[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2014034698A - Film deposition method and apparatus - Google Patents

Film deposition method and apparatus Download PDF

Info

Publication number
JP2014034698A
JP2014034698A JP2012176068A JP2012176068A JP2014034698A JP 2014034698 A JP2014034698 A JP 2014034698A JP 2012176068 A JP2012176068 A JP 2012176068A JP 2012176068 A JP2012176068 A JP 2012176068A JP 2014034698 A JP2014034698 A JP 2014034698A
Authority
JP
Japan
Prior art keywords
film forming
electron beam
film
forming material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012176068A
Other languages
Japanese (ja)
Other versions
JP5962979B2 (en
Inventor
Chorumun Imu
チョルムン イム
Takeshi Takai
健志 高井
Masaru Sonobe
園部  勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2012176068A priority Critical patent/JP5962979B2/en
Publication of JP2014034698A publication Critical patent/JP2014034698A/en
Application granted granted Critical
Publication of JP5962979B2 publication Critical patent/JP5962979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To deposit a thin film of ceramic etc., directly on a substrate of an organic semiconductor or of a resin material which is weak to heat and damage, at high speed with small damage.SOLUTION: A substrate 6 is arranged above a film deposition material 5 at a lower part 31a in a vacuum vessel 21, and the film deposition material is heated by being supplied with an electron beam 30 from a position in a vacuum vessel sideward part 31b and above the height of the film deposition material, thereby evaporated and sublimated, and the evaporated and sublimated evaporation and sublimation substance is deposited on the substrate. A plasma region 37 that is formed by the electron beam 30 and is positioned above the film deposition material 5 is set to be below the horizontal height of the electron beam to thereby make small a section where the evaporated and sublimated evaporation and sublimation substances pass through the plasma region, and the evaporation and sublimation substances are deposited on the substrate in a small-ionization-rate state. The sublimation substance is made larger in amount than the evaporation substance. A sublimation temperature is lowered by controlling partial pressure in the vacuum vessel to increase a sublimation amount. A height H of the electron beam from an evaporation surface of the film deposition material is equal to or larger than the diameter 4D of the electron beam.

Description

本発明は、電子ビームを用いて基板上に金属やセラミック薄膜を成膜するための成膜方法及び装置に関し、特に有機半導体や樹脂材料などの熱のダメージに弱い基板の成膜に適した成膜方法及び装置に関する。   The present invention relates to a film forming method and apparatus for forming a metal or ceramic thin film on a substrate using an electron beam, and particularly suitable for forming a substrate that is vulnerable to heat damage such as an organic semiconductor or a resin material. The present invention relates to a membrane method and apparatus.

従来、有機ELや有機太陽光発電デバイスでは有機半導体が使用されているが、有機物は耐熱性が低いのに加えてスパッタ粒子や荷電粒子、電磁波によって容易にダメージを受けてしまい、有機半導体素子が本来持っている特性を十分に発揮できないのが現状である。   Conventionally, organic semiconductors are used in organic EL and organic photovoltaic power generation devices, but organic materials are easily damaged by sputtered particles, charged particles, and electromagnetic waves in addition to low heat resistance. The current situation is that the inherent properties cannot be fully exhibited.

基板上への被膜の成膜方法としては、スパッタ法、電子ビーム加熱真空蒸着法、イオンプレーティング法等が知られている。スパッタ法においては、例えば特許文献1においては、成膜材料を対向して配置し電子エネルギーを成膜材料に当ててスパッタし、成膜材料からスパッタ粒子を基板に付着させて成膜している。しかし、スパッタ粒子は活性化しているため、高い熱エネルギーを有しており、基板温度が70〜75℃に上昇するので、有機EL等への成膜には不向きであり、また、成膜速度も遅いという問題があった。   Known film forming methods on the substrate include sputtering, electron beam heating vacuum deposition, and ion plating. In the sputtering method, for example, in Patent Document 1, a film forming material is disposed opposite to each other, and sputtering is performed by applying electron energy to the film forming material, and sputtered particles are attached to the substrate from the film forming material. . However, since the sputtered particles are activated, they have high thermal energy, and the substrate temperature rises to 70 to 75 ° C., which is not suitable for film formation on an organic EL or the like, and the film formation speed. There was also the problem of being slow.

また、引用文献2のような電子ビーム加熱真空蒸着法においては、成膜材料の近くに配置した電子ビーム照射器から電子ビームを成膜材料に照射し成膜材料を加熱して蒸発させ基板に成膜させる。このものは高速例えば1000eV以上電子ビームを成膜材料に照射するので、必ずX線や紫外線が発生する。このX線や紫外線は有機半導体にはダメージを与えてしまう。このため基板と成膜材料との間に遮蔽物を配置する必要がある。しかし、かかる遮蔽物を介した間接的な蒸着方法では、構造が複雑になり、成膜面積も少ない。また、遮蔽物を構成する材料の混入を避けることができないため、酸化物や窒化物などの高融点材料の高純度な成膜は困難である。   Further, in the electron beam heating vacuum deposition method as described in the cited document 2, the film forming material is irradiated with an electron beam from an electron beam irradiator disposed near the film forming material, and the film forming material is heated and evaporated to form a substrate. Form a film. Since this film irradiates a film forming material with an electron beam at a high speed, for example, 1000 eV or more, X-rays and ultraviolet rays are always generated. These X-rays and ultraviolet rays damage organic semiconductors. For this reason, it is necessary to arrange a shield between the substrate and the film forming material. However, the indirect vapor deposition method through such a shield has a complicated structure and a small film formation area. In addition, since it is unavoidable to mix the material constituting the shield, it is difficult to form a high-purity film of a high melting point material such as an oxide or a nitride.

