JP2014007309A - Deposition apparatus - Google Patents
Deposition apparatus Download PDFInfo
- Publication number
- JP2014007309A JP2014007309A JP2012142595A JP2012142595A JP2014007309A JP 2014007309 A JP2014007309 A JP 2014007309A JP 2012142595 A JP2012142595 A JP 2012142595A JP 2012142595 A JP2012142595 A JP 2012142595A JP 2014007309 A JP2014007309 A JP 2014007309A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- film forming
- relay
- forming apparatus
- chambers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008021 deposition Effects 0.000 title abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 84
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000008569 process Effects 0.000 claims abstract description 35
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 14
- 238000012546 transfer Methods 0.000 claims abstract description 11
- 238000011143 downstream manufacturing Methods 0.000 claims abstract description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 52
- 238000000576 coating method Methods 0.000 claims description 19
- 238000004544 sputter deposition Methods 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000001771 vacuum deposition Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 21
- 239000012298 atmosphere Substances 0.000 abstract description 12
- 239000010408 film Substances 0.000 description 135
- 239000007789 gas Substances 0.000 description 53
- 239000010410 layer Substances 0.000 description 28
- 238000000151 deposition Methods 0.000 description 26
- 238000007740 vapor deposition Methods 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000011068 loading method Methods 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 230000006641 stabilisation Effects 0.000 description 7
- 238000011105 stabilization Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000005525 hole transport Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910019015 Mg-Ag Inorganic materials 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005108 dry cleaning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Thin Film Transistor (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Photovoltaic Devices (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明は、成膜装置に関わり、特に有機デバイス製造用の成膜装置に関する。 The present invention relates to a film forming apparatus, and more particularly to a film forming apparatus for manufacturing an organic device.
近年、有機デバイスが新たな産業分野として注目されている。たとえば表示デバイスや照明デバイスとして有機ELが、有機ELや電子ペーパー、RFIDなどの駆動素子として有機トランジスタが、太陽電池として有機薄膜太陽電池などが開発されている。特に有機ELは表示デバイスや照明デバイスの大型化とともに、製造基板サイズの大型化の要求があり、基板サイズは現状の第4.5世代製造ライン(ガラス基板寸法:730mm×920mm)から、基板寸法で2.9倍以上となる第5.5〜第6世代製造ライン(ガラス基板寸法は1300mm×1500mm〜1500mm×1800mm)へ拡大し、さらには第8世代製造ライン(ガラス基板寸法:2200mm×2500mm)にも及ぶ見込みである。 In recent years, organic devices have attracted attention as a new industrial field. For example, organic EL has been developed as a display device or lighting device, an organic transistor as a driving element such as organic EL, electronic paper, or RFID, and an organic thin film solar cell as a solar cell. In particular, organic EL is required to increase the size of the production substrate along with the increase in the size of display devices and lighting devices. The substrate size is the substrate size from the current 4.5th generation production line (glass substrate dimensions: 730 mm x 920 mm). Will be expanded to 5.5th to 6th generation production lines (glass substrate dimensions are 1300 mm x 1500 mm to 1500 mm x 1800 mm), which will be 2.9 times or more, and 8th generation production line (glass substrate dimensions: 2200 mm x 2500 mm). ).
上記の生産設備の大型化は同時に、有機ELの低コスト化のために、搬送の高速化や従来の蒸着法以外の新成膜プロセスの導入など、生産設備の効率化に対する新たな要求を生んでいる。例えば有機層の形成のため部分的に塗布プロセスが採用されるようになってきている。具体的には有機ELデバイスのホール注入層、ホール輸送層、発光層など基板に近い側の有機層の一部または全部を塗布プロセスで作成し、上部電極側に近い発光層や電子輸送層の一部または全部を蒸着で成膜するハイブリット素子などが検討されている。 At the same time, the above-mentioned increase in the size of production facilities has created new demands for improving the efficiency of production facilities, such as speeding up transport and introducing new film formation processes other than conventional vapor deposition methods, in order to reduce the cost of organic EL. It is. For example, a coating process has been partially adopted to form an organic layer. Specifically, part or all of the organic layer on the side close to the substrate such as the hole injection layer, hole transport layer, and light emitting layer of the organic EL device is prepared by a coating process, and the light emitting layer and electron transport layer near the upper electrode side are formed. A hybrid element that forms a part or all of the film by vapor deposition has been studied.
また表示デバイスや照明デバイスが大型化した場合、上部電極の低コスト化も重要である。大型パネルでは輝度の均一性を保つために、上部電極の低抵抗化が必要となる。従来のトップエミッション型の有機ELで用いられるMg−Ag合金の半透過膜では、抵抗が高すぎ、画面輝度や照明輝度の均一性を確保するのが困難である。Ag膜を厚膜化したMg−Ag電極は高価なAgを大量に用いるため高コストになる。そのため、上部電極に安価なAl反射電極を用いたボトムエミッション型の有機ELを用いたり、トップエミッション型の有機ELではITOやIZOなどの透明電極を数100nm程度まで厚く成膜することが求められる。Al電極は従来、抵抗加熱蒸着や誘導加熱蒸着、EB蒸着により成膜されていたが、基板サイズが小さかったため、蒸発源と基板間距離を十分にあけて膜厚均一性を確保してきた。しかしながら基板が大型化すると、蒸発源と基板間距離をあけるのが難しくなる。またAlはMgやAgと比べ蒸気圧が低いため高い蒸着温度が必要であり、成膜速度を高レート化して厚膜化するのがより困難であるという課題も有する。そのため、スパッタリング成膜が検討されている。一方、ITOやIZOなどの透明酸化物も、蒸着で低抵抗な膜を安定して得ることは難しく、通常はスパッタリング法が用いられる。
従って、有機ELの上部電極の成膜にスパッタリング法を導入することが望ましい。
Further, when the display device or the lighting device is enlarged, it is important to reduce the cost of the upper electrode. In a large panel, it is necessary to reduce the resistance of the upper electrode in order to maintain the uniformity of luminance. In the conventional semi-transmission film of Mg—Ag alloy used in the top emission type organic EL, the resistance is too high, and it is difficult to ensure the uniformity of screen luminance and illumination luminance. An Mg-Ag electrode having a thick Ag film is expensive because a large amount of expensive Ag is used. Therefore, it is required to use a bottom emission type organic EL using an inexpensive Al reflective electrode for the upper electrode, or to form a transparent electrode such as ITO or IZO to a thickness of about several hundreds of nanometers in the top emission type organic EL. . Conventionally, Al electrodes have been formed by resistance heating vapor deposition, induction heating vapor deposition, and EB vapor deposition. However, since the substrate size is small, the distance between the evaporation source and the substrate has been sufficiently increased to ensure film thickness uniformity. However, when the substrate becomes large, it becomes difficult to increase the distance between the evaporation source and the substrate. In addition, since Al has a lower vapor pressure than Mg and Ag, a high deposition temperature is required, and there is a problem that it is more difficult to increase the film formation rate to increase the film thickness. Therefore, sputtering film formation has been studied. On the other hand, transparent oxides such as ITO and IZO are difficult to stably obtain a low-resistance film by vapor deposition, and a sputtering method is usually used.
Therefore, it is desirable to introduce a sputtering method for forming the organic EL upper electrode.
さらに薄型・軽量化の観点からは、従来の封止缶と乾燥剤を用いた封止に変わり、CVD膜を用いた薄膜封止が検討されている。CVD膜では、通常有機−無機の積層バリア膜を形成し、水分の透過率を有機ELデバイスが劣化しないレベル(〜10-6g/m2/day)に低減することができる。薄膜封止を用いることで、封止缶を用いず、軽量なガラスやバリア性のあるフィルム基板等の用いることができるようになる。 Further, from the viewpoint of reduction in thickness and weight, thin film sealing using a CVD film has been studied in place of the conventional sealing can and sealing using a desiccant. In the CVD film, an organic-inorganic laminated barrier film is usually formed, and the moisture permeability can be reduced to a level (-10 −6 g / m 2 / day) at which the organic EL device does not deteriorate. By using thin film sealing, it is possible to use a light glass or a barrier film substrate without using a sealing can.
