル等の有機電解液、四フッ化ホウ酸テトラエチルアンモニウム、トリエチルメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、テトラエチルアンモニウムビス(トリフルオロメタンスルホニル)イミド等の一般に電解液として用いられているイオン液体等を用いることができる。
(実施例1)
〔多孔質炭素の作製〕
先ず、図1(a)に示すように、炭素前駆体として有機酸塩n水和物(具体的にはクエン酸マグネシウム9水和物のクエン酸部分)1と、鋳型前駆体としてクエン酸マグネシウム9水和物(和光純薬工業株式会社製の化学用試薬)中のマグネシウム部分を2として出発物質とした。次に、図1(b)に示すように、この出発物質を窒素雰囲気中800℃で1時間熱処理して、有機酸塩を熱分解させることにより炭素質壁3を備えた焼成物を得た。次いで、図1(c)に示すように、得られた焼成物を1mol/lの割合で添加された硫酸水溶液で洗浄して、マグネシウム化合物を略完全に溶出させることにより多数の細孔4を有する多孔質炭素5を得た。尚、図1においては、多孔質炭素5を平面的(模式的)に表しているので、細孔4同士が連通していない(気孔部分が連続していない)ように見えるが、実際には、図2に示すように、細孔は開気孔であって、気孔部分が連続するような構成となっている。
〔電極の作製〕
電極活物質としての上記多孔質炭素と、導電助剤としてのケッチェンブラック(KB)と、結着剤としてのゴム系バインダー(日本ゼオン株式会社製、BM−400)とを、質量比が80:10:10となるように混合して電極スラリーを調製した。具体的には、0.3gの多孔質炭素と、0.0375gのKBとを混合し、一定量の蒸留水(標準品においては2.5ml)を加えて混合することにより混合物を得た後、この混合物にBM−400を0.0375g加えて、速やかに混練することで、電極スラリーを調製した。
次いで、この電極スラリーを、80メッシュの白金網に塗布(およそ10×10mm両面に塗布)し、更に、90℃乾燥機内で12時間以上乾燥することにより、評価用電極を作製した。この際、塗布された導電助剤とKBと多孔質炭素との総量は30mg程度であり、電気化学測定前に秤量することで印加する電流密度へ反映させた。
この後、電解夜の調製とセルの組立とを行った。
〔電解夜の調製〕
水系キャパシタの電解夜には、40質量%の硫酸水溶液を用いた。この際、電解液中の溶存酸素の存在は、陽分極させた際、酸素発生反応に対する電流量が重畳する。この結果、精度の良いキャパシタ容量を見積もる妨げになる。そこで、40質量%の硫酸水溶液を40ml採取し、1時間アルゴンバブリングを行うことにより電解液を調製した。尚、バブリングに用いる気体としてはアルゴンに限定するものではなく、窒素を用いても良い。但し、酸素除去能のより高いアルゴンを用いるのが好ましい。
〔セルの組立〕
セルとしては三極式セルを用いた。具体的には、以下のようにして作製した。ガラス容器内に、作用電極と、この作用電極を挟む2枚の対極と、参照電極とを配置した。上記作用電極としては上述の評価用電極を用い、上記対極としては150メッシュの白金網を用い、上記参照電極としてはAg/AgCl電極を用いた。次に、これを、真空ポンプを用いて0.02MPaまで真空引きした後、上記バブリング処理後の電解液をセル内に導入し、更に1時間以上真空引きを続けることにより、電極の脱気を完了させた。これにより三極式セルを完成させた。
このようにして作製したセルを、以下、セルA1と称する。
(実施例2)
出発物質をクエン酸マグネシウムとし、且つ、熱処理温度を1000℃として多孔質炭素を作製した以外は、上記実施例1と同様にしてセルを作製した。
このようにして作製したセルを、以下、セルA2と称する。
(実施例3)
出発物質をクエン酸マグネシウムとして多孔質炭素を作製した以外は、上記実施例1と同様にしてセルを作製した。
このようにして作製したセルを、以下、セルA3と称する。
(実施例4)
熱処理温度を1000℃として多孔質炭素を作製した以外は、上記実施例1と同様にしてセルを作製した。
このようにして作製したセルを、以下、セルA4と称する。
(比較例)
炭素材料として、多孔質炭素に代えて一般にキャパシタ用炭素材料として評価されている活性炭(クラレケミカル株式会社製、YP−17)を用いた以外は、上記実施例1と同様にしてセルを作製した。
このようにして作製したセルを、以下、セルZと称する。
(実験)
上記セルA1〜A4、Zに用いた炭素材料について、比表面積(BET比表面積)と、メソ孔容量と、メソ孔径とを求めたので、その結果を表1に示す。尚、上記比表面積は、吸着等温線の結果からBET法を用いて算出した。また、メソ孔容量はBET法から求め、メソ孔径はBJH(Berret−Joyner−Halenda)法で求めた。
更に、上記セルA1〜A4、Zのキャパシタ応答周波数と遷移周波数とを調べたので、その結果を表1、図3〜図5に示す。電気化学測定の機器には、ソーラトロン1287、1255B(株式会社東陽テクニカ製)を用いた。具体的な測定は、定電圧インピーダンス測定法を用い、浸漬電位に対して、5mVの交流電圧を100000〜0.1Hzの周波数領域で測定した。
ここで、上記キャパシタ応答周波数とは、図3の−45°における周波数、及び、図4及び図5においてY’の値=Y”の値となる場合の周波数であって、キャパシタの充電が完了する周波数に相当する。また、遷移周波数とは、図4及び図5で描かれている2つの山(両図において、左の山は低周波領域、右の山は高周波領域)の境界の周波数に相当し、物質移動律速からキャパシタ的挙動への応答周波数としてとらえることができる。尚、キャパシタ応答周波数の値が高いほど、充電がすばやく完了することが期待でき、遷移周波数の値が高いほど、多孔質炭素内に存在する細孔内を速やかに電解液が拡散することを示していると捉えることができる。
Figure 2014036113
表1、図3〜図5から明らかなように、キャパシタZでは、周波数応答速度が0.37Hzであって、低くなっているのに対して、キャパシタA1〜A4では、周波数応答速度が0.80〜1.15Hzであって、高くなっていることが認められる。したがって、キャパシタA1〜A4はキャパシタZに比較して、充電がすばやく完了することがわかる。
また、キャパシタZでは、遷移周波数が100Hzであって、低くなっているのに対して、キャパシタA1〜A4では、周波数応答速度が200〜300Hzであって、高くなっていることが認められる。したがって、キャパシタA1〜A4はキャパシタZに比較して、電極に形成された細孔内への電解液の拡散速度が高くなることがわかる。
更に、キャパシタZはキャパシタA1〜A4に比べて比表面積が大きいものの、メソ孔が算出できない程度しか存在しておらず、その結果、メソ孔容量も格段に小さくなっている。したがって、キャパシタZはキャパシタA1〜A4と比較して、メソ孔容量が小さいことにより、同じ電解液を用いた場合においても時定数が2倍劣る。
本発明はキャパシタの電極材料等として用いることができる。
1:ポリアミック酸樹脂(イミド系樹脂)
2:酸化マグネシウム
3:炭素質壁
4:細孔
5:多孔質炭素