一方、イオンプレーティング法、例えば特許文献3においては、図2(左右逆で示す)に示すように、真空容器21内下方21aに成膜材料5設け、成膜材料に対向して上方21cに基板6を配置し、真空容器側方21bかつ成膜材料の高さより高い位置31から成膜材料5に向かって電子ビーム40を供給しプラズマ41を発生させ、成膜材料を加熱し、蒸発及び昇華させる。このときのエネルギーは10〜100eV程度の比較的低エネルギーの電子線照射加熱となり、成膜材料の表面だけを局部的に加熱、蒸発・昇華できる。さらに、成膜材料上方の電子ビームのプラズマ41により昇華粒子をイオン化し、活性度の高い状態で基板6上に入射させてSiOxNy等の酸化物を成膜させている。また、特許文献4においては、ガラス基板上にイオン化粒子を入射させ酸素ガスと反応させZnO等の薄膜を成膜している。   On the other hand, in the ion plating method, for example, in Patent Document 3, as shown in FIG. 2 (inverted left and right), the film forming material 5 is provided in the lower part 21a in the vacuum vessel 21, and the upper part 21c faces the film forming material. A substrate 6 is arranged, an electron beam 40 is supplied from a position 31 higher than the vacuum vessel side 21b and higher than the height of the film forming material toward the film forming material 5 to generate a plasma 41, the film forming material is heated, evaporated and Sublimate. The energy at this time is electron beam irradiation heating with a relatively low energy of about 10 to 100 eV, and only the surface of the film forming material can be locally heated, evaporated and sublimated. Further, the sublimation particles are ionized by the electron beam plasma 41 above the film forming material and incident on the substrate 6 in a highly active state to form an oxide such as SiOxNy. In Patent Document 4, ionized particles are incident on a glass substrate and reacted with oxygen gas to form a thin film such as ZnO.

特許第4473852号公報Japanese Patent No. 4473852 特開2010−132991号公報JP 2010-132991 A 特開2008−297587号公報JP 2008-297587 A 特開2009−197333号公報JP 2009-197333 A

しかし、前述したように、スパッタ法では温度が上昇しすぎて有機EL等には成膜できない。また、電子ビーム加熱真空蒸着法では、ダメージを少なくするためには構造が複雑になり、量産化も困難である。さらに、イオンプレーティング法では、ZnOをガラス基板に成膜することが開示されているが、プラズマによりイオン化されたイオンは+30〜+60Vのポテンシャルエネルギを有しており、基板に対して熱エネルギーを与えるため有機半導体や樹脂材料の基板ではダメージを与えるという問題があった。   However, as described above, the sputtering method raises the temperature so that it cannot be formed on the organic EL or the like. Further, in the electron beam heating vacuum deposition method, the structure is complicated in order to reduce damage, and mass production is difficult. Furthermore, in the ion plating method, it is disclosed that a film of ZnO is formed on a glass substrate. However, ions ionized by plasma have a potential energy of +30 to +60 V, and heat energy is applied to the substrate. For this reason, there is a problem that the substrate made of an organic semiconductor or a resin material is damaged.

本発明の課題は、前述した問題点に鑑みて、熱やダメージに弱い有機半導体や樹脂材料の基板に直接セラミック等の薄膜を低ダメージで高速に真空成膜するための成膜方法及び成膜装置を提供することである。   SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to form a thin film such as a ceramic directly on a substrate made of an organic semiconductor or a resin material that is vulnerable to heat and damage, and to form a thin film such as a ceramic film at a high speed with low damage. Is to provide a device.

本発明者等は特許文献3,4のようなイオンプレーティング法において、基板への温度影響を少なくする点について研究した結果、蒸発・昇華物質をイオン化した際のイオン化エネルギーが基板にダメージを与える影響が大きいこと、また、イオン化に代えて、蒸発・蒸着物質のうち、昇華物質を多くする程成膜性能が良好であることを知得した。   As a result of studying the point of reducing the temperature influence on the substrate in the ion plating methods as described in Patent Documents 3 and 4, the present inventors have damaged the substrate by ionization energy when the evaporation / sublimation material is ionized. It has been found that the influence is large, and that the deposition performance is better as the sublimation material is increased in the evaporation / deposition material instead of the ionization.

この知得により、本発明においては、真空容器内下方に成膜材料設け、前記成膜材料に対向して前記真空容器内上方に基板を配置し、前記真空容器側方かつ前記成膜材料の高さより高い位置から前記成膜材料に向かって電子ビームを供給し前記成膜材料を加熱し、蒸発及び昇華させ、前記蒸発及び昇華した蒸発・昇華物質を前記基板に付着させて薄膜を得る成膜方法であって、
前記成膜材料の上方で前記電子ビームが形成するプラズマ領域を電子ビームの水平方向高さより下になるようにして、前記蒸発及び昇華した蒸発・昇華物質が前記プラズマ領域を通過する区間を少なくし、イオン化率の少ない蒸発・昇華物質のまま前記基板に成膜させる成膜方法を提供することにより前述した課題を解決した。
Based on this knowledge, in the present invention, a film forming material is provided in the lower part of the vacuum container, and a substrate is disposed in the upper part of the vacuum container so as to face the film forming material. An electron beam is supplied from a position higher than the height toward the film forming material, the film forming material is heated, evaporated and sublimated, and the evaporated and sublimated evaporated / sublimated material is attached to the substrate to obtain a thin film. A membrane method,
The plasma region formed by the electron beam above the film forming material is set to be lower than the horizontal height of the electron beam, so that the vaporized and sublimated evaporated / sublimated substance passes through the plasma region. In addition, the above-described problems have been solved by providing a film forming method for forming a film on the substrate with an evaporation / sublimation material having a low ionization rate.

