JP2014070317A - Nonwoven fabric - Google Patents
Nonwoven fabric Download PDFInfo
- Publication number
- JP2014070317A JP2014070317A JP2012218854A JP2012218854A JP2014070317A JP 2014070317 A JP2014070317 A JP 2014070317A JP 2012218854 A JP2012218854 A JP 2012218854A JP 2012218854 A JP2012218854 A JP 2012218854A JP 2014070317 A JP2014070317 A JP 2014070317A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- nonwoven fabric
- fusible conjugate
- heating chamber
- bulk recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
- D04H1/5412—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/02—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
- D04H3/04—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06C—FINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
- D06C7/00—Heating or cooling textile fabrics
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
- D04H1/5414—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
- D04H1/5416—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sea-island
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/637—Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Nonwoven Fabrics (AREA)
- Treatment Of Fiber Materials (AREA)
Abstract
Description
本発明は、不織布に関する。 The present invention relates to a nonwoven fabric.
使い捨てオムツ、生理用ナプキン等の吸収性物品において、トップシート等の構成部材として用いられる不織布は、通常、帯状に形成され、ロールの形に巻かれて保管され、使用時に、ロールから巻き戻される。 In absorbent articles such as disposable diapers and sanitary napkins, a nonwoven fabric used as a constituent member such as a top sheet is usually formed in a belt shape, wound and stored in a roll shape, and unwound from the roll when used. .
不織布がロールの形に巻かれると、不織布が厚さ方向に圧縮されて不織布の嵩(厚み)が減少し、不織布の嵩の減少に起因して、不織布の吸液速度が低下するとともに、柔軟性が低下するおそれがある。 When the nonwoven fabric is wound in the form of a roll, the nonwoven fabric is compressed in the thickness direction to reduce the bulk (thickness) of the nonwoven fabric. May decrease.
嵩が減少した不織布の嵩回復方法として、不織布に熱風をエアスルー方式で吹き付け、不織布の嵩を回復させる方法が知られている(特許文献1)。この方法では、熱風が不織布の厚み方向に(不織布に対して垂直に)吹き付けられる。 As a method for recovering the bulk of a nonwoven fabric having a reduced volume, a method is known in which hot air is blown onto the nonwoven fabric in an air-through manner to recover the bulk of the nonwoven fabric (Patent Document 1). In this method, hot air is blown in the thickness direction of the nonwoven fabric (perpendicular to the nonwoven fabric).
一方、不織布の製造方法として、繊維集合体に水蒸気流を吹き付けて、繊維集合体を不織布化する方法が知られている(特許文献2)。この方法では、水蒸気流が繊維集合体の厚み方向に(繊維集合体に対して垂直に)加えられ、その結果、繊維が離間して、繊維間に橋渡し構造(特許文献2の図4)が形成される。そして、繊維間に形成された橋渡し構造によって、不織布の柔軟性の向上が図られる。 On the other hand, as a method for producing a nonwoven fabric, a method is known in which a water vapor stream is sprayed onto a fiber assembly to make the fiber assembly into a nonwoven fabric (Patent Document 2). In this method, a water vapor flow is applied in the thickness direction of the fiber assembly (perpendicular to the fiber assembly). As a result, the fibers are separated and a bridging structure (FIG. 4 of Patent Document 2) is formed between the fibers. It is formed. And the improvement of the softness | flexibility of a nonwoven fabric is achieved by the bridging structure formed between fibers.
しかしながら、特許文献1,2に記載の方法では、熱風又は水蒸気流によって不織布又は繊維集合体の厚み方向に(すなわち、厚みが増加する方向と反対方向に)圧力が加えられるため、向上した柔軟性と、十分な厚み及び比容積とを兼ね備えた不織布を製造することが困難であった。 However, in the methods described in Patent Documents 1 and 2, pressure is applied in the thickness direction of the nonwoven fabric or fiber assembly by hot air or steam flow (that is, in the direction opposite to the direction in which the thickness increases), and thus improved flexibility. And it was difficult to manufacture the nonwoven fabric which has sufficient thickness and specific volume.
そこで、本発明は、向上した柔軟性と、十分な厚み及び比容積とを兼ね備えた不織布を提供することを目的とする。 Then, an object of this invention is to provide the nonwoven fabric which has the improved softness | flexibility and sufficient thickness and specific volume.
上記課題を解決するために、本発明は、互いに交差して重なる熱融着性複合繊維と、前記熱融着性複合繊維の交差領域において前記熱融着性複合繊維を熱融着するくびれ状熱融着部とを有する不織布であって、前記くびれ状熱融着部が、前記交差領域の中心を通って前記熱融着性複合繊維の重なり方向に延びる仮想線を中心線としたとき、前記中心線に向けて凹状の表面を有し、前記くびれ状熱融着部によって熱融着される熱融着性複合繊維間の距離が、各熱融着性複合繊維の繊維半径の和よりも大きく、3.0gf/cm2荷重下の厚みが0.5〜3.0mmであり、比容積が6〜300cm3/gである、前記不織布を提供する。 In order to solve the above-described problems, the present invention provides a heat-fusible conjugate fiber that intersects and overlaps with each other, and a constricted shape that heat-fuses the heat-fusible conjugate fiber in an intersecting region of the heat-fusible conjugate fiber. A non-woven fabric having a heat fusion part, wherein the constricted heat fusion part is centered on a virtual line extending in the overlapping direction of the heat-fusible conjugate fiber through the center of the intersecting region, The distance between the heat-fusible conjugate fibers having a concave surface toward the center line and heat-sealed by the constricted heat-sealing part is determined by the sum of the fiber radii of the heat-fusible conjugate fibers. The nonwoven fabric has a thickness of 0.5 to 3.0 mm under a load of 3.0 gf / cm 2 and a specific volume of 6 to 300 cm 3 / g.
本発明により、向上した柔軟性と、十分な厚み及び比容積とを兼ね備えた不織布が提供される。 According to the present invention, a nonwoven fabric having both improved flexibility and sufficient thickness and specific volume is provided.
以下、本発明の不織布について詳細に説明する。
本発明の不織布は、互いに交差して重なる熱融着性複合繊維と、熱融着性複合繊維の交差領域において熱融着性複合繊維を熱融着するくびれ状熱融着部とを有する。
Hereinafter, the nonwoven fabric of the present invention will be described in detail.
The nonwoven fabric of the present invention has a heat-fusible conjugate fiber that intersects and overlaps with each other, and a constricted heat-sealed portion that heat-fuses the heat-fusible conjugate fiber in the intersecting region of the heat-fusible conjugate fiber.
本発明の不織布は、熱融着性複合繊維がくびれ状熱融着部によって熱融着されているので、向上した柔軟性を有する。不織布の柔軟性は、例えば、不織布の圧縮特性に基づいて評価することができる。不織布の圧縮特性としては、例えば、KES圧縮試験で測定される、不織布1cm2当りの圧縮エネルギーWC(N・m/m2)と、圧縮レジリエンスRC(%)とが挙げられる。WC値は圧縮変形性を示し、WC値が大きいほど圧縮変形性が高い。また、RC値は、圧縮回復性を示し、RC値が100%に近いほど圧縮回復性が高い。KES圧縮試験には、例えば、カトーテック株式会社製,自動化圧縮試験器KES−FB3を使用することができる。WC値は、好ましくは0.5N・m/m2以上、さらに好ましくは1.0N・m/m2以上である。RC値は、好ましくは30%以上、さらに好ましくは40%以上である。 The nonwoven fabric of the present invention has improved flexibility since the heat-fusible conjugate fiber is heat-sealed by the constricted heat-sealing part. The flexibility of the nonwoven fabric can be evaluated based on, for example, the compression characteristics of the nonwoven fabric. Examples of the compression characteristics of the nonwoven fabric include a compression energy WC (N · m / m 2 ) per 1 cm 2 of the nonwoven fabric and a compression resilience RC (%) measured by the KES compression test. The WC value indicates compressive deformability, and the greater the WC value, the higher the compressive deformability. Moreover, RC value shows compression recovery property, and compression recovery property is so high that RC value is near 100%. For the KES compression test, for example, an automated compression tester KES-FB3 manufactured by Kato Tech Co., Ltd. can be used. The WC value is preferably 0.5 N · m / m 2 or more, more preferably 1.0 N · m / m 2 or more. The RC value is preferably 30% or more, more preferably 40% or more.
本発明の不織布には、熱融着性複合繊維の交差領域が多数含まれるが、全ての交差領域において熱融着性複合繊維が熱融着されている必要はなく、一部の交差領域において熱融着性複合繊維が熱融着されていればよい。 The nonwoven fabric of the present invention includes a large number of intersecting regions of heat-fusible conjugate fibers, but it is not necessary that the heat-fusible conjugate fibers are heat-sealed in all the intersecting regions. It is sufficient that the heat-fusible conjugate fiber is heat-sealed.
本発明の不織布において、熱融着性複合繊維の交差領域は、互いに交差して重なる熱融着性複合繊維のうち一方を上側に、他方を下側に位置させたとき、平面視において熱融着性複合繊維が重なり合う領域であり(図1(a)参照)、断面視において熱融着性複合繊維の間を熱融着性複合繊維の重なり方向(上下方向)に広がる領域である(図1(b)参照)。 In the non-woven fabric of the present invention, the heat-fusible conjugate fiber intersects with the heat-fusible conjugate fiber when one of the heat-sealable conjugate fibers that overlap and overlap each other is positioned on the upper side and the other on the lower side. This is a region where the adhesive composite fibers overlap (see FIG. 1A), and is a region that spreads in the overlapping direction (vertical direction) of the heat-fusible composite fibers in a cross-sectional view (see FIG. 1). 1 (b)).
本発明の不織布には、互いに交差して重なる熱融着性複合繊維を交差領域において熱融着する熱融着部が多数含まれる。熱融着部は、熱融着性複合繊維の交差領域の内側に存在する部分を含むが、その全体が熱融着性複合繊維の交差領域の内側に存在する必要はなく、熱融着性複合繊維の交差領域の外側まで広がる部分を含んでいてもよい。 The nonwoven fabric of the present invention includes a large number of heat-sealing portions that heat-fuse the heat-fusible conjugate fibers that intersect and overlap each other in the intersecting region. The heat-sealed portion includes a portion existing inside the intersecting region of the heat-fusible conjugate fiber, but the entire portion does not need to exist inside the intersecting region of the heat-fusible conjugate fiber, and heat-fusible A portion extending to the outside of the intersecting region of the composite fiber may be included.
本発明の不織布に含まれる多数の熱融着部のうち一部又は全部は、くびれ状熱融着部である。本発明の不織布の一定領域内に含まれる熱融着部の総数のうちくびれ状熱融着部の数の割合は、特に限定されないが、好ましくは1/10〜9/10、さらに好ましくは2/8〜8/10である。熱融着部の総数のうちくびれ状熱融着部の数の割合は、例えば、不織布を走査型電子顕微鏡等の顕微鏡で観察し、顕微鏡視野内の熱融着部の総数及びくびれ状熱融着部の数をカウントすることにより算出することができる。観察の際の顕微鏡の拡大倍率は、通常100〜500倍、好ましくは200〜400倍である。 A part or all of the large number of heat fusion parts contained in the nonwoven fabric of the present invention is a constricted heat fusion part. The ratio of the number of constricted heat fusion parts in the total number of heat fusion parts contained in a certain region of the nonwoven fabric of the present invention is not particularly limited, but is preferably 1/10 to 9/10, more preferably 2 / 8 to 8/10. The ratio of the number of constricted heat fusion portions to the total number of heat fusion portions is, for example, that the nonwoven fabric is observed with a microscope such as a scanning electron microscope, and the total number of heat fusion portions in the microscope field of view and the constricted heat fusion portion are observed. It can be calculated by counting the number of landing parts. The magnification of the microscope during observation is usually 100 to 500 times, preferably 200 to 400 times.
くびれ状熱融着部は、熱融着性複合繊維の交差領域の中心を通って熱融着性複合繊維の重なり方向に延びる仮想線を中心線としたとき、中心線に向けて凹状の表面を有する。 The constricted heat-sealed part has a concave surface toward the center line when a virtual line extending in the overlapping direction of the heat-fusible conjugate fiber through the center of the intersecting region of the heat-fusible conjugate fiber is used as the center line. Have
以下、垂直に交差する熱融着性複合繊維を例として、くびれ状熱融着部の一実施形態を説明する。なお、説明の便宜上、本実施形態では熱融着性複合繊維の交差角度を垂直としたが、熱融着性複合繊維の交差角度は垂直に限定されるわけではない。 Hereinafter, an embodiment of a constricted heat fusion part will be described by taking a heat-fusible conjugate fiber that intersects perpendicularly as an example. For convenience of explanation, in this embodiment, the crossing angle of the heat-fusible conjugate fiber is vertical, but the crossing angle of the heat-fusible conjugate fiber is not limited to vertical.
図1(a)は、互いに交差して重なる熱融着性複合繊維F1,F2のうち、熱融着性複合繊維F1を上側に、熱融着性複合繊維F2を下側に位置させて平面視したときの平面図である。図1(b)は、図1(a)のI−I線断面図である。なお、図1(a)のI−I線の方向は熱融着性複合繊維F2の軸線L2の方向と一致する。 FIG. 1A is a plan view of the heat-sealable conjugate fibers F1 and F2 that intersect and overlap each other with the heat-sealable conjugate fiber F1 on the upper side and the heat-sealable conjugate fiber F2 on the lower side. It is a top view when it sees. FIG.1 (b) is the II sectional view taken on the line of Fig.1 (a). In addition, the direction of the II line | wire of Fig.1 (a) corresponds with the direction of the axis line L2 of the heat-fusible conjugate fiber F2.
図1(a)に示されるように、熱融着性複合繊維F1は軸線L1に沿って延在しており、熱融着性複合繊維F2は軸線L2に沿って延在しており、熱融着性複合繊維F1,F2は垂直に交差している。 As shown in FIG. 1A, the heat-fusible conjugate fiber F1 extends along the axis L1, the heat-fusible conjugate fiber F2 extends along the axis L2, and heat The fusible conjugate fibers F1 and F2 intersect perpendicularly.
図1(a)において、軸線L1及び軸線L2は直線で表されているが、直線に限定されるわけではなく、曲線であってもよい。但し、熱融着性複合繊維F1,F2が交差する微小な部分を想定した場合、図1(a)に示されるように、軸線L1及び軸線L2は略直線に近似することができる。 In FIG. 1A, the axis line L1 and the axis line L2 are represented by straight lines, but are not limited to straight lines, and may be curved lines. However, when assuming a minute portion where the heat-fusible conjugate fibers F1 and F2 intersect, the axis line L1 and the axis line L2 can be approximated to a substantially straight line as shown in FIG.
図1(a)及び(b)に示されるように、熱融着性複合繊維F1,F2の交差領域R1は、平面視において熱融着性複合繊維F1,F2が重なり合う領域であり、断面視において熱融着性複合繊維F1,F2の間を熱融着性複合繊維F1,F2の重なり方向Z1(上下方向)に広がる領域である。 As shown in FIGS. 1 (a) and 1 (b), the intersecting region R1 of the heat-fusible conjugate fibers F1, F2 is a region where the heat-fusible conjugate fibers F1, F2 overlap in a plan view, and is a cross-sectional view. Is a region that spreads between the heat-fusible conjugate fibers F1 and F2 in the overlapping direction Z1 (vertical direction) of the heat-fusible conjugate fibers F1 and F2.
図1(a)に示されるように、交差領域R1の中心P1は、平面視において軸線L1,L2の交点と一致する。 As shown in FIG. 1A, the center P1 of the intersection region R1 coincides with the intersection of the axes L1 and L2 in plan view.
図1(b)に示されるように、熱融着性複合繊維F1,F2は、交差領域R1において、くびれ状熱融着部B1によって熱融着されている。本実施形態において、くびれ状熱融着部B1は、その全体が交差領域R1の内側に形成されているが、交差領域R1の外側まで広がる部分を含んでいてもよい。 As shown in FIG. 1B, the heat-fusible conjugate fibers F1 and F2 are heat-sealed by the constricted heat-sealing part B1 in the intersecting region R1. In the present embodiment, the constricted heat fusion part B1 is formed entirely inside the intersecting region R1, but may include a portion extending to the outside of the intersecting region R1.
図1(b)に示されるように、くびれ状熱融着部B1は、熱融着性複合繊維F1,F2の交差領域R1の中心P1を通って熱融着性複合繊維F1,F2の重なり方向Z1(上下方向)に延びる仮想線を中心線A1としたとき、中心線A1に向けて凹状の表面を有する。なお、中心線A1は、熱融着性複合繊維F1,F2の交差領域R1において、熱融着性複合繊維F1の軸線L1から熱融着性複合繊維F2の軸線L2に引いた垂線と一致する。 As shown in FIG. 1 (b), the constricted heat-sealed portion B1 passes through the center P1 of the intersecting region R1 of the heat-fusible conjugate fibers F1 and F2, and the heat-fusible conjugate fibers F1 and F2 overlap. When a virtual line extending in the direction Z1 (vertical direction) is defined as a center line A1, the surface has a concave shape toward the center line A1. The center line A1 coincides with a perpendicular drawn from the axis L1 of the heat-fusible conjugate fiber F1 to the axis L2 of the heat-fusible conjugate fiber F2 in the intersecting region R1 of the heat-fusible conjugate fibers F1 and F2. .