このように有機ELデバイスは従来、殆ど蒸着法のみを用いて作成されてきたが、今後は蒸着に加え塗布、スパッタリング、CVDなど複数の異なる成膜プロセスを組み合わせた製造方法が主流になると予想される。その場合、それぞれのプロセスの成膜雰囲気ガス圧力や、ガス種、成膜温度が異なることに注意する必要がある。すなわち、蒸着は通常高真空中(10-4Pa程度)で常温、塗布は通常大気圧で塗布、かつ乾燥のための加熱ステージ等が必要であり、スパッタリング(0.1Pa〜1Pa程度)とCVD(1〜10Pa程度)は通常低真空のスパッタガス(アルゴン)あるいは原料ガス(モノシラン等)雰囲気中で、常温〜加熱環境で成膜する。有機EL等の有機デバイスは、水分や酸素を極端に嫌うため、これらの工程間では、乾燥窒素などを充填したグローボックス中などに保管するか、成膜装置を直接連結する必要がある。今後の生産性向上を考えた場合、成膜装置を直接連結するのが好ましいが、その場合は、それぞれの成膜処理室を異なる雰囲気圧力、温度を保持するための機構が必要である。例えば、スパッタリングの場合はスパッタ成膜室をゲートバルブでロボット搬送室から隔離し、その中で調圧(放電ガス導入、ガス圧安定化)、基板温度制御、成膜(放電のランプアップ、成膜、ランプダウン)、排気を行う。しかしこの方式では成膜処理室内で成膜以外の工程(ガス導入、ガス圧安定化、基板温度制御、ランプアップ、ランプダウン、排気)に時間を要するため、生産性の向上に難点がある。また、塗布、スパッタリング、CVDで各々成膜雰囲気ガス圧力、ガス種、成膜温度が異なるため、ガス導入や安定化、排気に必要な時間がそれぞれ異なり、成膜装置を連結した際に最も遅い工程がボトルネックとなるので、全体の生産性を上げ難い。特に3種以上の成膜装置を連結する場合、基板の搬送時間を合わせないと、基板の滞留が起こり、安定な生産が困難になる。 As described above, organic EL devices have been conventionally produced using almost only the vapor deposition method. However, in addition to vapor deposition, it is expected that a manufacturing method combining a plurality of different film formation processes such as coating, sputtering, and CVD will become mainstream. The In that case, it is necessary to pay attention to the fact that the film forming atmosphere gas pressure, gas type, and film forming temperature of each process are different. That is, vapor deposition is usually performed in a high vacuum (about 10 −4 Pa) at room temperature, and coating is usually performed at atmospheric pressure, and a heating stage for drying is required. Sputtering (about 0.1 Pa to 1 Pa) and CVD (About 1 to 10 Pa) is usually formed in a low-vacuum sputtering gas (argon) or source gas (monosilane or the like) atmosphere at room temperature to a heating environment. Since organic devices such as organic EL are extremely reluctant to moisture and oxygen, it is necessary to store them in a glow box filled with dry nitrogen or the like between these processes or to directly connect a film forming apparatus. In consideration of future productivity improvement, it is preferable to directly connect the film forming apparatuses. In that case, a mechanism for maintaining different film pressures and temperatures in the respective film forming chambers is necessary. For example, in the case of sputtering, the sputter deposition chamber is isolated from the robot transfer chamber by a gate valve, and pressure regulation (discharge gas introduction, gas pressure stabilization), substrate temperature control, film deposition (discharge ramp-up, formation) Membrane, ramp down), exhaust. However, this method has a difficulty in improving productivity because processes other than film formation (gas introduction, gas pressure stabilization, substrate temperature control, ramp-up, ramp-down, exhaust) are required in the film-forming chamber. Also, since the film formation atmosphere gas pressure, gas type, and film formation temperature are different for coating, sputtering, and CVD, the time required for gas introduction, stabilization, and evacuation is different, which is the slowest when the film forming apparatus is connected. Since the process becomes a bottleneck, it is difficult to increase the overall productivity. In particular, when three or more kinds of film forming apparatuses are connected, if the substrate transport time is not matched, the substrate stays and stable production becomes difficult.
なお、以下の特許文献1〜3では、2つの成膜室あるいはプロセス室の間に複数の中継室(ロードロックチャンバ)を設ける例を開示しているが、3種以上の成膜室を有する場合の構造を検討していない。 The following Patent Documents 1 to 3 disclose an example in which a plurality of relay chambers (load lock chambers) are provided between two film forming chambers or process chambers, but three or more types of film forming chambers are provided. The case structure is not considered.
本発明は、特に3種以上の異なる成膜雰囲気ガス圧力あるいはガス種を組み合わせて成膜を行う成膜処理室間を大気開放することなく連結し、かつ各成膜処理室の成膜雰囲気ガス圧やガス種の置換、温度の高速制御を可能にして、高生産性を実現する有機デバイス製造用の成膜装置を提供することを目的とする。 The present invention particularly connects the film forming process chambers in which film formation is performed by combining three or more different film forming atmosphere gas pressures or gas types without opening to the atmosphere, and the film forming atmosphere gas in each film forming process chamber An object of the present invention is to provide a film forming apparatus for manufacturing an organic device that enables high-speed control of pressure and gas species and high-speed control of temperature.
雰囲気条件の異なる3種以上の成膜室を備えた成膜装置において、上流工程の成膜室と下流工程の成膜室とを接続し、前記下流工程の成膜室の雰囲気条件に応じて室内の雰囲気条件を調整する中継室を有し、前記中継室において基板1枚の雰囲気条件を調整する時間は、隣接する成膜室の雰囲気条件差が大きい中継室は、隣接する成膜室の雰囲気条件差が小さい中継室よりも、多くの枚数の基板の雰囲気条件を逐次並行して調整する。 In a film forming apparatus having three or more types of film forming chambers having different atmospheric conditions, an upstream film forming chamber and a downstream film forming chamber are connected to each other according to the atmospheric conditions of the downstream film forming chamber. There is a relay chamber for adjusting the atmospheric conditions in the room, and the time for adjusting the atmospheric condition of one substrate in the relay chamber is such that the relay chamber having a large difference in atmospheric conditions between adjacent film forming chambers The atmosphere conditions of a larger number of substrates are adjusted sequentially and in parallel than the relay chamber having a small atmosphere condition difference.
本発明の成膜装置によれば、異なる雰囲気圧力で製造する有機デバイスを、高効率で一貫生産することができる。また、低コストで有機デバイスを提供することができる。上記した以外の課題,構成及び効果は以下の実施形態の説明により明らかにされる。 According to the film forming apparatus of the present invention, organic devices manufactured at different atmospheric pressures can be produced with high efficiency and integrated. In addition, an organic device can be provided at low cost. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
<成膜装置の実施形態1>
図1は、本発明の実施例の成膜装置の連結構成を模式的に示す概略図である。本実施形態では有機EL用の装置の例を示す。成膜装置(例えば有機ELデバイス製造装置)は、基板カセット10から基板を装置内に搬入するロード室20−1、搬出するアンロード室20−2、ロード室20−1とアンロード室20−2の間に配置され、基板を搬送する複数のロボット室40(40−1〜40−5)、それらの間を連結しガス圧の調整などを行う複数の中継室30(30−1〜30−6)、および各ロボット室40の両側に配置される複数の成膜室50(50−1〜50−10)からなっている。各室の間はゲートバルブ60で開閉可能になっている。
<Embodiment 1 of Film Forming Apparatus>
FIG. 1 is a schematic view schematically showing a connection configuration of a film forming apparatus according to an embodiment of the present invention. In this embodiment, an example of an apparatus for organic EL is shown. A film forming apparatus (for example, an organic EL device manufacturing apparatus) includes a load chamber 20-1 for loading a substrate from the substrate cassette 10 into the apparatus, an unload chamber 20-2 for unloading, a load chamber 20-1 and an unload chamber 20-. 2, a plurality of robot chambers 40 (40-1 to 40-5) that transfer substrates, and a plurality of relay chambers 30 (30-1 to 30-30) that connect between them to adjust gas pressure and the like. -6), and a plurality of film forming chambers 50 (50-1 to 50-10) arranged on both sides of each robot chamber 40. Each chamber can be opened and closed by a gate valve 60.
本実施例では、成膜室50−1、50−2は塗布室、成膜室50−3〜50−6は蒸着室、成膜室50−7、50−8はスパッタ室、成膜室50−9、50−10はCVD室とした。基板にはITOまたはIZOなどの透明電極による下部電極がすでに形成されているものを用いる。アクティブマトリクス型の場合は、下部電極の下にさらにスルーホールを介して薄膜トランジスタ回路が接続されている。成膜室(塗布室)50−1、50−2では、有機ELの正孔注入層、正孔輸送層を、成膜室(蒸着室)50−3〜50−6は蒸着室では発光層、電子輸送層、電子注入層を、成膜室(スパッタ室)50−7、50−8では上部電極を、成膜室(CVD室)50−9、50−10ではバリア層を形成した。 In this embodiment, the deposition chambers 50-1 and 50-2 are coating chambers, the deposition chambers 50-3 to 50-6 are vapor deposition chambers, the deposition chambers 50-7 and 50-8 are sputtering chambers, and the deposition chambers. 50-9 and 50-10 were CVD chambers. A substrate in which a lower electrode made of a transparent electrode such as ITO or IZO has already been formed is used. In the case of the active matrix type, a thin film transistor circuit is further connected through a through hole under the lower electrode. In the film formation chambers (coating chambers) 50-1 and 50-2, the hole injection layer and the hole transport layer of the organic EL are used. In the film formation chambers (vapor deposition chambers) 50-3 to 50-6, the light emitting layer is used. The electron transport layer and the electron injection layer were formed in the deposition chambers (sputtering chambers) 50-7 and 50-8, and the barrier layers were formed in the deposition chambers (CVD chambers) 50-9 and 50-10.