即ち、本発明においては、電子ビームが形成するプラズマ領域を電子ビームの水平方向高さより下になるようにして、成膜材料を均一に照射し、蒸発、昇華させる。一方、蒸発・昇華物質がプラズマ領域を通過する区間を少なくし、イオン化による高エネルギー化を抑制し、イオン化率の少ない蒸発・昇華物質により成膜するようにした。電子ビームの加速電圧を100eV以下とし、金属・セラミックの成膜材料の電子線の入射深さを数nm以下とし、電子ビームエネルギーのほとんどを熱振動に変換し成膜材料の局所的な加熱をする。この加熱により高融点材料を少ない電力で蒸発・昇華でき、蒸発・昇華物質は成膜材料に近い組成・構造のまま基板に堆積成膜させる。このため基板での蒸発・昇華物質の再結晶化エネルギーを少なくでき、基板の加熱も低減できる。   That is, in the present invention, the film forming material is uniformly irradiated, evaporated and sublimated so that the plasma region formed by the electron beam is lower than the horizontal height of the electron beam. On the other hand, the number of sections through which the evaporating / sublimating material passes through the plasma region is reduced, the increase in energy by ionization is suppressed, and the film is formed with the evaporating / sublimating material having a low ionization rate. The electron beam acceleration voltage is set to 100 eV or less, the electron beam incident depth of the metal / ceramic film forming material is set to several nm or less, and most of the electron beam energy is converted into thermal vibration to locally heat the film forming material. To do. By this heating, the high melting point material can be evaporated and sublimated with a small amount of electric power, and the evaporated / sublimated substance is deposited on the substrate with the composition and structure close to the film forming material. For this reason, the recrystallization energy of the evaporation / sublimation substance on the substrate can be reduced, and the heating of the substrate can also be reduced.

簡単にいうと、電子ビーム加熱真空蒸着法においては、成膜材料を効率よく蒸発させるため、成膜材料の近くに電子ビーム照射器を配置し、成膜材料に1000eV以上の電子ビームを集中させ溶融、蒸発させている。また、プラズマ域を蒸発物質は通過することがない。逆に、イオンプレーティング法では、成膜材料より高い側方より離れた位置から電子ビームを発射させ電子ビームによるプラズマを発生させてプラズマにより10〜100eV程度の低エネルギーで成膜材料を蒸発、昇華させ、さらに、蒸発、昇華物質を電子ビームで生じるプラズマ内を通過させてイオン化し活性化している。本発明は、イオンプレーティング法のプラズマによる低エネルギーの溶融法と、電子ビーム加熱真空蒸着法のプラズマを使用しない蒸着方法との中間的なものと言える。   In brief, in the electron beam heating vacuum deposition method, an electron beam irradiator is placed near the film forming material in order to efficiently evaporate the film forming material, and an electron beam of 1000 eV or more is concentrated on the film forming material. Melted and evaporated. Further, the evaporated substance does not pass through the plasma region. Conversely, in the ion plating method, an electron beam is emitted from a position higher than the side higher than the film forming material to generate plasma by the electron beam, and the film forming material is evaporated with low energy of about 10 to 100 eV by the plasma. Sublimation is performed, and further, evaporation and sublimation substances are ionized and activated by passing through a plasma generated by an electron beam. The present invention can be said to be intermediate between a low-energy melting method using ion plating plasma and a deposition method using no electron beam heating vacuum deposition method.

また、請求項2に記載の発明においては、前記蒸発・昇華物質において、昇華物質が蒸発物質より多くされている成膜方法とした。昇華物質を多くすることにより、基板へ付着し易くなり、また、基板への密着性能も増す。なお、昇華物質がない場合もあり、その場合は当然適用されない。   In the invention described in claim 2, the evaporation / sublimation substance has a film forming method in which the sublimation substance is larger than the evaporation substance. Increasing the amount of sublimation substance makes it easier to adhere to the substrate and also increases the adhesion performance to the substrate. In some cases, there is no sublimation substance.

また、請求項3に記載の発明においては、前記真空容器内の分圧を制御して、昇華温度を低下させ昇華量を増大させる。特許文献3の図6に示すように、物質が気化する場合、分圧と溶融温度との関係では、溶融温度に対して、分圧が低いほど昇華し易くなる。成膜材料に対する溶融温度と分圧を制御して昇華量を多くする。なお、この値は、昇華しない場合も含め成膜材料により異なる。   In the invention according to claim 3, the partial pressure in the vacuum vessel is controlled to lower the sublimation temperature and increase the sublimation amount. As shown in FIG. 6 of Patent Document 3, when the substance is vaporized, in the relationship between the partial pressure and the melting temperature, the lower the partial pressure with respect to the melting temperature, the easier the sublimation occurs. The sublimation amount is increased by controlling the melting temperature and partial pressure for the film forming material. This value varies depending on the film forming material including the case where no sublimation is performed.