くびれ状熱融着部B1の外周面は、その一部が中心線A1に向けて凹状となっていてもよいが、その略全体が中心線A1に向けて凹状となっていることが好ましい。くびれ状熱融着部B1の外周面には、ひびが発生している部分が存在していてもよい。 A part of the outer peripheral surface of the constricted heat-sealing part B1 may be concave toward the center line A1, but it is preferable that substantially the whole is concave toward the center line A1. A cracked portion may exist on the outer peripheral surface of the constricted heat fusion part B1.
本発明の不織布において、くびれ状熱融着部によって熱融着される熱融着性複合繊維間の距離は、各熱融着性複合繊維の繊維半径の和よりも大きい。くびれ状熱融着部によって熱融着される熱融着性複合繊維間の距離が大きくなるほど、くびれ状熱融着部による熱融着性複合繊維の接合強度が減少し、不織布の柔軟性が向上する。また、くびれ状熱融着部によって熱融着される熱融着性複合繊維間の距離が大きくなるほど、不織布の厚み及び比容積(空隙率)が増加する。上記実施形態では、図1(b)に示されるように、くびれ状熱融着部B1によって熱融着される熱融着性複合繊維F1,F2間の距離(r3)は、熱融着性複合繊維F1,F2の繊維半径の和(r1+r2)よりも大きくなっている。 In the nonwoven fabric of the present invention, the distance between the heat-fusible conjugate fibers that are heat-sealed by the constricted heat-sealing portion is larger than the sum of the fiber radii of the heat-fusible conjugate fibers. The greater the distance between the heat-fusible conjugate fibers that are heat-sealed by the constricted heat-sealed portion, the less the bonding strength of the heat-fusible conjugate fibers by the constricted heat-welded portion, and the flexibility of the nonwoven fabric. improves. Moreover, the thickness and specific volume (void ratio) of a nonwoven fabric increase, so that the distance between the heat-fusible composite fibers heat-sealed by the constriction-like heat-sealing part becomes large. In the above embodiment, as shown in FIG. 1B, the distance (r3) between the heat-fusible conjugate fibers F1 and F2 that are heat-sealed by the constricted heat-sealing part B1 is the heat-fusible property. It is larger than the sum (r1 + r2) of the fiber radii of the composite fibers F1 and F2.
本発明の不織布に含まれるくびれ状熱融着部以外の熱融着部としては、例えば、熱融着性複合繊維の交差領域の中心を通って熱融着性複合繊維の重なり方向に延びる仮想線を中心線としたとき、中心線から離間する方向に向けて凸状の表面を有する膨出状熱融着部が挙げられる。 Examples of the heat fusion part other than the constricted heat fusion part included in the nonwoven fabric of the present invention include, for example, a virtual extending in the overlapping direction of the heat-fusible conjugate fiber through the center of the intersecting region of the heat-fusible conjugate fiber. When the line is a center line, a bulging heat fusion part having a convex surface in a direction away from the center line can be mentioned.
以下、垂直に交差する熱融着性複合繊維を例として、膨出状熱融着部の一実施形態を説明する。なお、説明の便宜上、本実施形態では熱融着性複合繊維の交差角度を垂直としたが、熱融着性複合繊維の交差角度は垂直に限定されるわけではない。 Hereinafter, an embodiment of the swelled heat-sealed part will be described by taking a heat-fusible conjugate fiber that intersects vertically as an example. For convenience of explanation, in this embodiment, the crossing angle of the heat-fusible conjugate fiber is vertical, but the crossing angle of the heat-fusible conjugate fiber is not limited to vertical.
図2(a)は、互いに交差して重なる熱融着性複合繊維F3,F4のうち、熱融着性複合繊維F3を上側に、熱融着性複合繊維F4を下側に位置させて平面視したときの平面図である。図2(b)は、図2(a)のII−II線断面図である。なお、図2(a)のII−II線の方向は熱融着性複合繊維F4の軸線L4の方向と一致する。 FIG. 2A is a plan view of the heat-sealable conjugate fibers F3 and F4 that intersect and overlap each other with the heat-sealable conjugate fiber F3 on the upper side and the heat-sealable conjugate fiber F4 on the lower side. It is a top view when it sees. FIG.2 (b) is the II-II sectional view taken on the line of Fig.2 (a). In addition, the direction of the II-II line | wire of Fig.2 (a) corresponds with the direction of the axis line L4 of the heat-fusible conjugate fiber F4.
図2(a)に示されるように、熱融着性複合繊維F3は軸線L3に沿って延在しており、熱融着性複合繊維F4は軸線L4に沿って延在しており、熱融着性複合繊維F3,F4は垂直に交差している。 As shown in FIG. 2A, the heat-fusible conjugate fiber F3 extends along the axis L3, and the heat-fusible conjugate fiber F4 extends along the axis L4. The fusible conjugate fibers F3 and F4 intersect perpendicularly.
図2(a)において、軸線L3及び軸線L4は直線で表されているが、直線に限定されるわけではなく、曲線であってもよい。但し、熱融着性複合繊維F3,F4が交差する微小な部分を想定した場合、図2(a)に示されるように、軸線L3及び軸線L4は略直線に近似することができる。 In FIG. 2A, the axis line L3 and the axis line L4 are represented by straight lines, but are not limited to straight lines, and may be curved lines. However, when a minute portion where the heat-fusible conjugate fibers F3 and F4 intersect is assumed, the axis L3 and the axis L4 can be approximated to a substantially straight line as shown in FIG.
図2(a)及び(b)に示されるように、熱融着性複合繊維F3,F4の交差領域R2は、平面視において熱融着性複合繊維F3,F4が重なり合う領域であり、断面視において熱融着性複合繊維F3,F4の間を熱融着性複合繊維F3,F4の重なり方向Z2(上下方向)に広がる領域である。 As shown in FIGS. 2A and 2B, the intersecting region R2 of the heat-fusible conjugate fibers F3 and F4 is a region where the heat-fusible conjugate fibers F3 and F4 overlap in a plan view, and is a cross-sectional view. Is a region that spreads between the heat-fusible conjugate fibers F3 and F4 in the overlapping direction Z2 (vertical direction) of the heat-fusible conjugate fibers F3 and F4.
図2(a)に示されるように、交差領域R2の中心P2は、平面視において軸線L3,L4の交点と一致する。 As shown in FIG. 2A, the center P2 of the intersecting region R2 coincides with the intersection of the axes L3 and L4 in plan view.
図2(b)に示されるように、熱融着性複合繊維F3,F4は、交差領域R2において、膨出状熱融着部B2によって熱融着されている。本実施形態において、膨出状熱融着部B2は、交差領域R2の内側に存在する部分と、交差領域R2の外側まで広がる部分とを含んでいるが、その全体が交差領域R2の内側に存在していてもよい。 As shown in FIG. 2B, the heat-fusible conjugate fibers F3 and F4 are heat-sealed by the bulging heat-sealing part B2 in the intersecting region R2. In the present embodiment, the swell-like heat fusion part B2 includes a portion that exists inside the intersecting region R2 and a portion that extends to the outside of the intersecting region R2, and the entirety thereof is inside the intersecting region R2. May be present.
図2(b)に示されるように、膨出状熱融着部B2は、熱融着性複合繊維F3,F4の交差領域R2の中心P2を通って熱融着性複合繊維F3,F4の重なり方向Z2(上下方向)に延びる仮想線を中心線A2としたとき、中心線A2から離間する方向に向けて凸状の表面を有する。なお、中心線A2は、熱融着性複合繊維F3,F4の交差領域R2において、熱融着性複合繊維F3の軸線L3から熱融着性複合繊維F4の軸線L4に引いた垂線と一致する。 As shown in FIG. 2 (b), the bulging heat-sealed portion B2 passes through the center P2 of the intersecting region R2 of the heat-fusible conjugate fibers F3 and F4, and the heat-fusible conjugate fibers F3 and F4. When a virtual line extending in the overlapping direction Z2 (vertical direction) is defined as a center line A2, the surface has a convex shape toward the direction away from the center line A2. The center line A2 coincides with a perpendicular drawn from the axis L3 of the heat-fusible conjugate fiber F3 to the axis L4 of the heat-fusible conjugate fiber F4 in the intersecting region R2 of the heat-fusible conjugate fibers F3 and F4. .
膨出状熱融着部B2の外周面は、その一部が中心線A2から離間する方向に向けて凸状となっていてもよいが、その略全体が中心線A2から離間する方向に向けて凸状となっていることが好ましい。膨出状熱融着部B2の外周面には、ひびが発生している部分が存在していてもよい。 A part of the outer peripheral surface of the bulging heat fusion part B2 may be convex toward the direction away from the center line A2, but substantially the whole is directed toward the direction away from the center line A2. And is preferably convex. A cracked portion may be present on the outer peripheral surface of the bulging heat fusion part B2.
図2(b)に示されるように、熱融着性複合繊維F3,F4は食い込み合っており、熱融着性複合繊維F3,F4間の距離(r3)は、熱融着性複合繊維F3,F4の繊維半径の和(r1+r2)よりも小さくなっている。 As shown in FIG. 2B, the heat-fusible conjugate fibers F3 and F4 bite into each other, and the distance (r3) between the heat-fusible conjugate fibers F3 and F4 is the heat-fusible conjugate fiber F3. , F4 is smaller than the sum of the fiber radii (r1 + r2).
本発明の不織布の厚み(3.0gf/cm2荷重下)は0.5〜3.0mm、好ましくは0.7〜3.0mmであり、比容積は6〜300cm3/g、好ましくは12〜200cm3/gである。これにより、本発明の不織布は、十分な厚み及び比容積を有する。なお、本発明の不織布を吸収性物品のトップシートとして使用する場合、厚み及び比容積が上記範囲の下限を下回ると液透過性が低下し、べたつきが発生しやすくなる一方、上記範囲の上限を上回ると吸収性物品全体の厚みが増加し、吸収性物品の装着時に違和感を生じやすくなる。 The thickness (under 3.0 gf / cm 2 load) of the nonwoven fabric of the present invention is 0.5 to 3.0 mm, preferably 0.7 to 3.0 mm, and the specific volume is 6 to 300 cm 3 / g, preferably 12 -200 cm < 3 > / g. Thereby, the nonwoven fabric of this invention has sufficient thickness and specific volume. In addition, when using the nonwoven fabric of the present invention as a top sheet of an absorbent article, the liquid permeability decreases and the stickiness tends to occur when the thickness and specific volume are below the lower limit of the above range, while the upper limit of the above range is set. When it exceeds, the thickness of the whole absorbent article will increase and it will become easy to produce discomfort at the time of installation of an absorbent article.
不織布の厚み及び比容積は、熱融着部の総数に対するくびれ状熱融着部の数の割合、くびれ状熱融着部の形態、くびれ状熱融着部によって熱融着される熱融着性複合繊維間の距離等に応じて変化する。本発明の不織布は、後述するように、熱融着した熱融着性複合繊維を含有する嵩回復前の不織布を嵩回復処理して製造することができ、このときの嵩回復処理の条件を調整することにより、熱融着部の総数に対するくびれ状熱融着部の数の割合、くびれ状熱融着部の形態、くびれ状熱融着部によって熱融着される熱融着性複合繊維間の距離等を調整することができ、したがって、不織布の厚み及び比容積を所望の範囲に調整することができる。 The thickness and specific volume of the nonwoven fabric are the ratio of the number of constricted heat fusion portions to the total number of heat fusion portions, the form of the constricted heat fusion portions, and the heat fusion bonded by the constricted heat fusion portions. It changes according to the distance etc. between the functional composite fibers. As will be described later, the nonwoven fabric of the present invention can be produced by bulk-recovering a non-bulk-recovered non-woven fabric containing heat-sealable heat-fusible conjugate fibers. By adjusting, the ratio of the number of constricted heat fusion portions to the total number of heat fusion portions, the form of the constricted heat fusion portions, and the heat-fusible conjugate fiber heat-sealed by the constricted heat fusion portions The distance between them can be adjusted, and therefore the thickness and specific volume of the nonwoven fabric can be adjusted to a desired range.
本発明の不織布の坪量は特に限定されないが、好ましくは10〜80g/m2、さらに好ましくは15〜60g/m2である。 Although the basic weight of the nonwoven fabric of this invention is not specifically limited, Preferably it is 10-80 g / m < 2 >, More preferably, it is 15-60 g / m < 2 >.
本発明の不織布に含有される熱融着性複合繊維は、熱融着性を発現し得る限り特に限定されない。熱融着性複合繊維としては、例えば、第1の成分(以下「高融点成分」という)と、第1の成分よりも低い融点を有する第2の成分(以下「低融点成分」という)とを含む複合繊維であって、第2の成分(低融点成分)が、繊維表面の少なくとも一部に、長さ方向に連続して存在している2成分系の複合繊維等が挙げられる。熱融着性を発現する成分は、主として低融点成分である。熱融着性複合繊維は、融点又は軟化点が異なる3種類以上の成分を含む複合繊維であってもよい。熱融着性複合繊維の形態としては、例えば、芯鞘型(同心円型、偏芯型等)、海島型、分割型、サイド・バイ・サイド型等が挙げられ、いずれの形態の複合繊維を使用してもよい。芯鞘型複合繊維の場合、鞘成分及び芯成分をそれぞれ低融点成分及び高融点成分で構成することができる。熱融着性複合繊維は原料の段階で(不織布の製造に使用される前に)延伸処理が施されていることが好ましい。 The heat-fusible conjugate fiber contained in the nonwoven fabric of the present invention is not particularly limited as long as it can exhibit heat-fusibility. Examples of the heat-fusible conjugate fiber include a first component (hereinafter referred to as “high melting point component”) and a second component having a melting point lower than that of the first component (hereinafter referred to as “low melting point component”). And a second component (low-melting point component) that is continuously present in the length direction on at least a part of the fiber surface. The component that exhibits heat-fusibility is mainly a low melting point component. The heat-fusible conjugate fiber may be a conjugate fiber containing three or more types of components having different melting points or softening points. Examples of the form of the heat-fusible conjugate fiber include a core-sheath type (concentric circle type, eccentric type, etc.), a sea-island type, a split type, a side-by-side type, and the like. May be used. In the case of the core-sheath type composite fiber, the sheath component and the core component can be composed of a low melting point component and a high melting point component, respectively. The heat-fusible conjugate fiber is preferably subjected to a stretching treatment at the raw material stage (before being used for the production of the nonwoven fabric).
高融点成分及び低融点成分の種類は、繊維形成能を有する限り特に限定されない。高融点成分及び低融点成分は、通常、合成樹脂であり、高融点成分としては、例えば、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が挙げられ、低融点成分としては、例えば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)等のポリエチレン、エチレンプロピレン共重合体、ポリスチレン、ポリプロピレン(PP)、共重合ポリエステル等が挙げられる。例えば、芯鞘型複合繊維の場合、芯成分(高融点成分)がPPであるときの鞘成分(低融点成分)としては、例えば、HDPE、LDPE、LLDPE等のポリエチレン、エチレンプロピレン共重合体、ポリスチレン等が挙げられ、芯成分(高融点成分)がPET、PBT等であるときの鞘成分(低融点成分)としては、例えば、PP、共重合ポリエステル等が挙げられる。 The kind of the high melting point component and the low melting point component is not particularly limited as long as it has fiber forming ability. The high melting point component and the low melting point component are usually synthetic resins. Examples of the high melting point component include polypropylene (PP), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT). Examples include polyethylene such as high density polyethylene (HDPE), low density polyethylene (LDPE), and linear low density polyethylene (LLDPE), ethylene propylene copolymer, polystyrene, polypropylene (PP), and copolyester. It is done. For example, in the case of a core-sheath type composite fiber, as the sheath component (low melting point component) when the core component (high melting point component) is PP, for example, polyethylene such as HDPE, LDPE, LLDPE, ethylene propylene copolymer, Examples of the sheath component (low melting point component) when the core component (high melting point component) is PET, PBT, etc. include PP and copolyester.