各成膜室50には2箇所の基板受け渡し部55を有しており、ロボットにより上面搬送にて基板が基板受け渡し部55に搬入される。搬送ロボットは、櫛歯状ハンドを上下二段に2本有し、例えば上は搬入用、下は搬出用とし、1つの動作で搬入出処理を同時に行うことができる。本方式では、1枚の基板をアライメントしている間にもう1枚を成膜することが可能であり、生産性が向上する。つまり、1つの成膜チャンバでアライメントと成膜を交互に行うことにより、生産性を向上することができる。 Each film forming chamber 50 has two substrate transfer portions 55, and the substrate is transferred into the substrate transfer portion 55 by the upper surface transfer by the robot. The transport robot has two comb-shaped hands in two upper and lower stages. For example, the upper part is used for carrying in and the lower part is used for carrying out, and the carrying-in / out process can be simultaneously performed by one operation. In this method, it is possible to form another film while aligning one substrate, and productivity is improved. That is, productivity can be improved by alternately performing alignment and film formation in one film formation chamber.
上記のような成膜装置では、大気圧下(窒素雰囲気)で行う塗布成膜と、高真空で行う蒸着と、低真空のプロセスガス中で行うスパッタ成膜およびCVD成膜が一貫ラインで連結されている。またロード室20−1は大気雰囲気、アンロード室20−2は大気雰囲気または薄膜封止に加えガラスやフィルム封止する場合には大気圧の窒素雰囲気で連結される。このように3種以上の雰囲気の成膜または搬送設備が連結されており、かつ成膜時の搬入出の雰囲気圧力やプロセスガス、プロセス温度が大幅に異なる場合、中継室30を介した雰囲気圧力やプロセスガス、プロセス温度の変更のために要する時間が中継室30毎に異なってくる。たとえば圧力差の大きい塗布工程と蒸着工程間では排気やガス導入・安定化に時間を要する。一方、蒸着とスパッタ間では、圧力差が小さいため排気やガス導入・安定化の時間はより短くて済む。したがって1つの中継室30で各装置を連結した場合は、塗布工程と蒸着工程間の基板搬送時間がボトルネックとなってしまい、成膜装置全体の生産性が上がらない。そこで本発明では中継室30の構造と搬送方法を改良した。 In the film forming apparatus as described above, coating film formation performed under atmospheric pressure (nitrogen atmosphere), vapor deposition performed in a high vacuum, sputter film formation and CVD film formation performed in a low vacuum process gas are connected by an integrated line. Has been. Further, the load chamber 20-1 is connected with an atmospheric atmosphere, and the unload chamber 20-2 is connected with an atmospheric atmosphere or a nitrogen atmosphere at atmospheric pressure when glass or film sealing is performed in addition to thin film sealing. In this way, when three or more types of film formation or transfer facilities are connected and the atmospheric pressure and the process gas and process temperature at the time of film formation differ greatly, the atmospheric pressure via the relay chamber 30 In addition, the time required for changing the process gas and the process temperature differs for each relay chamber 30. For example, it takes time to exhaust and introduce / stabilize a gas between a coating process and a vapor deposition process with a large pressure difference. On the other hand, since the pressure difference is small between vapor deposition and sputtering, the time required for exhaust and gas introduction / stabilization can be shortened. Therefore, when each apparatus is connected in one relay chamber 30, the substrate transport time between the coating process and the vapor deposition process becomes a bottleneck, and the productivity of the entire film forming apparatus does not increase. Therefore, in the present invention, the structure and transfer method of the relay chamber 30 are improved.
すなわち、本発明の成膜装置は、上流工程の成膜室と下流工程の成膜室とを接続し、前記下流工程の成膜室の雰囲気条件に応じて室内の雰囲気条件を調整する中継室を複数備えるものであり、この中継室はそれぞれ基板が複数あった場合に、雰囲気条件の調整を逐次並行処理することができる。ここで、本発明は、上記ボトルネック解消を目的とするため、中継室において基板1枚の雰囲気条件を調整する時間が、その上流工程の成膜室において基板1枚の成膜に要する時間より長い場合に特に有効である。 That is, the film forming apparatus of the present invention connects the upstream process film forming chamber and the downstream process film forming chamber, and adjusts the indoor atmospheric conditions according to the atmospheric conditions of the downstream process film forming chamber. In the relay chamber, when there are a plurality of substrates, the adjustment of the atmospheric conditions can be sequentially performed in parallel. Here, since the present invention aims to eliminate the bottleneck, the time for adjusting the atmospheric condition of one substrate in the relay chamber is longer than the time required for film formation of one substrate in the film forming chamber in the upstream process. This is particularly effective when long.
さらに、本発明の成膜装置は、隣接する成膜室の雰囲気条件差が大きい中継室は、隣接する成膜室の雰囲気条件差が小さい中継室よりも、多くの枚数の基板の雰囲気条件を調整する。これにより、上流工程の成膜室と下流工程の成膜室の雰囲気条件の差によりに生じる基板搬送速度低下のボトルネックを解消し、成膜装置全体の生産性を向上できる。 Furthermore, in the film forming apparatus of the present invention, a relay chamber having a large difference in atmospheric conditions between adjacent film forming chambers has a larger number of substrate atmospheric conditions than a relay chamber having a small difference in atmospheric conditions between adjacent film forming chambers. adjust. As a result, the bottleneck of the substrate transport speed reduction caused by the difference in the atmospheric conditions between the film forming chamber in the upstream process and the film forming chamber in the downstream process can be eliminated, and the productivity of the entire film forming apparatus can be improved.
図2に本発明の中継室30の一例を示す。図2は説明を簡単にするため図1のうち、大気圧下の窒素雰囲気で成膜し、加熱硬化する成膜室(塗布室)50−1、50−2と、10-4Pa程度の高真空、室温下で成膜する成膜室(蒸着室)50−3、50−4、0.1Pa〜1Pa程度の低真空のアルゴン雰囲気、室温で成膜する成膜室(スパッタ室)50−7、50−8のみを抜粋して、その平面図とA−A′断面を図示したものである。低真空の部分は成膜室(CVD室)50−9、50−10に置き換えてもよい。本発明の中継室30は、雰囲気圧力差や雰囲気温度差(プロセスの温度差)の大きい成膜室間ほど多くの中継室30を備えていることを特徴とし、プロセスの上流および下流の両側にゲートバルブ60を有し、それぞれに接続された処理室で用いるプロセスガスを導入できるガス導入部70、及びプロセスガスを排気できるガス排気部(排気ポンプ)80を有している。中継室30はガス導入部70及びガス排気部80を有することで中継室30内の雰囲気圧力を調整することができる。 FIG. 2 shows an example of the relay chamber 30 of the present invention. 2 of FIG. 1 for simplicity of explanation, was formed in a nitrogen atmosphere under atmospheric pressure, the deposition chamber to cure heating (coating chamber) 50-1 and 50-2, of the order of 10 -4 Pa Deposition chambers (evaporation chambers) 50-3 and 50-4 for film formation under high vacuum and room temperature, low vacuum argon atmosphere of about 0.1 Pa to 1 Pa, film formation chamber (sputter chamber) 50 for film formation at room temperature Only -7 and 50-8 are extracted and the plan view and AA 'cross section are shown. The low vacuum portion may be replaced with film formation chambers (CVD chambers) 50-9 and 50-10. The relay chamber 30 according to the present invention is characterized in that the number of relay chambers 30 increases between the film forming chambers having a larger atmospheric pressure difference or atmospheric temperature difference (process temperature difference), on both sides upstream and downstream of the process. It has a gate valve 60, and has a gas introduction part 70 that can introduce process gas used in the processing chambers connected thereto, and a gas exhaust part (exhaust pump) 80 that can exhaust process gas. The relay chamber 30 includes the gas introduction unit 70 and the gas exhaust unit 80, so that the atmospheric pressure in the relay chamber 30 can be adjusted.