さらに、請求項4に記載の発明においては、真空容器内下方に設けられたハースに配置された成膜材料と、前記ハースに対向して前記真空容器内上方に配置された基板と、前記真空容器側方かつ前記ハース高さより高い位置から前記真空容器内の前記成膜材料に向かって電子ビームを供給し前記成膜材料を溶融・蒸発及び昇華させるアークガンと、を有し、前記蒸発及昇華した蒸発・昇華物質を前記基板に付着させて薄膜を得る成膜装置であって、
前記成膜材料側へ電子ビーム先端部の流れを収束する副電磁石を設け、前記電子ビームの前記成膜材料の蒸発面からの高さを、前記副電磁石との収束力と合わせて、前記成膜材料の上方で前記電子ビームが形成するプラズマ領域が前記電子アークガンの水平方向高さより下になる位置になるように設定し、前記蒸発・昇華物質が前記電子ビームの形成するプラズマ領域を通過する区間を少なくし、前記プラズマ域でイオン化率の少ない蒸発・昇華物質のまま前記基板に成膜できるようにした成膜装置を提供する。
Furthermore, in the invention described in claim 4, a film forming material disposed in a hearth provided in the lower part of the vacuum container, a substrate disposed in the upper part of the vacuum container facing the hearth, and the vacuum An arc gun for supplying an electron beam from a position on the side of the container and higher than the Hearth height toward the film forming material in the vacuum container to melt, evaporate and sublimate the film forming material, and the evaporation and sublimation A film forming apparatus for obtaining a thin film by attaching the evaporated / sublimated substance to the substrate,
A sub electromagnet for converging the flow of the electron beam tip toward the film forming material side is provided, and the height of the electron beam from the evaporation surface of the film forming material is combined with the converging force with the sub electromagnet to form the component. The plasma region formed by the electron beam above the film material is set to a position below the horizontal height of the electron arc gun, and the evaporation / sublimation material passes through the plasma region formed by the electron beam. There is provided a film forming apparatus in which the number of sections is reduced and a film can be formed on the substrate with an evaporation / sublimation material having a low ionization rate in the plasma region.

即ち、電子ビームの高さを、プラズマ領域がアークガン(電子銃)の水平方向高さより下になる位置になるように設定する。また、副電磁石を配置することにより電子ビームの拡散を減らしプラズマ領域を小さくし、蒸発・昇華物質がプラズマ領域を通過する区間を少なくし、イオン化率の少ない蒸発・昇華物質のまま基板に成膜できるようにした。なお、アークガンは一般に水平方向に配置しているが、斜め下方に向けて照射できるように配置することにより、電子ビームの曲がりを少なくして、溶融効率を上げ、成膜材料上のプラズマ領域を小さくできる。   That is, the height of the electron beam is set so that the plasma region is positioned below the horizontal height of the arc gun (electron gun). In addition, by arranging a sub electromagnet, the diffusion of the electron beam is reduced, the plasma area is reduced, the section through which the evaporation / sublimation substance passes through the plasma area is reduced, and the evaporation / sublimation substance with a low ionization rate is formed on the substrate. I was able to do it. Although the arc gun is generally arranged in the horizontal direction, by arranging it so that it can irradiate obliquely downward, the bending of the electron beam is reduced, the melting efficiency is increased, and the plasma region on the film forming material is increased. Can be small.

また、請求項5に記載の発明においては、前記電子ビームの前記成膜材料の蒸発面からの高さHは、前記電子ビームの前記成膜材料蒸発面位置〜+20mm間での電子ビームの直径をφDとして、D≦H≦4Dの位置とした成膜装置とする。高さが電子ビームの直径より小さいとアークが装置壁と干渉し易く、プラズマ断面が扁平となり蒸発原料の蒸発・昇華が不均一になる。また、4倍より高いとプラズマ領域が大きくなりすぎる。より、好ましくは2D≦H≦3Dである。   In the invention according to claim 5, the height H of the electron beam from the evaporation surface of the film forming material is the diameter of the electron beam between the position of the film forming material evaporation surface of the electron beam and +20 mm. Is a film forming apparatus in which D is set to φD and D ≦ H ≦ 4D. If the height is smaller than the diameter of the electron beam, the arc easily interferes with the apparatus wall, the plasma cross section becomes flat, and evaporation / sublimation of the evaporation material becomes uneven. If it is higher than 4 times, the plasma region becomes too large. More preferably, 2D ≦ H ≦ 3D.

さらに、請求項6に記載の発明においては、前記電磁石は長手方向に縦長の円筒状の空芯コイルであって、前記ハースの外周に配置されている成膜装置とした。長手方向に長いコイルとすることによりプラズマ領域を狭くできる。   According to a sixth aspect of the present invention, the electromagnet is a cylindrical air-core coil that is vertically long in the longitudinal direction, and is a film forming apparatus disposed on the outer periphery of the hearth. By making the coil long in the longitudinal direction, the plasma region can be narrowed.

本発明においては、蒸発・昇華物質がプラズマ領域を通過する区間を少なくし、イオン化率の少ない、即ち低エネルギーの蒸発・昇華物質により成膜するようにしたので、熱やダメージに弱い有機半導体や樹脂材料の基板に直接セラミック等の薄膜を低ダメージで成膜できる。また、イオンプレーティング法の一種であるので成膜速度も早く、成膜面積も広く量産に適する。また、基板の加熱も低減できるので有機半導体上への直接成膜が可能となった。   In the present invention, the evaporation / sublimation material passes through the plasma region to reduce the section, and the ionization rate is low, that is, the film is formed by the low energy evaporation / sublimation material. A thin film of ceramic or the like can be formed directly on a resin substrate with low damage. Further, since it is a kind of ion plating method, the film forming speed is high and the film forming area is wide and suitable for mass production. In addition, since the heating of the substrate can be reduced, it is possible to form a film directly on the organic semiconductor.