本発明の不織布に含有される熱融着性複合繊維は、高融点成分よりも低融点成分を多めに含有することが好ましく、高融点成分に対する低融点成分の質量比(低融点成分/高融点成分)は、好ましくは4/6〜8/2、さらに好ましくは5/5〜7/3である。これにより、エアスルー方式による熱融着が確実に起こり、嵩回復処理した後のエアスルー不織布の表面における毛羽立ちを効果的に防止することができる。低融点成分/高融点成分の質量比は、例えば、熱融着性複合繊維の断面観察によって測定される高融点成分及び低融点成分の断面積と、高融点成分及び低融点成分の密度とに基づいて算出することができる。 The heat-fusible conjugate fiber contained in the nonwoven fabric of the present invention preferably contains more low melting point components than high melting point components, and the mass ratio of the low melting point component to the high melting point component (low melting point component / high melting point component). The component is preferably 4/6 to 8/2, more preferably 5/5 to 7/3. Thereby, heat fusion by an air through method occurs reliably, and fluffing on the surface of the air through nonwoven fabric after the bulk recovery treatment can be effectively prevented. The mass ratio of the low melting point component / the high melting point component is, for example, the cross-sectional area of the high melting point component and the low melting point component and the density of the high melting point component and the low melting point component measured by cross-sectional observation of the heat-fusible composite fiber Can be calculated based on this.
高融点成分及び低融点成分の融点差は、好ましくは20℃以上、さらに好ましくは25℃以上である。これにより、各成分の配向性、結晶性等の差が大きくなり、不織布の形成性が向上する。融点は、例えば、示差走査型熱量計(例えば、セイコーインスツルメンツ株式会社製DSC6200)を使用して、昇温速度10℃/分で、細かく裁断した繊維試料を熱分析した際の融解ピーク温度として測定することができる。融点を明確に測定できない場合には、融点の代わりに軟化点を使用してもよい。 The difference in melting point between the high melting point component and the low melting point component is preferably 20 ° C. or higher, more preferably 25 ° C. or higher. Thereby, the difference of the orientation of each component, crystallinity, etc. becomes large, and the formability of a nonwoven fabric improves. The melting point is measured, for example, as a melting peak temperature when a finely cut fiber sample is thermally analyzed at a heating rate of 10 ° C./min using a differential scanning calorimeter (eg, DSC6200 manufactured by Seiko Instruments Inc.). can do. If the melting point cannot be measured clearly, the softening point may be used instead of the melting point.
本発明の不織布に含有される熱融着性複合繊維の繊維径は、特に限定されないが、表面のざらつき感を低減させる観点から、好ましくは10〜30μm、さらに好ましくは15〜25μmである。熱融着性複合繊維の繊維径は、例えば、不織布を走査型電子顕微鏡等の顕微鏡で観察することにより測定することができる。 Although the fiber diameter of the heat-fusible conjugate fiber contained in the nonwoven fabric of the present invention is not particularly limited, it is preferably 10 to 30 μm, more preferably 15 to 25 μm, from the viewpoint of reducing the surface roughness. The fiber diameter of the heat-fusible conjugate fiber can be measured, for example, by observing the nonwoven fabric with a microscope such as a scanning electron microscope.
本発明の不織布に含有される熱融着性複合繊維の繊度は、特に限定されないが、例えば、本発明の不織布が吸収性物品のトップシートに使用される場合、好ましくは1〜6dtexである。なお、繊度が1dtexを下回ると、複合繊維の強度の低下に起因して不織布の厚みが薄くなり、不織布の通気性及び透液性が低下する傾向がある一方、繊度が6dtexを上回ると、複合繊維そのものの強度が高くなり、不織布の触感が低下する傾向がある。 Although the fineness of the heat-fusible conjugate fiber contained in the nonwoven fabric of the present invention is not particularly limited, for example, when the nonwoven fabric of the present invention is used for a top sheet of an absorbent article, it is preferably 1 to 6 dtex. In addition, when the fineness is less than 1 dtex, the thickness of the nonwoven fabric tends to be thin due to the decrease in the strength of the composite fiber, and the breathability and liquid permeability of the nonwoven fabric tend to be reduced. On the other hand, when the fineness exceeds 6 dtex, The strength of the fiber itself tends to increase, and the tactile feel of the nonwoven fabric tends to decrease.
本発明の不織布に含有される熱融着性複合繊維の量は、不織布を構成する繊維全体の好ましくは20〜100質量%、さらに好ましくは30〜100質量%である。 The amount of the heat-fusible conjugate fiber contained in the nonwoven fabric of the present invention is preferably 20 to 100% by mass, more preferably 30 to 100% by mass, based on the total fibers constituting the nonwoven fabric.
本発明の不織布は、熱融着性複合繊維に加えて、その他の繊維(例えば単繊維)を含有していてもよい。その他の繊維としては、例えば、天然繊維(羊毛,コットン等)、再生繊維(レーヨン,アセテート等)、無機繊維(ガラス繊維,炭素繊維等)、合成繊維(ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維、アクリル繊維等)が挙げられる。その他の繊維を含有させることにより、当該繊維が有する機能(例えば、コットンの場合には吸湿性等、合成繊維の場合には通気性等)を不織布に付与することができる。また、本発明の不織布には、中空タイプの繊維、扁平、Y型、C型等の異型繊維;潜在捲縮繊維、顕在捲縮繊維等の立体捲縮繊維;水流、熱、エンボス等の物理的負荷により分割された分割繊維等が混合されていてもよい。 The nonwoven fabric of the present invention may contain other fibers (for example, a single fiber) in addition to the heat-fusible conjugate fiber. Examples of other fibers include natural fibers (wool, cotton, etc.), regenerated fibers (rayon, acetate, etc.), inorganic fibers (glass fibers, carbon fibers, etc.), synthetic fibers (polyethylene fibers, polypropylene fibers, polyester fibers, acrylics). Fiber etc.). By incorporating other fibers, the functions of the fibers (for example, hygroscopicity in the case of cotton, breathability in the case of synthetic fibers) can be imparted to the nonwoven fabric. In addition, the nonwoven fabric of the present invention includes hollow fibers, flat fibers such as flat, Y-shaped, and C-shaped fibers; three-dimensional crimped fibers such as latent crimped fibers and actual crimped fibers; physical properties such as water flow, heat, and embossing. Divided fibers and the like that are divided by the mechanical load may be mixed.
本発明の不織布が、熱融着性複合繊維以外の繊維を含有する場合、熱融着性複合繊維以外の繊維の含有量は、不織布を構成する繊維全体の好ましくは80質量%以下、さらに好ましくは70質量%以下である。 When the nonwoven fabric of the present invention contains fibers other than the heat-fusible conjugate fiber, the content of fibers other than the heat-fusible conjugate fiber is preferably 80% by mass or less, more preferably the entire fibers constituting the nonwoven fabric. Is 70% by mass or less.
本発明の不織布に含有される熱融着性複合繊維には3次元捲縮形状を付与してもよい。3次元捲縮形状としては、例えば、ジクザク状、Ω状、スパイラル状等が挙げられる。3次元捲縮形状の付与方法としては、例えば、機械捲縮、熱収縮等が挙げられる。機械捲縮は、紡糸後の連続で直鎖状の繊維に対し、ライン速度の周速差、熱、加圧等によって制御可能であり、単位長さ辺りの捲縮個数が多いほど外圧下に対する座屈強度が高められる。捲縮個数は、通常5〜35個/インチ、好ましくは15〜30個/インチである。熱収縮では、融点差に起因して生じる熱収縮の差を利用して、3次元捲縮が可能である。 A three-dimensional crimped shape may be imparted to the heat-fusible conjugate fiber contained in the nonwoven fabric of the present invention. Examples of the three-dimensional crimped shape include a zigzag shape, an Ω shape, and a spiral shape. Examples of the method for imparting the three-dimensional crimped shape include mechanical crimping and thermal shrinkage. Mechanical crimping can be controlled by the difference in peripheral speed of the line speed, heat, pressurization, etc. for continuous linear fibers after spinning, and the greater the number of crimps per unit length, the greater the resistance to external pressure. Buckling strength is increased. The number of crimps is usually 5 to 35 pieces / inch, preferably 15 to 30 pieces / inch. In heat shrinkage, three-dimensional crimping is possible using the difference in heat shrinkage caused by the difference in melting point.
本発明の不織布が潜在捲縮繊維及び/又は顕在捲縮繊維を含有する場合、繊維配向は主体的には平面方向へ向いていても部分的には厚さ方向へ向くことになる。これにより、不織布の厚さ方向における繊維の座屈強度が高められるので、不織布に外圧が加わっても不織布の嵩が減少しにくい。また、熱融着性複合繊維にスパイラル形状が付与される場合、不織布への外圧が解放されたときに、嵩が回復しやすい。本発明の不織布に含有される潜在捲縮繊維及び/又は顕在捲縮繊維は、3次元捲縮形状が付与された熱融着性複合繊維であってもよいし、熱融着性複合繊維とは別の繊維であってもよい。 When the nonwoven fabric of the present invention contains latently crimped fibers and / or actual crimped fibers, the fiber orientation is mainly directed in the plane direction, but partially in the thickness direction. Thereby, since the buckling strength of the fiber in the thickness direction of the nonwoven fabric is increased, even if an external pressure is applied to the nonwoven fabric, the bulk of the nonwoven fabric is hardly reduced. Further, when a spiral shape is imparted to the heat-fusible conjugate fiber, the bulk is easily recovered when the external pressure on the nonwoven fabric is released. The latent crimped fiber and / or the actual crimped fiber contained in the nonwoven fabric of the present invention may be a heat-fusible conjugate fiber having a three-dimensional crimped shape, May be another fiber.
本発明の不織布は親水化処理されていてもよい。親水性が付与された不織布は、親水性の排泄物(尿、汗、便等)と接触した際に、当該排泄物を不織布の表面にとどめることなく、吸収性物品内部に透過させやすいので、吸収性物品の液透過性トップシートとして好適に使用することができる。不織布の親水化処理としては、例えば、親水剤による処理、不織布の構成繊維への親水剤の練り込み、不織布への界面活性剤の塗工等が挙げられる。 The nonwoven fabric of the present invention may be hydrophilized. Since the nonwoven fabric provided with hydrophilicity is easy to permeate into the absorbent article without contacting the excrement on the surface of the nonwoven fabric when it comes into contact with hydrophilic excrement (urine, sweat, feces, etc.) It can be suitably used as a liquid-permeable top sheet for absorbent articles. Examples of the hydrophilic treatment of the nonwoven fabric include treatment with a hydrophilic agent, kneading of the hydrophilic agent into the constituent fibers of the nonwoven fabric, and application of a surfactant to the nonwoven fabric.
本発明の不織布を構成する繊維には、白化性を高めるために、酸化チタン、硫酸バリウム、炭酸カルシウム等の無機フィラーが含有されていてもよい。芯鞘型複合繊維の場合、芯成分に無機フィラーを含有されていてもよいし、鞘成分に無機フィラーが含有されていてもよい。 The fibers constituting the nonwoven fabric of the present invention may contain an inorganic filler such as titanium oxide, barium sulfate, calcium carbonate or the like in order to enhance whitening properties. In the case of the core-sheath type composite fiber, the core component may contain an inorganic filler, or the sheath component may contain an inorganic filler.
本発明の不織布の表面は凹凸構造を有していてもよい。凹凸構造の有無は、例えば、不織布の製造時の搬送方向(MD方向)と垂直な方向(CD方向)に切断した断面形状において確認することができる。本発明の不織布の表面には、例えば、比較的不織布の厚み方向に配向する熱融着性複合繊維で内部が構成されている複数の凸部と、不織布の平面方向に配向する熱融着性複合繊維で構成される複数の凹部とを形成することができる。凹凸構造では、凹部の厚みが凸部の厚みより小さくなっている。本発明の不織布の表面が凹凸賦形されている場合、肌との接触面積が小さくできるので、吸収性物品のトップシートとして好適である。 The surface of the nonwoven fabric of the present invention may have an uneven structure. Presence / absence of the concavo-convex structure can be confirmed, for example, in a cross-sectional shape cut in a direction (CD direction) perpendicular to the transport direction (MD direction) during manufacture of the nonwoven fabric. On the surface of the nonwoven fabric of the present invention, for example, a plurality of convex portions whose inside is composed of heat-fusible conjugate fibers relatively oriented in the thickness direction of the nonwoven fabric, and heat-fusible properties oriented in the plane direction of the nonwoven fabric A plurality of recesses made of composite fibers can be formed. In the concavo-convex structure, the thickness of the concave portion is smaller than the thickness of the convex portion. When the surface of the nonwoven fabric of the present invention is unevenly shaped, the contact area with the skin can be reduced, which is suitable as a top sheet for absorbent articles.
本発明の不織布は、嵩高さ、圧縮変形性、圧縮回復性等を生かした種々の分野に適用することができる。本発明の不織布は、例えば、使い捨ておむつ、生理用ナプキン等の使い捨て衛生物品の分野において、吸収性物品のトップシート、セカンドシート(トップシートと吸収体との間に配されるシート)、バックシート、防漏シートとして好適に使用することができる。また、本発明の不織布は、対人用清拭シート、スキンケア用シート、対物用のワイパー等しても好適に使用することができる。 The nonwoven fabric of the present invention can be applied to various fields that take advantage of bulkiness, compression deformability, compression recovery, and the like. The nonwoven fabric of the present invention is, for example, in the field of disposable hygiene articles such as disposable diapers and sanitary napkins, top sheets of absorbent articles, second sheets (sheets disposed between the top sheet and the absorber), back sheets It can be suitably used as a leak-proof sheet. Moreover, the nonwoven fabric of this invention can be used conveniently also with the wiping sheet for people, the sheet | seat for skin care, the wiper for objectives, etc.
本発明の不織布は、熱融着した熱融着性複合繊維を含有する嵩回復前の不織布を嵩回復処理して製造することができる。 The non-woven fabric of the present invention can be produced by subjecting a non-bulk-recovered non-woven fabric containing a heat-sealable heat-fusible conjugate fiber to a bulk recovery treatment.
好ましい嵩回復処理は、入口及び出口を有する加熱室を用意する段階と、入口を介し加熱室内に入り、加熱室内を進行した後に、出口を介し加熱室から出るように嵩回復前の不織布を搬送しながら、入口及び出口の一方を介し加熱室内に入り、嵩回復前の不織布に接触しつつ加熱室内を進行した後に、入口及び出口の他方を介し加熱室内から出るように、加熱された流体を、嵩回復前の不織布の搬送速度よりも高い速度でもって、供給する段階とを含む。 A preferred bulk recovery process is to prepare a heating chamber having an inlet and an outlet, and after entering the heating chamber through the inlet, proceeding through the heating chamber, and then transporting the unwoven fabric before bulk recovery to exit the heating chamber through the outlet. However, the heated fluid is allowed to enter the heating chamber through one of the inlet and the outlet, proceed through the heating chamber while being in contact with the nonwoven fabric before bulk recovery, and then exit the heating chamber through the other of the inlet and the outlet. And a step of supplying at a higher speed than the conveying speed of the nonwoven fabric before bulk recovery.
嵩回復前の不織布は、熱融着性複合繊維を含有するウェブをエアスルー処理して熱融着性複合繊維を熱融着させたエアスルー不織布であることが好ましく、嵩回復処理において、加熱された流体は、入口を介し加熱室内に入り、出口を介し加熱室から出ることが好ましく、嵩回復前の不織布は加熱室内において支持されることなく搬送されることが好ましく、加熱室は、入口から出口まで、互いに間隔を隔てて拡がる2つの隔壁により画定されており、これら隔壁に嵩回復前の不織布の両面がそれぞれ対面し続けるように嵩回復前の不織布が加熱室内を搬送されることが好ましい。2以上の好ましい態様を組み合わせてもよい。 The nonwoven fabric before bulk recovery is preferably an air-through nonwoven fabric in which a web containing a heat-fusible conjugate fiber is subjected to an air-through treatment and the heat-fusible conjugate fiber is thermally fused, and is heated in the bulk restoration treatment. The fluid preferably enters the heating chamber via the inlet and exits the heating chamber via the outlet. The nonwoven fabric before bulk recovery is preferably transported without being supported in the heating chamber. It is preferable that the non-woven fabric before bulk recovery is conveyed in the heating chamber so that both sides of the non-woven fabric before bulk recovery continue to face each other. Two or more preferred embodiments may be combined.
以下、図面に基づいて、本発明の不織布の製造方法の一実施形態を説明する。
本実施形態では、図3に示す、不織布Fの嵩を回復させるための嵩回復装置1が使用される。
Hereinafter, an embodiment of a method for producing a nonwoven fabric of the present invention will be described based on the drawings.
In this embodiment, the bulk recovery apparatus 1 for recovering the bulk of the nonwoven fabric F shown in FIG. 3 is used.
不織布Fは、熱融着した熱融着性複合繊維を含有する不織布である。不織布としては、エアスルー不織布、ポイントボンド不織布、スパンボンド不織布等が挙げられるが、好ましくはエアスルー不織布である。 The non-woven fabric F is a non-woven fabric containing heat-fusible conjugate fibers that are heat-sealed. Examples of the non-woven fabric include an air-through non-woven fabric, a point bond non-woven fabric, and a spun bond non-woven fabric, and an air-through non-woven fabric is preferable.