Claims (5)

  1. 炭素材料を含む分極性電極と、
    電解液と、
    を備え、且つ、上記電解液として40質量%の硫酸を用いた場合の周波数応答速度が、0.7Hz以上であることを特徴とするキャパシタ。
  2. 上記炭素材料として、細孔とこの細孔の外郭を構成する炭素質壁とを備え、上記細孔は開気孔で、気孔部分が連続するような構成となっている多孔質炭素が用いられている、請求項1に記載のキャパシタ。
  3. 上記細孔の径が2nm以上150nm以下である、請求項2に記載のキャパシタ。
  4. 上記細孔の容量は0.2ml/g以上である、請求項2又は3に記載のキャパシタ。
  5. 上記多孔質炭素の比表面積が200m/g以上である、請求項2〜4の何れか1項に記載のキャパシタ。
JP2012176495A 2012-08-08 2012-08-08 キャパシタ Pending JP2014036113A (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012176495A JP2014036113A (ja) 2012-08-08 2012-08-08 キャパシタ
PCT/JP2013/071368 WO2014024921A1 (ja) 2012-08-08 2013-08-07 キャパシタ
CN201380031967.XA CN104380409A (zh) 2012-08-08 2013-08-07 电容器
US14/413,390 US20150162138A1 (en) 2012-08-08 2013-08-07 Capacitor
CA2880530A CA2880530A1 (en) 2012-08-08 2013-08-07 Capacitor
EP13827796.7A EP2884512A1 (en) 2012-08-08 2013-08-07 Capacitor
KR20157005778A KR20150041053A (ko) 2012-08-08 2013-08-07 커패시터
TW102128463A TW201419329A (zh) 2012-08-08 2013-08-08 電容器
IN1690DEN2015 IN2015DN01690A (ja) 2012-08-08 2015-02-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176495A JP2014036113A (ja) 2012-08-08 2012-08-08 キャパシタ

Publications (1)

Publication Number Publication Date
JP2014036113A true JP2014036113A (ja) 2014-02-24