また、中継室30は成膜プロセスの温度差がある工程間ではプロセス温度に基板を予熱または予冷する温度調節機能(図示せず)を有することも可能である。 In addition, the relay chamber 30 may have a temperature adjustment function (not shown) for preheating or precooling the substrate to the process temperature between processes having a temperature difference in the film forming process.
さらにプロセスの下流方向の処理室でトラブルやメンテナンス等で基板の滞留が発生した場合に、中継室30内で基板を一時保管するストッカ機能を有することも可能である。 Further, it is possible to have a stocker function for temporarily storing the substrate in the relay chamber 30 when the substrate stays in the processing chamber in the downstream direction of the process due to trouble or maintenance.
図2は、中継室30を上下多段構造とした例(1)である。図2では、中継室30−2、中継室30−4は上下多段に積載された多段構造を有し、圧力差の大きい成膜室(塗布室)50−1、50−2と成膜室(蒸着室)50−3、50−4の間は4段、圧力差の小さい成膜室(蒸着室)50−3、50−4と成膜室(スパッタ室)50−7、50−8は2段とした例を示しており、中継室30にガス導入部70およびガス排気部80が接続されている。それぞれの段数は、成膜プロセスの雰囲気圧力差や成膜温度差に応じて決まる。上流工程の成膜室から下流工程の成膜室への基板の搬送する時間、言い換えると各中継室30でのガス導入と安定化、排気、調温に要する時間を中継室30の段数で割った値が図1のような連結装置内でほぼ一定になるように適宜変更可能である。ロボット室40内のロボット90は軸が上下に移動でき、ロボットアームの高さを各段に合わせることができるようになっている。 FIG. 2 shows an example (1) in which the relay chamber 30 has an upper and lower multistage structure. In FIG. 2, the relay chamber 30-2 and the relay chamber 30-4 have a multi-stage structure in which the upper and lower stages are stacked, and the film forming chambers (coating chambers) 50-1 and 50-2 having a large pressure difference and the film forming chambers. (Vapor deposition chamber) 50-3, 50-4, 4 steps, film formation chamber (vapor deposition chamber) 50-3, 50-4 with small pressure difference and film formation chamber (sputter chamber) 50-7, 50-8 Shows an example with two stages, and a gas introduction part 70 and a gas exhaust part 80 are connected to the relay chamber 30. The number of stages is determined according to the atmospheric pressure difference in the film forming process and the film forming temperature difference. Divide the time required for transporting the substrate from the upstream deposition chamber to the downstream deposition chamber, in other words, the time required for gas introduction and stabilization, exhaust, and temperature control in each relay chamber 30 by the number of stages in the relay chamber 30. The values can be appropriately changed so that the values are substantially constant in the coupling device as shown in FIG. The axis of the robot 90 in the robot chamber 40 can be moved up and down, and the height of the robot arm can be adjusted to each level.
例えば2つの中継室30(第1の中継室30、第2の中継室30)がある場合、第1の中継室30において上流工程の成膜室から下流工程の成膜室への基板の搬送に要する時間(T1)を第1の中継室30の数(N1)で割った数Xと、第2の中継室30において上流工程の成膜室から下流工程の成膜室への基板の搬送に要する時間(T2)を前記第1の中継室30の数(N2)で割った数Yは、
|X−Y|<X、Y
の関係にする。|X−Y|がもしX、Yより大きければ、それらが小さくなるように中継室の数N1、またはN2を増やし、|X−Y|<X、|X−Y|<Yの関係にすることで、基板滞留時間差を各基板の搬送タクト時間内に収めることができる。もちろんそれ以上に中継室の数を増やし、|X−Y|<<X、|X−Y|<<Yとするも可能である。
For example, when there are two relay chambers 30 (the first relay chamber 30 and the second relay chamber 30), in the first relay chamber 30, the substrate is transferred from the upstream deposition chamber to the downstream deposition chamber. And the number X of the first relay chamber 30 divided by the number (N1) of the first relay chamber 30 and the transfer of the substrate from the upstream deposition chamber to the downstream deposition chamber in the second relay chamber 30. The number Y obtained by dividing the time required for (T2) by the number (N2) of the first relay chambers 30 is
| X-Y | <X, Y
Make a relationship. If | X−Y | is larger than X and Y, the number of relay rooms N1 or N2 is increased so that they are smaller, so that | X−Y | <X and | X−Y | <Y. Thus, the difference in substrate residence time can be kept within the transport tact time of each substrate. Of course, it is possible to increase the number of relay chambers further to satisfy | X−Y | << X and | X−Y | << Y.
上記関係が成り立てば、2つの中継部を比較した場合に、各中継室30での基板滞留時間を適切な中継室の段数で最小限に抑えることができるので成膜装置全体の搬送効率を向上することができる。換言すれば、|X−Y|<X、Yとすれば搬送時間差|X−Y|を1枚の搬送にかかる時間内にでき、あとは搬送速度等を調整して|X−Y|=0に近づけ、必要最小限の中継室の段数とすることができる。|X−Y|<2X、2Yや|X−Y|<3X、3Yとしたとき、搬送時間差|X−Y|を2枚以上の搬送にかかる時間とする場合も含まれるので、|X−Y|<X、Yとするために中継室の段数を増やすのが好ましい。 If the above relationship is established, when two relay units are compared, the substrate residence time in each relay chamber 30 can be minimized by the appropriate number of relay chambers, thereby improving the transfer efficiency of the entire film forming apparatus. can do. In other words, if | X−Y | <X, Y, the transport time difference | X−Y | can be within the time required for transporting one sheet, and then the transport speed is adjusted to make | X−Y | = It can be close to 0 and the minimum number of relay room stages can be achieved. When | X−Y | <2X, 2Y, or | X−Y | <3X, 3Y, the case where the transport time difference | X−Y | is the time required for transporting two or more sheets is also included. In order to satisfy Y | <X, Y, it is preferable to increase the number of relay chambers.
図3は、中継室30を上下多段構造とした例(2)である。図2とは、上下多段に隔壁で区分された構造である点が異なる。各段の上流および下流には個別にゲートバルブ60が設置され、それぞれにガス導入部70、ガス排気部80が設置されており、基本的な機能は図2と同じである。隔壁で区切る分、中継室30の構造を簡略化でき、省スペースになる。 FIG. 3 shows an example (2) in which the relay chamber 30 has an upper and lower multi-stage structure. 2 is different from FIG. 2 in that the structure is divided into upper and lower multi-staged partitions. Gate valves 60 are individually installed upstream and downstream of each stage, and a gas introduction unit 70 and a gas exhaust unit 80 are installed in each, and the basic functions are the same as those in FIG. The structure of the relay chamber 30 can be simplified and the space can be saved by dividing the partition wall.
図4は、ガス排気部80をバルブ100で分岐することで、複数の中継室30を1つのガス排気部80で切り替え排気処理できるようにしたものである。各中継室30では、ガス導入と安定化、調温および排気が繰り返されており、ガス導入時と安定化、調温時には排気の必要がない。したがってその時間を利用して1つのガス排気部80で複数の中継室30を排気することが可能である。本実施例のような構成によりガス排気部80の台数を減らすことができ、成膜装置のコストを低減することが可能である。 In FIG. 4, the gas exhaust unit 80 is branched by the valve 100 so that a plurality of relay chambers 30 can be switched and exhausted by one gas exhaust unit 80. In each relay chamber 30, gas introduction and stabilization, temperature control, and exhaust are repeated, and there is no need for exhaust during gas introduction, stabilization, and temperature control. Therefore, it is possible to exhaust a plurality of relay chambers 30 with one gas exhaust unit 80 using the time. With the configuration of this embodiment, the number of gas exhaust units 80 can be reduced, and the cost of the film forming apparatus can be reduced.
図5は中継室30を上下多段に積載または区分し、かつそれぞれの高さに併設、または区分された2次元配置構造を有する例である。単純な多段構造で段数が足りない場合、本実施例のようにそれぞれの高さで水平方向に併設することで、中継室30を増やしたりすることが可能である。また2次元配置構造とすることで、単純な多段構造よりロボット90の軸高さを変えるストロークを短くすることができる。また中継室30が少なくてよい場合、例えば2段と1段の組み合わせの場合は図6のように同一高さに並設、または区分された並置構造のみでもよい。その場合、ロボット90の軸高さを変える必要がなくなるメリットがある。 FIG. 5 is an example having a two-dimensional arrangement structure in which the relay chambers 30 are stacked or divided in multiple upper and lower stages and are arranged or arranged at respective heights. When the number of stages is insufficient with a simple multistage structure, it is possible to increase the number of relay chambers 30 by arranging them horizontally at their respective heights as in this embodiment. In addition, with the two-dimensional arrangement structure, the stroke for changing the axial height of the robot 90 can be shortened compared to a simple multistage structure. Further, when the number of relay chambers 30 may be small, for example, in the case of a combination of two stages and one stage, only a juxtaposed structure that is arranged in parallel or divided at the same height as shown in FIG. 6 may be used. In this case, there is an advantage that it is not necessary to change the axis height of the robot 90.