エアスルー不織布は、熱融着性複合繊維を含有するウェブに熱風を通過させ、熱融着性複合繊維の交点を熱融着させることにより得られた不織布である。熱融着性複合繊維を含有するウェブは、カード機等を使用した公知のウェブ形成方法によって形成することができる。ウェブ形成方法としては、例えば、短繊維を空気流に搬送させてネット上に堆積させる方法(エアレイ法)等が挙げられる。なお、こうして形成されたウェブは、不織布化前の繊維集合体であり、不織布製造過程において加えられる処理(例えば、エアスルー法、カレンダー法等における加熱融着処理)が施されておらず、繊維同士が極めて緩く絡んでいる状態にある。熱融着性複合繊維を含有するウェブに対するエアスルー処理は、例えば、熱風吹き付け装置によって実施することができる。エアスルー処理では、所定温度(例えば120〜160℃)に加熱された熱風がウェブに対して吹き付けられ、熱風がウェブを通り抜けることにより、ウェブ中の熱融着性複合繊維の交点が熱融着される。このようなエアスルー処理によって製造された不織布としては、例えば、鞘成分が高密度ポリエチレンであり、芯成分がポリエチレンテレフタレートである複合繊維であって、繊維長が20〜100mm、好ましくは35〜65mmであり、繊度が1.1〜8.8dtex、好ましくは2.2〜5.6dtexである芯鞘型複合繊維を主体とした不織布が挙げられる。 The air-through nonwoven fabric is a nonwoven fabric obtained by passing hot air through a web containing a heat-fusible conjugate fiber and thermally fusing the intersection of the heat-fusible conjugate fibers. The web containing the heat-fusible conjugate fiber can be formed by a known web forming method using a card machine or the like. Examples of the web forming method include a method (air array method) in which short fibers are conveyed in an air stream and deposited on a net. In addition, the web formed in this way is a fiber aggregate before making into a nonwoven fabric, and has not been subjected to a treatment applied in the nonwoven fabric production process (for example, heat-sealing treatment in an air-through method, a calendar method, etc.) Is very loosely entangled. The air-through treatment for the web containing the heat-fusible conjugate fiber can be performed by, for example, a hot air spraying device. In the air-through treatment, hot air heated to a predetermined temperature (for example, 120 to 160 ° C.) is blown against the web, and the hot air passes through the web, so that the intersection of the heat-fusible conjugate fibers in the web is heat-sealed. The As a nonwoven fabric manufactured by such an air-through process, for example, a sheath component is a high-density polyethylene and a core component is polyethylene terephthalate, and the fiber length is 20 to 100 mm, preferably 35 to 65 mm. And a nonwoven fabric mainly composed of a core-sheath type composite fiber having a fineness of 1.1 to 8.8 dtex, preferably 2.2 to 5.6 dtex.
なお、熱風の吹き付けは、ウェブ中の熱融着性複合繊維の交点を熱融着させる加熱処理の一例である。加熱処理は、熱融着性複合繊維(低融点成分)の融点以上に加熱可能である限り特に限定されない。加熱処理は、熱風の他、マイクロウェーブ、蒸気、赤外線等の熱媒体を使用して実施することができる。 The blowing of hot air is an example of a heat treatment for heat-sealing the intersections of the heat-fusible conjugate fibers in the web. The heat treatment is not particularly limited as long as it can be heated to the melting point or higher of the heat-fusible conjugate fiber (low melting point component). The heat treatment can be performed using a heat medium such as microwaves, steam, infrared rays, etc. in addition to hot air.
不織布Fは、その表面に凹凸を有していてもよい。凹凸は、例えば、ウェブに対する熱風の吹き付けによって不織布Fの表面に付与することができ、これにより、不織布Fの表面に、比較的不織布の厚み方向に配向する熱融着性複合繊維で内部が構成されている複数の凸部と、不織布の平面方向に配向する熱融着性複合繊維で構成される複数の凹部とを形成することができる。 The nonwoven fabric F may have irregularities on its surface. The unevenness can be imparted to the surface of the nonwoven fabric F by, for example, spraying hot air against the web, whereby the inside is composed of heat-fusible conjugate fibers oriented relatively in the thickness direction of the nonwoven fabric F on the surface of the nonwoven fabric F. It is possible to form a plurality of convex portions and a plurality of concave portions made of heat-fusible conjugate fibers oriented in the plane direction of the nonwoven fabric.
図3に示されるように、不織布Fは、ロールRに巻回された状態にあり、これに起因して不織布Fの嵩高さが減少している。そこで、不織布Fの嵩を回復させるために、嵩回復装置1が使用される。 As FIG. 3 shows, the nonwoven fabric F exists in the state wound by the roll R, and the bulkiness of the nonwoven fabric F is reducing resulting from this. Therefore, in order to recover the bulk of the nonwoven fabric F, the bulk recovery device 1 is used.
不織布Fには、互いに交差して重なる熱融着性複合繊維を交差領域において熱融着する熱融着部が多数含まれる。不織布Fに含まれる多数の熱融着部は、主として、図2に示す膨出状熱融着部である。これに対して、嵩回復装置1による嵩回復処理の際、図2に示す膨出状熱融着部の一部又は全部が、図1に示すくびれ状熱融着部に変化する。すなわち、嵩回復装置1による嵩回復処理の際、膨出状熱融着部が軟化又は融解し、膨出状熱融着部によって熱融着されている熱融着性複合繊維が若干離間し、これに伴って、膨出状熱融着部が若干伸長して、くびれ状熱融着部に変化する。特に、嵩回復装置1による嵩回復処理では、後述するように、嵩回復前の不織布Fに対して並行に熱風が流れ、不織布速度よりも熱風風速が大きいので、嵩回復装置1内で乱流が発生し、熱が伝わりやすくなる。また、不織布Fの構成繊維に対して、一方向に力が加わらず、空気の流れに沿って構成繊維に力が加わるため、膨出状熱融着部が若干伸長して、くびれ状熱融着部に変化しやすい。 The nonwoven fabric F includes a large number of heat-sealing portions that heat-fuse the heat-fusible conjugate fibers that intersect and overlap each other in the intersecting region. A large number of heat-sealing parts included in the nonwoven fabric F are mainly swelled heat-sealing parts shown in FIG. On the other hand, at the time of the bulk recovery process by the bulk recovery device 1, a part or all of the bulged heat fusion part shown in FIG. 2 is changed to the constriction heat fusion part shown in FIG. That is, during the bulk recovery process by the bulk recovery device 1, the swelled heat fusion part is softened or melted, and the heat-fusible conjugate fiber thermally fused by the swelled heat fusion part is slightly separated. Along with this, the swell-like heat-sealed portion slightly expands and changes to a constricted heat-sealed portion. In particular, in the bulk recovery process performed by the bulk recovery device 1, as will be described later, hot air flows in parallel to the nonwoven fabric F before bulk recovery and the hot air speed is higher than the nonwoven fabric speed. Occurs and heat is easily transmitted. Further, since force is not applied to the constituent fibers of the nonwoven fabric F in one direction but force is applied to the constituent fibers along the flow of air, the swell-like heat fusion part slightly expands and the constricted heat fusion occurs. It is easy to change to the wearing part.
熱融着部が膨出状からくびれ状に変化することにより、熱融着部による熱融着性複合繊維の接合強度は低下する。したがって、熱融着部が膨出状からくびれ状に変化することにより、圧縮変形に対する繊維の自由度が高くなり、繊維が動きやすくなる。このため、嵩回復処理された不織布Fは、優れた圧縮変形性を示す。また、嵩回復処理時に熱融着性複合繊維に熱が伝わりやすいため、熱融着性複合繊維を構成する樹脂が熱によって配向し、結晶性が高められている。したがって、嵩回復処理された不織布Fでは、繊維の初期強度が増加しており、初期の変形に対して繊維がへたりにくく、形状維持性が向上している。このため、嵩回復処理された不織布Fは、優れた圧縮回復性を示す。 When the heat-sealed portion changes from a bulging shape to a constricted shape, the bonding strength of the heat-fusible conjugate fiber by the heat-welding portion decreases. Therefore, when the heat-sealed portion changes from a bulging shape to a constricted shape, the degree of freedom of the fiber with respect to compressive deformation increases, and the fiber becomes easy to move. For this reason, the nonwoven fabric F subjected to bulk recovery treatment exhibits excellent compressive deformability. Moreover, since heat is easily transmitted to the heat-fusible conjugate fiber during the bulk recovery treatment, the resin constituting the heat-fusible conjugate fiber is oriented by heat, and the crystallinity is enhanced. Therefore, in the nonwoven fabric F subjected to the bulk recovery treatment, the initial strength of the fiber is increased, the fiber is difficult to sag against the initial deformation, and the shape maintaining property is improved. For this reason, the nonwoven fabric F subjected to bulk recovery treatment exhibits excellent compression recovery properties.
不織布Fの坪量は、嵩回復処理前後で略一定である。不織布Fの坪量は、例えば10〜80g/m2(特に15〜60g/m2)である。不織布Fの厚みは、嵩回復処理によって増加する。不織布Fの厚み(3.0gf/cm2荷重下)は、例えば、0.2〜0.6mm(特に0.3〜0.5mm)(嵩回復処理前)から、0.5〜3.0mm(特に0.7〜3.0mm)に増加する。不織布Fの比容積は、嵩回復処理によって増加する。不織布Fの比容積は、例えば、2.5〜50cm3/g(特に5〜33cm3/g)から6〜300cm3/g(特に12〜200cm3/g)に増加する。 The basis weight of the nonwoven fabric F is substantially constant before and after the bulk recovery process. The basis weight of the nonwoven fabric F is, for example, 10 to 80 g / m 2 (particularly 15 to 60 g / m 2 ). The thickness of the nonwoven fabric F increases by the bulk recovery process. The thickness of the nonwoven fabric F (under 3.0 gf / cm 2 load) is, for example, from 0.2 to 0.6 mm (particularly from 0.3 to 0.5 mm) (before bulk recovery treatment), from 0.5 to 3.0 mm. (Especially 0.7 to 3.0 mm). The specific volume of the nonwoven fabric F is increased by the bulk recovery process. The specific volume of the nonwoven fabric F is, for example, increases from 2.5~50cm 3 / g (especially 5~33cm 3 / g) in 6~300cm 3 / g (especially 12~200cm 3 / g).
図3に示されるように、嵩回復装置1は、帯状の不織布FをロールRから巻き戻して搬送する搬送器2を備える。搬送器2は2つのローラ対2a,2bを備える。各ローラ対2a,2bは互いに逆向きに回転するローラを備え、これらローラが回転されると不織布Fが搬送される。本実施形態では、不織布Fは、その一面及び他面が概ね上方及び下方を向くように、水平方向にほぼ一致する搬送方向MDに、搬送される。 As shown in FIG. 3, the bulk recovery device 1 includes a transporter 2 that unwinds and transports the belt-shaped nonwoven fabric F from the roll R. The transporter 2 includes two roller pairs 2a and 2b. Each roller pair 2a, 2b includes rollers that rotate in opposite directions, and when these rollers are rotated, the nonwoven fabric F is conveyed. In the present embodiment, the nonwoven fabric F is transported in a transport direction MD that substantially coincides with the horizontal direction so that one surface and the other surface thereof are generally directed upward and downward.
図3に示されるように、嵩回復装置1はまた、搬送される不織布Fを流体でもって加熱するための加熱器3を備える。加熱器3は、流体源3aと、流体源3aの出口に連結された供給管3bと、供給管3bの出口に連結されたノズル3cと、供給管3b内に配置された流量計3baと、流量計3ba下流の供給管3b内に配置されたレギュレータ3dと、レギュレータ3d下流の供給管3b内に配置された電気ヒータ3eと、ハウジング3fとを備える。ノズル3cは例えば細長い長方形状の出口を有する。 As shown in FIG. 3, the bulk recovery device 1 also includes a heater 3 for heating the conveyed nonwoven fabric F with a fluid. The heater 3 includes a fluid source 3a, a supply pipe 3b connected to the outlet of the fluid source 3a, a nozzle 3c connected to the outlet of the supply pipe 3b, a flow meter 3ba arranged in the supply pipe 3b, A regulator 3d disposed in the supply pipe 3b downstream of the flow meter 3ba, an electric heater 3e disposed in the supply pipe 3b downstream of the regulator 3d, and a housing 3f are provided. The nozzle 3c has, for example, an elongated rectangular outlet.
本実施形態では、流体は空気であり、流体源3aはコンプレッサである。コンプレッサ3aが作動されると、空気が供給管3b内を流通する。流量計3baは供給管3b内を流通する空気の流量を検出し、空気流量を標準状態(0℃、1気圧)における量の形で出力する。供給管3b内の空気圧力はレギュレータ3dによって例えば0.6MPaGから3MPaG〜0.01MPaGまで減圧される。空気は次いで、電気ヒータ3eによって加熱される。加熱された空気は次いでノズル3cから流出する。ノズル3cから流出する空気量は例えば2380L/min(2.38m3/min、標準状態)に設定される。ノズル3cから流出した空気の温度が例えば70〜160℃になるように空気が電気ヒータ3eによって例えば100〜200℃に加熱される。なお、ノズル3cから流出した空気の温度はノズル3cの出口近傍に配置された温度センサによって検出することができる。 In this embodiment, the fluid is air and the fluid source 3a is a compressor. When the compressor 3a is operated, air flows through the supply pipe 3b. The flow meter 3ba detects the flow rate of air flowing through the supply pipe 3b, and outputs the air flow rate in the form of an amount in a standard state (0 ° C., 1 atm). The air pressure in the supply pipe 3b is reduced from, for example, 0.6 MPaG to 3 MPaG to 0.01 MPaG by the regulator 3d. The air is then heated by the electric heater 3e. The heated air then flows out from the nozzle 3c. The amount of air flowing out from the nozzle 3c is set to 2380 L / min (2.38 m 3 / min, standard state), for example. The air is heated to, for example, 100 to 200 ° C. by the electric heater 3e so that the temperature of the air flowing out from the nozzle 3c becomes, for example, 70 to 160 ° C. Note that the temperature of the air flowing out from the nozzle 3c can be detected by a temperature sensor disposed in the vicinity of the outlet of the nozzle 3c.
図4及び図5に示されるように、ハウジング3fは、互いに間隔を隔てて水平方向に拡がる頂壁3fu及び底壁3fbと、頂壁3fu及び底壁3fb間に配置された一対の側壁3fs,3fsとを備え、これら頂壁3fu、底壁3fb及び側壁3fs,3fsによって断面が長方形状の内部空間3sが画定される。内部空間3sは互いに対向する一対の開口3si,3soを備える。 As shown in FIGS. 4 and 5, the housing 3f includes a top wall 3fu and a bottom wall 3fb extending in a horizontal direction at intervals, and a pair of side walls 3fs, which are disposed between the top wall 3fu and the bottom wall 3fb. An internal space 3s having a rectangular cross section is defined by the top wall 3fu, the bottom wall 3fb, and the side walls 3fs, 3fs. The internal space 3s includes a pair of openings 3si and 3so facing each other.
ノズル3cの出口下流の内部空間3s内には、入口3gi,3goを有する加熱室3gが画定される。本実施形態では、ノズル3cの出口は内部空間3sの開口3siに配置される。したがって、加熱室3gは内部空間3sに一致する。また、加熱室3gの入口3giは内部空間3sの開口3siに一致し、加熱室3gの出口3goは内部空間3sの開口3soに一致する。 A heating chamber 3g having inlets 3gi and 3go is defined in the internal space 3s downstream of the outlet of the nozzle 3c. In the present embodiment, the outlet of the nozzle 3c is disposed in the opening 3si of the internal space 3s. Therefore, the heating chamber 3g coincides with the internal space 3s. The inlet 3gi of the heating chamber 3g matches the opening 3si of the internal space 3s, and the outlet 3go of the heating chamber 3g matches the opening 3so of the internal space 3s.
不織布Fは搬送器2により、入口3giを介し加熱室3g内に入り、加熱室3g内を進行した後に、出口3goを介し加熱室3gから出るように、搬送される。この場合、加熱室3g内には、不織布Fを搬送するためのローラやベルトが配置されていない。言い換えると、不織布Fは加熱室3g内において支持されることなく搬送される。また、不織布Fの両面Fsが、加熱室3gを画定する隔壁である頂壁3fu及び底壁3fbにそれぞれ対面し続けるように不織布Fが加熱室3g内を搬送される。 The nonwoven fabric F enters the heating chamber 3g through the inlet 3gi by the transporter 2, travels through the heating chamber 3g, and is then transported out of the heating chamber 3g through the outlet 3go. In this case, no roller or belt for conveying the nonwoven fabric F is disposed in the heating chamber 3g. In other words, the nonwoven fabric F is conveyed without being supported in the heating chamber 3g. Moreover, the nonwoven fabric F is conveyed in the heating chamber 3g so that both surfaces Fs of the nonwoven fabric F continue to face the top wall 3fu and the bottom wall 3fb, which are partition walls defining the heating chamber 3g, respectively.