Family

ID=50068142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176495A Pending JP2014036113A (ja) 2012-08-08 2012-08-08 キャパシタ

Country Status (9)

Country Link
US (1) US20150162138A1 (ja)
EP (1) EP2884512A1 (ja)
JP (1) JP2014036113A (ja)
KR (1) KR20150041053A (ja)
CN (1) CN104380409A (ja)
CA (1) CA2880530A1 (ja)
IN (1) IN2015DN01690A (ja)
TW (1) TW201419329A (ja)
WO (1) WO2014024921A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188722A1 (ja) * 2013-05-22 2014-11-27 パナソニックIpマネジメント株式会社 ナトリウムイオン二次電池用負極活物質、その製造方法およびナトリウムイオン二次電池
JP2016046287A (ja) * 2014-08-20 2016-04-04 株式会社リコー 非水電解液蓄電素子
WO2016143675A1 (ja) * 2015-03-06 2016-09-15 学校法人東京理科大学 マグネシウム二次電池及び充放電方法
JP2017092000A (ja) * 2015-11-17 2017-05-25 株式会社リコー 非水電解液蓄電素子
JP2017142955A (ja) * 2016-02-09 2017-08-17 株式会社リコー 非水電解液蓄電素子
US9825297B2 (en) 2013-05-22 2017-11-21 Panasonic Intellectual Property Management Co., Ltd. Negative-electrode active material for sodium-ion secondary battery, method for manufacturing said negative-electrode active material, and sodium-ion secondary battery
JPWO2017047213A1 (ja) * 2015-09-16 2018-05-17 株式会社リコー 非水電解液蓄電素子
US10211000B2 (en) 2014-09-17 2019-02-19 Toray Industries, Inc. Electrode material for electrochemical capacitor, electrode coating solution for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175014B2 (ja) * 2014-03-12 2017-08-02 東洋炭素株式会社 多孔質炭素及び多孔質炭素を用いた吸着/脱離装置
WO2016132903A1 (ja) * 2015-02-19 2016-08-25 株式会社リコー 非水電解液蓄電素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013394A (ja) * 2006-07-05 2008-01-24 Daido Metal Co Ltd 活性炭およびその製造方法
JP2009537984A (ja) * 2006-05-15 2009-10-29 ドレクセル ユニバーシティ スーパーキャパシタおよびその生成法
JP2010105836A (ja) * 2008-10-29 2010-05-13 Jfe Chemical Corp 電気二重層キャパシタ用活性炭およびその製造方法
WO2010104102A1 (ja) * 2009-03-10 2010-09-16 東洋炭素株式会社 多孔質炭素及びその製造方法
JP2011176043A (ja) * 2010-02-23 2011-09-08 Calgon Carbon Japan Kk 電気二重層キャパシタ用活性炭

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955952B2 (ja) * 2004-07-30 2012-06-20 東洋炭素株式会社 活性炭の製法
JP2010114356A (ja) 2008-11-10 2010-05-20 National Univ Corp Shizuoka Univ 電気化学キャパシタ
JP5678372B2 (ja) * 2009-11-30 2015-03-04 独立行政法人産業技術総合研究所 窒素含有多孔質炭素材料とその製造方法、及び該窒素含有多孔質炭素材料を用いた電気二重層キャパシタ
CN108538625B (zh) * 2010-12-28 2020-12-08 巴斯福股份公司 包含增强的电化学特性的碳材料
CN103429531B (zh) * 2011-03-09 2016-07-06 东洋炭素株式会社 多孔碳及其制造方法
JP5688321B2 (ja) * 2011-04-13 2015-03-25 東洋炭素株式会社 多孔質炭素及びその製造方法
JP6071261B2 (ja) * 2012-06-15 2017-02-01 東洋炭素株式会社 多孔質炭素材料およびその製造方法、並びにそれを用いた電気二重層キャパシタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537984A (ja) * 2006-05-15 2009-10-29 ドレクセル ユニバーシティ スーパーキャパシタおよびその生成法
JP2008013394A (ja) * 2006-07-05 2008-01-24 Daido Metal Co Ltd 活性炭およびその製造方法
JP2010105836A (ja) * 2008-10-29 2010-05-13 Jfe Chemical Corp 電気二重層キャパシタ用活性炭およびその製造方法
WO2010104102A1 (ja) * 2009-03-10 2010-09-16 東洋炭素株式会社 多孔質炭素及びその製造方法
JP2011176043A (ja) * 2010-02-23 2011-09-08 Calgon Carbon Japan Kk 電気二重層キャパシタ用活性炭