また、請求項2に記載の発明においては、昇華物質を蒸発物質より多くし、基板への付着性、密着性能も増すので、低ダメージに加え成膜性能もよい。また、請求項3に記載の発明においては、真空容器内の分圧を制御して、昇華温度を低下させ昇華量を増大させることができるのでより性能のよい成膜とできる。   In the invention described in claim 2, since the sublimation substance is larger than the evaporation substance and the adhesion to the substrate and the adhesion performance are increased, the film formation performance is good in addition to the low damage. In the invention described in claim 3, since the partial pressure in the vacuum vessel can be controlled to decrease the sublimation temperature and increase the sublimation amount, it is possible to form a film with better performance.

さらに、請求項4に記載の発明においては、電子ビームの高さを、プラズマ領域がアークガンの水平方向高さより下になる位置とし、副電磁石を配置してプラズマ領域を小さくし、イオン化率の少ない蒸発・昇華物質を基板に成膜できるようにしたので、熱やダメージに弱い基板上に直接セラミック等の薄膜を低ダメージで成膜できる成膜装置を提供するものとなった。   Furthermore, in the invention described in claim 4, the height of the electron beam is set to a position where the plasma region is lower than the horizontal height of the arc gun, and the secondary electromagnet is disposed to reduce the plasma region, so that the ionization rate is low. Since the evaporation / sublimation material can be formed on the substrate, a film forming apparatus capable of forming a thin film such as ceramic directly on the substrate which is vulnerable to heat and damage with low damage is provided.

また、請求項5に記載の発明においては、電子ビームの高さを電子ビームの直径以上直径の4倍以下とした成膜装置とすればよい。また、請求項6に記載の発明においては、縦長の円筒状の空芯コイルをハースの外周に配置してプラズマ領域を狭くできるのでので、装置の構造を大きく変更することなく、従来の装置の改良程度で容易に製造することができる。また、取扱も従来のものと近似しており、成膜条件等の試験、量産設定等も容易である。   In the invention described in claim 5, a film forming apparatus in which the height of the electron beam is not less than the diameter of the electron beam and not more than 4 times the diameter may be used. Further, in the invention described in claim 6, since the plasma region can be narrowed by arranging a vertically long cylindrical air-core coil on the outer periphery of the hearth, the structure of the conventional apparatus can be reduced without greatly changing the structure of the apparatus. It can be easily manufactured with an improved degree. In addition, the handling is similar to the conventional one, and it is easy to test the film forming conditions and set the mass production.

本発明の実施の形態における成膜装置の模式断面図である。It is a schematic cross section of the film-forming apparatus in embodiment of this invention. 従来のイオンプレーティング装置(成膜装置)の模式断面図である。It is a schematic cross section of a conventional ion plating apparatus (film forming apparatus).

本発明の実施の形態について図面を参照して説明する。なお、従来の図2に示すのと同様な構成については相互に同符号を付し説明の一部を省略する。図1において、本発明の実施の形態に示す成膜装置20は、真空容器21と、真空容器の下部21aに設けられた成膜材料5が載置されるハース22と、真空容器の側面21bに設けられた電子ビームを発射するアークガン23と、ハースに対向して真空容器内の上部21cに基板6配置される基板ホルダ24が設けられている。また、真空容器21には反応ガス等を供給する反応ガス導入口8と真空容器内のガスを排気する真空排気装置11が設けられている。図2のような反応ガス調整装置45と真空排気装置11により、真空容器内21のガス分圧、真空度を調整する。   Embodiments of the present invention will be described with reference to the drawings. In addition, about the structure similar to what is shown in the conventional FIG. 2, the same code | symbol is attached | subjected mutually and description is abbreviate | omitted. In FIG. 1, a film forming apparatus 20 shown in the embodiment of the present invention includes a vacuum vessel 21, a hearth 22 on which a film forming material 5 provided on a lower portion 21a of the vacuum vessel is placed, and a side surface 21b of the vacuum vessel. An arc gun 23 for emitting an electron beam provided on the substrate 6 and a substrate holder 24 disposed on the upper portion 21c in the vacuum vessel facing the hearth are provided. The vacuum vessel 21 is provided with a reaction gas inlet 8 for supplying a reaction gas and the like and a vacuum exhaust device 11 for exhausting the gas in the vacuum vessel. The gas partial pressure and the degree of vacuum in the vacuum vessel 21 are adjusted by the reaction gas adjusting device 45 and the vacuum exhaust device 11 as shown in FIG.

アークガン23は陰極1が一端に設けられ、ハース22は陽極に接続される。アークガンは筒状の絶縁ガラス9を介してドーナツ状の電磁石25や永久磁石26が設けられ真空容器内に電子ビーム30を入射するようにされている。また、アークガン23内にアルゴン等の不活性ガスを導入する希ガス導入口7が設けられている。ハース22回りには電子ビーム30を誘導する電磁石27や永久磁石28、冷却装置29等が設けられる。アークガン23から発生した電子ビーム30は陰極側のハース22に誘導されハース上の成膜材料5の表面にアーク放電を発生させ成膜材料の局所的な加熱を行って、成膜材料を蒸発・昇華させる。かかる点については従来と同様な構成であり、詳細な説明は省略する。   In the arc gun 23, the cathode 1 is provided at one end, and the hearth 22 is connected to the anode. The arc gun is provided with a doughnut-shaped electromagnet 25 and a permanent magnet 26 through a cylindrical insulating glass 9 so that an electron beam 30 enters the vacuum vessel. A rare gas inlet 7 for introducing an inert gas such as argon is provided in the arc gun 23. Around the hearth 22, an electromagnet 27, a permanent magnet 28, a cooling device 29 and the like for guiding the electron beam 30 are provided. The electron beam 30 generated from the arc gun 23 is guided to the cathode side hearth 22 to generate an arc discharge on the surface of the film forming material 5 on the hearth to locally heat the film forming material, thereby evaporating the film forming material. Sublimate. This is the same configuration as in the prior art, and a detailed description is omitted.