以上の成膜装置を用いることにより異なる成膜雰囲気圧力、成膜温度で成膜して製造する有機ELを、高効率で基板搬送して生産することができ、高い生産性で有機ELを製造することができる。本実施例では有機ELを例にしたが、有機TFTや有機太陽電池など、水分や酸素を嫌う他の有機デバイス製造でも同様の生産性向上が期待できる。 By using the above film forming apparatus, it is possible to produce and manufacture organic EL by depositing at different film forming atmospheric pressures and film forming temperatures with high efficiency, and manufacturing organic EL with high productivity can do. In this embodiment, an organic EL is taken as an example, but the same productivity improvement can be expected in the manufacture of other organic devices that dislike moisture and oxygen, such as organic TFTs and organic solar cells.
<成膜装置の実施形態2>
図7は、本発明の別の実施例の成膜装置の連結構成を模式的に示す概略図(1)である。図1と異なるのは、ロボット室40(40−4)と成膜室(CVD室)50(50−9、50−10)の間に中継室30(30−7、30−8)を設けた点である。CVD室で用いられるプロセスガスは、活性な材料ガスが多く、ロボット室40(40−5)にガスを導入するとロボットを痛めてしまう可能性がある。その場合、このようにロボット室40と成膜室の間に中継室30を設けることにより問題を回避することができる。中継室30の構造は実施形態1に準じて、段数を調整すればよい。中継室と成膜室の間の基板は、例えばローラーなどでロボットより簡易な構造で搬送することで、CVD室で用いられる活性な材料ガスに対する耐性を確保しやすくなる。
<Embodiment 2 of Film Forming Apparatus>
FIG. 7 is a schematic diagram (1) schematically showing a connection configuration of a film forming apparatus according to another embodiment of the present invention. The difference from FIG. 1 is that a relay chamber 30 (30-7, 30-8) is provided between the robot chamber 40 (40-4) and the film formation chamber (CVD chamber) 50 (50-9, 50-10). It is a point. The process gas used in the CVD chamber has a lot of active material gas, and if the gas is introduced into the robot chamber 40 (40-5), the robot may be damaged. In that case, the problem can be avoided by providing the relay chamber 30 between the robot chamber 40 and the film forming chamber. The structure of the relay chamber 30 may be adjusted according to the first embodiment. The substrate between the relay chamber and the film forming chamber is transported with a simpler structure than a robot, for example, with a roller or the like, so that it is easy to ensure resistance to the active material gas used in the CVD chamber.
<成膜装置の実施形態3>
図8は、本発明の別の実施例の成膜装置の連結構成を模式的に示す概略図(2)であり、特に照明用の有機ELデバイスを製造するのに適したインライン型の製造装置である。
本装置は、基板カセット10から基板を装置内に搬入するロード室20−1、搬出するアンロード室20−2、ロード室20−1とアンロード室20−2の間に配置され、基板を成膜する複数の成膜室50(50−1〜50−5)、それらの間を連結しガス圧の調整などを行う複数の中継室30(30−1〜30−6)からなっている。各室の間はゲートバルブ60で開閉可能になっている。本実施例では、成膜室50−1は塗布室、成膜室50−2〜50−3は蒸着室、成膜室50−4はスパッタ室、成膜室50−5はCVD室とした。基板にはITOまたはIZOなどの透明電極による下部電極がすでに形成されているものを用いる。塗布室50−1では、有機ELの正孔注入層兼正孔輸送層を、成膜室50−2、3の蒸着室では白色発光層と電子輸送層を、スパッタ室50−4では上部電極を、CVD室50−5ではバリア層を形成した。ロード室20−1、アンロード室20−2および各成膜室50(50−1〜50−5)には基板ガイド110(110−1〜110−7)を有しており、ローラー(図示せず)によって基板が搬送される。各ガイド110は回転機構およびエレベータなどにより基板を回転、上下させることができ、基板を水平状態あるいは垂直状態にして成膜したり、実施形態1と同様の各種の中継室構造との間で基板の搬出入ができるようにする。
<Embodiment 3 of Film Forming Apparatus>
FIG. 8 is a schematic diagram (2) schematically showing a connection configuration of a film forming apparatus according to another embodiment of the present invention, and particularly an in-line type manufacturing apparatus suitable for manufacturing an organic EL device for illumination. It is.
This apparatus is disposed between a load chamber 20-1 for loading a substrate from the substrate cassette 10 into the apparatus, an unload chamber 20-2 for unloading, and a load chamber 20-1 and an unload chamber 20-2. It consists of a plurality of film forming chambers 50 (50-1 to 50-5) for forming a film and a plurality of relay chambers 30 (30-1 to 30-6) for connecting them to adjust the gas pressure. . Each chamber can be opened and closed by a gate valve 60. In this embodiment, the deposition chamber 50-1 is a coating chamber, the deposition chambers 50-2 to 50-3 are vapor deposition chambers, the deposition chamber 50-4 is a sputtering chamber, and the deposition chamber 50-5 is a CVD chamber. . A substrate in which a lower electrode made of a transparent electrode such as ITO or IZO has already been formed is used. In the coating chamber 50-1, an organic EL hole injection layer / hole transport layer is formed, in the deposition chambers 50-2 and 3, the white light emitting layer and the electron transport layer are formed, and in the sputtering chamber 50-4, the upper electrode is formed. In the CVD chamber 50-5, a barrier layer was formed. The load chamber 20-1, the unload chamber 20-2, and the film forming chambers 50 (50-1 to 50-5) have substrate guides 110 (110-1 to 110-7), and rollers (see FIG. (Not shown) the substrate is transferred. Each guide 110 can rotate and move the substrate up and down by a rotation mechanism, an elevator, or the like, and can form a film with the substrate in a horizontal state or a vertical state, or between various relay chamber structures similar to those in the first embodiment. Can be taken in and out.
<有機ELディスプレイ製造の実施形態>
次に本発明の図1の装置を用いた有機ELディスプレイの製造方法の具体的な実施形態を以下に示す。本実施形態では、中継室の室数は30−1、30−2は4室、30−3は1室、30−4、30−5、30−6は2室で行い、平均タクトは1分の一貫製造装置とした。
<Embodiment of manufacturing organic EL display>
Next, specific embodiments of a method for manufacturing an organic EL display using the apparatus of FIG. 1 of the present invention will be described below. In this embodiment, the number of relay rooms is 30-1, 30-2 is 4 rooms, 30-3 is 1 room, 30-4, 30-5 and 30-6 are 2 rooms, and the average tact is 1 It was an integrated manufacturing device for minutes.
基板はアクティブマトリクス駆動のための薄膜トランジスタ回路(TFT回路)が形成されたもので、駆動TFTのドレインに接続されたITOまたはIZOなどの透明電極上に感光性ポリイミドなどの層間絶縁層(平坦化膜、バンク)が形成されているものである。図1の装置に投入する前に、ウェット洗浄およびドライ洗浄を行う。次に基板カセット室10にセットされ、ロード室20−1により搬送され、30−1の中継室に順次送り込まれる。 The substrate is formed with a thin film transistor circuit (TFT circuit) for driving an active matrix, and an interlayer insulating layer (flattening film) such as photosensitive polyimide on a transparent electrode such as ITO or IZO connected to the drain of the driving TFT. , Banks) are formed. Before being put into the apparatus of FIG. 1, wet cleaning and dry cleaning are performed. Next, it is set in the substrate cassette chamber 10, transported by the load chamber 20-1, and sequentially fed into the relay chamber 30-1.