一方、ノズル3cから流出した空気は、入口3giを介し加熱室3g内に入り、搬送されている不織布Fに接触しつつ加熱室3g内を進行した後に、出口3goを介し加熱室3gから出る。この場合、加熱室3g内において、空気の線速度は不織布Fの搬送速度よりも高くなるように、空気が供給される。 On the other hand, the air that has flowed out of the nozzle 3c enters the heating chamber 3g through the inlet 3gi, travels through the heating chamber 3g while being in contact with the nonwoven fabric F being conveyed, and then exits the heating chamber 3g through the outlet 3go. In this case, in the heating chamber 3g, air is supplied so that the linear velocity of air is higher than the conveyance speed of the nonwoven fabric F.
本実施形態では、頂壁3fu及び底壁3fbは例えば厚さ3mmのステンレス板から形成される。ハウジング3fないし加熱室3gの搬送方向MDの長さL3は1675mmである。ハウジング3fの幅W3fは240mmであり、加熱室3gの幅W3gは200mmである。ハウジング3fの高さH3fは11mmであり、加熱室3gの高さH3gは5mmである。 In the present embodiment, the top wall 3fu and the bottom wall 3fb are formed of a stainless plate having a thickness of 3 mm, for example. The length L3 in the transport direction MD of the housing 3f or the heating chamber 3g is 1675 mm. The width W3f of the housing 3f is 240 mm, and the width W3g of the heating chamber 3g is 200 mm. The height H3f of the housing 3f is 11 mm, and the height H3g of the heating chamber 3g is 5 mm.
本実施形態では、頂壁3fu及び底壁3fbは水平面内に拡がっている。ノズル3cの指向線と水平面Hとのなす角度θ(図4参照)は、0から30度が好ましく、0から10度がより好ましく、0度が最も好ましい。 In the present embodiment, the top wall 3fu and the bottom wall 3fb extend in a horizontal plane. The angle θ (see FIG. 4) formed by the directional line of the nozzle 3c and the horizontal plane H is preferably 0 to 30 degrees, more preferably 0 to 10 degrees, and most preferably 0 degrees.
図3に示されるように、嵩回復装置1はまた、加熱器3の下流に、搬送される不織布Fを流体でもって冷却するための冷却器4を備える。冷却器4は、流体源4aと、流体源4aの出口に連結された供給管4bと、供給管4bの出口に連結されたノズル4cと、供給管4b内に配置されたレギュレータ4d及び冷却装置4eと、ハウジング4fとを備える。 As shown in FIG. 3, the bulk recovery device 1 also includes a cooler 4 for cooling the conveyed nonwoven fabric F with a fluid downstream of the heater 3. The cooler 4 includes a fluid source 4a, a supply pipe 4b connected to the outlet of the fluid source 4a, a nozzle 4c connected to the outlet of the supply pipe 4b, a regulator 4d arranged in the supply pipe 4b, and a cooling device. 4e and a housing 4f.
本実施形態では、流体は空気であり、流体源4aはコンプレッサである。コンプレッサ4aが作動されると、空気が供給管4b内を流通する。供給管4b内の空気圧力はレギュレータ4dによって減圧される。空気は次いで、冷却装置4eによって冷却される。冷却された空気は次いでノズル4cから流出する。 In this embodiment, the fluid is air and the fluid source 4a is a compressor. When the compressor 4a is activated, air flows through the supply pipe 4b. The air pressure in the supply pipe 4b is reduced by the regulator 4d. The air is then cooled by the cooling device 4e. The cooled air then flows out from the nozzle 4c.
冷却器4のハウジング4fは加熱器3のハウジング3fと同様に、互いに間隔を隔てて拡がる頂壁及び底壁と、頂壁及び底壁間に配置された一対の側壁とを備え、これら頂壁、底壁及び側壁によって断面が長方形状の冷却室4gが画定される。冷却室4gは互いに対向する入口4gi及び出口4goを備える。 Like the housing 3f of the heater 3, the housing 4f of the cooler 4 includes a top wall and a bottom wall that are spaced apart from each other, and a pair of side walls disposed between the top wall and the bottom wall. The bottom wall and the side wall define a cooling chamber 4g having a rectangular cross section. The cooling chamber 4g includes an inlet 4gi and an outlet 4go facing each other.
加熱器3から搬出された不織布Fは搬送器2により、入口4giを介し冷却室4g内に入り、冷却室4g内を進行した後に、出口4goを介し冷却室4gから出るように、搬送される。この場合、冷却室4g内には、不織布Fを搬送するためのローラやベルトが配置されていない。言い換えると、不織布Fは冷却室4g内において支持されることなく搬送される。また、不織布Fの両面Fsが、冷却室4gを画定する隔壁である頂壁及び底壁にそれぞれ対面し続けるように不織布Fが冷却室4g内を搬送される。 The nonwoven fabric F carried out from the heater 3 enters the cooling chamber 4g via the inlet 4gi by the carrier 2, and is conveyed so as to exit the cooling chamber 4g via the outlet 4go after traveling through the cooling chamber 4g. . In this case, no roller or belt for conveying the nonwoven fabric F is disposed in the cooling chamber 4g. In other words, the nonwoven fabric F is conveyed without being supported in the cooling chamber 4g. Moreover, the nonwoven fabric F is conveyed in the cooling chamber 4g so that both surfaces Fs of the nonwoven fabric F continue to face the top wall and the bottom wall, which are partition walls defining the cooling chamber 4g, respectively.
本実施形態では、冷却器4のノズル4cは入口4giに配置される。したがって、ノズル4cから流出した空気は、入口4giを介し冷却室4g内に入り、搬送されている不織布Fに接触しつつ冷却室4g内を進行した後に、出口4goを介し冷却室4gから出る。この場合、冷却室4g内において、空気の線速度は不織布Fの搬送速度よりも高くなるように、空気が供給される。 In the present embodiment, the nozzle 4c of the cooler 4 is disposed at the inlet 4gi. Accordingly, the air flowing out from the nozzle 4c enters the cooling chamber 4g through the inlet 4gi, travels through the cooling chamber 4g while being in contact with the nonwoven fabric F being conveyed, and then exits the cooling chamber 4g through the outlet 4go. In this case, in the cooling chamber 4g, air is supplied so that the linear velocity of air is higher than the conveyance speed of the nonwoven fabric F.
さて、ロールRから巻き戻された不織布Fはまず加熱器3の加熱室3g内を通過するよう搬送される。同時に、加熱器3のノズル3cから加熱された空気が加熱室3g内に供給される。その結果、不織布Fが加熱された空気に接触して加熱され、不織布Fの嵩が増加される。すなわち、不織布Fの嵩が回復される。 Now, the nonwoven fabric F rewound from the roll R is first conveyed so as to pass through the heating chamber 3g of the heater 3. At the same time, air heated from the nozzle 3c of the heater 3 is supplied into the heating chamber 3g. As a result, the nonwoven fabric F is heated in contact with the heated air, and the bulk of the nonwoven fabric F is increased. That is, the bulk of the nonwoven fabric F is recovered.
この場合、空気は主として不織布Fの表面Fsに沿って進行する。その結果、空気流によって、不織布Fの嵩が回復するのが妨げられない。すなわち、不織布Fの嵩が良好に回復される。 In this case, air mainly travels along the surface Fs of the nonwoven fabric F. As a result, the air flow does not prevent the bulk of the nonwoven fabric F from being restored. That is, the bulk of the nonwoven fabric F is recovered satisfactorily.
更に、本実施形態では、加熱室3g内において空気の線速度が不織布Fの搬送速度よりも高い。その結果、不織布Fの表面Fsに隣接する空気流に乱れが生ずる。このため、空気に含まれる各種分子は不織布Fの表面Fsにランダムな角度で衝突する。したがって、不織布Fの繊維がほぐされ、嵩の回復が促進される。また、空気流の乱れにより、加熱室3g内において不織布Fにバタつきが生ずる。その結果、不織布Fの内部に加熱された空気が容易に侵入し、不織布Fを効率的に加熱できる。このため、加熱室3gないしハウジング3fの長さL3f(図4)を短くすることができる。 Furthermore, in this embodiment, the linear velocity of air is higher than the conveyance speed of the nonwoven fabric F in the heating chamber 3g. As a result, the air flow adjacent to the surface Fs of the nonwoven fabric F is disturbed. For this reason, various molecules contained in the air collide with the surface Fs of the nonwoven fabric F at random angles. Therefore, the fibers of the nonwoven fabric F are loosened, and the recovery of the bulk is promoted. In addition, the nonwoven fabric F flutters in the heating chamber 3g due to the turbulence of the air flow. As a result, the heated air easily penetrates into the nonwoven fabric F, and the nonwoven fabric F can be efficiently heated. For this reason, the length L3f (FIG. 4) of the heating chamber 3g or the housing 3f can be shortened.
更に、ハウジング3fは空気を供給する設備及び空気を吸引する設備を必要としない。したがって、ハウジング3fの大きさを更に小さくできる。 Further, the housing 3f does not require equipment for supplying air and equipment for sucking air. Therefore, the size of the housing 3f can be further reduced.
更に、加熱室3g内において不織布Fはロール等により支持されることなく搬送される。その結果、不織布Fの嵩の回復がロール等により妨げられない。 Furthermore, the nonwoven fabric F is conveyed within the heating chamber 3g without being supported by a roll or the like. As a result, the bulk recovery of the nonwoven fabric F is not hindered by the roll or the like.
加熱室3gから搬出された不織布Fは次いで、冷却器4の冷却室4gを通過するように搬送される。同時に、冷却器4のノズル4cから冷却された空気が冷却室4g内に供給される。その結果、不織布Fが冷却された空気に接触して冷却される。 The nonwoven fabric F carried out from the heating chamber 3g is then conveyed so as to pass through the cooling chamber 4g of the cooler 4. At the same time, the air cooled from the nozzle 4c of the cooler 4 is supplied into the cooling chamber 4g. As a result, the nonwoven fabric F is cooled in contact with the cooled air.
この場合、空気は主として不織布Fの表面Fsに沿って進行する。その結果、空気流によって、不織布Fの嵩が減少するのが妨げられる。 In this case, air mainly travels along the surface Fs of the nonwoven fabric F. As a result, the air flow prevents the nonwoven fabric F from being reduced in volume.
また、冷却室4g内において空気の線速度が不織布Fの搬送速度よりも高い。その結果、冷却室4g内に位置する不織布F全体を冷却することができる。すなわち、不織布Fを効率的に冷却できる。このため、冷却室4gないしハウジング4fの大きさを小さくすることができる。 Moreover, the linear velocity of air is higher than the conveyance speed of the nonwoven fabric F in the cooling chamber 4g. As a result, the whole nonwoven fabric F located in the cooling chamber 4g can be cooled. That is, the nonwoven fabric F can be efficiently cooled. For this reason, the size of the cooling chamber 4g or the housing 4f can be reduced.
冷却室4gから搬出された不織布Fは次いで、搬送器2により、例えば吸収性物品製造装置に搬送される。吸収性物品製造装置において、不織布Fは吸収性物品のトップシートとして使用される。 Next, the nonwoven fabric F carried out from the cooling chamber 4g is conveyed by the conveyor 2 to, for example, an absorbent article manufacturing apparatus. In the absorbent article manufacturing apparatus, the nonwoven fabric F is used as a top sheet of the absorbent article.
本実施形態では、不織布Fは、熱融着性複合繊維を含有しているので、加熱器3のノズル3cから流出する空気の温度は、熱融着性複合繊維(低融点成分)の融点よりも50℃低い温度以上、融点未満であることが好ましい。空気温度が融点−50℃よりも低いと、不織布の嵩が十分に回復されないおそれがある。空気温度が融点以上であると、繊維が溶けてしまう。 In this embodiment, since the nonwoven fabric F contains the heat-fusible conjugate fiber, the temperature of the air flowing out from the nozzle 3c of the heater 3 is higher than the melting point of the heat-fusible conjugate fiber (low melting point component). Also, the temperature is preferably 50 ° C. or lower and lower than the melting point. When air temperature is lower than melting | fusing point -50 degreeC, there exists a possibility that the volume of a nonwoven fabric may not fully be recovered. If the air temperature is equal to or higher than the melting point, the fiber is melted.
不織布Fの効率的な加熱のことを考えると、加熱室3gの断面積、すなわち幅W3g及び高さH3gは小さいことが好ましい。しかしながら、搬送時、不織布Fは幅方向に蛇行し、厚さ方向にバタつく。このため、幅W3g又は高さH3gが過度に小さいと、不織布Fがハウジング3fに衝突するおそれがある。また、加熱室3gの断面積、すなわち空気の流路面積が過度に小さいと、加熱室3gにおける圧力損失が大きくなる。これらを考慮すると、幅W3gは不織布Fの幅よりも5から40mm大きいことが好ましく、不織布Fの幅よりも10から20mm大きいのがより好ましい。また、高さH3gは2から10mmが好ましく、3から7mmがより好ましい。 Considering efficient heating of the nonwoven fabric F, it is preferable that the cross-sectional area of the heating chamber 3g, that is, the width W3g and the height H3g are small. However, during conveyance, the nonwoven fabric F meanders in the width direction and flutters in the thickness direction. For this reason, if the width W3g or the height H3g is too small, the nonwoven fabric F may collide with the housing 3f. Moreover, when the cross-sectional area of the heating chamber 3g, that is, the air flow path area is excessively small, the pressure loss in the heating chamber 3g increases. Considering these, the width W3g is preferably 5 to 40 mm larger than the width of the nonwoven fabric F, and more preferably 10 to 20 mm larger than the width of the nonwoven fabric F. Further, the height H3g is preferably 2 to 10 mm, and more preferably 3 to 7 mm.
これまで述べてきた実施形態では、加熱器3のノズル3cは加熱室3gの入口3giに配置される。別の実施形態では、ノズル3cは加熱室3gの出口3goに配置される。この場合、出口3goを介し加熱室3g内に入り、搬送されている不織布Fに接触しつつ加熱室3g内を進行した後に、入口3giを介し加熱室3gから出るように、空気が供給される。 In the embodiment described so far, the nozzle 3c of the heater 3 is arranged at the inlet 3gi of the heating chamber 3g. In another embodiment, the nozzle 3c is disposed at the outlet 3go of the heating chamber 3g. In this case, after entering the heating chamber 3g through the outlet 3go, proceeding through the heating chamber 3g while being in contact with the conveyed nonwoven fabric F, air is supplied so as to exit the heating chamber 3g through the inlet 3gi. .
そうすると、入口3gi及び出口3goの一方を介し加熱室3g内に入り、不織布Fに接触しつつ加熱室3g内を進行した後に、入口3gi及び出口3goの他方を介し加熱室3g内から出るように空気が供給されるということになる。 Then, after entering the heating chamber 3g through one of the inlet 3gi and the outlet 3go, proceeding through the heating chamber 3g while being in contact with the nonwoven fabric F, and exiting from the heating chamber 3g through the other of the inlet 3gi and the outlet 3go. Air is supplied.
ところが、ノズル3cを出口3goに配置すると、不織布Fの搬送方向MDと空気流れとが互いに逆向きになる。このため、搬送のために不織布Fに作用する搬送方向MDの力、すなわち張力を増加させる必要がある。張力が増加されると、不織布Fの嵩の回復が妨げられるおそれがある。不織布Fを加熱室3g内において、搬送方向MDと、搬送方向MDと逆向きとに交互に蛇行させる場合も同様の問題が生じ得る。 However, when the nozzle 3c is disposed at the outlet 3go, the conveyance direction MD of the nonwoven fabric F and the air flow are opposite to each other. For this reason, it is necessary to increase the force in the conveying direction MD acting on the nonwoven fabric F for conveyance, that is, the tension. When the tension is increased, the recovery of the bulk of the nonwoven fabric F may be hindered. The same problem may occur when the nonwoven fabric F is meandered alternately in the conveyance direction MD and in the opposite direction to the conveyance direction MD in the heating chamber 3g.
これに対し、図3から図5に示される実施形態では、ノズル3cが入口3giに配置され、不織布Fの両面Fsが頂壁3fu及び底壁3fbにそれぞれ対面し続けるように不織布Fが加熱室3g内を搬送される。したがって、加熱室3g内において、不織布Fの搬送方向MDと空気流れとが互いに同じ方向であり続ける。その結果、搬送のために不織布Fに印加される張力を小さく維持しつつ、嵩の回復を行うことができる。 On the other hand, in the embodiment shown in FIGS. 3 to 5, the nozzle 3c is disposed at the inlet 3gi, and the nonwoven fabric F is in the heating chamber so that both surfaces Fs of the nonwoven fabric F continue to face the top wall 3fu and the bottom wall 3fb, respectively. It is conveyed in 3g. Therefore, in the heating chamber 3g, the conveyance direction MD of the nonwoven fabric F and the air flow continue to be in the same direction. As a result, it is possible to recover the bulk while maintaining a small tension applied to the nonwoven fabric F for conveyance.