特に本実施形態においては、アークガン23の成膜材料の蒸発面5aからの水平方向高さHが従来より低くされている。この高さHは成膜材料蒸発面〜+20mmでの電子ビームの直径φDに対し、D以上4D以下にされている。また、アークガン23の電子ビーム発射出口には長手方向に縦長の円筒状の空芯コイルからなる副電磁石32が設けられている。副電磁石32により、磁束線は収束したまま前方に押し出され副電磁石の中心線延長上の磁界が強くされる。電子ビーム30は磁束線の方向に沿うので副電磁石32により電子ビームは細くなる。さらに、ハース22の外周に長手方向に縦長の円筒状の空芯コイルからなるハース側副電磁石33が設けられ電子ビーム30を成膜蒸発面5aに収束できるようにされている。   In particular, in the present embodiment, the horizontal height H from the evaporation surface 5a of the film forming material of the arc gun 23 is set lower than the conventional one. This height H is set to be not less than D and not more than 4D with respect to the diameter φD of the electron beam at the film formation material evaporation surface to +20 mm. A sub electromagnet 32 made of a cylindrical air core coil that is vertically long in the longitudinal direction is provided at the electron beam emission outlet of the arc gun 23. By the sub electromagnet 32, the magnetic flux lines are pushed forward while being converged, and the magnetic field on the extension of the center line of the sub electromagnet is strengthened. Since the electron beam 30 is along the direction of the magnetic flux lines, the sub-electromagnet 32 makes the electron beam thinner. Further, a hearth side sub-electromagnet 33 made of a cylindrical air core coil that is vertically long in the longitudinal direction is provided on the outer periphery of the hearth 22 so that the electron beam 30 can be converged on the film-forming evaporation surface 5a.

これにより、電子ビーム30がアークガン23から成膜材料5に向かって下向きの円弧を形成する。アークガンから離れるに従い徐々に電子ビームの直径は広がり、成膜材料の上部H位置付近34を通過することなく、プラズマ領域31は円弧を描きながら成膜材料の上部5aに達し、成膜材料の蒸発面近傍36で最大値となり蒸発面5aでほぼ成膜材料蒸発面の大きさに収束する。   Thereby, the electron beam 30 forms a downward arc from the arc gun 23 toward the film forming material 5. As the distance from the arc gun increases, the diameter of the electron beam gradually increases, and the plasma region 31 reaches the upper part 5a of the film-forming material while drawing an arc without passing through the vicinity of the upper H position 34 of the film-forming material. The maximum value is obtained in the vicinity of the surface 36, and the evaporation surface 5a converges to the size of the film formation material evaporation surface.

これに対して、特許文献3,4の従来の成膜装置では、図2に示すように、アークガン23の成膜材料の蒸発面5aからの水平方向高さは特に開示されていない。また、副電磁石42は半径方向が長手方向より大きなドーナツ状であり、磁束密度を広げるようにされている。そして、電子ビーム40はアークガン23から成膜材料5に向かってほぼ直線に進み、成膜材料の真上44で下向きに向かう。アークガン23から離れるに従い徐々に電子ビームの直径は広がり、成膜材料の上部44で電子ビーム範囲は最大となり、大きく膨らんだプラズマ領域41を形成する。さらに、電子ビーム40は下方に向かって徐々に収束しながら成膜材料5の成膜材料蒸発面5aに達する。ハース側の副電磁石43もドーナツ状とされ、磁束を広げ成膜材料蒸発面での電子ビーム40の均一化を図っている。   On the other hand, in the conventional film forming apparatuses of Patent Documents 3 and 4, as shown in FIG. 2, the height in the horizontal direction from the evaporation surface 5a of the film forming material of the arc gun 23 is not particularly disclosed. The sub electromagnet 42 has a donut shape in which the radial direction is larger than the longitudinal direction, and the magnetic flux density is increased. Then, the electron beam 40 travels in a substantially straight line from the arc gun 23 toward the film forming material 5, and goes downward at a position 44 directly above the film forming material. As the distance from the arc gun 23 increases, the diameter of the electron beam gradually increases, and the electron beam range is maximized at the upper portion 44 of the film forming material, thereby forming a greatly expanded plasma region 41. Further, the electron beam 40 reaches the film forming material evaporation surface 5a of the film forming material 5 while gradually converging downward. The sub-electromagnet 43 on the hearth side is also formed in a donut shape so as to spread the magnetic flux and make the electron beam 40 uniform on the evaporation surface of the film forming material.

このため、従来のものでは、均一化したビーム40により成膜材料蒸発面5a全体を加熱し、成膜材料5を蒸発・昇華し、さらに、成膜材料の上部に設けられたプラズマ領域41を通過させて、蒸発・昇華物質をプラスマ化し、高エネルギー状態で基板6に到達させることになる。   For this reason, in the prior art, the entire film forming material evaporation surface 5a is heated by the uniform beam 40, the film forming material 5 is evaporated and sublimated, and a plasma region 41 provided on the upper part of the film forming material is further formed. The vaporized / sublimated substance is made to pass through and is made to reach the substrate 6 in a high energy state.