4室ある中継室30−1では排気ポンプにより中継室内を逐次真空に排気した後、ドライ窒素にてパージし、ロボット室40−1のロボットにより搬出される。各中継室の搬入は20秒程度、排気は大気圧から10-3Pa台まで排気するので1分40秒程度かけ、合計時間は2分程度である。ドライ窒素パージは急激にガスを導入すると異物を巻き上げ基板を汚染するので、スロー置換を行うため1分40秒程度かけ、さらに搬出20秒を加えた2分程度とした。従って中継室30−1を通過するのに4分程度かけた。本実施例では中継室が4室あるので、平均タクトは1分程度で逐次基板を搬送することができる。 In the four relay chambers 30-1, the relay chamber is sequentially evacuated to vacuum by an exhaust pump, purged with dry nitrogen, and carried out by the robot in the robot chamber 40-1. Carrying in each relay room is about 20 seconds, and the exhaust is exhausted from atmospheric pressure to 10 −3 Pa, so it takes about 1 minute and 40 seconds, and the total time is about 2 minutes. The dry nitrogen purge takes about 1 minute and 40 seconds to carry out the slow replacement, and takes about 2 minutes to add 20 seconds for carrying out, since the foreign matter is wound up and the substrate is contaminated when the gas is rapidly introduced. Therefore, it took about 4 minutes to pass through the relay chamber 30-1. In this embodiment, since there are four relay chambers, the average tact time can be sequentially transferred in about one minute.
続いて、1分おきにロボット室40−1に搬入された基板は、成膜処理室50−1および50−2に逐次搬入され(搬入時間20秒)、ホール注入層・輸送層を印刷法により塗布される。塗布方法は様々選択できるが本実施例ではスリットコート法を用いた。各基板の塗布・乾燥の工程時間は約3分20秒かけて行った。塗布乾燥が終わった基板は逐次ロボット室40−1に搬出される(搬出時間20秒)。搬入、塗布、乾燥、搬出の合計時間は4分であるが、本実施例の成膜処理室50−1および50−2はチャンバ内の計4箇所で成膜を交互に行うことができるため、平均タクトは1分程度で成膜することが可能である。 Subsequently, the substrate carried into the robot chamber 40-1 every other minute is sequentially carried into the film forming chambers 50-1 and 50-2 (carrying time 20 seconds), and the hole injection layer / transport layer is printed. Is applied. Various coating methods can be selected, but the slit coating method was used in this embodiment. The process time for applying and drying each substrate was about 3 minutes and 20 seconds. The substrate after coating and drying is sequentially carried out to the robot chamber 40-1 (carrying out time 20 seconds). Although the total time for loading, coating, drying, and unloading is 4 minutes, the film formation chambers 50-1 and 50-2 of this embodiment can alternately perform film formation at four locations in the chamber. The average tact can be formed in about 1 minute.
続いて、ホール注入層・輸送層を成膜が終わった基板は、4室ある中継室30−2に順次搬入される。中継室30−2では排気ポンプにより中継室内を逐次真空に排気した後、ロボット室40−2のロボットにより搬出される。ロボット室40−2は高真空下で成膜する成膜処理室50−3、50−4と連結されているため、中継室30−2で大気圧のドライ窒素雰囲気から10-4Pa台の高真空まで排気する必要がある。そのため排気に3分程度時間がかかり、搬入20秒、搬出20秒と合わせて4分程度時間がかかるが、本実施例では中継室が4室あるので、平均タクトは1分程度で逐次基板を搬送することができる。 Subsequently, the substrate on which the hole injection layer / transport layer has been formed is sequentially carried into four relay chambers 30-2. In the relay chamber 30-2, the relay chamber is sequentially evacuated to vacuum by an exhaust pump, and is then carried out by the robot in the robot chamber 40-2. Since the robot chamber 40-2 is connected to the film forming chambers 50-3 and 50-4 for forming a film under high vacuum, the relay chamber 30-2 is operated at a pressure of 10 −4 Pa from an atmosphere of dry nitrogen. It is necessary to exhaust to high vacuum. Therefore, it takes about 3 minutes to exhaust, and it takes about 4 minutes in total, 20 seconds for loading and 20 seconds for unloading. In this embodiment, there are 4 relay chambers, so the average tact time is about 1 minute, and the substrates are sequentially placed. Can be transported.
続いて、1分おきにロボット室40−2に搬入された基板は、成膜処理室50−3および50−4に逐次搬入され(搬入時間20秒)、蒸着法により発光層が成膜される。真空蒸着では膜質確保のため低速の蒸着を行う方がよいため、3分20秒程度かけ、蒸着を行った。本実施例の成膜処理室50−3および50−4はチャンバ内の計4箇所で成膜を交互に行うことができるため、平均タクトは1分程度で成膜することが可能である。 Subsequently, the substrates carried into the robot chamber 40-2 every other minute are sequentially carried into the film forming chambers 50-3 and 50-4 (carrying time 20 seconds), and a light emitting layer is formed by vapor deposition. The In vacuum deposition, it is better to perform low-speed deposition in order to secure the film quality, so the deposition was performed for about 3 minutes and 20 seconds. In the film formation chambers 50-3 and 50-4 of this embodiment, film formation can be performed alternately at a total of four locations in the chamber, so that the average tact can be formed in about 1 minute.
続いて、発光層の成膜が終わった基板は、中継室30−3に逐次搬入される。ロボット室40−3は高真空下で成膜する成膜処理室50−3、50−4と連結されており、ロボット室40−2と同じ条件である。従って、中継室30−3では基板の搬入、搬出の受け渡しのみ行えばよい。本実施例では中継室30−3は1室であるが、平均タクトは1分程度で逐次基板を搬送することができる。 Subsequently, the substrate on which the light emitting layer has been formed is sequentially carried into the relay chamber 30-3. The robot chamber 40-3 is connected to the film formation chambers 50-3 and 50-4 for film formation under high vacuum, and has the same conditions as the robot chamber 40-2. Therefore, it is only necessary to carry in / out the substrate in the relay chamber 30-3. In the present embodiment, the relay chamber 30-3 is one chamber, but the average tact time can be sequentially transferred in about 1 minute.
続いて、1分おきにロボット室40−3に搬入された基板は、成膜処理室50−5および50−6に逐次搬入され(搬入時間20秒)、蒸着法により電子輸送層が成膜される。
真空蒸着では膜質確保のため低速の蒸着を行う方がよいため、3分20秒程度かけ、蒸着を行った。本実施例の成膜処理室50−5および50−6はチャンバ内の計4箇所で成膜を交互に行うことができるため、平均タクトは1分程度で成膜することが可能である。
Subsequently, the substrates carried into the robot chamber 40-3 every other minute are sequentially carried into the film forming chambers 50-5 and 50-6 (carrying time 20 seconds), and an electron transport layer is formed by vapor deposition. Is done.
In vacuum deposition, it is better to perform low-speed deposition in order to secure the film quality, so the deposition was performed for about 3 minutes and 20 seconds. In the film formation chambers 50-5 and 50-6 of this embodiment, film formation can be performed alternately at a total of four locations in the chamber, so that the average tact can be formed in about 1 minute.
続いて、電子輸送層の成膜が終わった基板は、中継室30−4に逐次搬入される。ロボット室40−4は低真空のアルゴン雰囲気で成膜するスパッタ室である成膜処理室50−7、50−8に連結されているため、真空から、10-2Pa程度までアルゴンを導入する必要がある。そのためアルゴンを導入、ガス圧安定化に1分20秒程度時間をかけ、搬入20秒、搬出20秒と合わせて2分程度時間がかかるが、本実施例では中継室が2室あるので、平均タクトは1分程度で逐次基板を搬送することができる。 Subsequently, the substrate on which the electron transport layer has been formed is sequentially carried into the relay chamber 30-4. Since the robot chamber 40-4 is connected to the film forming chambers 50-7 and 50-8 which are sputtering chambers for forming a film in a low vacuum argon atmosphere, argon is introduced from vacuum to about 10 −2 Pa. There is a need. Therefore, it takes about 1 minute and 20 seconds to introduce argon and stabilize the gas pressure, and it takes about 2 minutes in total including 20 seconds for loading and 20 seconds for unloading. However, in this embodiment, there are two relay rooms. The tact can sequentially convey the substrate in about one minute.
続いて、1分おきにロボット室40−4に搬入された基板は、成膜処理室50−7および50−8に逐次搬入され(搬入時間20秒)、スパッタ法によりアルミニウム等の上部電極層を成膜する。スパッタ法は有機層に対してプラズマダメージを与えやすいため、低パワーで3分20秒程度かけ、成膜を行った。本実施例の成膜処理室50−7および50−8はチャンバ内の計4箇所で成膜を交互に行うことができるため、平均タクトは1分程度で成膜することが可能である。 Subsequently, the substrate carried into the robot chamber 40-4 every other minute is sequentially carried into the film forming chambers 50-7 and 50-8 (carrying time 20 seconds), and an upper electrode layer such as aluminum is formed by sputtering. Is deposited. Since the sputtering method tends to cause plasma damage to the organic layer, the film was formed at low power for about 3 minutes and 20 seconds. In the film formation chambers 50-7 and 50-8 of this embodiment, film formation can be performed alternately at a total of four locations in the chamber, so that the average tact can be formed in about 1 minute.