また、これまで述べてきた実施形態では、ノズル3cは入口3giにおいて不織布Fの上方に配置される。別の実施形態では、ノズル3cは不織布Fの下方に配置される。更に別の実施形態では、ノズル3cは不織布Fの上方及び下方の両方に配置される。 Moreover, in embodiment described so far, the nozzle 3c is arrange | positioned above the nonwoven fabric F in the inlet_port | entrance 3gi. In another embodiment, the nozzle 3 c is disposed below the nonwoven fabric F. In yet another embodiment, the nozzles 3c are arranged both above and below the nonwoven fabric F.
図6(A)及び図6(B)はノズル3cの別の実施形態を示している。図6(A)を参照すると、ノズル3cは例えば直方体形状の本体3caを備える。本体3caは、内部空間3cbと、内部空間3cbに連通する空気入口3cc及び空気出口3cdと、空気出口3cdに隣接して拡がる空気ガイド板3ceと、を備える。空気入口3ccは供給管3bに連結される。 6A and 6B show another embodiment of the nozzle 3c. Referring to FIG. 6A, the nozzle 3c includes a main body 3ca having a rectangular parallelepiped shape, for example. The main body 3ca includes an internal space 3cb, an air inlet 3cc and an air outlet 3cd communicating with the internal space 3cb, and an air guide plate 3ce extending adjacent to the air outlet 3cd. The air inlet 3cc is connected to the supply pipe 3b.
このノズル3cはハウジング3fに一体的に固定される。すなわち、図6(B)に示されるように、ノズル3cの空気ガイド板3ceが、ハウジング3fの内部空間3sの入口3siを介し内部空間3s内に挿入され、本体3caがハウジング3fの頂壁3fuに固定される。その結果、空気ガイド板3ceと頂壁3fuとの間に空気通路5aが形成され、空気ガイド板3ceと底壁3fbとの間に不織布通路5bが形成される。この場合、例えば、空気通路5aの高さH5a、空気ガイド板3ceの厚さt3ceは、それぞれ1mmであり、不織布通路5bの高さH5bは3mmである。なお、ノズル3cの幅は内部空間3sの幅にほぼ一致する。 This nozzle 3c is integrally fixed to the housing 3f. That is, as shown in FIG. 6B, the air guide plate 3ce of the nozzle 3c is inserted into the internal space 3s via the inlet 3si of the internal space 3s of the housing 3f, and the main body 3ca is inserted into the top wall 3fu of the housing 3f. Fixed to. As a result, an air passage 5a is formed between the air guide plate 3ce and the top wall 3fu, and a nonwoven fabric passage 5b is formed between the air guide plate 3ce and the bottom wall 3fb. In this case, for example, the height H5a of the air passage 5a and the thickness t3ce of the air guide plate 3ce are each 1 mm, and the height H5b of the nonwoven fabric passage 5b is 3 mm. Note that the width of the nozzle 3c substantially matches the width of the internal space 3s.
空気通路5aは、一方ではノズル3cの空気出口3cdに連通し、他方ではハウジング3fの内部空間3sに連通する。この場合、空気通路5aの出口下流に加熱室3gが画定される。したがって、供給管3bから本体3caに供給された加熱空気は空気出口3cdを介し空気通路5a内に流入し、空気通路5a内を流通した後に、入口3giを介し加熱室3g内に流入する。 The air passage 5a communicates with the air outlet 3cd of the nozzle 3c on the one hand and communicates with the internal space 3s of the housing 3f on the other hand. In this case, the heating chamber 3g is defined downstream of the outlet of the air passage 5a. Accordingly, the heated air supplied from the supply pipe 3b to the main body 3ca flows into the air passage 5a through the air outlet 3cd, flows through the air passage 5a, and then flows into the heating chamber 3g through the inlet 3gi.
不織布通路5bは、一方ではハウジング3fの外部に連通し、他方では加熱室3gに連通する。不織布Fはハウジング3fの外部から不織布通路5b内に入り、不織布通路5b内を進行した後に、入口3giを介し加熱室3g内に入る。 The nonwoven fabric passage 5b communicates with the outside of the housing 3f on the one hand and communicates with the heating chamber 3g on the other hand. The nonwoven fabric F enters the nonwoven fabric passage 5b from the outside of the housing 3f, travels through the nonwoven fabric passage 5b, and then enters the heating chamber 3g through the inlet 3gi.
この場合、加熱室3gの出口3goにおける流路面積は不織布通路5bの流路面積よりも大きく、したがって出口3goにおける流路抵抗は不織布通路5bの流路抵抗よりも小さくなっている。したがって、入口3giを介し加熱室3g内に流入した空気が不織布通路5b内を逆流するのが抑制され、出口3goに向けて加熱室3g内を確実に流通することができる。 In this case, the flow passage area at the outlet 3go of the heating chamber 3g is larger than the flow passage area of the non-woven fabric passage 5b. Therefore, the flow passage resistance at the outlet 3go is smaller than the flow passage resistance of the non-woven fabric passage 5b. Therefore, the air flowing into the heating chamber 3g through the inlet 3gi is prevented from flowing back through the nonwoven fabric passage 5b, and can be reliably circulated through the heating chamber 3g toward the outlet 3go.
図7に示される実施形態では、図6に示される実施形態と比べて、ハウジング3fの底壁3fbがノズル3cの本体3caの下方まで延長される。その結果、不織布通路5bもノズル3cの本体3caの下方まで延長される。 In the embodiment shown in FIG. 7, the bottom wall 3 fb of the housing 3 f is extended below the main body 3 ca of the nozzle 3 c as compared with the embodiment shown in FIG. 6. As a result, the nonwoven fabric passage 5b is also extended to the lower side of the main body 3ca of the nozzle 3c.
冷却器4のノズル4cの配置も加熱器3のノズル3cの配置と同様である。 The arrangement of the nozzle 4c of the cooler 4 is the same as the arrangement of the nozzle 3c of the heater 3.
更に、これまで述べてきた実施形態では、加熱器3の下流に冷却器4が設けられる。別の実施形態では、冷却器4が省略される。すなわち、加熱器3から搬出された不織布Fは、冷却器4により冷却されることなく、製造装置に搬送される。 Furthermore, in the embodiment described so far, the cooler 4 is provided downstream of the heater 3. In another embodiment, the cooler 4 is omitted. That is, the nonwoven fabric F carried out from the heater 3 is conveyed to the manufacturing apparatus without being cooled by the cooler 4.
更に別の実施形態では、ハウジング3fを加熱するための加熱器が設けられる。この加熱器により、加熱室3gを画定するハウジング3fの内面の温度が、例えばノズル3cから流出する空気の温度とほぼ同じ温度に維持される。このようにすると、不織布Fの嵩回復を促進することができる。ハウジング3fのための加熱器として、株式会社スリーハイ製のシリコンラバーヒータを用いることができる。更に別の実施形態では、ノズル3cを加熱するための加熱器が設けられる。 In yet another embodiment, a heater for heating the housing 3f is provided. By this heater, the temperature of the inner surface of the housing 3f that defines the heating chamber 3g is maintained at substantially the same temperature as the temperature of the air flowing out from the nozzle 3c, for example. If it does in this way, the bulk recovery of the nonwoven fabric F can be accelerated | stimulated. As a heater for the housing 3f, a silicon rubber heater manufactured by Three High Co., Ltd. can be used. In yet another embodiment, a heater for heating the nozzle 3c is provided.
更に別の実施形態では、ハウジング3fを覆う保温材が設けられる。この保温材により、ハウジング3fないし加熱室3g内の温度低下が抑制される。更に別の実施形態では、ノズル3cを覆う保温材が設けられる。 In still another embodiment, a heat insulating material that covers the housing 3f is provided. With this heat insulating material, a temperature drop in the housing 3f or the heating chamber 3g is suppressed. In yet another embodiment, a heat insulating material covering the nozzle 3c is provided.
これまで述べてきた種々の実施形態を互いに組み合わせることもできる。 The various embodiments described so far can also be combined with each other.
以下、実施例及び比較例に基づいて本発明をさらに詳細に説明するが、これらの実施例及び比較例は本発明を限定するものではない。
実施例及び比較例において評価された項目の測定方法は、以下の通りである。
[坪量]
坪量は、JIS L 1906の5.2に従って測定する。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, these Examples and comparative examples do not limit this invention.
The measuring method of the item evaluated in the Example and the comparative example is as follows.
[Basis weight]
The basis weight is measured according to 5.2 of JIS L 1906.
[嵩]
嵩(厚み)は、不織布に3.0gf/cm2荷重を加えた状態で、厚み計((株)大栄科学精器製作所製,THICKNESS GAUGE UF−60)を用いて測定する。嵩(厚み)の測定は、不織布の10箇所で行い、その平均値を嵩(厚み)とする。
[Bulk]
The bulk (thickness) is measured using a thickness meter (manufactured by Daiei Kagaku Seisaku Seisakusho, THICKNESS GAUGE UF-60) in a state where a load of 3.0 gf / cm 2 is applied to the nonwoven fabric. The bulk (thickness) is measured at 10 locations of the nonwoven fabric, and the average value is defined as the bulk (thickness).
[圧縮特性]
圧縮特性は、カトーテック株式会社製,自動化圧縮試験器KES−FB3を用いて評価する。
測定条件は、以下の通りである。
SENS:2
スピード:0.02mm/秒
ストローク:5mm/10V
加圧面積:2cm2
取込み間隔:0.1秒
上限荷重 :50g/cm2
繰返し回数:1回
[Compression characteristics]
The compression characteristics are evaluated using an automated compression tester KES-FB3 manufactured by Kato Tech Co., Ltd.
The measurement conditions are as follows.
SENS: 2
Speed: 0.02mm / sec Stroke: 5mm / 10V
Pressurized area: 2 cm 2
Uptake interval: 0.1 seconds Upper limit load: 50 g / cm 2
Repeat count: 1 time
圧縮特性は、不織布1cm2当りの圧縮エネルギーWC(N・m/m2)と、圧縮レジリエンスRC(%)とにより評価する。計3回の測定を行い、WC及びRCの平均値を算出する。なお、WCは、値が大きいほど圧縮されやすいことを意味し、RCは、値が100%に近いほど、回復性が高いことを意味する。 The compression characteristics are evaluated by the compression energy WC (N · m / m 2 ) per 1 cm 2 of the nonwoven fabric and the compression resilience RC (%). A total of three measurements are taken and the average value of WC and RC is calculated. In addition, WC means that it is easy to compress, so that a value is large, RC means that a recoverability is so high that a value is near 100%.
[透液性]
透液性を、LENZING社製、LISTERストライクスルー試験器を用いて評価する。評価手順は、以下の通りである。
(1)100×100mmの大きさにカットしたろ紙(ADVANTEC FILTER PAPER GRADE2)5枚の上に、100×100mmの大きさにカットした試料を配置し、その上に通電透液プレートを配置する。
(2)ストライクスルー試験機本体に、ろ紙、試料及び通電透液プレートをセットする。
(3)ストライクスルー試験機本体に、生理食塩水5mLを入れる。
(4)ストライクスルー試験機本体から、生理食塩水5mL(室温)を、通電透液プレートの開孔部に落下させる。
(5)通電透液プレートの通電時間を記録する。
(6)計3回の測定を行い、透液時間の平均値を算出する。
なお、試料をセットしない場合、すなわち、ろ紙5枚における透液時間は、69.13秒であった。
[Liquid permeability]
The liquid permeability is evaluated using a LISTER strike-through tester manufactured by LENZING. The evaluation procedure is as follows.
(1) A sample cut to a size of 100 × 100 mm is placed on five filter papers (ADVANTEC FILTER PAPER GRADE2) cut to a size of 100 × 100 mm, and an electrically permeable liquid plate is placed thereon.
(2) Set a filter paper, a sample and a current-permeable plate on the strike-through tester body.
(3) Put 5 mL of physiological saline into the strike-through tester body.
(4) 5 mL (room temperature) of physiological saline is dropped from the strike-through tester main body into the opening portion of the conductive liquid-permeable plate.
(5) Record the energization time of the energized permeable plate.
(6) Perform a total of three measurements and calculate the average value of the liquid permeation time.
In addition, when the sample was not set, that is, the liquid permeation time in 5 filter papers was 69.13 seconds.
[実施例1,2及び比較例1〜3]
(1)実施例1,2における嵩回復処理
ロールの形の不織布が用意された。この不織布は、エアスルー不織布であり、エアスルー処理された面(熱風が吹き付けられた面)が凹凸賦形されている。不織布の特性を表1に示す。表1において、WFは不織布の幅を、tmはロールRに巻かれる前の不織布の厚さを、t0はロールから巻き戻され嵩回復装置に搬入される前の不織布の厚さを、それぞれ示している。不織布の厚さは、大栄科学精機製作所製の厚さ測定器FS−60DSを用いて測定された。加圧板面積は20cm2(円形)であり、測定荷重は0.3kPa(3gf/cm2)であった。
[Examples 1 and 2 and Comparative Examples 1 to 3]
(1) Bulk recovery treatment in Examples 1 and 2 Non-woven fabrics in the form of rolls were prepared. This non-woven fabric is an air-through non-woven fabric, and the surface subjected to the air-through treatment (the surface to which the hot air is blown) is unevenly shaped. The properties of the nonwoven fabric are shown in Table 1. In Table 1, WF indicates the width of the nonwoven fabric, tm indicates the thickness of the nonwoven fabric before being wound around the roll R, and t0 indicates the thickness of the nonwoven fabric before being unwound from the roll and carried into the bulk recovery device. ing. The thickness of the non-woven fabric was measured using a thickness measuring device FS-60DS manufactured by Daiei Kagaku Seiki Seisakusho. The pressure plate area was 20 cm 2 (circular), and the measurement load was 0.3 kPa (3 gf / cm 2 ).
実施例1,2における処理条件が表2に示される。表2において、THAiは加熱室の入口における空気の温度を、qHAはコンプレッサから排出される空気流量(0℃)を、SHA(=W3g・H3g)は加熱室における空気流路面積を、VHA(=qHA/SHA)は加熱室における空気の線速度を、VFは不織布の搬送速度を、τH(=L3g/VF)は不織布の加熱時間、すなわち不織布が加熱室内に滞在した時間を、それぞれ表している。 The processing conditions in Examples 1 and 2 are shown in Table 2. In Table 2, THAi is the temperature of the air at the inlet of the heating chamber, qHA is the flow rate of air discharged from the compressor (0 ° C.), SHA (= W3g · H3g) is the air flow path area in the heating chamber, and VHA ( = QHA / SHA) represents the linear velocity of air in the heating chamber, VF represents the conveyance speed of the nonwoven fabric, and τH (= L3g / VF) represents the heating time of the nonwoven fabric, that is, the time during which the nonwoven fabric stayed in the heating chamber. Yes.
(2)比較例1〜3における嵩回復処理
実施例1,2と同様の不織布が用意された。図8に示される嵩回復装置を用いて不織布の嵩回復処理が行われた。図8を参照すると、比較例1〜3の嵩回復装置は、一対のローラ21,21により駆動される通気性ベルト22を備え、ロールから巻き戻された不織布FFはベルト22上に載せられて搬送方向MDに搬送された。嵩回復装置はまた、熱風を供給する熱風供給器31と、熱風供給器31からの空気を吸引する吸引器32と、冷風を供給する冷風供給器41と、冷風供給器41からの空気を吸引する吸引器42と、を備えていた。熱風供給器31はファンから構成された。熱風供給器31と吸引器32とは間隙S3を隔てて互いに対面配置され、冷風供給器41と吸引器42とは間隙S4を隔てて互いに対面配置された。ベルト22はこれら間隙S3,S4内を通過し、したがって不織布FFは間隙S3,S4内を搬送された。同時に、熱風供給器31から不織布FFの表面に垂直に熱風が供給され、この熱風は不織布FFを通過し、次いで吸引器32に吸引された。同様に、冷風供給器41から不織布FFの表面に垂直に冷風が供給され、この冷風は不織布FFを通過し、次いで吸引器42に吸引された。
(2) Bulk recovery treatment in Comparative Examples 1 to 3 The same nonwoven fabric as in Examples 1 and 2 was prepared. The bulk recovery process of the nonwoven fabric was performed using the bulk recovery apparatus shown in FIG. Referring to FIG. 8, the bulk recovery devices of Comparative Examples 1 to 3 include a breathable belt 22 driven by a pair of rollers 21 and 21, and the nonwoven fabric FF unwound from the roll is placed on the belt 22. It was conveyed in the conveyance direction MD. The bulk recovery device also sucks the air from the hot air supply device 31 that supplies hot air, the suction device 32 that sucks air from the hot air supply device 31, the cold air supply device 41 that supplies cold air, and the cold air supply device 41. And an aspirator 42. The hot air supply device 31 was composed of a fan. The hot air supply device 31 and the suction device 32 are arranged to face each other with a gap S3, and the cold air supply device 41 and the suction device 42 are arranged to face each other with a gap S4. The belt 22 passed through the gaps S3 and S4, and therefore the nonwoven fabric FF was conveyed in the gaps S3 and S4. At the same time, hot air was supplied perpendicularly to the surface of the nonwoven fabric FF from the hot air supply device 31, and this hot air passed through the nonwoven fabric FF and was then sucked into the suction device 32. Similarly, cold air was supplied perpendicularly to the surface of the nonwoven fabric FF from the cold air supply device 41, and this cold air passed through the nonwoven fabric FF and was then sucked into the suction device 42.