これに対して、本発明の実施の形態では、成膜材料上部でのプラズマ領域31を少なくし、また、成膜材料5の表面5aを局所的な加熱を行い高融点材料を少ない電力で蒸発・昇華させることができ、粒子数も多くできる。さらに、プラズマ領域31での活性化を少なくして成膜材料の組成・構造のままの蒸発・昇華物質を基板に堆積できる。堆積した蒸発・昇華物質は成膜材料の組成・構造に近いため再結晶化のエネルギー、例えば基板加熱は従来技術よりも低減することができ、有機半導体上への直接成膜を可能としたのである。   On the other hand, in the embodiment of the present invention, the plasma region 31 on the upper part of the film forming material is reduced, and the surface 5a of the film forming material 5 is locally heated to evaporate the high melting point material with less power. -It can be sublimated and the number of particles can be increased. Furthermore, the activation in the plasma region 31 can be reduced, and an evaporation / sublimation substance having the composition and structure of the film forming material can be deposited on the substrate. The deposited evaporation / sublimation substance is close to the composition and structure of the film-forming material, so recrystallization energy, for example, substrate heating, can be reduced compared to the prior art, enabling direct film formation on organic semiconductors. is there.

なお、基板は陰極とされ、陽極である成膜材料からの蒸発・昇華物質が基板へ移動する等、本成膜装置は従来のイオンプレーティング装置と同様であり、イオンプレーティング法及び装置の種々の技術の適用、応用、変形が可能であることはいうまでもない。また、セラミック酸化物の成膜においては、蒸発・昇華、再結晶化を効率的に行うために、反応させる酸素分圧を適切に制御するとよい。   The film forming apparatus is the same as the conventional ion plating apparatus in that the substrate is a cathode and the evaporation / sublimation substance from the film forming material as the anode moves to the substrate. Needless to say, various techniques can be applied, applied, and modified. Further, in the ceramic oxide film formation, the oxygen partial pressure to be reacted may be appropriately controlled in order to efficiently perform evaporation / sublimation and recrystallization.

5 成膜材料
5a 成膜材料の蒸発面
6 基板
20 成膜装置
21 真空容器
21a 真空容器下部
21b 真空容器側部
21c 真空容器上部
22 ハース
23 電子アークガン
30 電子ビーム
31 プラズマ領域
32 副電磁石
D 電子ビームの直径
H 電子ビームの成膜材料の蒸発面からの高さ
DESCRIPTION OF SYMBOLS 5 Film-forming material 5a Evaporation surface 6 of film-forming material Substrate 20 Film-forming device 21 Vacuum container 21a Vacuum container lower part 21b Vacuum container side part 21c Vacuum container upper part 22 Hearth 23 Electron arc gun 30 Electron beam 31 Plasma region 32 Sub-electromagnet D Electron beam Diameter H of the electron beam from the evaporation surface of the film forming material

Claims (6)

真空容器内下方に成膜材料設け、前記成膜材料に対向して前記真空容器内上方に基板を配置し、前記真空容器側方かつ前記成膜材料の高さより高い位置から前記成膜材料に向かって電子ビームを供給し前記成膜材料を加熱し、蒸発及び昇華させ、前記蒸発及び昇華した蒸発・昇華物質を前記基板に付着させて薄膜を得る成膜方法であって、
前記成膜材料の上方で前記電子ビームが形成するプラズマ領域を電子ビームの水平方向高さより下になるようにして、前記蒸発及び昇華した蒸発・昇華物質が前記プラズマ領域を通過する区間を少なくし、イオン化率の少ない蒸発・昇華物質のまま前記基板に成膜させることを特徴とする成膜方法。
A film forming material is provided in the lower part of the vacuum container, and a substrate is disposed in the upper part of the vacuum container so as to face the film forming material, and the film forming material is placed on the side of the vacuum container and higher than the height of the film forming material. A film forming method for obtaining a thin film by supplying an electron beam toward the substrate, heating the film forming material, evaporating and sublimating, and attaching the evaporated and sublimated evaporation / sublimation substance to the substrate,
The plasma region formed by the electron beam above the film forming material is set to be lower than the horizontal height of the electron beam, so that the vaporized and sublimated evaporated / sublimated substance passes through the plasma region. A film forming method characterized in that a film is formed on the substrate with an evaporation / sublimation material having a low ionization rate.
前記蒸発・昇華物質において、昇華物質が蒸発物質より多くされていることを特徴とする請求項1記載の成膜方法。   2. The film forming method according to claim 1, wherein in the evaporating / sublimating substance, the sublimation substance is larger than the evaporating substance. 前記真空容器内の分圧を制御して、昇華温度を低下させ昇華量を増大させることを特徴とする請求項2記載の成膜方法。   3. The film forming method according to claim 2, wherein the partial pressure in the vacuum vessel is controlled to lower the sublimation temperature and increase the sublimation amount. 真空容器内下方に設けられたハースに配置された成膜材料と、前記ハースに対向して前記真空容器内上方に配置された基板と、前記真空容器側方かつ前記ハース高さより高い位置から前記真空容器内の前記成膜材料に向かって電子ビームを供給し前記成膜材料を溶融・蒸発及び昇華させる電子アークガンと、を有し、前記蒸発及昇華した蒸発・昇華物質を前記基板に付着させて薄膜を得る成膜装置であって、
前記成膜材料側へ電子ビーム先端部の流れを収束する副電磁石を設け、前記電子ビームの前記成膜材料の蒸発面からの高さを、前記副電磁石との収束力と合わせて、前記成膜材料の上方で前記電子ビームが形成するプラズマ領域が前記電子アークガンの水平方向高さより下になる位置になるように設定し、前記蒸発・昇華物質が前記電子ビームの形成するプラズマ領域を通過する区間を少なくし、前記プラズマ域でイオン化率の少ない蒸発・昇華物質のまま前記基板に成膜できるようにしたことを特徴とする成膜装置。
The film-forming material disposed in the hearth provided in the lower part of the vacuum container, the substrate disposed in the upper part of the vacuum container facing the hearth, the side of the vacuum container and the position higher than the height of the hearth An electron arc gun that supplies an electron beam toward the film-forming material in a vacuum vessel to melt, evaporate, and sublimate the film-forming material, and attach the evaporated and sublimated substance to the substrate. A film forming apparatus for obtaining a thin film,
A sub electromagnet for converging the flow of the electron beam tip toward the film forming material side is provided, and the height of the electron beam from the evaporation surface of the film forming material is combined with the converging force with the sub electromagnet to form the component. The plasma region formed by the electron beam above the film material is set to a position below the horizontal height of the electron arc gun, and the evaporation / sublimation material passes through the plasma region formed by the electron beam. A film forming apparatus characterized in that the number of sections is reduced and a film can be formed on the substrate with an evaporation / sublimation material having a low ionization rate in the plasma region.
前記電子ビームの前記成膜材料の蒸発面からの高さHは、前記電子ビームの前記成膜材料蒸発面位置〜+20mm間での電子ビームの直径をφDとして、D≦H≦4Dの位置としたことを特徴とする請求項4記載の成膜装置。   The height H of the electron beam from the evaporation surface of the film forming material is a position of D ≦ H ≦ 4D, where φD is the diameter of the electron beam between the position of the film formation material evaporation surface of the electron beam and +20 mm. The film forming apparatus according to claim 4, wherein 前記副電磁石は長手方向に縦長の円筒状の空芯コイルであって、前記ハースの外周に配置されていることを特徴とする請求項4又は5記載の成膜装置。   6. The film forming apparatus according to claim 4, wherein the sub electromagnet is a cylindrical air-core coil that is vertically long in a longitudinal direction, and is disposed on an outer periphery of the hearth.
JP2012176068A 2012-08-08 2012-08-08 Deposition equipment Active JP5962979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176068A JP5962979B2 (en) 2012-08-08 2012-08-08 Deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176068A JP5962979B2 (en) 2012-08-08 2012-08-08 Deposition equipment