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188722A1 (ja) * 2013-05-22 2014-11-27 パナソニックIpマネジメント株式会社 ナトリウムイオン二次電池用負極活物質、その製造方法およびナトリウムイオン二次電池
JPWO2014188722A1 (ja) * 2013-05-22 2017-02-23 パナソニックIpマネジメント株式会社 ナトリウムイオン二次電池用負極活物質、その製造方法およびナトリウムイオン二次電池
US9755237B2 (en) 2013-05-22 2017-09-05 Panasonic Intellectual Property Management Co., Ltd. Negative-electrode active material for sodium-ion secondary battery, method for manufacturing said negative-electrode active material, and sodium-ion secondary battery
US9825297B2 (en) 2013-05-22 2017-11-21 Panasonic Intellectual Property Management Co., Ltd. Negative-electrode active material for sodium-ion secondary battery, method for manufacturing said negative-electrode active material, and sodium-ion secondary battery
JP2016046287A (ja) * 2014-08-20 2016-04-04 株式会社リコー 非水電解液蓄電素子
US10211000B2 (en) 2014-09-17 2019-02-19 Toray Industries, Inc. Electrode material for electrochemical capacitor, electrode coating solution for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor
WO2016143675A1 (ja) * 2015-03-06 2016-09-15 学校法人東京理科大学 マグネシウム二次電池及び充放電方法
JPWO2017047213A1 (ja) * 2015-09-16 2018-05-17 株式会社リコー 非水電解液蓄電素子
JP2017092000A (ja) * 2015-11-17 2017-05-25 株式会社リコー 非水電解液蓄電素子
JP2017142955A (ja) * 2016-02-09 2017-08-17 株式会社リコー 非水電解液蓄電素子

Also Published As

Publication number Publication date
WO2014024921A1 (ja) 2014-02-13
US20150162138A1 (en) 2015-06-11
KR20150041053A (ko) 2015-04-15
TW201419329A (zh) 2014-05-16
CN104380409A (zh) 2015-02-25
CA2880530A1 (en) 2014-02-13
IN2015DN01690A (ja) 2015-07-03
EP2884512A1 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2014024921A1 (ja) キャパシタ
Shang et al. Urea‐mediated monoliths made of nitrogen‐enriched mesoporous carbon nanosheets for high‐performance aqueous zinc ion hybrid capacitors
Korkmaz et al. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications
Zhang et al. Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors
Lu et al. A continuous carbon nitride polyhedron assembly for high‐performance flexible supercapacitors
Thubsuang et al. Tuning pore characteristics of porous carbon monoliths prepared from rubber wood waste treated with H 3 PO 4 or NaOH and their potential as supercapacitor electrode materials
Yu et al. Synthesis of activated carbon nanospheres with hierarchical porous structure for high volumetric performance supercapacitors
Heimböckel et al. Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications
US9281135B2 (en) Nitrogen-containing porous carbon material and method of producing the same, and electric double-layer capacitor using the nitrogen-containing porous carbon material
Qiao et al. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors
Su et al. Highly Doped Carbon Nanobelts with Ultrahigh Nitrogen Content as High‐Performance Supercapacitor Materials
JP2013201170A (ja) 蓄電デバイスの電極用活性炭及び蓄電デバイスの電極用活性炭の製造方法
JP2014001093A (ja) 多孔質炭素材料およびその製造方法、並びにそれを用いた電気二重層キャパシタ
Kong et al. Ionic liquid directed construction of foam-like mesoporous boron-doped graphitic carbon nitride electrode for high-performance supercapacitor
Zhou et al. Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors
Yuan et al. Porous activated carbons derived from pleurotus eryngii for supercapacitor applications
Yan et al. A 3D carbon foam derived from phenol resin via CsCl soft‐templating approach for high‐performance supercapacitor
JP2016531068A (ja) Co2活性化ココナッツ炭を含有する高電圧edlc電極
JP4576374B2 (ja) 活性炭、その製造方法及びその用途
Ni et al. Hierarchical design of nitrogen-doped porous carbon nanorods for use in high efficiency capacitive energy storage
Yang et al. A bubble-templated approach to holey N/S-codoped carbon nanosheet aerogels with honeycomb-like structure for supercapacitors
Liu et al. Sustainable Lignin‐Derived Carbon as Capacity‐Kinetics Matched Cathode and Anode towards 4.5 V High‐Performance Lithium‐Ion Capacitors
Jeon et al. Hierarchically structured carbon electrodes derived from intrinsically microporous Tröger’s base polymers for high-performance supercapacitors
JP2005239456A (ja) 窒素含有炭素およびその製造方法
JP2017165823A (ja) 多孔質炭素材料用フェノール樹脂組成物、多孔質炭素材料、及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161005