比較例1〜3における処理条件が表3に示される。表3において、THAi’は熱風供給器31から流出する空気の温度を、qHA’は熱風供給器31から排出される空気流量(80℃)を、Ps’は熱風供給器31における静圧(80℃)を、L3g’,W3g’は、熱風供給器31及び吸引器32のうち空気流れが生じている部分の搬送方向長さ及び幅を、SHA’(=L3g’・W3g’)は、間隙S3における空気流路面積を、VHA’(=qHA’/SHA’)は間隙S3における空気の線速度を、SF’(=L3g’・WF)は、間隙S3内に位置する不織布部分、すなわち空気が通過している不織布部分の面積を、VF’は不織布の搬送速度を、τH’は加熱時間、すなわち不織布が間隙S3内に滞在した時間を、それぞれ表している。 The processing conditions in Comparative Examples 1 to 3 are shown in Table 3. In Table 3, THAi ′ is the temperature of the air flowing out from the hot air supplier 31, qHA ′ is the air flow rate (80 ° C.) discharged from the hot air supplier 31, and Ps ′ is the static pressure (80 C)), L3g ′ and W3g ′ are the length and width of the hot air supply device 31 and the suction device 32 where the air flow is generated, and SHA ′ (= L3g ′ · W3g ′) is the gap The air flow path area in S3, VHA ′ (= qHA ′ / SHA ′) is the linear velocity of air in the gap S3, and SF ′ (= L3g ′ · WF) is the non-woven fabric portion located in the gap S3, ie, air Represents the area of the non-woven fabric portion through which VF passes, VF ′ represents the conveyance speed of the non-woven fabric, and τH ′ represents the heating time, that is, the time during which the non-woven fabric stayed in the gap S3.
実施例1,2及び比較例1〜3の条件で嵩回復処理された嵩高不織布の特性が表4に示される。なお、T0及びTmは、圧縮試験時における一定圧力化(T0は0.5gf/cm2、Tmは50gf/cm2)での不織布の厚みである。T0の値が大きいほど、不織布のふんわり感が良好になる。また、Tmの値が大きいほど、圧縮時の厚み維持が良好になる。例えば、不織布が吸収性物品(例えばオムツ)のトップシートとして使用された場合、吸収性物品に圧力(例えば、着用者が座ったときの圧力等)が加わっても、不織布がつぶれにくい。
(4)熱融着部の電子顕微鏡観察
嵩回復前(嵩回復装置搬入前)の不織布、並びに実施例1,2及び比較例1〜3の条件で嵩回復処理して得られた嵩高不織布における熱融着性複合繊維の熱融着部を、KEYENCE社製リアルサーフェイスビュー顕微鏡VE−7800で観察した。この際、加速電圧は2kv、倍率は30〜1500倍、ステージ高さは10mmとした。それぞれの嵩高不織布を鋭利なカミソリ等で所定の大きさに切断し、観察ステージに両面テープで固定した。
(4) Observation by electron microscope of the heat-sealed part In the nonwoven fabric before bulk recovery (before carrying in the bulk recovery device) and the bulky nonwoven fabric obtained by bulk recovery treatment under the conditions of Examples 1 and 2 and Comparative Examples 1 to 3 The heat-sealed part of the heat-fusible conjugate fiber was observed with a real surface view microscope VE-7800 manufactured by KEYENCE. At this time, the acceleration voltage was 2 kv, the magnification was 30 to 1500 times, and the stage height was 10 mm. Each bulky nonwoven fabric was cut into a predetermined size with a sharp razor or the like, and fixed to the observation stage with double-sided tape.
まず、各不織布を凹凸面から300倍で観察したところ、嵩回復前の不織布では約5個程度の熱融着部が観察可能であり、嵩回復処理後の嵩高不織布では10個程度の熱融着部が観察可能であったので、それぞれの熱融着部を1500倍に拡大し、熱融着部の形態を観察した。 First, when each nonwoven fabric was observed 300 times from the uneven surface, about 5 heat-bonded portions can be observed in the nonwoven fabric before bulk recovery, and about 10 heat-melted portions in the bulky nonwoven fabric after bulk recovery treatment. Since the welded portions were observable, the respective heat-sealed portions were magnified 1500 times, and the form of the heat-fused portions was observed.
1500倍に拡大した熱融着部の電子顕微鏡写真を図9〜図14に示す。図9(a)〜(c)は、嵩回復前(嵩回復装置搬入前)の不織布の電子顕微鏡写真であり、図10(a)〜(c)は、実施例1の条件で嵩回復処理された不織布の電子顕微鏡写真であり、図11(a)〜(c)は、実施例2の条件で嵩回復処理された不織布の電子顕微鏡写真であり、図12(a)〜(c)は、比較例1の条件で嵩回復処理された不織布の電子顕微鏡写真であり、図13(a)〜(c)は、比較例2の条件で嵩回復処理された不織布の電子顕微鏡写真であり、図14(a)〜(c)は、比較例3の条件で嵩回復処理された不織布の電子顕微鏡写真である。 Electron micrographs of the heat-sealed part magnified 1500 times are shown in FIGS. FIGS. 9A to 9C are electron micrographs of the nonwoven fabric before bulk recovery (before carrying in the bulk recovery device), and FIGS. 10A to 10C are bulk recovery treatments under the conditions of Example 1. FIGS. 11 (a) to (c) are electron micrographs of the nonwoven fabric subjected to bulk recovery treatment under the conditions of Example 2, and FIGS. 12 (a) to (c) are FIG. FIG. 13 is an electron micrograph of a nonwoven fabric subjected to bulk recovery treatment under the conditions of Comparative Example 1, and FIGS. 13 (a) to (c) are electron micrographs of the nonwoven fabric subjected to bulk recovery treatment under the conditions of Comparative Example 2; 14A to 14C are electron micrographs of a nonwoven fabric subjected to bulk recovery treatment under the conditions of Comparative Example 3. FIG.
図9に示されるように、嵩回復前の不織布では、熱融着部において熱融着性複合繊維同士が食い込んでおり、熱融着性複合繊維間の距離は、各熱融着性複合繊維の繊維半径の和よりも小さくなっていた。不織布の製造時の搬送方向(MD方向)と垂直な方向(CD方向)に切断した断面観察用サンプルを作製し、凹凸面近傍部分、凹凸面/フラット面の中間部分及びフラット面近傍部分で熱融着部を観察したところ、概ね、どの部分でも、熱融着性複合繊維同士が食い込んでいた。 As shown in FIG. 9, in the nonwoven fabric before bulk recovery, the heat-fusible conjugate fibers are biting into the heat-fusible part, and the distance between the heat-fusible conjugate fibers is as follows. It was smaller than the sum of the fiber radii. Samples for cross-sectional observation cut in a direction (CD direction) perpendicular to the conveyance direction (MD direction) during the production of the nonwoven fabric are produced, and heat is generated in the vicinity of the uneven surface, the intermediate portion of the uneven surface / flat surface, and the vicinity of the flat surface. As a result of observing the fusion-bonded portion, the heat-fusible conjugate fibers bite into almost any portion.
図12〜図14に示されるように、比較例1〜3の条件で嵩回復処理された不織布では、嵩回復前の不織布と同様、熱融着性複合繊維同士が食い込んでいた。また、熱風温度の増加(比較例1では80℃,比較例2では100℃,比較例3では120℃)に伴って、熱融着性複合繊維の表面方向に熱融着部の表面積が増加する傾向が観察された。 As shown in FIGS. 12 to 14, in the nonwoven fabric subjected to bulk recovery treatment under the conditions of Comparative Examples 1 to 3, similar to the nonwoven fabric before bulk recovery, the heat-fusible conjugate fibers dig into each other. Further, as the hot air temperature increases (80 ° C. in Comparative Example 1, 100 ° C. in Comparative Example 2, 120 ° C. in Comparative Example 3), the surface area of the heat-sealed portion increases in the surface direction of the heat-fusible conjugate fiber. A tendency to do so was observed.
図10及び図11に示されるように、実施例1〜2の条件で嵩回復処理された不織布では、図1に示すくびれ状熱融着部が観察された。くびれ状熱融着部において熱融着性複合繊維同士は若干離間しており、熱融着性複合繊維間の距離は、各熱融着性複合繊維の繊維半径の和よりも大きくなっていた。また、ひびが発生している部分が観察された。また、熱融着部のくびれは、嵩回復処理時の温度の増加に伴って顕著となることが確認された。 As shown in FIGS. 10 and 11, in the nonwoven fabric subjected to the bulk recovery treatment under the conditions of Examples 1 and 2, the constricted heat fusion part shown in FIG. 1 was observed. The heat-fusible conjugate fibers were slightly separated from each other in the constricted heat-sealed portion, and the distance between the heat-fusible conjugate fibers was larger than the sum of the fiber radii of each heat-fusible conjugate fiber. . Moreover, the part which the crack has generate | occur | produced was observed. Moreover, it was confirmed that the constriction of the heat-sealed part becomes conspicuous as the temperature increases during the bulk recovery process.
図9〜図14に示されるような熱融着部の形態の相違は、嵩回復処理の有無及び種類の相違に基づくと考えられる。 The difference in the form of the heat fusion part as shown in FIGS. 9 to 14 is considered to be based on the presence / absence of the bulk recovery process and the difference in type.
すなわち、比較例1〜3で採用されているエアスルー方式では、嵩回復前の不織布が配置される移動式コンベア面に熱が伝わりにくいため、十分な嵩回復を実現するために、熱風を高温にする必要がある。また、熱風風速は比較的低くてもよいが、嵩回復前の不織布が配置されるコンベア面を熱風が通過する際、コンベア面と垂直の方向に、嵩回復前の不織布を圧縮する力が働く。したがって、比較例1〜3では、高温の熱風によって熱融着性複合繊維表面が融解しやすいとともに、融解した熱融着性複合繊維同士が圧縮されるため、熱融着性複合繊維同士が食い込んだ状態になると考えられる。 That is, in the air-through method employed in Comparative Examples 1 to 3, since heat is not easily transmitted to the mobile conveyor surface on which the nonwoven fabric before bulk recovery is arranged, hot air is raised to a high temperature in order to achieve sufficient bulk recovery. There is a need to. Moreover, although the hot air wind speed may be relatively low, when hot air passes through the conveyor surface on which the nonwoven fabric before bulk recovery is arranged, a force acts to compress the nonwoven fabric before bulk recovery in a direction perpendicular to the conveyor surface. . Therefore, in Comparative Examples 1 to 3, the surface of the heat-fusible conjugate fiber is easily melted by the hot hot air and the melted heat-fusible conjugate fibers are compressed. It is thought that it will be in a state.
これに対して、実施例1,2では、嵩回復前の不織布に対して並行に熱風が流れ、不織布速度よりも熱風風速が大きいので、嵩回復装置内で乱流が発生し、熱が伝わりやすくなる。また、不織布の構成繊維に対して、一方向に力が加わらず、空気の流れに沿って構成繊維に力が加わるため、膨出状熱融着部が若干伸長して、くびれ状熱融着部に変化しやすい。 On the other hand, in Examples 1 and 2, hot air flows in parallel to the nonwoven fabric before bulk recovery, and the hot air wind speed is larger than the nonwoven fabric speed, so turbulence occurs in the bulk recovery device and heat is transmitted. It becomes easy. In addition, since force is not applied to the constituent fibers of the nonwoven fabric in one direction and force is applied to the constituent fibers along the air flow, the swell-like heat-sealed part slightly expands and constricted heat-sealing It is easy to change to the part.
(5)考察
表4に示されるように、実施例1,2の条件で嵩回復処理して得られた嵩高不織布の坪量は嵩回復前の不織布と略同一であるが、嵩、比容積、WC値及びRC値は嵩回復前の不織布よりも大きい。同一坪量の場合、嵩が大きいほど、空隙率(比容積)が高く、WC値が大きいほど圧縮変形性が高く、RC値が100%に近いほど圧縮回復性が高い。したがって、実施例1,2の条件で嵩回復処理して得られた嵩高不織布は、嵩回復前の不織布と比較して、空隙率(比容積)が高く、圧縮変形性及び圧縮回復性に優れている。
(5) Discussion As shown in Table 4, the basis weight of the bulky nonwoven fabric obtained by bulk recovery treatment under the conditions of Examples 1 and 2 is substantially the same as that of the nonwoven fabric before bulk recovery, but the bulk and specific volume are as follows. , WC value and RC value are larger than the nonwoven fabric before bulk recovery. In the case of the same basis weight, the larger the bulk, the higher the porosity (specific volume), the higher the WC value, the higher the compressive deformability, and the closer the RC value is to 100%, the higher the compression recovery. Therefore, the bulky nonwoven fabric obtained by performing the bulk recovery treatment under the conditions of Examples 1 and 2 has a higher porosity (specific volume) than the nonwoven fabric before bulk recovery, and is excellent in compression deformability and compression recovery. ing.
また、実施例1,2の条件で嵩回復処理して得られた嵩高不織布の坪量は、比較例1〜3の条件で得られた嵩高不織布と略同一であるが、嵩、比容積、WC値及びRC値は、比較例1〜3の条件で得られた嵩高不織布と同程度又はそれより高い。特に、熱風温度が同程度である実施例1及び比較例1(実施例1では85℃,比較例1では80℃)を比較すると、実施例1では、比較例1よりも、圧縮変形性を示すWC値及び圧縮回復性を示すRC値が高い。実施例1の条件で嵩回復処理された不織布では、膨出状熱融着部がくびれ状熱融着部に変化しており、熱融着部が膨出状からくびれ状に変化することにより、熱融着部による熱融着性複合繊維の接合強度が低下している。したがって、実施例1の条件で嵩回復された不織布は、比較例1の条件で嵩回復処理された不織布よりも、圧縮変形に対する繊維の自由度が高く、繊維が動きやすくなっていると考えられる。このため、実施例1の条件で嵩回復処理された不織布は、比較例1の条件で嵩回復処理された不織布よりも、圧縮変形性を示すWC値が高いと考えられる。 Moreover, the basis weight of the bulky nonwoven fabric obtained by bulk recovery treatment under the conditions of Examples 1 and 2 is substantially the same as the bulky nonwoven fabric obtained under the conditions of Comparative Examples 1 to 3, but the bulk, specific volume, The WC value and RC value are the same as or higher than the bulky nonwoven fabric obtained under the conditions of Comparative Examples 1 to 3. In particular, when Example 1 and Comparative Example 1 (85 ° C. in Example 1 and 80 ° C. in Comparative Example 1) having the same hot-air temperature are compared, Example 1 has more compressive deformation than Comparative Example 1. The WC value shown and the RC value showing compression recovery are high. In the nonwoven fabric subjected to bulk recovery treatment under the conditions of Example 1, the bulging heat fusion part is changed to a constricted heat fusion part, and the heat fusion part is changed from a bulging shape to a constriction. Further, the bonding strength of the heat-fusible conjugate fiber by the heat-sealing part is lowered. Therefore, it is considered that the nonwoven fabric recovered in bulk under the conditions of Example 1 has a higher degree of freedom of fiber with respect to compression deformation and the fibers can move more easily than the nonwoven fabric subjected to bulk recovery treatment under the conditions of Comparative Example 1. . For this reason, it is considered that the nonwoven fabric subjected to bulk recovery treatment under the conditions of Example 1 has a higher WC value indicating compressive deformation than the nonwoven fabric subjected to bulk recovery treatment under the conditions of Comparative Example 1.