Publications (2)

Publication Number Publication Date
JP2014034698A true JP2014034698A (en) 2014-02-24
JP5962979B2 JP5962979B2 (en) 2016-08-03

Family

ID=50283875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176068A Active JP5962979B2 (en) 2012-08-08 2012-08-08 Deposition equipment

Country Status (1)

Country Link
JP (1) JP5962979B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338334A (en) * 2018-12-04 2019-02-15 江苏可润光电科技有限公司 A kind of processing technology and processing unit (plant) convenient for detecting Parylene plated film
KR102531159B1 (en) * 2021-11-22 2023-05-10 주식회사 인포비온 Electron beam assist sputtering apparatus and method thereof for maintaining plasma under low vacuum pressure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279748A (en) * 1988-05-06 1989-11-10 Tobi Co Ltd Device for forming film by reactive plasma beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279748A (en) * 1988-05-06 1989-11-10 Tobi Co Ltd Device for forming film by reactive plasma beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109338334A (en) * 2018-12-04 2019-02-15 江苏可润光电科技有限公司 A kind of processing technology and processing unit (plant) convenient for detecting Parylene plated film
KR102531159B1 (en) * 2021-11-22 2023-05-10 주식회사 인포비온 Electron beam assist sputtering apparatus and method thereof for maintaining plasma under low vacuum pressure

Also Published As

Publication number Publication date
JP5962979B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5808417B2 (en) Apparatus for forming an electron beam
JP5607760B2 (en) CVD apparatus and CVD method
JP2009542900A (en) Electron beam evaporator
JP4660570B2 (en) Vacuum film forming apparatus and film forming method
JP5962979B2 (en) Deposition equipment
JP5423539B2 (en) Deposition film manufacturing method
JP7038366B2 (en) Single beam plasma source
JP2004244690A (en) Sputter film-forming method, film-formed product, and electron-flow control device for sputtering apparatus
JP4977143B2 (en) Vacuum processing equipment
JP2015088218A (en) Ion beam processing apparatus and neutralizer
JP7160531B2 (en) Surface treatment equipment
JP2005194552A (en) Hybrid eb cell and method for evaporating film deposition material using the same
JPH0770741A (en) Evaporation source
JP4370949B2 (en) Deposition method
JP2005281726A (en) Plasma film deposition method, and apparatus therefor
JP4997596B2 (en) Ion plating method
JPWO2005054127A1 (en) Induction fullerene manufacturing apparatus and manufacturing method
JPH09165673A (en) Thin film forming device and thin film forming method
JP2005290510A (en) Electron beam vapor deposition method and apparatus therefor
KR20200105835A (en) System and method for additive manufacturing for deposition of metal and ceramic materials
TWI433611B (en) A plasma source, an ion manufacturing method, a plasma manufacturing method, and a method of manufacturing the inner package carbon cluster
JP2013174000A (en) Electron beam vapor deposition apparatus
JP2023175267A (en) Ion plating device and method
TW202433522A (en) Ion source, ion current density distribution changing method, and substrate processing device capable of easily changing the ion current density distribution of an ion beam irradiated from the ion source
JP5436143B2 (en) Film forming device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160615

R150 Certificate of patent or registration of utility model

Ref document number: 5962979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350