続いて、上部電極の成膜が終わった基板は、中継室30−5に順次搬入される。ロボット室40−5は低真空のCVDプロセスガスで成膜するCVD室である成膜処理室50−9、50−10に連結されているため、アルゴンを10-3Pa程度まで真空に引いた後、10-1Pa程度のCVDプロセスガスに置換する必要がある。そのためアルゴンを排気、CVDプロセスガスの置換に1分20秒程度時間をかけ、搬入20秒、搬出20秒と合わせて2分程度時間がかかるが、本実施例では中継室が2室あるので、平均タクトは1分程度で順次基板を搬送することができる。 Subsequently, the substrate on which the upper electrode is formed is sequentially carried into the relay chamber 30-5. Since the robot chamber 40-5 is connected to the film forming chambers 50-9 and 50-10 which are CVD chambers for forming a film with a low vacuum CVD process gas, the vacuum is pulled to about 10 −3 Pa. Later, it is necessary to replace with a CVD process gas of about 10 −1 Pa. Therefore, it takes about 1 minute and 20 seconds to evacuate argon and replace the CVD process gas, and it takes about 2 minutes including 20 seconds for loading and 20 seconds for unloading, but in this embodiment, there are two relay rooms. The average tact time is about 1 minute, and the substrate can be transferred sequentially.
続いて、1分おきにロボット室40−5に搬入された基板は、成膜処理室50−9および50−10に逐次搬入され(搬入時間20秒)、CVD法によりをバリア層を成膜する。CVD法は有機層に対してプラズマダメージを与えやすいため、低パワーで3分20秒程度かけ、成膜を行った。本実施例の成膜処理室50−9および50−10はチャンバ内の計4箇所で成膜を交互に行うことができるため、平均タクトは1分程度で成膜することが可能である。 Subsequently, the substrate carried into the robot chamber 40-5 every other minute is sequentially carried into the film forming chambers 50-9 and 50-10 (carrying time 20 seconds), and a barrier layer is formed by CVD. To do. Since the CVD method tends to cause plasma damage to the organic layer, the film was formed at low power for about 3 minutes and 20 seconds. In the film formation chambers 50-9 and 50-10 of this embodiment, film formation can be performed alternately at a total of four locations in the chamber, so that the average tact can be formed in about 1 minute.
続いて、バリア層の成膜が終わった基板は、中継室30−6に逐次搬入される。中継室30−6は吸湿を防止するためドライ窒素雰囲気に保たれたアンロード室20−2に連結されているため、CVDプロセスガスを10-3Pa程度まで真空に引いた後、大気圧のドライ窒素ガスに置換する必要がある。そのためCVDプロセスガスの置換に1分20秒程度時間をかけ、搬入20秒、搬出20秒と合わせて2分程度時間がかかるが、本実施例では中継室が2室あるので、平均タクトは1分程度で逐次基板を搬送することができる。 Subsequently, the substrate on which the barrier layer has been formed is sequentially carried into the relay chamber 30-6. Since the relay chamber 30-6 is connected to the unload chamber 20-2 maintained in a dry nitrogen atmosphere to prevent moisture absorption, the CVD process gas is evacuated to about 10 −3 Pa, and then the atmospheric pressure is reduced. It is necessary to replace with dry nitrogen gas. Therefore, it takes about 1 minute 20 seconds to replace the CVD process gas, and it takes about 2 minutes including 20 seconds for loading and 20 seconds for unloading. In this embodiment, since there are two relay chambers, the average tact is 1 Substrate can be sequentially transferred in about minutes.
最後に、必要によりドライ窒素雰囲気に保たれたカセットに基板を逐次搬出し、成膜工程を完成する。 Finally, if necessary, the substrate is sequentially carried out to a cassette maintained in a dry nitrogen atmosphere to complete the film forming process.
以上の成膜装置を用いることにより異なる成膜雰囲気圧力で成膜して製造する有機ELを、高効率で基板搬送して生産することができ、高い生産性で有機ELを製造することができる。本実施例では有機ELを例にしたが、有機TFTや有機太陽電池など、水分や酸素を嫌う他の有機デバイス製造でも同様の生産性向上が期待できる。 By using the film forming apparatus described above, an organic EL film can be produced by producing a film at different film formation atmospheric pressures by transporting the substrate with high efficiency, and an organic EL can be produced with high productivity. . In this embodiment, an organic EL is taken as an example, but the same productivity improvement can be expected in the manufacture of other organic devices that dislike moisture and oxygen, such as organic TFTs and organic solar cells.
10 基板カセット
20−1 ロード室
20−2 アンロード室
30(30−1〜30−8) 中継室
40(40−1〜40−5) ロボット室
50(50−1〜50−10) 成膜室
55 基板受け渡し部
60 ゲートバルブ
70 ガス導入部
80 ガス排気部(排気ポンプ)
90 ロボット
100 バルブ
110(110−1〜110−7) ガイド
10 substrate cassette 20-1 load chamber 20-2 unload chamber 30 (30-1 to 30-8) relay chamber 40 (40-1 to 40-5) robot chamber 50 (50-1 to 50-10) film formation Chamber 55 Substrate delivery section 60 Gate valve 70 Gas introduction section 80 Gas exhaust section (exhaust pump)
90 Robot 100 Valve 110 (110-1 to 110-7) Guide
Claims (12)
上流工程の成膜室と下流工程の成膜室とを接続し、前記下流工程の成膜室の雰囲気条件に応じて室内の雰囲気条件を調整する中継室を有し、
隣接する成膜室の雰囲気条件差が大きい中継室は、隣接する成膜室の雰囲気条件差が小さい中継室よりも、多くの枚数の基板の雰囲気条件を逐次並行して調整することを特徴とする成膜装置。 In a film forming apparatus provided with three or more kinds of film forming chambers having different atmospheric conditions,
A relay chamber that connects an upstream film formation chamber and a downstream film formation chamber and adjusts the atmospheric conditions in the downstream process according to the atmospheric conditions of the film formation chamber;
A relay chamber having a large difference in atmospheric conditions between adjacent film forming chambers is characterized in that the atmospheric conditions of a larger number of substrates are sequentially adjusted in parallel than a relay chamber having a small difference in atmospheric conditions between adjacent film forming chambers. A film forming apparatus.
前記雰囲気条件は雰囲気圧力または雰囲気温度のいずれか1つ以上を含むことを特徴とする成膜装置。 The film forming apparatus according to claim 1,
The film forming apparatus, wherein the atmospheric condition includes at least one of atmospheric pressure and atmospheric temperature.
前記中継室は、プロセスガスの導入部及び排気部を有し、室内の雰囲気圧力を調整することを特徴とする成膜装置。 The film forming apparatus according to claim 1 or 2,
The relay chamber has a process gas introduction part and an exhaust part, and adjusts the atmospheric pressure in the room.
前記中継室において基板1枚の雰囲気条件を調整する時間は、前記上流工程の成膜室において基板1枚の成膜に要する時間より長いことを特徴とする成膜装置。 The film forming apparatus according to any one of claims 1 to 3,
The film formation apparatus characterized in that the time for adjusting the atmospheric condition of one substrate in the relay chamber is longer than the time required for film formation of one substrate in the film formation chamber in the upstream process.
前記中継室は、温度調節部を有し、室内の雰囲気温度を調整することを特徴とする成膜装置。 The film forming apparatus according to any one of claims 1 to 4,
The relay chamber includes a temperature adjustment unit, and adjusts the atmospheric temperature in the room.
前記中継室は、前記成膜室間での基板の搬送過程において基板の滞留が発生した場合に、室内で基板を一時保管することを特徴とする成膜装置。 A film forming apparatus according to any one of claims 1 to 5,
The relay chamber temporarily stores a substrate in the room when the substrate stays in the process of transporting the substrate between the film formation chambers.
前記中継室は、上下方向に多段に区分された多段構造を有し、
前記区分された中継室ごとに雰囲気条件を調整することを特徴とする成膜装置。 The film forming apparatus according to any one of claims 1 to 6,
The relay chamber has a multi-stage structure divided into multiple stages in the vertical direction,
A film forming apparatus that adjusts atmospheric conditions for each of the divided relay chambers.
前記中継室は、水平方向に並べて区分された並置構造を有し、
前記区分された中継室ごとに雰囲気条件を調整することを特徴とする成膜装置。 The film forming apparatus according to any one of claims 1 to 6,
The relay chamber has a juxtaposed structure that is arranged side by side in the horizontal direction,
A film forming apparatus that adjusts atmospheric conditions for each of the divided relay chambers.
前記中継室は、上下方向に多段に、及び水平方向に並べて区分された2次元配置構造を有し、
前記区分された中継室ごとに雰囲気条件を調整することを特徴とする成膜装置。 The film forming apparatus according to any one of claims 1 to 6,
The relay room has a two-dimensional arrangement structure that is divided into multiple stages in the vertical direction and arranged in the horizontal direction,
A film forming apparatus that adjusts atmospheric conditions for each of the divided relay chambers.
第1の中継室において上流工程の成膜室から下流工程の成膜室への基板の搬送に要する時間(T1)を前記第1の中継室の数(N1)で割った数Xと、
第2の中継室において上流工程の成膜室から下流工程の成膜室への基板の搬送に要する時間(T2)を前記第1の中継室の数(N2)で割った数Yと、
は、
|X−Y|<X、Y
の関係にあることを特徴とする成膜装置。 A film forming apparatus according to any one of claims 1 to 9,
A number X obtained by dividing the time (T1) required for transporting the substrate from the upstream process film forming chamber to the downstream process film forming chamber in the first relay chamber by the number of the first relay chambers (N1);
In the second relay chamber, a number Y obtained by dividing the time (T2) required for transporting the substrate from the film forming chamber in the upstream process to the film forming chamber in the downstream process by the number (N2) of the first relay chamber,
Is
| X-Y | <X, Y
A film forming apparatus characterized by the following relationship:
前記成膜室は、真空蒸着成膜、スパッタリング成膜、CVD成膜及び塗布成膜のいずれかを実行することを特徴とする成膜装置。 It is the film-forming apparatus in any one of Claims 1 thru | or 10, Comprising:
The film formation chamber performs any one of vacuum deposition film formation, sputtering film formation, CVD film formation, and coating film formation.
前記成膜室で成膜した基板を前記中継室へ搬送するロボット搬送室を有することを特徴とする成膜装置。 The film forming apparatus according to claim 1,
A film forming apparatus comprising a robot transfer chamber for transferring a substrate formed in the film forming chamber to the relay chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012142595A JP2014007309A (en) | 2012-06-26 | 2012-06-26 | Deposition apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012142595A JP2014007309A (en) | 2012-06-26 | 2012-06-26 | Deposition apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014007309A true JP2014007309A (en) | 2014-01-16 |
Family
ID=50104778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012142595A Pending JP2014007309A (en) | 2012-06-26 | 2012-06-26 | Deposition apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014007309A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015141995A (en) * | 2014-01-28 | 2015-08-03 | 東京エレクトロン株式会社 | Substrate processing method, and substrate processing device |
JP2015220331A (en) * | 2014-05-16 | 2015-12-07 | 住友化学株式会社 | Photoelectric conversion element |
CN105719990A (en) * | 2015-02-17 | 2016-06-29 | 喜瑞能源公司 | System and method for improving manufacturing yield of solar cell |
JP2017506703A (en) * | 2014-02-04 | 2017-03-09 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | System for depositing one or more layers on a substrate supported by a carrier and method of using the system |
US9954136B2 (en) | 2016-08-03 | 2018-04-24 | Tesla, Inc. | Cassette optimized for an inline annealing system |
US9972740B2 (en) | 2015-06-07 | 2018-05-15 | Tesla, Inc. | Chemical vapor deposition tool and process for fabrication of photovoltaic structures |
CN108385092A (en) * | 2018-03-30 | 2018-08-10 | 何松 | A kind of silver-colored and silver coating chromium-free passivation liquid and its passivating method |
US10074765B2 (en) | 2016-05-24 | 2018-09-11 | Tesla, Inc. | Systems, method and apparatus for curing conductive paste |
US10115856B2 (en) | 2016-10-31 | 2018-10-30 | Tesla, Inc. | System and method for curing conductive paste using induction heating |
JP2019079784A (en) * | 2018-06-13 | 2019-05-23 | 堺ディスプレイプロダクト株式会社 | Method and apparatus for manufacturing flexible oled device |
US10957881B2 (en) | 2017-10-26 | 2021-03-23 | Sakai Display Products Corporation | Method and apparatus for producing flexible OLED device |
CN114351124A (en) * | 2022-01-14 | 2022-04-15 | 营口金辰机械股份有限公司 | Battery piece coating system |
-
2012
- 2012-06-26 JP JP2012142595A patent/JP2014007309A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015141995A (en) * | 2014-01-28 | 2015-08-03 | 東京エレクトロン株式会社 | Substrate processing method, and substrate processing device |
JP2017506703A (en) * | 2014-02-04 | 2017-03-09 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | System for depositing one or more layers on a substrate supported by a carrier and method of using the system |
JP2015220331A (en) * | 2014-05-16 | 2015-12-07 | 住友化学株式会社 | Photoelectric conversion element |
CN105719990A (en) * | 2015-02-17 | 2016-06-29 | 喜瑞能源公司 | System and method for improving manufacturing yield of solar cell |
CN105742218A (en) * | 2015-02-17 | 2016-07-06 | 喜瑞能源公司 | System and method for improving manufacturing yield of solar cell |
JP2017518626A (en) * | 2015-02-17 | 2017-07-06 | ソーラーシティ コーポレーション | Method and system for improving manufacturing yield of solar cells |
US9972740B2 (en) | 2015-06-07 | 2018-05-15 | Tesla, Inc. | Chemical vapor deposition tool and process for fabrication of photovoltaic structures |
US10074765B2 (en) | 2016-05-24 | 2018-09-11 | Tesla, Inc. | Systems, method and apparatus for curing conductive paste |
US9954136B2 (en) | 2016-08-03 | 2018-04-24 | Tesla, Inc. | Cassette optimized for an inline annealing system |
US10115856B2 (en) | 2016-10-31 | 2018-10-30 | Tesla, Inc. | System and method for curing conductive paste using induction heating |
US10957881B2 (en) | 2017-10-26 | 2021-03-23 | Sakai Display Products Corporation | Method and apparatus for producing flexible OLED device |
CN108385092A (en) * | 2018-03-30 | 2018-08-10 | 何松 | A kind of silver-colored and silver coating chromium-free passivation liquid and its passivating method |
CN108385092B (en) * | 2018-03-30 | 2020-03-31 | 威海畅享海天新材料科技有限公司 | Chromium-free passivation solution for silver and silver coating and passivation method thereof |
JP2019079784A (en) * | 2018-06-13 | 2019-05-23 | 堺ディスプレイプロダクト株式会社 | Method and apparatus for manufacturing flexible oled device |
CN114351124A (en) * | 2022-01-14 | 2022-04-15 | 营口金辰机械股份有限公司 | Battery piece coating system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014007309A (en) | Deposition apparatus | |
JP5173699B2 (en) | Organic EL device manufacturing equipment | |
KR100927621B1 (en) | Apparatus for depositing a protective film layer, and a deposition method using the same | |
KR102095717B1 (en) | Coating apparatus and method | |
KR101370214B1 (en) | Manufacturing equipment using belt source for flexible OLED and white OLED | |
JP2007162135A (en) | System for manufacturing flat panel display | |
JP2012097330A (en) | Thin-film formation system and organic el device manufacturing system | |
JP2018022619A (en) | Device and method for producing laminated film | |
KR101870511B1 (en) | Laminated sealing film forming method and forming apparatus | |
US20160355924A1 (en) | Mask for deposition system and method for using the mask | |
JP2010001565A (en) | Sputtering apparatus and method of manufacturing solar battery and image display device by using the same | |
JP2019002075A (en) | Film deposition apparatus, film deposition method, and manufacturing method of solar cell | |
WO2010113659A1 (en) | Film forming device, film forming method, and organic el element | |
CN103283011B (en) | Film formation device | |
JP2017220410A (en) | Device for producing laminated film and method of producing laminated film | |
US20100175989A1 (en) | Deposition apparatus, deposition system and deposition method | |
JP5730322B2 (en) | Vapor deposition apparatus and vapor deposition method | |
JP2008202146A (en) | Vertical type chemical vapor deposition system, and film deposition method using the system | |
JP4478376B2 (en) | Vertical chemical vapor deposition apparatus and film forming method using the apparatus | |
JP2013131542A (en) | In-line film forming device | |
WO2008018500A1 (en) | Film forming device, film forming system, and film forming method | |
JP5260212B2 (en) | Deposition equipment | |
JP2013171811A (en) | Deposition device | |
WO2009130790A1 (en) | Tray transfer type inline film forming apparatus | |
TWI518828B (en) | Substrate processing system |