また、実施例1の条件で嵩回復処理された不織布では、嵩回復処理時に熱融着性複合繊維に熱が伝わりやすいため、熱融着性複合繊維を構成する樹脂が熱によって配向し、結晶性が高められていると考えられる。したがって、実施例1の条件で嵩回復された不織布は、比較例1の条件で嵩回復処理された不織布よりも、繊維の初期強度が増加し、初期の変形に対して繊維がへたりにくくなり、形状維持性が向上していると考えられる。このため、実施例1の条件で嵩回復処理された不織布は、比較例1の条件で嵩回復処理された不織布よりも、圧縮回復性を示すRC値が高いと考えられる。 In addition, in the nonwoven fabric subjected to bulk recovery treatment under the conditions of Example 1, heat is easily transferred to the heat-fusible conjugate fiber during the bulk restoration treatment, so that the resin constituting the heat-fusible conjugate fiber is oriented by heat and crystallized. It is thought that the sex is improved. Therefore, the nonwoven fabric recovered in bulk under the conditions of Example 1 has an increased initial strength of the fiber and the fibers are less likely to sag against initial deformation than the nonwoven fabric subjected to bulk recovery under the conditions of Comparative Example 1. It is considered that shape maintainability is improved. For this reason, it is considered that the nonwoven fabric subjected to bulk recovery treatment under the conditions of Example 1 has a higher RC value indicating compression recovery than the nonwoven fabric subjected to bulk recovery treatment under the conditions of Comparative Example 1.
F1〜F4 熱融着性複合繊維
R1,R2 熱融着性複合繊維の交差領域
B1 くびれ状熱融着部
B2 膨出状熱融着部
P1,P2 熱融着性複合繊維の交差領域の中心
Z1,Z1 熱融着性複合繊維の重なり方向
A1,A2 中心線(熱融着性複合繊維の交差領域の中心を通って熱融着性複合繊維の重なり方向に延びる仮想線)
r1,r2 熱融着性複合繊維の繊維半径
r3 熱融着性複合繊維間の距離
F1-F4 Heat-sealable composite fiber R1, R2 Cross-region of heat-sealable composite fiber B1 Neck-like heat-seal part B2 Swell-like heat-seal part P1, P2 Center of cross-region of heat-sealable composite fiber Z1, Z1 Overlapping direction of heat-fusible conjugate fiber A1, A2 Center line (virtual line extending in the overlapping direction of heat-fusible conjugate fiber through the center of the intersecting region of heat-fusible conjugate fiber)
r1, r2 Fiber radius of heat fusible conjugate fiber r3 Distance between heat fusible conjugate fibers
Claims (9)
前記くびれ状熱融着部が、前記交差領域の中心を通って前記熱融着性複合繊維の重なり方向に延びる仮想線を中心線としたとき、前記中心線に向けて凹状の表面を有し、
前記くびれ状熱融着部によって熱融着される熱融着性複合繊維間の距離が、各熱融着性複合繊維の繊維半径の和よりも大きく、
3.0gf/cm2荷重下の厚みが0.5〜3.0mmであり、
比容積が6〜300cm3/gである、前記不織布。 A non-woven fabric having a heat-fusible conjugate fiber that intersects and overlaps with each other, and a constricted heat-fusible portion that heat-fuses the heat-fusible conjugate fiber in an intersecting region of the heat-fusible conjugate fiber,
The constricted heat-sealed part has a concave surface toward the center line when a virtual line extending in the overlapping direction of the heat-fusible conjugate fiber through the center of the intersecting region is used as a center line. ,
The distance between the heat-fusible conjugate fibers heat-sealed by the constricted heat-sealing part is larger than the sum of the fiber radii of each heat-fusible conjugate fiber,
The thickness under a load of 3.0 gf / cm 2 is 0.5 to 3.0 mm,
The said nonwoven fabric whose specific volume is 6-300 cm < 3 > / g.
前記不織布の一定領域内に含まれる前記熱融着部の総数のうち前記くびれ状熱融着部の数の割合が1/10〜9/10である、請求項2に記載の不織布。 A number of heat-fusible portions that heat-fuse the heat-fusible conjugate fibers that intersect and overlap each other in the intersecting region of the heat-fusible conjugate fibers;
The nonwoven fabric according to claim 2, wherein a ratio of the number of the constricted heat fusion portions in the total number of the heat fusion portions included in a certain region of the nonwoven fabric is 1/10 to 9/10.
前記嵩回復処理が、
入口及び出口を有する加熱室を用意する段階と、
前記入口を介し前記加熱室内に入り、前記加熱室内を進行した後に、前記出口を介し前記加熱室から出るように前記嵩回復前の不織布を搬送しながら、前記入口及び前記出口の一方を介し前記加熱室内に入り、前記嵩回復前の不織布に接触しつつ前記加熱室内を進行した後に、前記入口及び前記出口の他方を介し前記加熱室内から出るように、加熱された流体を、前記嵩回復前の不織布の搬送速度よりも高い速度でもって、供給する段階と、
を含む、前記不織布。 The nonwoven fabric according to any one of claims 1 to 4, which is obtained by subjecting a nonwoven fabric before bulk recovery containing a heat-fusible conjugate fiber that has been heat-sealed to a bulk recovery treatment.
The bulk recovery process is
Providing a heating chamber having an inlet and an outlet;
After entering the heating chamber through the inlet and proceeding through the heating chamber, the nonwoven fabric before bulk recovery is conveyed so as to exit the heating chamber through the outlet, while passing through the one of the inlet and the outlet. After entering the heating chamber and proceeding through the heating chamber while in contact with the nonwoven fabric before bulk recovery, the heated fluid is allowed to exit the heating chamber through the other of the inlet and the outlet before the bulk recovery. Supplying at a speed higher than the conveying speed of the nonwoven fabric of
The said nonwoven fabric containing.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012218854A JP5840100B2 (en) | 2012-09-28 | 2012-09-28 | Non-woven |
PCT/JP2013/075558 WO2014050762A1 (en) | 2012-09-28 | 2013-09-20 | Nonwoven cloth |
US14/430,531 US20150211157A1 (en) | 2012-09-28 | 2013-09-20 | Nonwoven cloth |
KR1020147035238A KR102117135B1 (en) | 2012-09-28 | 2013-09-20 | Nonwoven cloth |
AU2013321216A AU2013321216B2 (en) | 2012-09-28 | 2013-09-20 | Nonwoven cloth |
EP13842672.1A EP2902537B1 (en) | 2012-09-28 | 2013-09-20 | Nonwoven cloth |
CN201310452925.5A CN103710883B (en) | 2012-09-28 | 2013-09-27 | Non-woven fabrics and absorbent commodity |
CN201320604703.6U CN203700710U (en) | 2012-09-28 | 2013-09-27 | Non-woven fabric and absorptive article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012218854A JP5840100B2 (en) | 2012-09-28 | 2012-09-28 | Non-woven |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014070317A true JP2014070317A (en) | 2014-04-21 |
JP5840100B2 JP5840100B2 (en) | 2016-01-06 |
Family
ID=50388166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012218854A Expired - Fee Related JP5840100B2 (en) | 2012-09-28 | 2012-09-28 | Non-woven |
Country Status (7)
Country | Link |
---|---|
US (1) | US20150211157A1 (en) |
EP (1) | EP2902537B1 (en) |
JP (1) | JP5840100B2 (en) |
KR (1) | KR102117135B1 (en) |
CN (2) | CN103710883B (en) |
AU (1) | AU2013321216B2 (en) |
WO (1) | WO2014050762A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019167191A1 (en) * | 2018-02-28 | 2019-09-06 | ユニ・チャーム株式会社 | Animal excrement disposal sheet |
JP2020518737A (en) * | 2017-03-28 | 2020-06-25 | ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク | Method and apparatus for producing nonwovens from fibers |
WO2021172476A1 (en) * | 2020-02-27 | 2021-09-02 | 花王株式会社 | Nonwoven fabric, nonwoven fabric product and absorbent article each provided with same, and method for producing said nonwoven fabric product |
JP2022508205A (en) * | 2018-11-23 | 2022-01-19 | ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク | Bulky non-woven fabric with improved compressibility and resilience |
RU2791337C1 (en) * | 2020-02-27 | 2023-03-07 | Као Корпорейшн | Non-woven material, product from non-woven material and absorbent product provided with non-woven material and method of manufacturing the said product from non-woven material |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5840100B2 (en) * | 2012-09-28 | 2016-01-06 | ユニ・チャーム株式会社 | Non-woven |
DK2777795T3 (en) * | 2013-03-15 | 2016-06-06 | Eurofilters Holding Nv | Vacuum cleaner filter bag |
JP5707467B2 (en) | 2013-10-18 | 2015-04-30 | ユニ・チャーム株式会社 | Absorbent article manufacturing apparatus and method of remodeling manufacturing apparatus |
JP5753884B2 (en) * | 2013-10-18 | 2015-07-22 | ユニ・チャーム株式会社 | Absorbent article manufacturing apparatus and manufacturing method |
JP5728555B2 (en) * | 2013-10-18 | 2015-06-03 | ユニ・チャーム株式会社 | Non-woven fabric bulk recovery device and bulk recovery method |
JP5728552B2 (en) * | 2013-10-18 | 2015-06-03 | ユニ・チャーム株式会社 | Non-woven fabric bulk recovery device and non-woven fabric bulk recovery method |
JP5728554B2 (en) * | 2013-10-18 | 2015-06-03 | ユニ・チャーム株式会社 | Non-woven fabric bulk recovery device and non-woven fabric bulk recovery method |
US20190153641A2 (en) | 2014-09-02 | 2019-05-23 | Cummins Filtration Ip, Inc. | Nonwoven web with bimodal fiber distribution |
EP3887584B1 (en) | 2018-11-30 | 2022-08-24 | The Procter & Gamble Company | Methods for producing through-fluid bonded nonwoven webs |
CN113166988B (en) | 2018-11-30 | 2023-04-07 | 宝洁公司 | Method of forming soft and lofty nonwoven webs |
EP4310229A3 (en) | 2018-11-30 | 2024-04-03 | The Procter & Gamble Company | Methods for through-fluid bonding nonwoven webs |
CN110293617B (en) * | 2019-07-17 | 2024-04-26 | 武汉微动机器人科技有限公司 | Tablet press |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009145148A1 (en) * | 2008-05-27 | 2009-12-03 | 花王株式会社 | Process for producing cleaning sheet |
JP2010084317A (en) * | 2010-01-06 | 2010-04-15 | Kao Corp | Surface sheet of absorbent article |
WO2010047292A1 (en) * | 2008-10-20 | 2010-04-29 | ユニ・チャーム株式会社 | Method of increasing thickness of nonwoven fabric and device therefor |
JP2010156076A (en) * | 2008-12-26 | 2010-07-15 | Kao Corp | Method for increasing volume of nonwoven fabric |
WO2012017990A1 (en) * | 2010-08-06 | 2012-02-09 | 花王株式会社 | Device for increasing bulk of non-woven fabric |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ205681A (en) * | 1982-09-30 | 1987-03-31 | Chicopee | Non-woven fabric containing conjugate fibres fused with hot air |
JP3658884B2 (en) * | 1996-09-11 | 2005-06-08 | チッソ株式会社 | Method for producing composite long-fiber nonwoven fabric |
JP3537775B2 (en) * | 2000-03-24 | 2004-06-14 | 花王株式会社 | Bulk sheet and method for producing the same |
JP2003082573A (en) * | 2001-09-07 | 2003-03-19 | Hirano Tecseed Co Ltd | Web heat treatment equipment |
JP4030484B2 (en) | 2002-09-25 | 2008-01-09 | 花王株式会社 | Nonwoven fabric bulk recovery method |
JP3989468B2 (en) * | 2004-06-14 | 2007-10-10 | 花王株式会社 | Three-dimensional shaped non-woven fabric |
CN101790606B (en) * | 2007-08-28 | 2012-09-05 | 花王株式会社 | Shaped sheet and absorbent article utilizing the same |
JP5069983B2 (en) | 2007-09-07 | 2012-11-07 | 花王株式会社 | Nonwoven fabric and method for producing the same |
JP4719229B2 (en) | 2008-01-22 | 2011-07-06 | 日本放送協会 | Diversity reception system |
JP5689616B2 (en) * | 2009-10-16 | 2015-03-25 | 花王株式会社 | Non-woven |
JP5777558B2 (en) * | 2012-04-20 | 2015-09-09 | ユニ・チャーム株式会社 | Method and apparatus for restoring bulk of nonwoven fabric |
JP5840100B2 (en) * | 2012-09-28 | 2016-01-06 | ユニ・チャーム株式会社 | Non-woven |
-
2012
- 2012-09-28 JP JP2012218854A patent/JP5840100B2/en not_active Expired - Fee Related
-
2013
- 2013-09-20 US US14/430,531 patent/US20150211157A1/en not_active Abandoned
- 2013-09-20 WO PCT/JP2013/075558 patent/WO2014050762A1/en active Application Filing
- 2013-09-20 EP EP13842672.1A patent/EP2902537B1/en active Active
- 2013-09-20 AU AU2013321216A patent/AU2013321216B2/en not_active Ceased
- 2013-09-20 KR KR1020147035238A patent/KR102117135B1/en active IP Right Grant
- 2013-09-27 CN CN201310452925.5A patent/CN103710883B/en active Active
- 2013-09-27 CN CN201320604703.6U patent/CN203700710U/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009145148A1 (en) * | 2008-05-27 | 2009-12-03 | 花王株式会社 | Process for producing cleaning sheet |
WO2010047292A1 (en) * | 2008-10-20 | 2010-04-29 | ユニ・チャーム株式会社 | Method of increasing thickness of nonwoven fabric and device therefor |
JP2010156076A (en) * | 2008-12-26 | 2010-07-15 | Kao Corp | Method for increasing volume of nonwoven fabric |
JP2010084317A (en) * | 2010-01-06 | 2010-04-15 | Kao Corp | Surface sheet of absorbent article |
WO2012017990A1 (en) * | 2010-08-06 | 2012-02-09 | 花王株式会社 | Device for increasing bulk of non-woven fabric |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020518737A (en) * | 2017-03-28 | 2020-06-25 | ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク | Method and apparatus for producing nonwovens from fibers |
WO2019167191A1 (en) * | 2018-02-28 | 2019-09-06 | ユニ・チャーム株式会社 | Animal excrement disposal sheet |
JPWO2019167191A1 (en) * | 2018-02-28 | 2020-04-09 | ユニ・チャーム株式会社 | Animal excrement disposal sheet |
JP2022508205A (en) * | 2018-11-23 | 2022-01-19 | ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク | Bulky non-woven fabric with improved compressibility and resilience |
JP7582943B2 (en) | 2018-11-23 | 2024-11-13 | ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク | Bulky nonwoven fabric with improved compressibility and recovery |
WO2021172476A1 (en) * | 2020-02-27 | 2021-09-02 | 花王株式会社 | Nonwoven fabric, nonwoven fabric product and absorbent article each provided with same, and method for producing said nonwoven fabric product |
RU2791337C1 (en) * | 2020-02-27 | 2023-03-07 | Као Корпорейшн | Non-woven material, product from non-woven material and absorbent product provided with non-woven material and method of manufacturing the said product from non-woven material |
Also Published As
Publication number | Publication date |
---|---|
WO2014050762A1 (en) | 2014-04-03 |
AU2013321216B2 (en) | 2017-09-14 |
AU2013321216A1 (en) | 2015-04-09 |
CN103710883A (en) | 2014-04-09 |
US20150211157A1 (en) | 2015-07-30 |
KR20150060607A (en) | 2015-06-03 |
EP2902537A4 (en) | 2016-06-01 |
EP2902537A1 (en) | 2015-08-05 |
JP5840100B2 (en) | 2016-01-06 |
EP2902537B1 (en) | 2017-08-30 |
KR102117135B1 (en) | 2020-05-29 |
CN203700710U (en) | 2014-07-09 |
CN103710883B (en) | 2017-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5840100B2 (en) | Non-woven | |
JP5498474B2 (en) | Method for producing laminated nonwoven fabric | |
US6610390B1 (en) | Nonwoven with non-symmetrical bonding configuration | |
JP5777558B2 (en) | Method and apparatus for restoring bulk of nonwoven fabric | |
JP2008025079A (en) | Nonwoven fabric | |
JP4762053B2 (en) | Elastic nonwoven fabric | |
JP2008025080A (en) | Nonwoven fabric | |
WO2007148533A1 (en) | Multilayer nonwoven fabric and process for producing the same | |
WO2007148501A1 (en) | Nonwoven fabric | |
KR20020018600A (en) | Absorbent article having fibrillary layer on surface thereof | |
TWI556969B (en) | Laminated nonwoven fabric and manufactured article using the same | |
JP2008106375A (en) | Stretchable nonwoven fabric | |
JP2007138374A (en) | Nonwoven stretch fabric | |
JP2016079529A (en) | Nonwoven fabric | |
TWI675138B (en) | Non-woven fabric for absorbent articles | |
JP4605653B2 (en) | Surface material and absorbent article using the same | |
JP5791843B2 (en) | Method and apparatus for restoring bulk of nonwoven fabric | |
CN117337346A (en) | Method for producing nonwoven fabric, nonwoven fabric produced by using same, and absorbent article comprising same as constituent member | |
CN111148492B (en) | Absorbent body and absorbent article | |
JP5548040B2 (en) | Non-woven | |
JP2023065156A (en) | Laminated nonwoven fabric manufacturing method | |
JP2020111845A (en) | Apertured nonwoven fabric and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150224 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20150224 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151013 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5840100 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |